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Setting:
Covariates:               𝑥! ∼ 𝒩(0, 𝕀")
True parameter:     𝛽 satisfies 𝛽 # = 1
Labels:                        𝑦! ← 	𝑥! 	, 𝛽	 + 𝒩(0, 𝜎#)

𝑑 dimensions, 𝑛 examples

Estimator:

When 𝑛 ≥ 𝑑               4𝛽 = 𝑋$𝑋 %&𝑋$𝑦
When 𝑛 < 𝑑               4𝛽 = 𝑋'𝑦	

underparameterized

overparameterized pseudoinverse
𝑋! = 𝑋" 𝑋𝑋" #$

What happens?
Take 𝑑 = 1000, 𝜎 = 0.1,

increase 𝑛

“We consider it extremely unsatisfying that 
the most popular technique in modern machine learning 
(training an overparameterized neural network with SGD)

can be nonmonotonic in samples.”



Variance is not monotone decreasing

Key Idea: 
• when   𝑛 ≪ 𝑑   we have  many  interpolators:    min-norm is “good” inductive bias
• when   𝑛 ≈ 𝑑 we have    few    interpolators:    all have high norm



Analyzing Bias and Variance*

Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R. J. (2019). Surprises in high-dimensional ridgeless least squares interpolation.

Mei, S. and Montanari, A. (2019). The generalization error of random features regression: Precise asymptotics and double descent curve.

*This paper’s analysis is similar to :

Test MSE

Excess Risk:

In expectation:



Expressions for Bias and Variance

this term blows up
For matrix 𝑋, projection onto rowspace:

𝑃𝑟𝑜𝑗( 𝛽 = 𝑋$ 𝑋𝑋$ %&𝑋	𝛽

Projection onto orthogonal complement:
𝑃𝑟𝑜𝑗(! 𝛽 = 𝕀 − 𝑋$ 𝑋𝑋$ %&𝑋 	𝛽

Aside: compare with hat matrix
𝐻 = 𝑋 𝑋$𝑋 %&𝑋$ projection onto 

columnspace



Intuition for high variance

B blows up because 𝑋 becomes poorly conditioned as 𝑛 → 𝑑

Thought experiment: add one “good” sample to 𝑛 = 𝑑 − 1 “good” samples.

𝑥&, … , 𝑥) = 𝑑𝑒&, … , 𝑑𝑒"%&

𝑥)*& ∼ 𝒩(0, 𝕀")

scaled basis vectors

Old data matrix: 𝑋 = [ 𝑑𝕀"%&	 0]

write: 𝑥%&$ = 𝑔$, 𝑔' ∈ ℝ(#$×ℝ

New data matrix: 𝑋)*& =
𝑑𝕀"%& 0
𝑔& 𝑔#

Claim 2: 𝑋)*& has a small non-zero singular value whp.

Claim 1: 𝑋 has no small, non-zero singular values.

Proof: Let 𝑣$ = [𝑔& 	 − 𝑑] 𝑣 # ≈ 2𝑑

But

So 𝑣$𝑋)*& # ≈ 𝑑 ≈ &
#
𝑣 #

𝑣$𝑋)*& = 𝑔& 	 − 𝑑 𝑑	𝕀"%& 0
𝑔& 𝑔#

= 0	 − 𝑑𝑔#



Appendix



Proof of Lemma 1, Bias



Proof of Lemma 1, Variance

Proof



Approximate Asymptotics for Bias and Variance


