
A Sophomoric Introduction to Shared-Memory

Parallelism and Concurrency

Lecture 5

 Programming with Locks and Critical Sections

Dan Grossman

Last Updated: May 2012

For more information, see http://www.cs.washington.edu/homes/djg/teachingMaterials/

Outline

Done:

– The semantics of locks

– Locks in Java

– Using locks for mutual exclusion: bank-account example

This lecture:

– More bad interleavings (learn to spot these!)

– Guidelines/idioms for shared-memory and using locks correctly

– Coarse-grained vs. fine-grained

Next lecture:

– Readers/writer locks

– Deadlock

– Condition variables

– Data races and memory-consistency models

2 Sophomoric Parallelism & Concurrency, Lecture 5

Races

A race condition occurs when the computation result depends on

scheduling (how threads are interleaved)

Bugs that exist only due to concurrency

– No interleaved scheduling with 1 thread

Typically, problem is some intermediate state that “messes up” a

concurrent thread that “sees” that state

Note: This and the next lecture make a big distinction between data

races and bad interleavings, both kinds of race-condition bugs

– Confusion often results from not distinguishing these or

using the ambiguous “race condition” to mean only one

3 Sophomoric Parallelism & Concurrency, Lecture 5

Example

4 Sophomoric Parallelism & Concurrency, Lecture 5

class Stack<E> {

 … // state used by isEmpty, push, pop

 synchronized boolean isEmpty() { … }

 synchronized void push(E val) { … }

 synchronized E pop() {

 if(isEmpty())

 throw new StackEmptyException();

 …

 }

 E peek() { // this is wrong

 E ans = pop();

 push(ans);

 return ans;

 }

}

peek, sequentially speaking

• In a sequential world, this code is of questionable style, but

unquestionably correct

• The “algorithm” is the only way to write a peek helper method if

all you had was this interface:

5 Sophomoric Parallelism & Concurrency, Lecture 5

interface Stack<E> {

 boolean isEmpty();

 void push(E val);

 E pop();

}

class C {

 static <E> E myPeek(Stack<E> s){ ??? }

}

peek, concurrently speaking

• peek has no overall effect on the shared data

– It is a “reader” not a “writer”

• But the way it is implemented creates an inconsistent

intermediate state

– Even though calls to push and pop are synchronized so

there are no data races on the underlying array/list/whatever

– (A data race is simultaneous (unsynchronized) read/write or

write/write of the same memory: more on this soon)

• This intermediate state should not be exposed

– Leads to several bad interleavings

6 Sophomoric Parallelism & Concurrency, Lecture 5

peek and isEmpty

• Property we want: If there has been a push and no pop, then

isEmpty returns false

• With peek as written, property can be violated – how?

7 Sophomoric Parallelism & Concurrency, Lecture 5

E ans = pop();

push(ans);

return ans;

push(x)

boolean b = isEmpty()

T
im

e

Thread 2 Thread 1 (peek)

peek and isEmpty

• Property we want: If there has been a push and no pop, then

isEmpty returns false

• With peek as written, property can be violated – how?

8 Sophomoric Parallelism & Concurrency, Lecture 5

E ans = pop();

push(ans);

return ans;

push(x)

boolean b = isEmpty()

T
im

e

Thread 2 Thread 1 (peek)

peek and push

• Property we want: Values are returned from pop in LIFO order

• With peek as written, property can be violated – how?

9 Sophomoric Parallelism & Concurrency, Lecture 5

E ans = pop();

push(ans);

return ans;

push(x)

push(y)

E e = pop()

T
im

e

Thread 2 Thread 1 (peek)

peek and push

• Property we want: Values are returned from pop in LIFO order

• With peek as written, property can be violated – how?

10 Sophomoric Parallelism & Concurrency, Lecture 5

E ans = pop();

push(ans);

return ans;

push(x)

push(y)

E e = pop()

 T
im

e

Thread 2 Thread 1 (peek)

peek and pop

• Property we want: Values are returned from pop in LIFO order

• With peek as written, property can be violated – how?

11 Sophomoric Parallelism & Concurrency, Lecture 5

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2 Thread 1 (peek)

push(x)

push(y)

E e = pop()

peek and peek

• Property we want: peek does not throw an exception if number

of pushes exceeds number of pops

• With peek as written, property can be violated – how?

12 Sophomoric Parallelism & Concurrency, Lecture 5

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2

E ans = pop();

push(ans);

return ans;

Thread 1 (peek)

peek and peek

• Property we want: peek doesn’t throw an exception if number of

pushes exceeds number of pops

• With peek as written, property can be violated – how?

13 Sophomoric Parallelism & Concurrency, Lecture 5

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2

E ans = pop();

push(ans);

return ans;

Thread 1 (peek)

The fix

• In short, peek needs synchronization to disallow interleavings

– The key is to make a larger critical section

– Re-entrant locks allow calls to push and pop

14 Sophomoric Parallelism & Concurrency, Lecture 5

class Stack<E> {

 …

 synchronized E peek(){

 E ans = pop();

 push(ans);

 return ans;

 }

}

class C {

 <E> E myPeek(Stack<E> s){

 synchronized (s) {

 E ans = s.pop();

 s.push(ans);

 return ans;

 }

 }

}

The wrong “fix”

• Focus so far: problems from peek doing writes that lead to an

incorrect intermediate state

• Tempting but wrong: If an implementation of peek (or isEmpty)

does not write anything, then maybe we can skip the

synchronization?

• Does not work due to data races with push and pop…

15 Sophomoric Parallelism & Concurrency, Lecture 5

Example, again (no resizing or checking)

16 Sophomoric Parallelism & Concurrency, Lecture 5

class Stack<E> {

 private E[] array = (E[])new Object[SIZE];

 int index = -1;

 boolean isEmpty() { // unsynchronized: wrong?!

 return index==-1;

 }

 synchronized void push(E val) {

 array[++index] = val;

 }

 synchronized E pop() {

 return array[index--];

 }

 E peek() { // unsynchronized: wrong!

 return array[index];

 }

}

Why wrong?

• It looks like isEmpty and peek can “get away with this” since

push and pop adjust the state “in one tiny step”

• But this code is still wrong and depends on language-

implementation details you cannot assume

– Even “tiny steps” may require multiple steps in the
implementation: array[++index] = val probably takes

at least two steps

– Code has a data race, allowing very strange behavior

• Important discussion in next lecture

• Moral: Do not introduce a data race, even if every interleaving

you can think of is correct

17 Sophomoric Parallelism & Concurrency, Lecture 5

The distinction

18 Sophomoric Parallelism & Concurrency, Lecture 5

The (poor) term “race condition” can refer to two different things

resulting from lack of synchronization:

1. Data races: Simultaneous read/write or write/write of the same

memory location

– (for mortals) always an error, due to compiler & HW (next lecture)

– Original peek example has no data races

2. Bad interleavings: Despite lack of data races, exposing bad

intermediate state

– “Bad” depends on your specification

– Original peek example had several

Getting it right

Avoiding race conditions on shared resources is difficult

– Decades of bugs have led to some conventional wisdom:

 general techniques that are known to work

Rest of lecture distills key ideas and trade-offs

– Parts paraphrased from “Java Concurrency in Practice”

• Chapter 2 (rest of book more advanced)

– But none of this is specific to Java or a particular book!

– May be hard to appreciate in beginning, but come back to

these guidelines over the years – don’t be fancy!

19 Sophomoric Parallelism & Concurrency, Lecture 5

3 choices

For every memory location (e.g., object field) in your program, you

must obey at least one of the following:

1. Thread-local: Do not use the location in > 1 thread

2. Immutable: Do not write to the memory location

3. Synchronized: Use synchronization to control access to the

location

20 Sophomoric Parallelism & Concurrency, Lecture 5

all memory thread-local

memory
immutable

memory

need

synchronization

Thread-local

Whenever possible, do not share resources

– Easier to have each thread have its own thread-local copy

of a resource than to have one with shared updates

– This is correct only if threads do not need to communicate

through the resource

• That is, multiple copies are a correct approach

• Example: Random objects

– Note: Because each call-stack is thread-local, never need

to synchronize on local variables

In typical concurrent programs, the vast majority of objects should

be thread-local: shared-memory should be rare – minimize it

21 Sophomoric Parallelism & Concurrency, Lecture 5

Immutable

Whenever possible, do not update objects

– Make new objects instead

• One of the key tenets of functional programming

– Hopefully you study this in another course

– Generally helpful to avoid side-effects

– Much more helpful in a concurrent setting

• If a location is only read, never written, then no synchronization

is necessary!

– Simultaneous reads are not races and not a problem

In practice, programmers usually over-use mutation – minimize it

22 Sophomoric Parallelism & Concurrency, Lecture 5

The rest

After minimizing the amount of memory that is (1) thread-shared

and (2) mutable, we need guidelines for how to use locks to

keep other data consistent

Guideline #0: No data races

• Never allow two threads to read/write or write/write the same

location at the same time

Necessary: In Java or C, a program with a data race is almost

always wrong

Not sufficient: Our peek example had no data races

23 Sophomoric Parallelism & Concurrency, Lecture 5

Consistent Locking

Guideline #1: For each location needing synchronization, have a

lock that is always held when reading or writing the location

• We say the lock guards the location

• The same lock can (and often should) guard multiple locations

• Clearly document the guard for each location

• In Java, often the guard is the object containing the location

– this inside the object’s methods

– But also often guard a larger structure with one lock to

ensure mutual exclusion on the structure

24 Sophomoric Parallelism & Concurrency, Lecture 5

Consistent Locking continued

• The mapping from locations to guarding locks is conceptual

– Up to you as the programmer to follow it

• It partitions the shared-and-mutable locations into “which lock”

25 Sophomoric Parallelism & Concurrency, Lecture 5

Consistent locking is:

• Not sufficient: It prevents all data races but still allows bad

interleavings

– Our peek example used consistent locking

• Not necessary: Can change the locking protocol dynamically…

Beyond consistent locking

• Consistent locking is an excellent guideline

– A “default assumption” about program design

• But it isn’t required for correctness: Can have different program

phases use different invariants

– Provided all threads coordinate moving to the next phase

• Example from the programming project attached to these notes:

– A shared grid being updated, so use a lock for each entry

– But after the grid is filled out, all threads except 1 terminate

• So synchronization no longer necessary (thread local)

– And later the grid becomes immutable

• So synchronization is doubly unnecessary

26 Sophomoric Parallelism & Concurrency, Lecture 5

Lock granularity

Coarse-grained: Fewer locks, i.e., more objects per lock

– Example: One lock for entire data structure (e.g., array)

– Example: One lock for all bank accounts

Fine-grained: More locks, i.e., fewer objects per lock

– Example: One lock per data element (e.g., array index)

– Example: One lock per bank account

“Coarse-grained vs. fine-grained” is really a continuum

27 Sophomoric Parallelism & Concurrency, Lecture 5

…

…

Trade-offs

Coarse-grained advantages

– Simpler to implement

– Faster/easier to implement operations that access multiple

locations (because all guarded by the same lock)

– Much easier: operations that modify data-structure shape

Fine-grained advantages

– More simultaneous access (performance when coarse-

grained would lead to unnecessary blocking)

Guideline #2: Start with coarse-grained (simpler) and move to fine-

grained (performance) only if contention on the coarser locks

becomes an issue. Alas, often leads to bugs.

28 Sophomoric Parallelism & Concurrency, Lecture 5

Example: Separate Chaining Hashtable

• Coarse-grained: One lock for entire hashtable

• Fine-grained: One lock for each bucket

Which supports more concurrency for insert and lookup?

Which makes implementing resize easier?

– How would you do it?

Maintaining a numElements field for the table will destroy the

benefits of using separate locks for each bucket

– Why?

29 Sophomoric Parallelism & Concurrency, Lecture 5

Critical-section granularity

A second, orthogonal granularity issue is critical-section size

– How much work to do while holding lock(s)

If critical sections run for too long:

– Performance loss because other threads are blocked

If critical sections are too short:

– Bugs because you broke up something where other threads

should not be able to see intermediate state

Guideline #3: Do not do expensive computations or I/O in critical

sections, but also don’t introduce race conditions

30 Sophomoric Parallelism & Concurrency, Lecture 5

Example

Suppose we want to change the value for a key in a hashtable

without removing it from the table

– Assume lock guards the whole table

31 Sophomoric Parallelism & Concurrency, Lecture 5

synchronized(lock) {

 v1 = table.lookup(k);

 v2 = expensive(v1);

 table.remove(k);

 table.insert(k,v2);

}

Papa Bear’s

critical section

was too long

(table locked

during

expensive call)

Example

Suppose we want to change the value for a key in a hashtable

without removing it from the table

– Assume lock guards the whole table

32 Sophomoric Parallelism & Concurrency, Lecture 5

synchronized(lock) {

 v1 = table.lookup(k);

}

v2 = expensive(v1);

synchronized(lock) {

 table.remove(k);

 table.insert(k,v2);

}

Mama Bear’s

critical section

was too short

(if another thread

updated the entry,

we will lose an

update)

Example

Suppose we want to change the value for a key in a hashtable

without removing it from the table

– Assume lock guards the whole table

33 Sophomoric Parallelism & Concurrency, Lecture 5

done = false;

while(!done) {

 synchronized(lock) {

 v1 = table.lookup(k);

 }

 v2 = expensive(v1);

 synchronized(lock) {

 if(table.lookup(k)==v1) {

 done = true;

 table.remove(k);

 table.insert(k,v2);

}}}

Baby Bear’s

critical section

was just right

(if another update

occurred, try our

update again)

Atomicity

An operation is atomic if no other thread can see it partly executed

– Atomic as in “appears indivisible”

– Typically want ADT operations atomic, even to other threads

running operations on the same ADT

Guideline #4: Think in terms of what operations need to be atomic

– Make critical sections just long enough to preserve atomicity

– Then design the locking protocol to implement the critical

sections correctly

That is: Think about atomicity first and locks second

34 Sophomoric Parallelism & Concurrency, Lecture 5

Don’t roll your own

• It is rare that you should write your own data structure

– Provided in standard libraries

– Point of these lectures is to understand the key trade-offs

and abstractions

• Especially true for concurrent data structures

– Far too difficult to provide fine-grained synchronization

without race conditions

– Standard thread-safe libraries like ConcurrentHashMap

written by world experts

Guideline #5: Use built-in libraries whenever they meet your needs

35 Sophomoric Parallelism & Concurrency, Lecture 5

