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Abstract
Distributed systems are rarely developed as monolithic programs. Instead, like any software,

these systems may consist of multiple program components, which are then compiled separately
and linked together. Modern systems also incorporate various services interacting with each other
and with client applications. However, state-of-the-art verification tools focus predominantly on
verifying standalone, closed-world protocols or systems, thus failing to account for the composi-
tional nature of distributed systems. For example, standalone verification has the drawback that
when protocols and their optimized implementations evolve, one must re-verify the entire system
from scratch, instead of leveraging compositionality to contain the reverification effort.

In this paper, we focus on the challenge of modular verification of distributed systems with
respect to high-level protocol invariants as well as for low-level implementation safety properties.
We argue that the missing link between the two is a programming paradigm that would allow
one to reason about both high-level distributed protocols and low-level implementation primi-
tives in a single verification-friendly framework. Such a link would make it possible to reap the
benefits from both the vast body of research in distributed computing, focused on modular pro-
tocol decomposition and consistency properties, as well as from the recent advances in program
verification, enabling construction of provably correct systems implementations. To showcase the
modular verification challenges, we present some typical scenarios of decomposition between a
distributed protocol and its implementations. We then describe our ongoing research agenda,
in which we are attempting to address the outlined problems by providing a typing discipline
and a set of domain-specific primitives for specifying, implementing and verifying distributed sys-
tems. Our approach, mechanized within a proof assistant, provides the means of decomposition
necessary for modular proofs about distributed protocols and systems.
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1 Introduction

As with any software, distributed systems are not built as standalone pieces of code: rather
they are assembled from multiple independently developed components. For instance, different
nodes may communicate using message passing, components of a particular implementation
may be compiled separately, and different systems may interact with each other and with
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the client applications via regular program flow and by imposing implicit invariants on each
other’s behavior.

There is a vast amount of work dedicated to establishing and verifying invariants of stan-
dalone distributed protocols, such as Paxos [23, 24, 61], Raft [46], etc, formulated as abstract
high-level state-transition systems (see, e.g., [20, 44, 61, 62] for references). Furthermore,
several impressive advances have been recently made in verifying specific realistic systems
implementations with respect to fixed properties [11,16,22,27,32,48,64,65]. However, the
modular nature of these systems is not fully matched by state-of-the art verification tech-
niques, which still follow a “whole-program” approach. Specifically, most of the verification
methodologies to date require a complete revision of the proofs (or are not applicable at all)
in the following scenarios, which occur regularly in the life cycle of distributed software:

1. A high-level protocol P (e.g., Paxos) remains the same, but its implementation run by a
particular node is updated (e.g., replaced by an optimized one [4]). Naturally, one should
now establish that the new implementation refines (i.e., exhibits the same externally
observable behavior as) the same abstract protocol [1], while all proofs concerning the
protocol itself should not change.

2. As a variant of the previous scenario, an optimization in P ’s implementation might delegate
some of the computation to another node, possibly following another protocol P ′ [61]. In
this case, one should establish that, under certain assumptions about P ′, the resulting
implementation of P still refines its specification.

3. An implementation, interacting with other nodes under a protocol P, may make specific
assumptions about the initial state of the system, thus restricting the set of reachable states.
This is captured by strengthening the protocol’s state-space invariant, thus permitting the
implementation to leverage additional facts about its state. Such strengthening should
not cause the proofs of implementations run by other involved nodes to be revised.

The first scenario is fairly standard: one should always be able to make low-level opti-
mizations in an actual implementation, as long as these changes are not observable on the
abstract level, with the high-level protocol serving as a system specification. The existing
solutions [16,64] for this modularity challenge rely on the classical technique of establishing a
refinement [1,26] between an actual implementation (the code) and a specification (a protocol)
via forward-backwards simulation [37]. That said, in the presence of program-level composi-
tion (e.g., third-party libraries), recursion, and higher-order programming primitives, proving
refinement in a modular way becomes a notoriously difficult problem, requiring a non-trivial
relational semantics and dedicated program logics. While such logics exist for shared-memory
concurrency [30, 56, 59], none exist for distributed systems. The situation is even more
complicated in the presence of fine-grained communication primitives, such as send and
receive (as opposed to synchronous models [13]), that are used for implementing non-blocking
message-passing. To the best of our knowledge there is no program logic that supports
reasoning about fine-grained message-passing distributed systems in a modular way, and
the state-of-the-art approaches either avoid fine-grained operations all together [10,11], thus
sacrificing potential performance gains, or employ first-order reduction techniques [12, 16,31].

The second scenario demonstrates an interplay between properties of a protocol and
proofs of an implementation that relies on them: indeed, the correctness of a refinement by
the latter depends on the invariants of the former. Yet, from a programmer’s perspective
this is just another program optimization, so the proofs should not be that different from
those in the Scenario 1. However, we are not aware of any verification frameworks allowing
one to modularly prove refinement between an implementation and its protocol in this case.
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The third scenario demonstrates a common pattern where a protocol implementor assumes
the system is initialized to a certain “good” state. This implies any subsequent state of the
system is reachable from the good state, which can be used to establish additional safety
properties. This scenario allows different client implementations using a protocol to rely on
different assumptions about its initial conditions and different system invariants. Combined
with the second scenario, this means that one should be able to impose custom (but valid)
invariants when proving an implementation-specific refinement!

To make things more concrete, let us imagine implementing an optimization of a straight-
forward distributed computation (e.g., MapReduce), run by a node, that memoizes its past
results using some third-party distributed storage. Then, an important invariant of a storage
protocol, required for justifying such an optimization, should state that the stored values
are never dropped or replaced. However, another client application, which only queries the
storage but does not write into it might be verified under a weaker invariant. From this obser-
vation we conclude that one and the same distributed protocol might be a subject of different
application-specific invariants (since the strongest possible invariant is not alway possible to
foresee in advance) and initial state assumptions, but imposing a different inductive invariant
should not affect already verified protocol implementations and their proofs.

From the discussion above, it seems that the proofs of refinement, i.e., that an implemen-
tation “does not go wrong”, are unavoidable for formally establishing the correspondence
between the code of an implementation and its abstract protocol specification. In this line of
research, in an attempt to overcome the complexity of the refinement proofs, which become
especially acute in the presence of horizontal composition of interacting distributed services
(i.e., Scenario 2) and client-specific invariants (i.e., Scenario 3), we have decided to adopt a
different approach for proving programs well-behaved: by means of type theory.

2 A Type-Based Approach to Distributed System Verification

We have drawn inspiration from results on Hoare Type Theory (HTT) [41–43] and specifically
its recent variants, which support specifying and verifying fine-grained shared-memory
concurrent algorithms [40, 50–52]. In HTT, an effectful, imperative, potentially higher-order
program e is given a Hoare type HT {λs. A}{λr s′. B}, where A is a predicate constraining
the pre-state s (e.g., a heap), and B constrains the result r and the post-state s′. That is,
the pre-/postconditions A and B declaratively specify the effect of e with respect to the
state it might affect. Furthermore, the original HTT incorporated Separation Logic-style
specifications [41] and adopted fault-avoiding semantics [49], thus ensuring that well-typed
programs are memory-safe. The concurrent extensions of HTT extended the notion of type
safety to account for data race freedom [28] and coherence of a concurrently used resource [40].

Distributed Hoare Types. In this work, we extend the notion of Hoare types to distributed
system implementations, whose “state” captures both local components (e.g., a heap) and a
global component, namely the (multi-)set of messages exchanged by the nodes involved in
the system. In this way, “effects” correspond to interactions in a distributed environment
between nodes via message passing. Each such interaction (i.e., sending or receiving a
message) is synchornized with a change in a node’s local state (e.g., updating a set of local
permissions). These changes follow one of several available “atomic” transitions, which
are provided by user-defined high-level protocols P1,P2, etc, which are encoded as state
transition systems. All together, they form a part of the type environment when assigning a
type to such a program. Thus, the Hoare type judgements assigning types to distributed
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implementations are of the shape P1, . . . ,Pn ` e : DHT{λs. A}{λr s′. B}, where the typing
context P1, . . . ,Pn lists all of the abstract protocols that the program e can exercise, and
the pre/postcondition constrain the state of the protocol-related part of the network. Each
protocol defines the per-node local state, which is governed by the protocol’s transitions.
One node can possibly host disjoint pieces of local state that “belong” to different protocols,
which is crucial to allow composing multiple protocols together to form useful systems. In
addition to the send/receive primitives, all the standard programming constructs, such as
conditionals, recursion, and higher-order functions can be used, and the typing rules for them
are straightforward.

In any interesting distributed protocol, there are dependencies between messages about
to be sent and the protocol-specific local state of a node that can send them. These
dependencies are what our rich type system is designed to enforce. For instance, in any
Paxos implementation, a replica can only send a response to a client when it is certain that
agreement has been reached [61]. A protocol for Paxos would enforce this by constraining
the precondition of sending a response to require that agreement had been reached. These
constraints are manifested in the Hoare types, which are derived for the basic send/receive
commands from the definitions of the transitions they follow. Since there is no other way
to interact but by relying on the protocol-supplied transitions, this provides a powerful
mechanism for enforcing system-specific constraints. For instance, in a well-typed program e,
following a protocol P, it will be only possible to send a certain message if the precondition
in the corresponding transition τs, is satisfied by the node’s local state.1

The notion of well-typedness for Distributed Hoare Types incorporates program well-
formedness with respect to the protocols in its typing context: no matter how complex the
program is, if it is well-typed, then each of its externally observable transitions “faithfully”
follows a transition of some of the protocols from its typing context, i.e., it does not go
wrong [38]. Summarizing the high-level overview of our approach, to enable language-based
verification [53] of distributed systems, we have introduced the two following program-
and type-level mechanisms to the otherwise well-studied model of higher-order effectful
programs [50]:

(a) Instrumented message-passing primitives (send/receive), derived from protocol transitions,
serving as basic building blocks for distributed programs;

(b) Distributed Hoare Types (DHT), an extension of Hoare Types [41], as a compositional
approach to verify well-behaved programs in a context of arbitrary user-provided protocols.

Addressing the Modularity Challenges. Let us now see how the type-based approach helps
alleviate the main difficulties of modular refinement proofs, outlined in Section 1.

1. Since any well-typed implementation must follow the protocol, type safety immediately
implies refinement Moreover, Distributed Hoare Type Theory enjoys the standard substitu-
tion principle, which allows one to replace any program of a type DHT{λs. A}{λr s′. B}
by any other program with the same type without compromising type safety.

2. From the perspective of a type system, there is no difference between a value obtained
as a result of a local computation or the one received from a remote service, as long as
it allows the desired Hoare type to be derived. Furthermore, Distributed Hoare Types
allow for a form of context weakening, making it possible include more protocols (and

1 In fact, our type system allows for more general assertions, constraining the global state of the system.



James R. Wilcox, Ilya Sergey, and Zachary Tatlock 23:5

P1 ` e : DHT{λs. A}
{
λr s′. B

}
A,B,R are stable R constrains state related to P2

P1,P2 ` e : DHT{λs. A ∧R(s)}
{
λr s′. B ∧R(s′)

} Inject

P ` e : DHT{λs. A}
{
λr s′. B

}
I is inductive wrt. P

WithInv(P, I) ` e : DHT{λs. A ∧ I(s)}
{
λr s′. B ∧ I(s′)

} WithInv

Figure 1 Selected type inference rules of Distributed Hoare Types.

account for interactions involving these protocols) into the typing context by adapting
the pre/postconditions appropriately via the rule Inject from Figure 1.2 The stability
requirement on R is standard for concurrency program logics and means that the assertions
should be invariant with respect to possible concurrent changes in the network state [60].

3. The proof of an invariant I being inductive with respect to a protocol P is not tied to a
specific implementation e, and, therefore, can be discharged via an external verification tool
(e.g., Ivy [47]). That said, the invariant itself, once proven, can be used for strengthening
the type of e, possibly enabling one to prove some properties of e’s clients. The interaction
between protocol-level proofs and program-level verification is enabled by the typing
rule WithInv from Figure 1. The protocol combinator WithInv enhances the state-space
invariants of P conjoining them with the invariant I.

Relation to Refinement Proofs. Our careful choice of basic programming primitives,
namely, protocol transitions, is the trick that allowed us to replace expensive proofs of
program refinement with a far less complicated (although still non-decidable) and uniform
type derivation mechanism. While this model might seem to be too “coarse-grained” in the
sense that it forces changes in the protocol-relevant local state to be atomically synchronized
with sending/receiving messages, the model nevertheless leaves a lot of room for possible
program-level optimizations. Specifically, it allows one to combine the transitions in any
well-typed way, as well as allowing one to make use of any internal state and higher-order
programming primitives. What is more important is that our model explicitly identifies
valid linearization points [17] in the implementations (they correspond precisely to the taken
transitions), thus adopting a well-established proof method for observational refinement [14].

3 Language-Based Verification with Distributed Hoare Types

Distributed Hoare Types can be effectively represented as dependent types, parametrized by
the protocol contexts and pre/postconditions [42]. This allowed us to implement the type-
based verification approach, sketched in Section 2, in a verification tool Disel, by embedding
our type system, its semantic foundations, and inference rules into the Coq proof assistant [6].
In this section, we outline the layout of specifications and proofs using a characteristic
example of a widely-used distributed system: Two-Phase Commit (2PC) [63, §19].

The goal of the 2PC protocol is to achieve agreement among several nodes about whether
a transaction should be committed or aborted (e.g., as part of a distributed database). Since
the system may execute in an asynchronous environment where message delivery is unreliable
and machines may experience transient crashes, achieving agreement requires care. The

2 These rules allow us to consider Distributed Hoare Types as a program logic-based verification framework.
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Figure 2 One round of the 2PC algorithm (a) and state-space of the coordinator (b).

Definition c_recv_step (r : round) (cs : CState)
(log : Log) (tag : nat) (mbody : seq nat) :=

| CWaitPrepResp x ⇒ if (* received all votes *)
then (r, if (* all votes yes *) then CCommit x else CAbort x, log)
else (r, CWaitPrepResp, log)

(* ... more cases depending on cs, tag, mbody ... *)
end.

Figure 3 Example receive transitions of the coordinator.

protocol designates a single node as the coordinator, which is in charge of managing the
commit process; other nodes participating in the protocol are participants. The protocol
proceeds in a series of rounds, each of which makes a single decision. Each round consists
of two phases; an example round execution is shown in Figure 2(a). In phase one, the
coordinator notifies the participants of the transaction being committed by sending prepare
messages and receives votes from the participants about whether the transaction should
proceed. In the figure, both participants vote Yes, so the coordinator enters phase two, during
which it notifies all participants of its decision to commit or abort the transaction.

Formalizing this description into a protocol consists in describing the local state of each
node as well as the valid transitions. Figure 2(b) shows the relevant portions of the local state
of the coordinator and its transitions. Between rounds, the coordinator waits in the CInit
state. Then, the coordinator makes transitions following the informal description above; these
are formalized by the step-function, one case of which is shown in Figure 3. The additional
state components keep track of the round number and a log of all processed transactions.

With the protocol instance in hand, we can now proceed to build programs that implement
the participant and coordinator and assign them Hoare-style specifications. A possible
implementation of a single round of the coordinator and its Hoare type are shown in Figure 4.
The function coordinator_round takes as an argument the transaction data to be processed
in this round. The type DHT [cn, TPC] is parametrized by the coordinator node id cn and
a 2PC protocol instance TPC. The precondition requires that the coordinator is in the CInit
state, with an arbitrary round number and log. The postcondition ensures that the local
state has returned to CInit, the round number has been incremented, and the return value
accurately reflects the decision made on the data, which is also reflected in the updated
log. The code proceeds along the lines required by the protocol, but nothing prevents us
from writing an optimized implementation, adhering to the very same type, which could, for
instance, send abort-request upon receiving the first Phase One Abort response.

The type ascribed to coordinator_round above only constrains the local state of the
coordinator, but in fact the protocol maintains stronger global invariants. For example,
imagine using the Two-Phase Commit protocol as part of a larger distributed database
system. Database nodes participate in several copies of the Two-Phase Commit protocol,
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Program Definition coordinator_round (d : data) :
{r log}, DHT [cn, TPC] (fun s ⇒ loc cn s = (r, CInit, log),

fun res s’ ⇒ loc cn s’ = (r+1, CInit, log ++ [(res, d)])) :=
Do (r ← read_round;

send_prep_loop r d;;
res ← receive_prep_loop r;
b ← read_resp_result;
(if b then send_commits r d;;

receive_commit_loop r
else send_aborts r d;;

receive_abort_loop r);;
return b).

Figure 4 Distributed Hoare type and code of a single coordinator round.

one per node, so that each node is the coordinator of one copy of the protocol. Nodes
can then commit transactions by initiating Two-Phase Commit in the copy of the protocol
they coordinate. The database might like to conclude that between rounds, all logs are in
agreement. This strong global agreement property is not directly implied by the protocol as
it stands, so we must prove an inductive invariant that implies it. Finding such invariants
typically requires several iterations before converging on a property that is inductive and
implies the desired spec. In this case, a state invariant Inv that closely follows the intuitive
execution of the protocol suffices to prove the global log agreement property. For example,
when the coordinator is in the CSendCommit state, the invariant ensures that all participants
are either waiting to hear about the decision, have received the decision but not acknowledged
it, or have acknowledged the decision and returned to the initial state. The invariant also
implies a simple statement of global log agreement, shown below.

Lemma cn_log_agreement (s : state) (r : round) (log : Log) :
Inv s → loc cn s = (r, CInit, log) → ∀ pt, pt ∈ pts → loc pt s = (r, PInit, log).

In other words, when the coordinator cn is in the CInit state, all participants pt ∈ pts must
be in the PInit state with the same round number and log.

We can freely use the strengthened invariant in proofs of programs. For example, in the
hypothetical database example, the programs implementing the database can now conclude
global log agreement from the fact that the local state is CInit.

4 Related Work

Type-based reasoning about concurrent and distributed systems

Session Types (ST) [18] are one of the most established approaches for lightweight verification
of message-passing programs. ST were originally designed to constrain two-party channel
communications, enforcing a particular interaction protocol; they were later extended to
specify interactions between several parties [8, 19] and quantify over values of messages [55].
This has culminated in research on choreographies [3], which identify allowable orderings
of message exchanges in a distributed system. Even though (Multiparty) Session Types
(MST) [19] and Distributed Hoare Types pursue the same goal, namely, enforce the protocol
discipline in an distributed setting with asynchronous message-passing, they seem to achieve
this by different means. The underlying semantic formalism of MST is π-calculus [39], in
which computations communicate via dedicated session channels that are a central notion
for enforcing the well-formedness of executions via a tailored type system. In contrast, DHT
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adopts a model similar to those from modern program logics for fine-grained shared-memory
concurrency [9, 40, 54, 57], in which messages of a specific protocol are treated as a shared
state, related to local state of specific nodes via the protocol invariants and a subject to
change as defined by the transitions.

While the precise relation between MST and DHT is still to be determined, we believe
that our representation of distributed protocols via transition systems governing local/shared
state is much closer in spirit to the models employed by the distributed systems community
to describe the high-level logic of state-of-the art consensus and replication algorithms and
their properties [25, 34]. It is not immediately clear to us how to encode Paxos, Raft or
Two-Phase Commit using MST. Furthermore, the only language-level extension required
to support a DHT programming model was the introduction of protocol-aware send/receive
primitives and typing rules for them; the remaining language fragment is entirely standard.
For instance, in our implementation the host language is Coq’s Gallina [6] extended, via
monadic embedding, with general recursion and message passing. This has the benefit that
one can use the full power of Gallina to implement distributed programs. Finally, MST
provide little support for reasoning about protocols themselves, separately from the programs
they implement. This is something that is afforded for DHT using the WithInv rule.

A very close type-based formalism to DHT are RGRefs [15], allowing one to enforce
a Rely/Guarantee-discipline [21] for mutable references in a shared-memory concurrency
setting. That said, while RGRefs are suitable for showing that a program follows specific
Rely/Guarantee-protocol, they are too weak to prove its invariants or functional correctness.

Modular verification of distributed protocols

Compositional verification of invariants of distributed protocols is an area of active research
in the Distributed Computing community (cf. [2, 33, 62]). There, it is common to reduce the
reasoning about message-passing concurrency to reasoning about shared-memory mechanisms.
For example, Boichat et al. [2] suggest a series of abstractions, such as round-based consensus
and round-based register, that make it possible to deconstruct a family of Paxos algorithms
into a set of reusable primitives. Input/Output automata [36] are another high-level for-
malism allowing for a form of protocol composition by coupling the automatas’ actions [35].
At the moment, all these constructions are only studied at the level of reasoning about
protocols, without any relation to implementations. We believe that these abstractions can
be incorporated into the framework of DHT by generalizing the notion of the shared state to
incorporate both message-passing (which is currently the case) and shared memory. Such a
unification would make it possible to immediately reuse many of the existing specification
and proof techniques from the logics for shared-memory concurrency, for instance, when
defining custom correctness conditions [52].

Datta et al. [7] propose Protocol Composition Logic (PCL) as a way to combine security
properties of multiple distributed protocols governing processes, communicating with each
other. The programming component of PCL is a conventional process calculus. At the
moment, it is not clear to us the extent to which PCL can be employed to verify, e.g.,
consensus protocols such as 2PC, or to be employed for reasoning about higher-order code.

5 Concluding Remarks

We have outlined the main ideas behind Distributed Hoare Types—a typing discipline that
allows one to enforce high-level protocol logic in a low-level implementation via dependent
types. We believe that DHT serves as a link, connecting proofs of protocol properties and
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program properties in the same logical framework while providing modular reasoning. This
modularization hints for a number of follow-up extensions, moving both up and down the
abstraction stack.

Distributed Hoare Types

Proofs about Protocols

Proofs about Programs

Moving up: Reasoning about protocols. Thanks to the rule
WithInv, reasoning about inductive protocol invariants can
be conducted independently of the program-level verification.
At the moment such proof obligations are discharged via Coq’s
native machinery for interactive proofs, and we are planning
to investigate the possibility to delegate these proofs to third-party tools, such as Ivy [47],
which is designed for this specific purpose. Furthermore, there is currently only one linguistic
way to formulate protocols in the framework of DHT: by synchronizing the state changes
with sending/receiving. This model is sufficiently fine-grained to be able to encode more
transitional I/O Automata [35] or the round-based model [13] by establishing simulation
on the level of protocols and generalizing the DHT semantics. Such a generalization is of
practical interest, as it will allow us to port existing invariant proofs in other frameworks
(e.g., Verdi [64,65]) that follow the I/O Automata model.

Moving down: Reasoning about programs. The immediate advantage of employing
protocol-aware primitives for implementing provably correct distributed systems is the
ability to use them in combination with higher-order functions and other programming
mechanism. For instance, we were able to define loops and blocking receive just as syntactic
sugar, relying on primitive commands and higher-order combinators. Even further, the
shallow encoding of DHT into the Calculus of Constructions made it possible for use to
take advantage of Coq’s powerful abstraction mechanisms, providing reusable specifications
for programs in terms of abstract predicates [9] rather then referring to concrete protocols.
Finally, realistic distributed applications, such as multi-Paxos [4, 61] are far from being
simple first-order code with message sending and receiving: they employ advanced features,
such as per-node fork/join concurrency, higher-order iteration and client-side libraries. In
order to establish the correctness of such implementations, one would have to relate the
protocol-specific logic to those programming mechanisms—precisely what DHT enables.

That said, in the current formulation, the programming component of DHT is a pure
functional language with general recursion and message passing. Imperative state and a
form of exceptions can be encoded by means of “effect-passing” style, thus allowing some
optimizations. For more low-level reasoning about highly optimized implementations in the
presence of native mutable state, local faults, and per-node concurrency, we are planning
to extend the reasoning with low-level versions of separation logic, adopting the ideas from
the corresponding recent verification efforts [5, 45], as well as the idea of transitions-as-
resources [29,58] as a way to account for local concurrency, allowing several protocol branches
to be exercised by a node in parallel [61].
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