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The wealth of information on the web makes it an attractive resource for seeking quick answers
to simple, factual questions such as “who was the first American in space?” or “what is the second
tallest mountain in the world?” Yet today’s most advanced web search services (e.g., Google and
AskJeeves) make it surprisingly tedious to locate answers to such questions. In this paper, we
extend question-answering techniques, first studied in the information retrieval literature, to the
web and experimentally evaluate their performance.

First we introduce MULDER, which we believe to be the first general-purpose, fully-automated
question-answering system available on the web. Second, we describe MULDER’s architecture, which
relies on multiple search-engine queries, natural-language parsing, and a novel voting procedure
to yield reliable answers coupled with high recall. Finally, we compare MULDER’s performance to
that of Google and AskJeeves on questions drawn from the TREC-8 question answering track. We
find that MULDER’s recall is more than a factor of three higher than that of AskJeeves. In addition,
we find that Google requires 6.6 times as much user effort to achieve the same level of recall as
MULDER.
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1. INTRODUCTION

While web search engines and directories have made important strides in re-
cent years, the problem of efficiently locating information on the web is far from
solved. This paper empirically investigates the problem of scaling question-
answering techniques studied in the information retrieval and information ex-
traction literature [ARPA 1998; Voorhees and Tice 2000], to the web. Can these
techniques, previously explored in the context of much smaller and more care-
fully structured corpora, be extended to the web? Will a question-answering
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system yield benefit when compared to cutting edge commercial search engines
such as Google1?

Our focus is on factual questions such as “What is the second tallest mountain
in the world?” or “Who was the first American in space?” While this species of
questions represents only a limited subset of the queries posed to web search
engines, it presents the opportunity to substantially reduce the amount of user
effort required to find the answer. Our goal is to develop a system that concisely
answers “K-2” or “Alan Shepard” (along with the appropriate justification) in
response to the above questions, instead of forcing the user to sift through a list
of search engine “snippets” and read through multiple web pages potentially
containing the answer.

As a step towards this goal, this paper introduces the MULDER web question-
answering system. We believe that MULDER is the first general purpose, fully
automated question-answering system available on the web.2 The commercial
search engine known as AskJeeves3 responds to natural-language questions,
but its recall is very limited (see Section 4), suggesting that it is not fully auto-
mated.

To achieve its broad scope, MULDER automatically submits multiple queries
on the user’s behalf to a search engine (Google) and extracts its answers from
the engine’s output. Thus, MULDER is an information carnivore in the sense
described in Etzioni [1997]. MULDER utilizes several natural-language parsers
and heuristics in order to return high quality answers.

The remainder of this paper is organized as follows. Section 2 provides back-
ground information on question-answering systems and considers the require-
ments for scaling this class of systems to the web. Section 3 describes MULDER

and its architecture. Section 4 compares MULDER’s performance experimentally
with that of AskJeeves and Google, and analyzes the contribution of each of
MULDER’s key components to its performance. We conclude with a discussion of
related and future work.

2. BACKGROUND

A question-answering (QA) system provides direct answers to user questions
by consulting its knowledge base. Since the early days of artificial intelligence
in the 60’s, researchers have been fascinated with answering natural language
questions. The difficulty of natural language processing (NLP) however, has
limited the scope of QA to domain-specific expert systems.

In recent years, the combination of web growth, improvements in informa-
tion technology, and the explosive demand for better information access has
reignited the interest in QA systems. The availability of huge document col-
lections (e.g., the web itself), combined with improvements in information-
retrieval (IR) and NLP techniques, has attracted the development of a special
class of QA systems that answers natural language questions by consulting
a repository of documents [Voorhees and Tice 2000]. The Holy Grail for these

1http://www.google.com.
2See http://mulder.cx for a prototype.
3http://www.ask.com.
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systems is answering questions over the web. A QA system utilizing this re-
source has the potential to answer questions about a wide variety of topics, and
will constantly be kept up to date with the web itself. It therefore, makes sense
to build QA systems that can scale up to the web.

In the following sections, we look at the anatomy of QA systems, and what
challenges the web poses for them. We then define what is required of a web
based QA system.

2.1 Components of a QA System

An automated QA system based on a document collection typically has three
main components. The first is an information retrieval engine that sits on top
of the document collection and handles retrieval requests. In the context of the
web, this is a search engine that indexes web pages. The second is a query for-
mulation mechanism that translates natural-language questions into queries
for the IR engine in order to retrieve relevant documents from the collection,
that is, documents that can potentially answer the question. The third compo-
nent, answer extraction, analyzes these documents and extracts answers from
them.

2.2 Challenges of the Web

Although the web is full of information, finding the facts sometimes resembles
picking needles from a haystack. The following are specific challenges by the
web to an automated QA system:

—Forming the right queries. Given a question, translating it into a search en-
gine query is not a trivial task. If the query is too general, we may retrieve
too many documents that are not related to the question. If the query is too
specific however, no pages are retrieved at all. Getting the right set of pages
is crucial in dealing with the web.

—Noise. Sometimes even with the right set of keywords, the system may still
retrieve a lot of pages that talk about something else. For example, we issued
the query “first american in space” to Google, and received results about
the first American woman in space and the first American to vote from space.
The QA system has to be tolerant of such noise or it will become confused
and give incorrect answers.

—Factoids. By far the worst scenario for a QA system is finding falsehoods. Ad-
vanced NLP techniques in the future may allow us to find answers 90% of the
time, but if the knowledge is incorrect the answer is still invalid. Sometimes,
but not always such factoids are human errors or lies. For example, one of
the sites returned by Google stated “John Glenn was the first American in
space”, which is false. However, the site is labeled “Common Misconceptions
in Astronomy”. Such sentences can cause a lot of headaches for QA systems.

—Resource limitations. Search engines have been improving steadily and are
faster than ever, but it is still very taxing to issue a few dozen queries in order
to answer each question. A QA system has to make intelligent decisions about
which queries to try instead of blindly issuing combinations of words. Online
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Fig. 1. Architecture of MULDER.

interactive QA systems also have to consider the time spent by the user in
waiting for an answer. Very few users are willing to wait more than a few
minutes.

In the next section, we describe a fully implemented prototype web QA sys-
tem, MULDER, which takes these factors into consideration.

3. THE MULDER WEB QA SYSTEM

Figure 1 shows the architecture of MULDER. The user begins by asking the ques-
tion in natural language from MULDER’s web interface. MULDER then parses the
question using a natural language parser (section 3.1), which constructs a tree
of the question’s phrasal structure. The parse tree is given to the classifier
(section 3.2) which determines the type of answer to expect. The query formu-
lator (section 3.3) uses the parse tree to translate the question into a series of
search engine queries. These queries are issued in parallel to the search engine
(section 3.4), which fetches web pages for each query. The answer extraction
module (section 3.5) extracts relevant snippets called summaries from the web
pages, and generates a list of possible candidate answers from these snippets.
These candidates are given to the answer selector (section 3.6) for scoring and
ranking; the sorted list of answers (presented in the context of their respective
summaries) is displayed to the user.

The following sections describe each component in detail.

3.1 Question Parsing

In contrast to traditional search engines which treat queries as a set of key-
words, MULDER parses the user’s question to determine its syntactic structure.
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As we shall see, knowing the structure of the question allows MULDER to formu-
late the question into several different keyword queries which are submitted to
the search engine in parallel, thus increasing recall. MULDER uses the question’s
syntactic structure to better extract plausible answers from the pages returned
by the search engine.

Natural-language-parsing is a mature field with a decades long history, so
we chose to adopt the best existing parsing technology rather than roll our
own. Today’s best parsers employ statistical techniques [Collins 1996; Charniak
1997]. These parsers are trained on a tagged corpus, and they use learned
probabilities of word relationships to guide the search for the best parse. The
Maximum Entropy-Inspired (MEI) parser [Charniak 1999] is one of the best
of this breed, so we integrated it into MULDER. The parser was trained on the
Penn Wall Street Journal tree-bank [Marcus et al. 1993 sect. 2–21].

Our overall experience with the parser has been positive, initially we dis-
covered two problems. First, because of its limited training set the parser has
a restricted vocabulary. Second, when the parser does not know a word, it at-
tempts to make educated guesses for the word’s part of speech. This increases
its search space, and slows down parsing.4 In addition, the guesses can be
quite bad. In one instance, the parser tagged the word “tungsten” as a cardinal
number. To remedy both of these problems, we integrated a lexical analyzer
called PC-KIMMO [Antworth 1990] into the MEI parser. Lexical analysis allows
MULDER to tag previously unseen words. For example, MULDER does not know the
word “neurological”, but by breaking down the word into the root “neurology”
and the suffix “-al”, it knows the word is an adjective. When the MEI parser
does not know a word, MULDER uses PC-KIMMO to recognize and tag the part of
speech of the word. If PC-KIMMO also does not know the word either, we adopt
the heuristic of tagging the word as a proper noun.

MULDER’s combination of MEI/PC-KIMMO and noun defaulting enables it to
parse all TREC-8 questions correctly.

3.2 Question Classifier

Question classification allows MULDER to narrow the number of candidate an-
swers during the extraction phase. Our classifier recognizes three types of
questions: nominal, numerical and temporal, which correspond to noun phrase,
number, and date answers. This simple hierarchy makes classification an easy
task and offers the potential of very high accuracy. It also avoids the difficult
process of designing a complete question ontology with manually tuned answer
recognizers.

Most natural questions contain a wh-phrase, which consists of the inter-
rogative word and the subsequent words associated with it. The MEI parser
distinguishes four main types of wh-phrases, and MULDER makes use of this
type information to classify the question. Wh-adjective phrases, such as “how
many” and “how tall”, contain an adjective in addition to the question words.

4While speed is not a concern for short questions, longer questions can take a few seconds to parse.
We also use the parser extensively in the answer extraction phase to parse longer sentences, where
speed is a very important issue.
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These questions inquire about the degree of something or some event, and
MULDER classifies them as numerical. Wh-adverb phrases begin with single
question words such as “where” or “when”. We use the interrogative word to
find the question type, for example, “when” is temporal and “where” is nomi-
nal. Wh-noun phrases usually begin with “what”, and the questions can look
for any type of answer. For example, “what height” looks for a number, “what
year” a date, and “what car” a noun. We use the object of the verb in the ques-
tion to determine the type. To find the object of the verb, MULDER uses the Link
parser [Grinberg et al. 1995]. The Link parser is different from the MEI parser
in that it outputs the sentence parse in the form of the relationships between
words (called links) instead of a tree structure. MULDER uses the verb-object
links to find the object in the question. MULDER then consults WordNet [Miller
1991] to determine the type of the object. WordNet is a semantic network con-
taining words grouped into sets called synsets. Synsets are linked to each other
by different relations, such as synonyms, hypernyms and meronyms5 To clas-
sify the object word, we traverse the hypernyms of the object until we find the
synsets of “measure” or “time”. In the former case, we classify the question as
numerical, and in the latter case temporal. Sometimes a word can have multi-
ple senses, and each sense may lead to a different classification, for example,
“capital” can be a city or a sum of money. In such cases we assume the question
is nominal. Finally, if the question does not contain a wh-phrase (e.g., “Name a
film that has won the Golden Bear award . . .”), we classify it as nominal.

3.3 Query Formulation

The query formulation module converts the question into a set of key-
word queries that will be sent to the search engine for parallel evaluation.
MULDER has a good chance of success if it can guess how the answer may appear
in a target sentence, that is, a sentence that contains the answer. We believe this
strategy works especially well for questions related to common facts, because
these facts are replicated across the web on many different sites, which makes
it highly probable that some web page will contain our formulated phrase. To
illustrate, one can find the answer to our American-in-space question by issu-
ing the phrase query “"The first American in space was"”.6 When given this
query, Google returns 34 pages, and most of them say “The first American in
space was Alan Shepard,” with variations of Shepard’s name.

A second insight behind MULDER’s query formulation method is the idea
of varying the specificity of the query. The most general query contains only
the most important keywords from the user’s question, while the most spe-
cific queries are quoted partial sentences. Longer phrases place additional con-
straints on the the query, increasing precision, but reducing the number of
pages returned. If the constraint is too great, then no pages will be returned at
all. A priori it is difficult to know the optimal point on the generality/specificity

5A hypernym is a word whose meaning denotes a superordinate, e.g., animal is a hypernym of dog.
A meronym is a concept that is a part of another concept, e.g., knob is a meronym of door.
6The actual query is “"+the first American +in space +was"”, following Google’s stop word
syntax.
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tradeoff, hence our decision to try multiple points in parallel; if a long phrase
query fails to return, MULDER can fall back on the more relaxed queries.
MULDER currently implements the following reformulation strategies, in order
of general to specific:

—Verb Conversion. For questions with an auxilliary do-verb and a main verb,
the target sentence is likely to contain the verb in the conjugated form rather
than separate verbs. For example, in “When did Nixon visit China?”, we ex-
pect the target sentence to be “Nixon visited China . . .” rather than “Nixon
did visit China . . .”. To form the verb “visited”, we use PC-KIMMO’s word syn-
thesis feature. It generates words by combining the infinitive of a word with
different suffixes or prefixes.7 MULDER forms a query with the auxilliary and
the main verb replaced by the conjugated verb.

—Query Expansion. Extending the query vocabulary via a form of query ex-
pansion [Buckley et al. 1995; Voorhees 1994] improves MULDER’s chances of
finding pages with an answer. For example, with wh-adjective questions such
as “How tall is Mt. Everest?”, the answers may occur in sentences such as
“The height of Everest is . . .”. For these questions, we use WordNet [Miller
1991] to find the attribute noun of the adjectives. MULDER composes a new
query by replacing the adjective with its attribute noun. Tight bounds are
employed to ensure that MULDER will not flood the search engine with too
many queries.

—Noun Phrase Formation. Many noun phrases, such as proper names, are
atomic and should not be broken down. MULDER gets more relevant web pages
if it quotes these entities in its query. For example, if one wants to find web
pages on question-answering research, the query “"question answering"”
performs better than the unquoted query. MULDER implements this idea by
composing a query with quoted nonrecursive noun phrases, that is, noun
phrases that do not contain other noun phrases.

—Transformation. Transforming the question into equivalent assertions (as
illustrated in the beginning of this section) is a powerful method for increasing
the chance of getting target sentences. Transformational Grammar [Chomsky
1965; Akmajian and Heny 1975] allows MULDER to do this in a principled
manner. The grammar defines conversion rules applicable to a sentence and
their effects on the semantics of the sentence. The following are some sample
transformations we have implemented in MULDER:
(1) Subject-Aux Movements. For questions with a single auxilliary and a trail-

ing phrase such as the American-in-space question, MULDER can remove
the interrogative and form two queries with the phrase placed in front
and after the auxilliary, respectively, that is “"was the first American
in space"” and “"the first American in space was"”.

(2) Subject-Verb Movements. If there is a single verb in the question, MULDER

forms a query by stripping the interrogative, for example, from “who shot
JFK?” MULDER creates “"shot JFK"”.

7Irregular verbs are handled specially by PC-KIMMO, but are only slightly trickier than the regulars.
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The actual rules are slightly more complicated in order to handle complex
sentences, but the essence is the same.

Since only a subset of these techniques is applicable to each question, for
each user question MULDER’s query formulation module issues approximately
4 search engine queries on average. We think this is a reasonable load on the
search engine. Section 4.4 details experiments that show reformulation signif-
icantly improves MULDER’s performance.

3.4 Search Engine

Since MULDER depends on the web as its knowledge base, the choice of search
engine determines our scope of knowledge and the method of retrieving that
knowledge. The idiosyncrasies of the search engine also affect more than just
the syntax of the queries. For example, with Boolean search engines one could
issue a query A AND ( B OR C ), but for search engines which do not support
disjunction, one must decompose the original query into two, A B and A C, in
order to get the same set of pages.

We considered a few search engine candidates, but eventually chose Google.
Google has two overwhelming advantages over others: it has the widest cover-
age among search engines (as of October 2000, Google has indexed 1.2 billion
web pages), and its page ranking function is unrivaled. Wider coverage means
that MULDER has a larger knowledge base and access to more information. With
a larger collection moreover, we have a higher probability of finding target sen-
tences. Google’s ranking function helps MULDER in two ways. First, Google’s
ranking function is based on the PAGERANK [Brin and Page 1998] algorithm
which uses link analysis techniques to determine sites with higher information
value. This provides MULDER with a selection of higher quality pages. Second,
Google’s ranking function is based on the proximity of words, for example, if
the document has keywords closer together, it will be ranked higher. While this
has no effect on queries with long phrases, it helps significantly in cases where
we have to rely on keywords.

3.5 Answer Extraction

The answer extraction module is responsible for acquiring candidate answers
from the retrieved web pages. In MULDER, answer extraction is a two-step pro-
cess. First, we extract from the pages snippets of text that are likely to contain
the answer. These snippets are called summaries; MULDER ranks them and se-
lects the N best. Next MULDER parses the summaries using the MEI parser and
obtains phrases of the expected answer type. For example, after MULDER has
retrieved pages from the American-in-space queries, the summary extractor ob-
tains the snippet “The first American in space was Alan B. Shepard. He made a
15 minute suborbital flight in the Mercury capsule Freedom 7 on May 5, 1961.”
When MULDER parses this snippet, it obtains the following noun phrases, which
become candidate answers: “The first American”, “Alan B. Shepard”, “suborbital
flight” and “Mercury capsule Freedom 7”.

We implemented a summary mechanism instead of extracting answers di-
rectly from the web page because the latter is very expensive. The MEI parser
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takes between a half second for short sentences to three or more for longer
sentences, making it impractical to parse every sentence on every web page re-
trieved. Moreover, regions that are not close to any query keywords are unlikely
to contain the answer.

MULDER’s summary extractor operates by locating textual regions containing
keywords from the search engine queries. In order to bound subsequent parser
time and improve efficiency, these regions are limited to at most 40 words, and
are delimited by sentence boundaries whenever possible. We tried limiting sum-
maries to a single sentence, but this heuristic reduced recall significantly. The
following snippet illustrates why multiple sentences are often useful: “Many
people ask who was the first American in space. The answer is Alan Shepard
whose suborbital flight made history in 1961.”

After MULDER has extracted summaries from each web page, it scores and
ranks them. The scoring function prefers summaries that contain more impor-
tant keywords which are close to each other. To determine the importance of
a keyword, we use a common IR metric known as inverse document frequency
(IDF), which is defined by N

d f , where N is the size of a document collection and df
is the number of documents containing the word. The idea is that unimportant
words, such as “the” and “is”, are in almost all documents while important words
occur sparingly. To obtain IDF scores for words, we collected about 100,000 doc-
uments from various online encyclopedias and computed the IDF score of every
word in this collection. For unknown words, we assume df is 1. To measure
how close keywords are to each other, MULDER calculates the square-root-mean
of the distances between keywords. For example, suppose d1, . . . , dn−1 are the
distances between the n keywords in summary s, then the distance is

D(s) =
√

d2
1 + · · · + d2

n−1

(n− 1)

If s has n keywords, each with weight wi, then its score is given by:

S(s) =
∑n

i=1 wi

D(s)

MULDER selects the best N summaries and parses them using the MEI parser.
To reduce the overall parse time, MULDER runs many instances of the MEI parser
on different machines so that parsing can be done in parallel. We also created
a quality switch for the parser, so that MULDER can trade quality for time. The
parse results are then scanned for the expected answer type (noun phrases,
numbers, or dates), and the candidate answers are collected.

3.6 Answer Selection

The answer selection module picks the best answer among the candidates with a
voting procedure. MULDER first ranks the candidates according to how close they
are to keywords. It then performs clustering to group similar answers together,
and a final ballot is cast for all clusters; the one with the highest score wins.
The final answer is chosen from the top candidate in this cluster. For instance,
suppose we have three answer candidates, “Alan B. Shepard”, “Shepard”, and
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“John Glenn”, each with scores 2, 1 and 2 respectively. The clustering will result
in two groups, one with “Alan B. Shepard” and “Shepard” and the other with
“John Glenn”. The former is scored 3 and the latter 2, thus MULDER would pick
the Shepard cluster as the winner and select “Alan B. Shepard” as the final
answer.

MULDER scores a candidate answer by its distance from the keywords in the
neighborhood, weighted by how important those keywords are. Let ki represent
a keyword, ai an answer word and ci a word that does not belong to either cate-
gory. Furthermore, let wi be the weight of keyword ki. Suppose we have a string
of consecutive keywords on the left side of the answer candidate beginning at
a1, separated by m unrelated words, that is, k1 . . .knc1 . . . cma1 . . .ap, MULDER

scores the answer by

K L = w1 + · · · +wn

m
(the L in K L stands for “Left”). We compute a similar score, K R , with the same
formula, but with keywords on the right side of the answer. The score for a can-
didate is max(K L, K R). For certain types of queries, we modify this score with
multipliers. The answers for temporal and wh-adverb (when, where) queries
are likely to occur inside prepositional phrases, so we raise the score for an-
swers that occur within a prepositional phrase. Some transformations expect
the answers on a certain side of the query keywords (left or right). For example,
the search engine query “"was the first American in space"” expects the an-
swer on the left side of this phrase, so MULDER rejects potential answers on the
right side.

After we have assigned scores to each candidate answer, we cluster them
into groups. This procedure effects several corrections:

—Reducing noise. Random phrases that occur by chance are likely to be elimi-
nated from further consideration by clustering.

—Allowing alternative answers. Many answers have alternative acceptable
forms. For example, “Shepard”, “Alan B. Shepard”, “Alan Shepard” are all
variations of the same name. Clustering collects all of these dissimilar en-
tries together so that they have collective bargaining power and get selected
as the final answer.

—Separating facts from fiction. The web contains a lot of misinformation.
MULDER assumes the truth will prevail and occur more often, and cluster-
ing embeds this ideal.

Our clustering mechanism is a simplified version of suffix tree clustering
[Zamir and Etzioni 1999]. MULDER simply assigns answers that share the same
words to the same cluster. While a complete implementation of suffix tree clus-
tering that handles phrases may give better performance than our simple al-
gorithm, our experience shows word-based clustering works reasonably well.

After the clusters are created, they are ranked according to the sum of the
scores of their member answers. The member answer with the highest individ-
ual score is chosen as the representative of each cluster.
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Fig. 2. MULDER output for the question “Who was the first American in space?”

The sorted list of ranked clusters and their representatives are displayed to
the user as the final results. Figure 2 shows MULDER’s response to the American-
in-space question.

4. EVALUATION

In this section, we evaluate the performance of MULDER by comparing it with
two popular and highly regarded web services, Google (the web’s premier search
engine) and AskJeeves (the web’s premier QA system). In addition, we evaluate
how different components contribute to MULDER’s performance. We study the
effectiveness of query formulation, answer extraction and the voting selection
mechanism.

AskJeeves allows users to ask questions in natural language. It looks up the
user’s question in its own database and returns a list of matching questions
that it knows how to answer. The user selects the most appropriate entry in the
list, and is taken to a web page where the answer will be found. Its database
of questions appears to be constructed manually, therefore the corresponding
web pages reliably provide the desired answer. We also compare MULDER with
Google. Google supplies the web pages that MULDER uses in our current imple-
mentation and provides a useful baseline for comparison.

We begin by defining various metrics of our experiment in Section 4.1; then,
in Section 4.2, we describe our test question set. In Section 4.3, we compare the
performance of MULDER with the two web services on the TREC-8 question set.
Finally, in Section 4.4, we investigate the efficacy of various system components.

4.1 Experimental Methodology

The main goal of our experiments is to quantitatively assess MULDER’s perfor-
mance relative to the baseline provided by Google and AskJeeves. Traditional
information retrieval systems use recall and precision to measure system per-
formance. Suppose we have a document collection D; there is a subset R of this
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collection that is relevant to a query Q . The retrieval system fetches a subset
F of D for Q . Recall is defined as |F∩R|

|R| and precision |F∩R|
|F | . In other words,

recall measures how thorough the system is in locating R. Precision, on the
other hand, measures how many relevant retrieved documents are among the
retrieved set, which can be viewed as a measure of the effort the user has to
expend to find the relevant documents. For example, if precision is high, all
other things being equal, the user spends less time sifting through irrelevant
documents in order to find relevant ones.

In question-answering, we can define recall as the percentage of questions
answered correctly from the test set. It is inappropriate to measure precision
in this context, because a question is answered either correctly or incorrectly.8

We would, nonetheless, still like to measure how much user effort is required
to find the answer, not merely what fraction of the time an answer is available.

To measure user effort objectively across the different systems, we need a
metric that captures or approximates how much work it takes for the user to
reach an answer while reading through the results presented by each system.
While the true “cognitive load” for each user is difficult to capture, a natural
candidate for measuring user effort is time; the longer it takes the user to reach
the answer, the more effort is expended. Reading time however, depends on
numerous factors, such as how fast a person reads, how well the web pages are
laid out, how experienced the user is with the subject, and so forth. In addition,
obtaining data for reading time would require an extensive user study. Thus, in
our first investigation of the feasibility of web QA systems, we chose to measure
user effort by the number of words the user has to read from the start of each
system’s result page until they locate the first correct answer.

Naturally, our measure of user effort is approximate. It does not take into
account page layout, users’ ability to skip text instead of reading it sequentially,
differences in word length, etc. It has two important advantages, however. First,
the metric can be computed automatically without requiring an expensive user
study. Second, it provides a common way to measure user effort across multiple
systems with very different user interfaces.

We now define our metric formally. The word distance metric counts how
many words it takes an idealized user to reach the first correct answer start-
ing from the top of the system’s result page and reading sequentially towards
the bottom. Suppose s1, s2, . . . , sn are the summary entries in the results page
returned by the system, and di is the web page linked to by si. We define |t| to
be the number of words in the text t before the answer. If t does not have the
answer, then |t| is the total number of words in t. Finally, let a be the index of
the entry with the answer, thus sa and da are the first snippet and document
containing the answer respectively. | da |= 0 if the answer is found in sa, since
we do not need to view da if sa already contains the answer.

8Consider a search engine that returns one hundred results. In one case, the correct answer is the
top-ranked result and all other answers are incorrect. In the second case, the first fifty answers
are incorrect and the last fifty are correct. While precision is much higher in the second case, user
effort is minimized in the first case. Unlike the case of collecting relevant documents, the value of
repeating the correct answer is minimal.
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Table I. Some Sample Questions from TREC-8 with Answers Provided by MULDER

Question Answer

Who is the President of Ghana? Rawlings
What is the name of the rare neurological disease with symptoms Tourette’s Syndrome

such as: involuntary movements (tics), swearing, and incoherent
vocalizations (grunts, shouts, etc.)?

How far is Yaroslavl from Moscow? 280 miles
What country is the biggest producer of tungsten? China
When did the Jurassic Period end? 144 million years ago

We now define W (C, P ), the word distance of the first correct answer C on a
results page P , as follows:

W (C, P ) =
(

a∑
i=1

|si|
)
+ |da|

Note that our word distance metric favors Google and AskJeeves by assuming
that the user is able to determine which document di contains the answer
by reading snippets exclusively, allowing her to skip d1. . .di−1. On the other
hand, it does assume that people read snippets and pages sequentially without
skipping or employing any kind of “speed reading” techniques. Overall, we feel
that this a fair, though approximate, metric for comparing user effort across
the three systems investigated.

It is interesting to note that an average person reads 280 words per
minute [Taylor et al. 1960]. We can therefore use word distance to provide
a rough estimate of the time it takes to find the answer.

4.2 Data Set

For our test set, we use the TREC-8 question track which consists of 200 questions
of varying type, topic, complexity and difficulty. Some sample questions are
shown in Table I.

In the original question track, each system is provided with approximately
500,000 documents from the TREC-8 document collection as its knowledge base,
and is required to supply a ranked list of candidate answers for each question.
The score given to each participant is based on where answers occur in its lists
of candidates. The scoring procedure is done by trained individuals. All the
questions are guaranteed to have an answer in the collection.

We chose TREC-8 as our test set because its questions are very well selected,
and it allows our work to be put into context with other systems which partic-
ipated in the track. Our experiments differ from the TREC-8 question track in
four ways, however. First, MULDER is a QA system based on the web, therefore
we do not use the TREC-8 document collection as our knowledge base. Second,
because we do not use the original document collection, it is possible that some
questions will not have answers. For example, we spent about 30 minutes with
Google looking for the answer to “How much did Mercury spend on advertising
in 1993?” and could not find an answer. Third, since we do not have the re-
sources to score all of our test runs manually, we constructed a list of answers
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based on TREC-8’s relevance judgment file9 and our manual effort. Furthermore,
some of TREC-8’s answers had to be slightly modified or updated. For example,
“How tall is Mt. Everest?” can be answered either in meters or feet; “Donald
Kennedy” was TREC-8’s answer to “Who is the president of Stanford Univer-
sity”, but it is Gerhard Casper at the time of writing.10 Finally, whereas TREC-8
participants are allowed to return a snippet of fixed length text as the answer,
MULDER returns the most precise answer whenever possible.

4.3 Comparison with Other Systems

In our first experiment, we compare the user effort required to find the answers
in TREC-8 by using MULDER, Google and AskJeeves. User effort is measured using
word distance as defined in section 4.1. At each word distance level, we compute
the recall for each system. The maximum user effort is bounded at 5000, which
represents more than 15 minutes of reading by a normal person. To compare
the systems quantitatively, we compute total effort at recall r% by summing up
the user effort required from 0% recall up to r%. Figure 3 shows the result of
this experiment.

The experiment shows that MULDER outperforms both AskJeeves and Google.
MULDER consistently requires less user effort to reach an answer than either
system at every level of recall. AskJeeves has the lowest level of recall; its
maximum is roughly 20%. Google requires 6.6 times more total effort than
MULDER at 64.5% recall (Google’s maximum recall).

MULDER displayed an impressive ability to answer questions effectively. As
Figure 3 shows, 34% of the questions have the correct answer as their top-
ranked result (as compared with only 1% for Google.) MULDER’s recall rises to
about 60% at 1000 words. After this point, MULDER’s recall per unit effort grows
linearly at a rate similar to Google. The questions in this region are harder to
answer, and some of the formulated queries from transformations do not re-
trieve any documents, hence MULDER’s performance is similar to that of Google.
MULDER still has an edge over Google, however, due to phrased queries and
answer extraction. The latter filters out irrelevant text so that users can find
answers with MULDER while reading far less text than they would using Google.
Finally, MULDER’s curve extends beyond this graph to about 10,000 words, end-
ing at 75%. Based on our limited testing, we speculate that of the 25% unan-
swered questions, about 10% cannot be answered with pages indexed by Google
at the time of writing, and the remaining 15% require more sophisticated search
strategies.

From our results, we can see the limited recall of AskJeeves. This suggests
that a search engine with a good ranking function and wide coverage is better
than a non-automated QA system in answering questions.

9http://trec.nist.gov/data/qrels eng/ qrels.trec8.qa.gz.
10The updated set of questions and answers used in our experiments is publicly available at
http://longinus.cs.washington.edu/mulder/trec8t.qa.
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Fig. 3. Recall vs. user effort: MULDER versus Google versus AskJeeves. On average, Google requires
6.6 times the total effort of MULDER, to achieve the same level of recall. AskJeeves’ performance is
substantially worse.

4.4 Contributions by Component

Our second experiment investigates the contribution of each component of
MULDER to its performance. We compare MULDER to three different variants
of itself, each with a single missing component:

—Mulder without query formulation (M-QF ). We take away the query formu-
lation module and issue only the question to the search engine.

—Mulder without answer extraction (M-X ) Without answer extraction, we lo-
cate answers in this system using the same approach we used for Google
in the previous experiment. To linearize the results retrieved from multiple
queries, we order queries in order of generality, starting from the most spe-
cific. Results from each query are then selected in a breadth-first manner.
To illustrate, suppose ri, j is the jth result from the ith query, and we have n
queries. The order would be r1,1, r2,1, . . . , rn,1, r1,2, . . . , rn,2, . . . and so on. rn,i
would be the ith result from the original unformulated query, since it is the
most general.

—Mulder without voting (M -V ) In this system, we replace voting by a simple
scheme: it assigns candidate answers the same score given to the summaries
from which they were extracted.

In addition, we included Google as a baseline for comparison. As in the first
experiment, we compare the systems’ performance on recall and user effort.
Figure 4 illustrates the results.

Figure 4 shows that at all recall levels, systems with missing components per-
form worse than MULDER, but better than Google. Among them, M-V appears to
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Table II. Performances of MULDER Variants and Google as Multiples of Total Effort Required by
MULDER at 64.5% Recall. All Three MULDER Variants Perform Worse Than MULDER but Better than
Google. The Experiment Suggests That Answer Extraction (M-X) is the Most Important, Followed

by Query Formulation (M-QF) and Finally Voting (M-V)

System Total Effort
Total Effort MULDER

MULDER 1.0
M-V 2.3
M-QF 3.0
M-X 3.8
Google 6.6

Fig. 4. Recall vs. user effort: MULDER versus 3 different configurations of itself—without query
formulation (M-QF), without answer extraction (M-X), and without voting (M-V). Google is the
baseline.

perform better than M-QF, and M-X trails both. Table II shows total user effort
for each system as a multiple of MULDER’s at 64.5% recall, Google’s maximum.
The numbers suggest that answer extraction is the most important, followed
by query formulation, and voting least. Answer extraction plays a major role
in distilling text, which saves users a lot of time. Query formulation helps in
two ways: first, by forming queries with alternative words that improve the
chance of finding answers; second, by getting to the relevant pages sooner. The
positive effects of query formulation can also be seen with the improvement in
M-X over Google; we expect this effect to be much more pronounced with less
impressive search engines, such as AltaVista11 and Inktomi.12 Finally, voting
is the last element that enhances answer extraction. Without voting, M-V only

11http://www.altavista.com.
12http://www.inktomi.com. Inktomi powers web sites such as http://www.hotbot.com and
http://www.snap.com.

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.



258 • C. Kwok et al.

reaches 17% recall at effort 0; with voting, the number is doubled. It is, however,
less effective after 1500 words, because it becomes difficult to find any correct
answer at that point.

5. RELATED WORK

Although question-answering systems have a long history in artificial intelli-
gence, previous systems have used processed or highly edited knowledge bases
(e.g., subject-relation-object tuples [Katz 1997], edited lists of frequently asked
questions [Burke et al. 1997], sets of newspaper articles [Voorhees and Tice
2000], and an encyclopedia [Kupiec 1993]) as their foundation. As far as we
know, MULDER is the first automated question-answering system that uses the
full web as its knowledge base. AskJeeves3 is a commercial service that provides
a natural language question interface to the web, but it relies on hundreds of
human editors to map between question templates and authoritative sites. The
Webclopedia project13 appears to be attacking the same problem as MULDER, but
we are unable to find any publications for this system, and from the absence of
a functioning web interface, it appears to be still in active development.

START [Katz 1997] is one of the first QA systems with a web interface,
having been available since 1993. Focused on questions about geography and
the MIT InfoLab, START uses a precompiled knowledge base in the form of
subject-relation-object tuples, and retrieves these tuples at run time to answer
questions. Our experience with the system suggests that its knowledge is rather
limited, for example, it fails on simple queries such as “What is the third highest
mountain in the world?”

The seminal MURAX [Kupiec 1993] uses an encyclopedia as a knowledge
base in order to answer trivia type questions. MURAX combines a Boolean
search engine with a shallow parser to retrieve relevant sections of the ency-
clopedia and to extract potential answers. The final answer is determined by
investigating the phrasal relationships between words that appear in the ques-
tion. According to its author, MURAX’s weak performance stems from the fact
that the vector space model of retrieval is insufficient for QA, at least when
applied to a large corpus like an encyclopedia.

Recently Usenet FAQ files (collections of frequently asked questions and an-
swer constructed by human experts) have become popular as knowledge bases,
because they are small, cover a wide variety of topics, and have a high content-
to-noise ratio. Auto-FAQ [Whitehead 1995] was an early system, limited to a
few FAQ files. FAQFinder [Burke et al. 1997] is a more comprehensive sys-
tem, which uses a vector-space IR engine to retrieve a list of relevant FAQ files
from the question. After the user selects a FAQ file from the list, the system
proceeds to use question keywords to find in the FAQ file, a question-answer
pair that best matches the user’s question. Question matching is improved
by using WordNet [Miller 1991] hypernyms to expand the possible keywords.
Another system [Sneiders 1999] uses priority keyword matching to improve re-
trieval performance. Keywords are divided into different classes depending on
their importance and are scored differently. Various morphological and lexical

13http://www.isi.edu/natural-language/projects/ webclopedia/

ACM Transactions on Information Systems, Vol. 19, No. 3, July 2001.



Scaling Question Answering to the Web • 259

transformations are also applied to words to improve matching. MULDER uses a
similar idea by applying IDF scores to estimate the importance of words.

Many new QA systems have been spawned by the TREC-8 QA competi-
tion [Voorhees and Tice 1999], the 1999 AAAI Fall Symposium on Question
Answering [Chaudhri and Fikes 1999] and the Message Understanding Con-
ferences [ARPA 1998]. Since the TREC-8 competition provides a relatively con-
trolled corpus for information extraction, the objectives and techniques used by
these systems are somewhat different from those of MULDER. Indeed, most TREC-
8 systems use simple, keyword-based, retrieval, mechanisms, instead focusing
on techniques to improve the accuracy of answer extraction. While effective in
TREC-8, such mechanisms do not scale well to the web. Furthermore, these sys-
tems have not addressed the problems of noise or incorrect information which
plague the web. A lot of common techniques are shared among the TREC-8
systems, most notably a question classification mechanism and name-entity
tagging.

Question classification methods analyze a question in order to determine
what type of information is being requested so that the system may better rec-
ognize an answer. Many systems define a hierarchy of answer types, and use
the first few words of the question to determine what type of answer it expects
[Radev et al. 1999; Srihari and Li 1999]). Building a complete question taxon-
omy, however, requires excessive manual effort and will not cover all possible
cases. For instance, what questions can be associated with many noun subjects,
such as what height, what currency and what members. These subjects can also
occur in many positions in the question. In contrast, MULDER uses a simple
question wh-phrase matching mechanism with combined lexical and semantic
processing to classify the subject of the question with high accuracy.

Name-entity (NE) tagging associates a phrase or a word with its semantics.
For example, “Africa” is associated with “country”, “John” with “person” and
“1.2 inches” with “length”. Most of the NE taggers are trained on a tagged
corpus using statistical language processing techniques, and report relatively
high accuracy [Bikel et al. 1997]. QA systems use the NE tagger to tag phrases
in the question as well as the retrieved documents. The number of candidate
answers can be greatly reduced if the system only selects answers that have
the required tag type. Many systems report favorable results with NE tagging
[Srihari and Li 1999]. We believe an NE tagger would be a useful addition to
MULDER, but we also believe a QA system should not rely too heavily on NE
tagging, since the number of new terms changes and grows rapidly on the web.

Relationships between words can be a powerful mechanism to recover an-
swers. As mentioned previously, the START system uses subject-relation-object
relationships. CL Research’s QA system [Litkowski 1999] parses all sentences
from retrieved documents and forms semantic relation triples which consist of
a discourse entity, a semantic relation that characterizes the entity’s role in the
sentence, and a governing word to which the entity stands in semantic relation.
Another system, described by Harabagiu et al. [2000], achieves respectable re-
sults for TREC-8 by reasoning with linkages between words that are obtained
from its dependency-based statistical parser [Collins 1996]. Harabagiu’s sys-
tem first parses the question and the retrieved documents into word linkages,
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and then transforms these linkages into logical forms. The answer is selected
using an inference procedure, supplemented by an external knowledge base. We
believe mechanisms of this type would be very useful in reducing the number
of answer candidates in MULDER.

6. FUTURE WORK

Clearly, we need substantially more experimental evaluation to validate
MULDER’s strong performance in our initial experiments. We plan to compare
MULDER to additional search services, and to traditional encyclopedias. We also
plan to evaluate MULDER using additional question sets and performance met-
rics. We will conduct controlled user studies to gauge the utility of MULDER to
web users. Finally, as we have done with previous research prototypes, we plan
to gather data on the performance of the deployed version of MULDER in practice.

Many challenges remain ahead of MULDER. Our current implementation uti-
lizes little of the semantic and syntactic information available during answer
extraction. We believe our recall will be much higher if these factors are taken
into consideration.

There are many elements that can determine the truth of an answer. For
example, by using the last-modified information from web pages, we can tell
how recent is the page and its answer. The authority of a page is also important,
since authoritative sites are likely to have better contents and more accurate
answers. In future versions of MULDER we may incorporate these elements into
our answer selection mechanism.

We are also implementing our own search engine, and plan to integrate
MULDER with its index. We expect that an evaluation of the best data struc-
tures and integrated algorithms will provide many challenges. There are many
advantages to a local search engine, the most obvious being reduced network
latencies for querying and retrieving web pages. We may also improve the effi-
ciency and accuracy for QA with analyses of a large document collection. One
disadvantage of a home-grown search engine is our smaller coverage, since we
do not have the resources of a commercial search engine. However, with fo-
cussed web crawling techniques [Chakrabarti et al. 1999], we may be able to
obtain a very high quality QA knowledge base with our limited resources.

7. CONCLUSION

In this paper we set out to investigate whether the question-answering tech-
niques studied in classical information retrieval can be scaled to the web. While
additional work is necessary to optimize the system so that it can support high
workloads with fast response, our initial experiments (reported in Section 4)
are encouraging. Our central contributions are the following:

—We fielded http://mulder.cx, the first general-purpose, fully automated
question-answering system available on the web.

—MULDER is based on a novel architecture that combines information retrieval
ideas with those of statistical natural language processing, lexical analysis,
query formulation, answer extraction, and voting.
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—We performed an ablation experiment which showed that each major com-
ponent of MULDER (query formulation, answer extraction, and voting) con-
tributed to the system’s overall effectiveness.

—We conducted empirical experiments which showed that MULDER reduces user
effort by a factor of 6.6 when compared with Google. We also demonstrated a
three-fold advantage in recall when comparing our fully automated MULDER

system with the manually constructed AskJeeves.

Our work is a step towards the ultimate goal of using the web as a compre-
hensive, self-updating knowledge repository, which can be automatically mined
to answer a wide range of questions with much less effort than is required by
today’s search engines.
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