Lecture 6: Joint convexity and relative entropy CSE 5991, Spring 2021
Instructor: James R. Lee

1 Relative entropy

In the classical setting, if p, g € R are two nonnegative vectors on a finite set X one defines the
relative entropy
Px
D = rlog — + x — Px).
(vllq) x;p 8 x;(q px)
We take the value to be +co if there is some x € X with p, > 0 but g, = 0. Restricted to probability
densities, i.e., )\ cx Px = 2ixex 9x = 1, the latter sum vanishes.

One can think of this as a measure of the average log-surprise (measured in bits, say, or nats—I
suppose—since here log refers to the natural log) when receiving a sample from p when you
expected a sample from g. Stated differently, if we decide on a Shannon-optimal code for sending
messages whose symbols are sampled i.i.d. from g, then D(p || ) is the average communication per
symbol that we’ll use if we instead have to send messages whose symbols are sampled i.i.d. from p.

Stein’s Lemma in hypothesis testing tells us that we can also think of D(p || g) in the following
way. Suppose we are given Xi, X, ..., X, all sampled i.i.d. from p orii.d. from q. We need to
design a test to decide, given the samples, which distribution they came from.

In this setting, g is the null hypothesis, so our method should accept Xj, ..., X, ~ g with
probability 1 as n — oo, and our goal is to minimize the probability of accidentally classifying
X1,...,Xn ~ p as coming from g. In other words, failure is when we don’t correctly reject the null
hypothesis. The (asymptotically) optimal test with this property has a failure rate of e~ ll9)+o(1)
asn — oo.

Joint convexity. It always holds thatD(p||g) > 0,and D(p ||g) =0 &= p = 4. One way to see
the first fact is as follows: The function @(p) = X ex(Px log px — px) is convex on nonnegative p, as
one can verify from the second derivative test, and

(Vo(p))x =logpx.

Therefore we have
D(pllq) = o(p) — ¢(q) — (Ve(q),p —q) > 0.

(This holding for all p, g € RY is equivalent to ¢ being convex on RY.) Moreover, since ¢ is actually
strictly convex on the strictly positive orthant, we have D(p || q) =0 <= p = q. (It takes a bit of
care to verify that this holds even for p, g € RY which can possibly be 0 in some coordinates.)

It turns out the function (p, q) + D(p || q) is jointly convex on RS x RY in the following sense:
For all p1,p2,91,92 € [ij and t € [0, 1], it holds that

D ((1=tp1+tp2ll (1= 1)g1 +tq2) < (1= 1)D(p1 [ p2) + tD(q1 || 2).

This has a nice interpretation in terms of hypothesis testing: Suppose with probability ¢, I choose
i = 1 and with probability 1 — ¢, I choose i = 2, and then I sample Xj, ..., X,, either from p; or g;,
with your goal being to decide whether the samples came from from the P side or the Q side. The
RHS represents the optimal error exponent when I tell you whether i = 1 or i = 2, wile the LHS



represents the optimal error exponent if I don’t (so you just see samples from the mixture). It should
be intuitively obvious that it’s harder without that information, as the inequality asserts.

To prove it, simply note that D(p || ) is a sum of terms of the form p, log Z—i +(gx — px), so it
suffices to prove that the function

g(a,b) :alog%+(b—a)

is convex on R3. We can do this by evaluating the Hessian:

| 1/a -1/b
VZg(a,b)_[_l/b a/bz].

If A1, A, are the eigenvalues of V2 g(a, b), then evaluating the trace gives A1 + A, > 0, and since the
determinant is zero, we have A1, = 0, thus V2g(a, b) > 0, and g is convex.

1.1 The quantum relative entropy

For A > 0, define the (negative) entropy
D(A) =Tr(AlogA - A),

with the convention that 0log0 = 0. Noting that V®(A) = log A for A > 0, the corresponding
relative entropy can then be defined analogously as

S(A || B) := ®(A) — ®(B) — Tr(VO(B)(A - B)) = Tr (A(log A —log B) + (B — A)) . (1.1)
Lemma 1.1. For A, B € H, it holds that S(A || B) > 0and S(A||B) =0 <= A =B.

As we argued in the scalar case, convexity of ® on H} gives S(A||B) > O forall A, B € H}. We
have already seen that A — Alog A is operator convex on PSD matrices, which is stronger than @
being convex, but the fact that @ is convex follows from a much more general statement. In fact,
since @ is strictly convex, the same holds for ®.

Lemma 1.2 (Trace convexity). Suppose that f : I — R is continuous and convex. Then the map
A — Tr(f(A)) is convex on Hermitian matrices with spec(A) C 1. If f is strictly convex, then so is
A - Tr(f(A)).

Proof. Consider a Hermitian matrix X and write X = Z,’le Akvrvy, where {v;} is an orthonormal
basis. Let {u1, ..., u,} be any orthonormal basis of C". Then we have
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where the inequality uses convexity of f and the fact that >,;_; [{u;, vk) |> = 1 for every j. Note that
if f is strictly convex, then the inequality is only tight when {u1, ..., u,} = {v1,..., v, }.

Consider now A, B € H" with spec(A), spec(B) C I, and let {u;} be an orthornormal basis of
eigenvectors of (A + B)/2. Then,

Tr (f (452)) Zw F45E), us)
j=1
f(<”jrA§B”J>)
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[ f((u],Au]>) + 2f(<”]r B”]))]

%Tr(f(A)) + 3Te(f(B)),

where the first inequality again uses (midpoint) convexity of f, and the second uses (1.2) applied
with X = A and X = B. This implies that A — Tr(f(A)) is midpoint convex, and since f is
continuous, an approximation argument shows that the map is genuinely convex.

Note that if f is strictly convex and the first inequality holds with equality, then (u;, Au;) =
(uj, Buj). Moreover, if the second inequality holds with equality, then by our previous observation,
it must also be that {u;} is a basis of eigenvectors for both A and B, implying that A = B. Thus
A — Tr(f(A)) is strictly convex as well. O

It turns out that S(A || B) describes the optimal asymptotic error exponent for quantum hypothesis
testing. When A, B > 0 and Tr(A) = Tr(B) = 1, A and B are density matrices that describe the states
of quantum systems. The corresponding fact about joint convexity is deeper than in the classical
case, but still true.

Theorem 1.3. The map (A, B) — S(A || B) is jointly convex on H!} x H.

Note that the classical proof of joint convexity breaks down for matrices. That’s because we used
the fact that the relative entropy D(p || ) is separable in the scalar setting; it is a sum of two-variate
functions. Thus we could establish convexity in two dimensions, where the Hessian calculation
was straightforward. For A, B that are not simultaneously diagonalizable, we cannot write S(A || B)
as a sum over lower-dimensional terms.

Before addressing the proof, let us argue that it establishes our goal from the last lecture.

Theorem 1.4 (Lieb’s concavity theorem). For every Hermitian H, the map X +— Tr(eH*1°8X) is concave
on HY.

To argue that Theorem 1.3 implies Theorem 1.4, we need a standard observation.

Lemma 1.5. If A and B are convex sets and the mapping (A, B) — F(A, B) is jointly concave on A X B,
then
f(A):=sup{F(A,B):B € 8}

is a concave function on A.



Proof. Consider A1, Ay € A and let B, By € B be such that f(A1) < F(A1,B1) + € and f(Az) <
F(Ajy, By) + €. Then,

tf(Al) + (1 - i’)f(Ag) tF(Al, Bl) + (1 — t)F(Az, Bz) + €

(tAl + (1 - t)Az, tBy + (1 - t)Bz) + &

<
<F

< f(tA1 + (1 - t)AQ) + &,

and sending ¢ — 0 completes the proof. m|

Recalling (1.1) and S(A || B) > 0 on H} x H}, for B > 0, we have
0=min{S(A||B): A > 0} = min {Tr (A(log A —log B) + (B — A)) : A > 0},
which we can rewrite as

Tr(B) = max {Tr(A logB—-AlogA+A):A x> O}

H+log X

Now substitute B := e , yielding

Tr (198 X) = max {Tr (A(H + log X) ~ Alog A + 4) : A x 0}
=max {Tr(AH) - S(A || X) + Tr(A) : A > 0}

Since S(- || -) is jointly convex by Theorem 1.3, it holds that F(X, A) := Tr(AH) — S(A || X) + Tr(X)
is jointly concave, and thus by Lemma 1.5, the function X +— max{F(X,A) : A > 0} is concave,
proving Theorem 1.4 (from Theorem 1.3).

1.2 The parallel sum is jointly concave

In the last lecture, we saw that the map B +— B~! is operator convex on positive matrices. We will
need the following generalization.

Lemma 1.6. The map (X, B) — XB~'X" is jointly convex on M, (C) x H",..

Note that this is a generalization of the fact that (x, y) — x?/y is convex for y > 0, and captures
convexity of both B — B~ and X — X2. The following tool will be useful.

Lemma 1.7. Consider A, B > 0. Then the block matrix | £ % | is PSD if and only if A > XB~1X".

Proof. We have
I -XB'|[A X I 0] [A-XB!'X* 0
0 I X* B||-B7'X* I| 0 B|"

Note thatif Y € H"” and U is invertible, then Y > 0 < U*YU > 0, hence [ )‘?* é] is positive if and
only if the RHS is positive, which is clearly equivalent to A > XB~1 X" ]

Now we can prove Lemma 1.6 by applying Lemma 1.7 with the proper choice of matrices. For
B, B > 0, take

B := (B1 + Bz)/,?.
X = (Xl + Xz)/z



XlBl‘lX{ + X2B2‘1X;
A= > .

If the corresponding block matrix | £ % | is positive, the resulting inequality A > XB™!X" is
precisely midpoint joint concavity of XB~!X*, from which joint concavity follows by continuity.
.B-1x. x.
But observe that XIB)é T Xi ;f: ] is positive for i € {1,2} by Lemma 1.7, hence their average [ )‘?* g ]

is positive, completing the proof of Lemma 1.6.

Parallel sums. Define the parallel sum of two positive matrices by
A:B = (A7'+BH)L.

Lemma 1.8. It holds that (A, B) v~ A:B is jointly operator concave on HI. ..

Proof. Let us establish that
A:B=A-A(A+B)A. (1.3)

Then joint concavity follows from Lemma 1.6 (with the substitution X < A, B < A + B). Note that

(1.3) is true for positive numbers, i.e., (a1 + b1 = 26 = 5 — 42/(a + b). Thus as was pointed
P a+b P

out in class!, to prove (1.3), it suffices to prove it equivalent to an expression involving commuting
matrices.
Multiplying both sides of (1.3) by A~'/2 gives

A—l/Z(A—l + B—l)—lA—l/Z =7 _Al/Z(A + B)_lAl/z,
which is equivalent to
(I +A1/2B—1A1/2)—1 =J]- (I +A_1/2BA_1/2)1/2,

as desired. O

1Thanks Farzam.
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