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Empirical Observation

• From Zhang et.al ”Understanding Deep
Learning Requires Rethinking
Generalization (2016)”.

• CIFAR 10 (50,000 train examples)

• Benign overfitting happens for
classification too
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Regression Very Quick Recap

Minimum 2-norm interpolator

α̂MNI = min
α∈Rd

∥α∥

s.t X⊤
i α = Yi for all i = 1 . . . n

This admits the closed form expression:
α̂MNI = A†

trainYtrain.

Analysis of MSE Risk

Etest(α̂)

= E
[
(⟨X , α∗⟩+ ϵ− ⟨X , α̂⟩)2

]
= E

[
(⟨X , α̂− α∗⟩)2

]
+ E[ϵ2]

= E
[
(α̂− α∗)⊤XX⊤(α̂− α∗)

]
+ σ2

= (α̂− α∗)⊤Σ(α̂− α∗) + σ2

= ∥Σ1/2(α̂− α∗)∥22 − σ2

= ∥Σ1/2(α̂− α∗)∥22.
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Analyzing classification is more challenging

Minimum 2-norm interpolator

α̂MNI = min
α∈Rd

∥α∥

s.t X⊤
i α = Yi for all i = 1 . . . n

This admits the closed form expression:
α̂MNI = A†

trainYtrain.

Support Vector Machine

α̂SVM = min
α∈Rd

∥α∥

s.t YiX
⊤
i α ≥ 1 for all i = 1, . . . , n.

Now, the solution is not in closed form anymore, and the risk does not admit an easy form.
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Data Model

Gaussian Features Xi ∼ N (0,Σ)

Denote by Λ = [λ1 . . . λn] the spectrum of Σ

Labels

Zi = ⟨Xi , α
∗⟩ and

Yi =

{
sgn(Zi ) with probability (1− ν∗)

−sgn(Zi ) with probability ν∗.
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Interpolating Estimators, Risk

Interpolators

α̂binary = min
α∈Rd

∥α∥

s.t X⊤
i α = Yi

α̂real = min
α∈Rd

∥α∥

s.t X⊤
i α = Zi

α̂SVM = min
α∈Rd

∥α∥

s.t YiX
⊤
i α ≥ 1

Third = First when all constraints are tight.

Regression Risk
R(α̂) = E[⟨X , α∗ − α̂⟩2]

Classification Risk

C(α̂) = P[sgn(⟨X , α̂) ̸= sgn(⟨X , α∗⟩)]
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Curious Empirical Observation

• Fix n = 32 and Σ = I
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Theoretical Result

Theorem

If Σ = Id and d > n log(n) + n − 1, then for any fixed Ytrain ∈ {−1, 1}n, we have with
probability (1− 2

n )
α̂binary = α̂SVM
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Curious Empirical Observation 2

• Fix n = 519, d = 12167
and vary Λ.

• As “effective
overparameterization” is
increased, the fraction of
support vectors increases.
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Theoretical Result

Theorem

If Σ satisfies
∥Λ∥1
∥Λ∥2

≥ n
√

log(n) and
∥Λ∥1
∥Λ∥∞

≥ n
√
n log(n)

then simultaneously for all Ytrain ∈ {−1, 1}n, we have with probability (1− 2
n )

α̂binary = α̂SVM

• Note that d ≥
(
∥Λ∥1
∥Λ∥2

)2
≥ ∥Λ∥1

∥Λ∥∞ .

• In the isotropic setting, these are all equal.

• So these ratios measure how far we are from isotropic.
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Equivalence of Loss Functions

14 / 22



Intuition, Proof Technique

Proof technique

• By complementary slackness, the ith point is a support vector when the ith dual
constraint is strictly feasible.

• Dual condition is expressed cleanly, and goes through when Gram matrix is close to
diagonal.

• This happens in high dimensions whp

Intuition

• In the small d or highly anisotropic case, a lot of weight is placed on small features.

• So you would probably overshoot the constraint.

• But when you have many features to use, you have more “fine-grained control” and is
cheaper to be tight.
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Follow up work

”On the proliferation of support vectors in high dimensions” Hsu, Muthukumar, Xu (2020):
Sharpens the second theorem here, and provides a converse result

”Support vector machines and linear regression coincide with very high-dimensional features.”
Ardeshir, Sanford, Hsu (2021): Show that above paper is tight

”Benign overfitting in binary classification of gaussian mixtures” Wang, Thrampoulidis (2021):
Show the same for Gaussian Mixture Models

”Benign overfitting in multiclass classification: All roads lead to interpolation.” Wang,
Muthukumar, Thrampoulidis (2021): Multiclass extension
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Covariance and Sparse Coefficients

Assumption (1-sparse) For some unknown t ∈ {1 . . . s}, assume that α∗ = et
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Survival and Contamination

Survival (Signal Recovery)

SU(α̂) =
α̂t

α∗
t

Contamination (False
discovery of features)

B =
∑
j ̸=t

α̂jXj

CN(α̂) =
√

E[B2]

Then,
R(α̂) = (1− SU(α̂))2 + CN(α̂)2

And,

C(α̂) = 1− tan−1

(
SU(α̂)

CN(α̂)

)
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Results

Theorem (Bartlett, Long, Lugosi and Tsigler)

R(α̂real) ≈
(

d − s

d − s + nR

)2

Taking the limit,

→ 0 as n → ∞ if and only if R ≫ d

n
.

Theorem (Present Work)

C(α̂binary) ≈
1

2
− tan−1

(
R√

(d − s)/n

)

→ 0 as n → ∞ if and only if R ≫
√

d

n
.
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Separating Regime

Ratio (R) ≫ d
n ≫

√
d
n ,≪

d
n ≪

√
d
n

Classification 0 0 1
2

Regression 0 1 1

Note:

• Benign overfitting does not always happen – it depends on the quality of features and the
razor.

• The second and third column co-incide with the regime where support vectors proliferate.
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Summary

• With high enough effective overparameterization, support vectors proliferate.

• This paves the way to analyze the SVM by looking at the 2-norm interpolator.

• Identify clear seperating regimes between regression and classification.

Since then:

• Community: Extend to multiclass, kernels, mixture models.

• My work: The same phenomena that lead to benign overfitting cause adversarial
examples! Would be happy to give a talk on this at some point.
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