More Data Can Hurt for Linear Regression: Sample-wise Double Descent

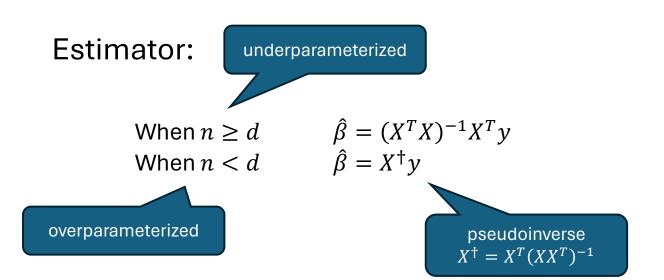
Paper by Preetum Nakkiran

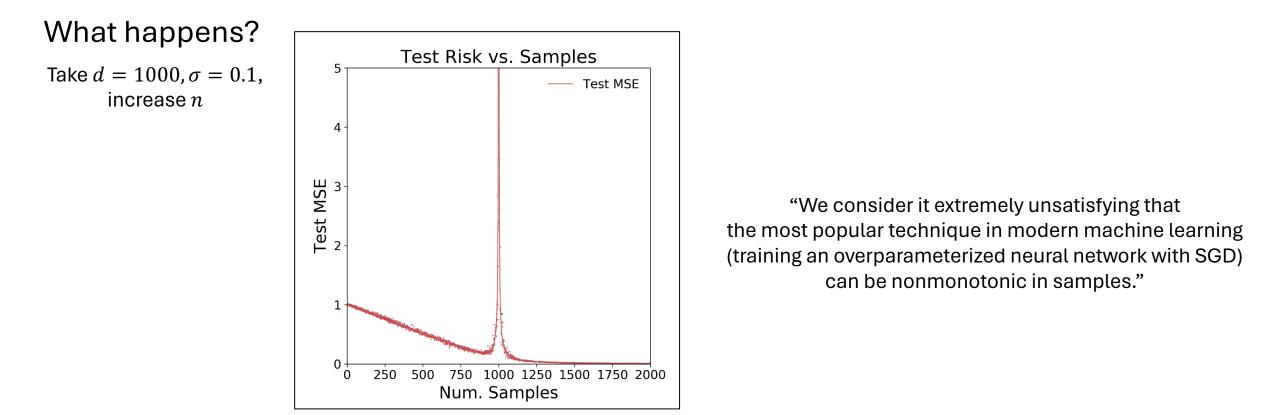
Presentation by Gavin Brown 8/29/24

Setting:

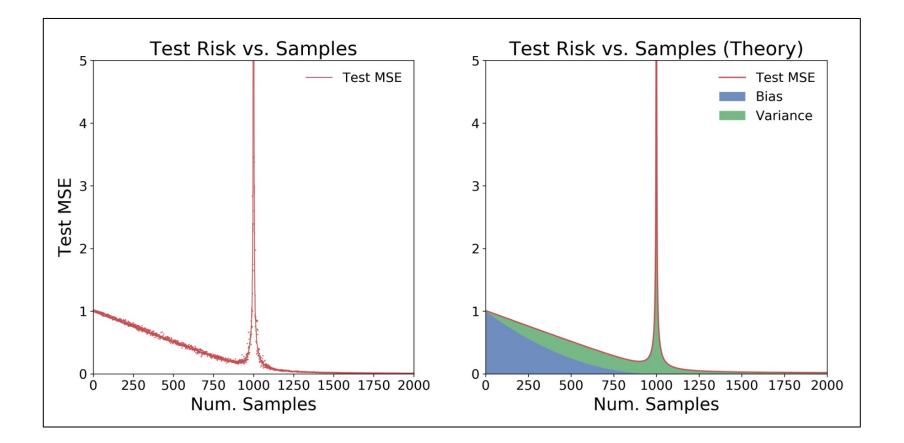
 $\begin{array}{ll} \text{Covariates:} & x_i \sim \mathcal{N}(0, \mathbb{I}_d) \\ \text{True parameter:} & \beta \text{ satisfies } \|\beta\|_2 = 1 \\ \text{Labels:} & y_i \leftarrow \langle x_i, \beta \rangle + \mathcal{N}(0, \sigma^2) \end{array}$

d dimensions, n examples





Variance is not monotone decreasing



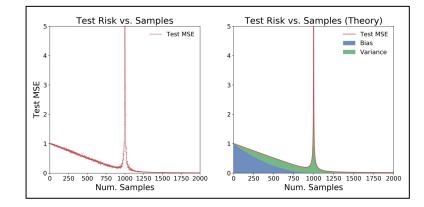
Key Idea:

- when $n \ll d$ we have many interpolators: min-norm is "good" inductive bias
- when $n \approx d$ we have few interpolators: all have high norm

Analyzing Bias and Variance*

Test MSE
$$R(\hat{\beta}) := \mathop{\mathbb{E}}_{(x,y)\sim\mathcal{D}} [(\langle x, \hat{\beta} \rangle - y)^2]$$

 $= ||\hat{\beta} - \beta||^2 + \sigma^2$



Variance V_n

Excess Risk: $\overline{R}(\hat{\beta}) := ||\hat{\beta} - \beta||^2$

In expectation:

$$\text{ion:} \quad \mathop{\mathbb{E}}_{X,y}[\overline{R}(\hat{\beta}_{X,y})] = \mathop{\mathbb{E}}_{X,y}[||\hat{\beta} - \beta||^2] = \underbrace{||\beta - \mathop{\mathbb{E}}[\hat{\beta}]||^2}_{= \underbrace{||\beta - \mathop{\mathbb{E}}[\hat{$$

Bias B_n

*This paper's analysis is similar to :

Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R. J. (2019). Surprises in high-dimensional ridgeless least squares interpolation.

Mei, S. and Montanari, A. (2019). The generalization error of random features regression: Precise asymptotics and double descent curve.

Expressions for Bias and Variance

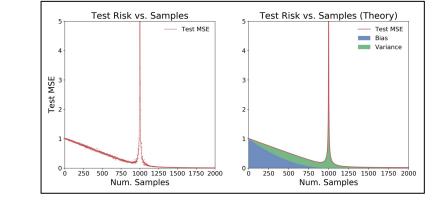
$$\hat{\beta} = X^{\dagger}y = \begin{cases} X^T (XX^T)^{-1}y & \text{when } n \le d \\ (X^T X)^{-1} X^T y & \text{when } n > d \end{cases}$$

Lemma 1. For $n \leq d$, the bias and variance of the estimator $\hat{\beta} = X^{\dagger}y$ is

$$B_{n} = || \underset{X \sim \mathcal{D}^{n}}{\mathbb{E}} [Proj_{X^{\perp}}(\beta)] ||^{2}$$

$$V_{n} = \underset{X}{\mathbb{E}} [||Proj_{X}(\beta) - \underset{X}{\mathbb{E}} [Proj_{X}(\beta)] ||^{2}] + \sigma^{2} \underset{(B)}{\mathbb{E}} [\operatorname{Tr}((XX^{T})^{-1})]$$

$$(B)$$
this term blows up



For matrix X, projection onto rowspace: $Proj_X(\beta) = X^T (XX^T)^{-1} X \beta$

Projection onto orthogonal complement: $Proj_{X^{\perp}}(\beta) = (\mathbb{I} - X^T (XX^T)^{-1}X) \beta$

Aside: compare with hat matrix $H = X(X^T X)^{-1} X^T$ projection onto columnspace

Intuition for high variance

Lemma 1. For $n \leq d$, the bias and variance of the estimator $\hat{\beta} = X^{\dagger}y$ is

$$B_{n} = || \underset{X \sim \mathcal{D}^{n}}{\mathbb{E}} [Proj_{X^{\perp}}(\beta)] ||^{2}$$

$$V_{n} = \underbrace{\mathbb{E}}_{X} [||Proj_{X}(\beta) - \underbrace{\mathbb{E}}_{X} [Proj_{X}(\beta)] ||^{2}]}_{(A)} + \sigma^{2} \underbrace{\mathbb{E}}_{X} [\operatorname{Tr}((XX^{T})^{-1})]}_{(B)}$$

B blows up because X becomes poorly conditioned as $n \rightarrow d$

Thought experiment: add one "good" sample to n = d - 1 "good" samples.

scaled basis vectors
$$x_1, \dots, x_n = \sqrt{d}e_1, \dots, \sqrt{d}e_{d-1}$$
write: $x_{n+1} = (g_1, g_2) \in \mathbb{R}^{d-1} \times \mathbb{R}$

Old data matrix: $X = \begin{bmatrix} \sqrt{d} \mathbb{I}_{d-1} & 0 \end{bmatrix}$

New data matrix:
$$X_{n+1} = \begin{bmatrix} \sqrt{d} \mathbb{I}_{d-1} & 0 \\ g_1 & g_2 \end{bmatrix}$$

Claim 1: X has no small, non-zero singular values. Claim 2: X_{n+1} has a small non-zero singular value whp. Proof: Let $v^T = [g_1 - \sqrt{d}] \quad ||v||^2 \approx 2d$ But $v^T X_{n+1} = [g_1 - \sqrt{d}] \begin{bmatrix} \sqrt{d} \mathbb{I}_{d-1} & 0\\ g_1 & g_2 \end{bmatrix} = \begin{bmatrix} 0 & -\sqrt{d}g_2 \end{bmatrix}$ So $||v^T X_{n+1}||^2 \approx d \approx \frac{1}{2} ||v||^2$

Appendix

Proof of Lemma 1, Bias

$$\hat{\beta} = X^{\dagger} y = \begin{cases} X^T (XX^T)^{-1} y & \text{when } n \le d \\ (X^T X)^{-1} X^T y & \text{when } n > d \end{cases}$$

Lemma 1. For $n \leq d$, the bias and variance of the estimator $\hat{\beta} = X^{\dagger}y$ is

$$B_{n} = || \underset{X \sim \mathcal{D}^{n}}{\mathbb{E}} [Proj_{X^{\perp}}(\beta)] ||^{2}$$

$$V_{n} = \underbrace{\mathbb{E}}_{X} [||Proj_{X}(\beta) - \underbrace{\mathbb{E}}_{X} [Proj_{X}(\beta)] ||^{2}]}_{(A)} + \sigma^{2} \underbrace{\mathbb{E}}_{X} [\operatorname{Tr}((XX^{T})^{-1})]}_{(B)}$$

Proof. Bias. Note that

$$\begin{split} \beta - \mathbb{E}[\hat{\beta}] &= \beta - \mathbb{E}_{X,\eta} [X^T (XX^T)^{-1} (X\beta + \eta)] \\ &= \mathbb{E}_X [(I - X^T (XX^T)^{-1} X)\beta] \\ &= \mathbb{E}_X [Proj_{X^{\perp}}(\beta)] \end{split}$$

Thus the bias is

$$egin{aligned} B_n &= ||eta - \mathbb{E}[\hat{eta}]||^2 \ &= ||E_{X_n}[Proj_{X_n^{\perp}}(eta)]||^2 \end{aligned}$$

Proof of Lemma 1, Variance

$$\hat{\beta} = X^{\dagger} y = \begin{cases} X^T (XX^T)^{-1} y & \text{when } n \le d \\ (X^T X)^{-1} X^T y & \text{when } n > d \end{cases}$$

Lemma 1. For $n \leq d$, the bias and variance of the estimator $\hat{\beta} = X^{\dagger}y$ is

$$B_{n} = || \underset{X \sim \mathcal{D}^{n}}{\mathbb{E}} [Proj_{X^{\perp}}(\beta)] ||^{2}$$

$$V_{n} = \underset{\hat{k}}{\mathbb{E}} [||Proj_{X}(\beta) - \underset{X}{\mathbb{E}} [Proj_{X}(\beta)] ||^{2}] + \sigma^{2} \underset{X}{\mathbb{E}} [\operatorname{Tr}((XX^{T})^{-1})]$$

$$(B)$$
Proof
$$V_{n} = \underset{\hat{k}}{\mathbb{E}} [||\hat{\beta} - \mathbb{E}[\hat{\beta}]||^{2}]$$

$$= \underset{X,\eta}{\mathbb{E}} [||X^{T}(XX^{T})^{-1}(X\beta + \eta) - \underset{X}{\mathbb{E}} [X^{T}(XX^{T})^{-1}X\beta] ||^{2}]$$

$$= \underset{X,\eta}{\mathbb{E}} [||(S - \overline{S})\beta + X^{T}(XX^{T})^{-1}\eta||^{2}]$$

$$(S := X^{T}(XX^{T})^{-1}X, \overline{S} := \mathbb{E}[S])$$

$$= \underset{X}{\mathbb{E}} [||(S - \overline{S})\beta||^{2}] + \underset{X,\eta}{\mathbb{E}} [||X^{T}(XX^{T})^{-1}\eta||^{2}]$$

$$= \underset{X}{\mathbb{E}} [||(S - \overline{S})\beta||^{2}] + \sigma^{2}Tr((XX^{T})^{-1})$$

Notice that S is projection onto the rowspace of X, i.e. $S = Proj_X$. Thus,

$$V_n := \underset{X}{\mathbb{E}}[||Proj_X(\beta) - \underset{X}{\mathbb{E}}[Proj_X(\beta)]||^2] + \sigma^2 Tr((XX^T)^{-1})$$

Approximate Asymptotics for Bias and Variance

Claim 1 (Overparameterized Risk). Let $\gamma := \frac{n}{d} < 1$ be the underparameterization ratio. The bias and variance are:

$$B_n = (1 - \gamma)^2 ||\beta||^2 \tag{5}$$

$$V_n \approx \gamma (1 - \gamma) ||\beta||^2 + \sigma^2 \frac{\gamma}{1 - \gamma}$$
(6)

And thus the expected excess risk for $\gamma < 1$ is:

$$\mathbb{E}[\overline{R}(\hat{\beta})] \approx (1-\gamma)||\beta||^2 + \sigma^2 \frac{\gamma}{1-\gamma}$$
(7)

$$= (1 - \frac{n}{d})||\beta||^2 + \sigma^2 \frac{n}{d - n}$$
(8)

Claim 2 (Underparameterized Risk, [Hastie et al., 2019]). Let $\gamma := \frac{n}{d} > 1$ be the underparameterization ratio. The bias and variance are:

$$B_n = 0$$
 , $V_n \approx \frac{\sigma^2}{\gamma - 1}$