
Synthesizing Structured CAD Models with
Equality Saturation and Inverse Transformations

Chandrakana Nandi
University of Washington

USA
cnandi@cs.washington.edu

Max Willsey
University of Washington

USA
mwillsey@cs.washington.edu

Adam Anderson
University of Washington

USA
adamand2@cs.washington.edu

James R. Wilcox
Certora
USA

james@certora.com

Eva Darulova
MPI-SWS
Germany

eva@mpi-sws.org

Dan Grossman
University of Washington

USA
djg@cs.washington.edu

Zachary Tatlock
University of Washington

USA
ztatlock@cs.washington.edu

Abstract
Recent program synthesis techniques help users customize
CAD models (e.g., for 3D printing) by decompiling low-level
triangle meshes to Constructive Solid Geometry (CSG) ex-
pressions. Without loops or functions, editing CSG can re-
quire many coordinated changes, and existing mesh decom-
pilers use heuristics that can obfuscate high-level structure.
This paper proposes a second decompilation stage to ro-

bustly “shrink” unstructured CSG expressions into more
editable programs with map and fold operators. We present
Szalinski, a tool that uses Equality Saturation with semantics-
preserving CAD rewrites to efficiently search for smaller
equivalent programs. Szalinski relies on inverse transforma-
tions, a novel way for solvers to speculatively add equiva-
lences to an E-graph. We qualitatively evaluate Szalinski in
case studies, show how it composes with an existing mesh
decompiler, and demonstrate that Szalinski can shrink large
models in seconds.

CCS Concepts: • Software and its engineering → Com-
pilers;Domain specific languages; Software reverse en-
gineering; •Theory of computation→Programseman-
tics; • Computing methodologies → Parametric curve
and surface models.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’20, June 15–20, 2020, London, UK
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00
https://doi.org/10.1145/3385412.3386012

Keywords: Equality Saturation, Program Synthesis, Decom-
pilation, Computer-Aided Design

ACM Reference Format:
ChandrakanaNandi,MaxWillsey, AdamAnderson, James R.Wilcox,
Eva Darulova, Dan Grossman, and Zachary Tatlock. 2020. Synthe-
sizing Structured CAD Models with Equality Saturation and In-
verse Transformations. In Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Im-
plementation (PLDI ’20), June 15–20, 2020, London, UK. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3385412.3386012

1 Introduction
The programming languages and machine learning commu-
nities have developed techniques to decompile Computer-
Aided Design (CAD) models from low-level numerical rep-
resentations to Constructive Solid Geometry (CSG) expres-
sions [11, 13, 14, 21, 30, 31, 36]. These techniques aim to help
users modify designs shared in online repositories [1, 15, 35].

Recent program synthesis results [11, 21] decompilemeshes,
sets of triangles defining an object’s surface, into equivalent
CSG expressions. CSG includes geometric primitives like
cylinders, affine transformations like translate, and set theo-
retic operators like union.
Existing mesh decompilers synthesize flat output: CSG

has no loops or functions (Figure 1, left). Therefore, CSG
synthesized from large meshes with repetitive features also
tends to be large and repetitive. As in traditional program-
ming, repetition makes otherwise intuitive edits tedious and
error-prone.

Mesh decompilation is under-constrained [11, 21], so past
tools rely on heuristics which cause them to exhibit two
challenging features: (C1) synthesize equivalent but dissim-
ilar CSG expressions for the same feature repeated under
different transformations, and (C2) arbitrarily order CSG

https://doi.org/10.1145/3385412.3386012
https://doi.org/10.1145/3385412.3386012

PLDI ’20, June 15–20, 2020, London, UK C. Nandi et al.

(Diff
 (Translate (70 15 2)
 (Scale (140 30 4)
 (Translate (-0.5 -0.5 -0.5)
 (Cuboid (1 1 1)))))
 (Union
 (Translate (6 15 2)
 (Scale (6 5.196 4)
 (Translate (0 0 0)
 (Scale (0.5 0.577 1)
 (HexPrism (1 1))))))
 (Translate (125 15 2)
 (Scale (20 17.32 4)
 (Translate (0 0 0)
 (Scale (0.5 0.577 1)
 (HexPrism (1 1)))))))
 (Translate (102 15 2)
 (Scale (18 15.588 4)
 (Translate (0 0 0)
 (Scale (0.5 0.577 1)
 (HexPrism (1 1)))))))
 (Translate (81 15 2)
 (Scale (16 13.856 4)
…

 ~ 50 LOC, CSG

 facet normal 0 0 0
 outer loop
 vertex 9 15 0
 vertex 7.5 17.5964 4
 vertex 7.5 17.5964 0
 endloop
 endfacet
 facet normal 0 0 0
 outer loop
 vertex 7.5 17.5964 4
 vertex 9 15 0
 vertex 9 15 4
 endloop
 endfacet
 facet normal 0 0 0
 outer loop
 vertex 4.5 17.5964 0
 vertex 7.5 17.5964 4
 vertex 4.5 17.5964 4
 endloop
 endfacet
…
 ~1600 LOC, Mesh

(Difference

 (Cuboid [140, 30, 4])

 (Fold Union

 (Tabulate (8)

 (Translate [+ 10 + 6, 15, 2]

 (Cylinder [+ 3, 4])))))

i
i2 i
i

(Difference

 (Cuboid [140, 30, 4])

 (Fold Union

 (Tabulate (4)

 (Translate [+ 38 + 6, 15, 2]

 (HexPrism [+ 3, 4])))))

i
i2 i

i

(Difference

 (Cuboid [140, 30, 4])

 (Fold Union

 (Tabulate (10)

 (Translate [+ 10 + 6, 15, 2]

 (HexPrism [(+ 3) / 2, 4])))))

i
i2 i

i

edits

6 LOC, Caddy

(Difference

 (Cuboid [140, 30, 4])

 (Fold Union

 (Tabulate (i 8)

 (Translate [+ 10 + 6, 15, 2]

 (HexPrism [+ 3, 4])))))

i2 i
im

esh decom
piler

(Difference

 (Cuboid [140, 30, 4])

 (Fold Union

 (Tabulate (6)
 (Translate [20 + 20, 15, 2]

 (Rotate [0, 0, 45]
 (Cuboid [12, 12, 4]))))))

i
i

i

Szalinski

Core
Caddy E-graph Caddy

Solvers &
Rewrites 3D

 Print

Figure 1. Existing mesh decompilers turn triangle meshes into CSG expressions. Szalinski robustly synthesizes smaller,
structured Caddy programs from CSG expressions. This can ease customization by simplifying edits: small, mostly local
changes yield usefully different models. The photo shows the 3D printed hex wrench holder after customizing hole sizes.

subexpressions. These two features, (C1) and (C2) obfuscate
high-level structure latent in synthesized CSG.
This paper proposes a second decompilation stage that

composes with prior work: given a flat CSG expression, pro-
duce an equivalent, smaller, and more editable program with
map and fold operators for expressing repetition. We present
Szalinski1 (Figure 1), a tool which combines semantics-preserving
rewrites with simple solvers to synthesize structured CAD
programs in a language called Caddy.
Szalinski is designed to robustly handle the noisy and

unstructured outputs of existing mesh decompilers. In many
of these outputs, high-level structure is only apparent after
a set of CAD-specific rewrites have been judiciously applied
(C1). Past work on Equality Saturation [34] suggests that
Equality Graphs (E-graphs) [22]—an efficient data structure
underlying SMT solvers [8, 10] and program optimizers [16,
33, 34, 42]—would make a good fit for Szalinski because
E-graphs can compactly encodemany of the equivalent ways
to express a program with respect to a set of rewrites.

Unfortunately, reordering with associative and commuta-
tive rewrites can cause E-graphs to blow up exponentially.
This is known as the AC-matching problem [3, 6, 17]. It
presents a significant challenge for Szalinski because existing
mesh decompilers typically output CSG features ordered by
heuristics (e.g., geometric proximity) rather than high-level
structure (C2).
To address the AC-matching problem in Szalinski we

present inverse transformations, a novel way for solvers to
speculatively unify expressions in an E-graph which would
be equivalent modulo reordering or partitioning. Before uni-
fying a result R with its input I , a solver can annotate R with
an inverse transformationwhich encodes how itmanipulated

1The protagonist in the hit movie Honey I Shrunk the Kids was named Dr.
Szalinski. Our work shrinks CADs rather than kids.

I to find the more-profitable R. Szalinski then uses syntactic
rewrites to propagate and eliminate inverse transformations
when opportunities to use such results arise.

To summarize, the contributions of this paper include:

• Szalinski, a tool that takes a flat CSG expression as
input and synthesizes a smaller equivalent program
in Caddy, a language that extends CSG with map and
fold operators for expressing repetition.

• Inverse transformations, a new technique for interfac-
ing simple-yet-effective structure finding solvers with
E-graphs. The technique is not CAD-specific, but is
particularly useful for reordering CAD operations.

• A case study composing Szalinski with a recent mesh
decompiler [21] to synthesize smaller CAD models.

• A large scale evaluation demonstrating the perfor-
mance and scalability of Szalinski on models down-
loaded from a popular online repository [35].

This paper proceeds gradually, first introducing Caddy
and a running example (Section 2). Szalinski primarily ex-
ploits opportunities to “reroll loops” (Section 3). Finding such
opportunities is challenging due to variations inmesh decom-
piler output (C1), so Szalinski uses E-graphs to implement
a robust CAD rewrite system (Section 4). Finding the right
CAD reordering is crucial to expose high-level structure
(C2), but difficult with rewrites alone due to AC-matching.
Solvers in Szalinski propagate profitable reorderings through
the E-graph by unifying order-inequivalent expressions an-
notated with inverse transformations (Section 5).
We developed a library of 65 CAD rewrites and proto-

typed Szalinski in 3,000 lines of Rust (Section 6). Section 7
shows how composing Szalinski with an existing mesh de-
compiler [21] qualitatively improves editability (sketched in

PLDI ’20, June 15–20, 2020, London, UK

Figure 1) and describes an evaluation of Szalinski’s perfor-
mance and correctness on real-world CAD models down-
loaded from Thingiverse. Section 8 briefly surveys the most
relevant related work and Section 9 concludes.

2 Caddy and Second Stage Decompilation
The Caddy language (Figure 2) provides map- and fold-like
functional list operators to express repetitive structure in
CAD models, as well as a Core Caddy fragment that corre-
sponds directly to CSG. The Caddy semantics fully unroll a
program’s functional list operators to produce a Core Caddy
(CSG) expression. Szalinski “goes the other way,” decom-
piling a Core Caddy expression to a Caddy program that
aims to expose latent repetitive structure. This section intro-
duces a running example that subsequent sections extend
to illustrate challenges that arise when shrinking noisy, un-
structured outputs from existing mesh decompilers.

2.1 Core Caddy, Caddy, Equivalence
Core Caddy includes various primitives parametrized by
dimensions— cuboids parametrized by side length, spheres
by radius, cylinders and hexagonal prisms by height and
radius, etc. Caddy also provides binary2 set theoretic oper-
ators Union, Difference, and Intersection, and affine3 transforma-
tions like Translate, Rotate, and Scale that are parameterized
by 3D vectors. For example, (Translate [1,0,0] (Sphere 2)) shifts
a sphere with radius 2 a single unit of distance along the
x-axis. TranslateSpherical (not present in Core Caddy or CSG)
captures a common pattern in models relying on translations
in spherical rather than Cartesian coordinates.
Figure 3 gives semantics for the functional list operators

Caddy provides on top of Core Caddy. Tabulate takes pairs
of variables and positive integers (x1 b1) ... (xn bn) as well
as a Caddy expression e , and returns the list of length Πbi
generated by n nested loops evaluating e over the variables
x1 ... xn up to the bounds b1 ...bn :

(List e[0/x1]...[0/xn] . . . e[b1 − 1/x1]...[bn − 1/xn])

where e[i/x] denotes substituting all free occurrences (not
bound by nested Tabulates) of x in e with i . For example,

(Tabulate (i 2) (j 3) (Cuboid [2 × i + 2, 7, j + 1])) ⇒

(List (Cuboid [2, 7, 1]) (Cuboid [2, 7, 2]) (Cuboid [2, 7, 3])
(Cuboid [4, 7, 1]) (Cuboid [4, 7, 2]) (Cuboid [4, 7, 3]))

For the frequent special case of (Tabulate (x n) e) when x is not
free in e , we write (Repeat n e) as syntactic sugar.

Map2 produces a list of Core Caddy expressions by apply-
ing an affine operator to a list of transformation parameters
and a list of CAD arguments. For example,

2 We use syntactic sugar to present binary nested operators as
left-associative over multiple arguments, e.g., (Union a b c) means
(Union (Union a b) c).
3 Here affine means that parallel lines remain parallel after transformation.

op ::= + | - | × | / num ::= R | ⟨var⟩ | ⟨num⟩ ⟨op⟩ ⟨num⟩

vec2 ::= [⟨num⟩, ⟨num⟩] vec3 ::= [⟨num⟩, ⟨num⟩, ⟨num⟩]

affine ::= Translate | Rotate | Scale | TranslateSpherical

binop ::= Union | Difference | Intersection

cad ::= (Cuboid ⟨vec3⟩) | (Sphere ⟨num⟩)
| (Cylinder ⟨vec2⟩) | (HexPrism ⟨vec2⟩) | . . .
| (⟨affine⟩ ⟨vec3⟩ ⟨cad⟩)
| (⟨binop⟩ ⟨cad⟩ ⟨cad⟩)
| (Fold ⟨binop⟩ ⟨cad-list⟩)

cad-list ::= (List ⟨cad⟩+)
| (Concat ⟨cad-list⟩+)
| (Tabulate (⟨var⟩ Z+)+ ⟨cad⟩)
| (Map2 ⟨affine⟩ ⟨vec3-list⟩ ⟨cad-list⟩)

vec3-list ::= (List ⟨vec3⟩+)
| (Concat ⟨vec3-list⟩+)
| (Tabulate (⟨var⟩ Z+)+ ⟨vec3⟩)

Figure 2. Caddy syntax. The Core Caddy (CSG) subset omits
variables, list forms (those using Fold), and TranslateSpherical.

e ⇒ (List v1 ... vn) f1 = v1 fi = (binop fi−1 vi)

(Fold binop e) ⇒ fn

e ⇒ (List (List v1,1 v1,2 ...) (List v2,1 v2,2 ...) ...)

(Concat e) ⇒ (List v1,1 v1,2 ... v2,1 v2,2 ...)

e[i1/x1]...[in/xn] ⇒ v(i1, . . . ,in)

(Tabulate (x1 b1) ... (xn bn) e) ⇒ (List v(0, . . . ,0) ... v(b1−1, . . . ,bn−1))

ps ⇒ (List [a1,b1,c1] [a2,b2,c2] ...) es ⇒ (List v1 v2 ...)

(Map2 affine ps es) ⇒ (List (affine [a1, b1, c1]v1) (affine [a2, b2, c2]v2) ...)

e ⇒ v to_cartesian(r, ϕ, θ) = (x, y, z)

(TranslateSpherical [r, ϕ, θ] e) ⇒ (Translate [x, y, z] v)

Figure 3. Big step semantics reducing well-formed Caddy
programs to Core Caddy expressions. e[i/x] denotes substi-
tuting all free occurrences of x in e with i . Additional rules
(not shown) also evaluate under List, affines, and binops.

(Map2 Scale (List [2,2,2] [3,3,3]) (Repeat 2 (Sphere 1))) ⇒

(List (Scale [2,2,2] (Sphere 1)) (Scale [3,3,3] (Sphere 1)))

Caddy programs are equivalent iff they evaluate to equiv-
alent Core Caddy programs. By design, Core Caddy directly
corresponds to CSG, whose semantics is given in prior work
[21, 27, 31]. Section 7 describes practically testing Caddy
equivalence by evaluating programs to Core Caddy, compil-
ing them to meshes, and comparing Hausdorff distances.4

2.2 A Running Example for Shrinking Caddy
Figure 4a shows a simple CAD model of a ship’s wheel and
Figure 4b shows the corresponding desired Caddy output
4Informally, the Hausdorff distance between two meshes is small if every
point on each mesh is near some point on the other.

PLDI ’20, June 15–20, 2020, London, UK C. Nandi et al.

(a) CAD model of ship’s
wheel

(Union
(Cylinder [1, 5, 5])
(Fold Union
(Tabulate (i 6)
(Rotate [0, 0, 60i]
(Translate [1, −0.5, 0]
(Cuboid [10, 1, 1]))))))

(b) Caddy program
(Union
(Cylinder [1, 5])
(Union
(Rotate [0, 0, 0] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
(Rotate [0, 0, 60] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
(Rotate [0, 0, 120] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
(Rotate [0, 0, 180] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
(Rotate [0, 0, 240] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
(Rotate [0, 0, 300] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

(c) Ideal Core Caddy expression that exposes structure
(Union
(Rotate [0, 0, 120] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
(Scale [10, 1, 1] (Translate [0.1, −0.5, 1] (Cuboid [1, 1, 1])))
(Rotate [0, 0, 300] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
(Scale [5, 5, 1] (Cylinder [1, 1]))
(Translate [−1, 0.5, 0] (Scale [−1, −1, 1] Cuboid [10, 1, 1]))
(Rotate [0, 0, 240] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
(Rotate [0, 0, 60] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))

(d) Equivalent Core Caddy expression that obfuscates structure

Figure 4. (a) CAD model for a ship’s wheel. (b) Caddy fea-
tures like Tabulate express repeated design components. Such
repetition can be obvious in Core Caddy (c), but existing
mesh decompilers obfuscate structure (d).

from Szalinski. Figure 4b reifies repetitive structure: making
a change to all the spokes only requires a single edit instead
of six coordinated modifications in different locations.

When repetitive structure is easily exposed, as in the ideal
Core Caddy of Figure 4c, solvers can infer the arithmetic
function relating instances of repeated design components.
Section 3 describes Szalinski’s rewrite-driven approach to
infer such functions and shrink programs by rerolling loops.
In practice, given a mesh representing Figure 4a, mesh

decompilers can generate CSG expressions equivalent to
Figure 4c, but which obfuscate repetitive structure. Affine
transformations may be different or missing and, from a
solver’s perspective, lists may be inconveniently ordered or
partitioned. Comparing Figure 4c to 4d, Rotate [0,0,180] has
been replaced with an equivalent Scale [-1,-1,1], identity trans-
formations have been omitted, the Union has been reordered,
and Scales and Translates have been inconsistently swapped.
Sections 4 and 5 walk through progressively more challeng-
ing variants of Core Caddy inputs for the ship’s wheel to
illustrate how Szalinski uses E-graphs and inverse transfor-
mations to robustly handle such variation.

Binop Fold
(binop c1 c2 ...) ⇝ (Fold binop (List c1 c2 ...))

Structure Finding
(List (aff p1 c1) (aff p2 c2) ...) ⇝ (Map2 aff (List p1 p2 ...) (List c1 c2 ...))

Repeat
(List a a a ... n times) ⇝ (Repeat n a)

List Solve (single loop)
(List [fx (0), fy (0), fz (0)] ... [fx (n − 1), fy (n − 1), fz (n − 1)])
⇝ (Tabulate (i n) [fx (i), fy (i), fz (i)])

Repeat over Map2
(Map2 aff (Repeat n p) (Repeat n c) ⇝ (Repeat n (aff p c))

Tabulate over Map2 where b = Πbi
(Map2 aff (Tabulate (x1 b1) ... p) (Tabulate (x1 b1) ... c))
⇝ (Tabulate (x1 b1) ... (aff p c))

(Map2 aff (Tabulate (x1 b1) ... p) (Repeat b c))
⇝ (Tabulate (x1 b1) ... (aff p c))

(Map2 aff (Repeat b p) (Tabulate (x1 b1) ... c))
⇝ (Tabulate (x1 b1) ... (aff p c))

Figure 5. Rewrite rules for loop rerolling

3 Shrinking Caddy by Rerolling Loops
Szalinski shrinks repetitive Caddy programs by “rerolling
loops”. First, rewrites find structure by separating affine op-
erators from their parameters and CAD arguments under
Map2s. This can expose program repetition as repetitive Lists.
Next, arithmetic solvers find equivalent closed form Tabulates

for repetitive lists. These Tabulates generalize the program
and provide parameters that simplify future edits. Finally,
rewrites restore structure by recombining the (generalized)
affine parameters and CAD arguments from Map2s into a
single Tabulate. Figure 5 shows this strategy’s key rewrites.

Because Szalinski uses an E-graph, these rewrites can ac-
tually be repeatedly applied in any order and still efficiently
yield the same final result. For simplicity, this section steps
through the ship’s wheel example assuming a particular for-
tuitous order of rewrites that just so happens to nicely shrink
the ideal Core Caddy input from Figure 4c.

3.1 Finding Structure: A Bird’s-eye View
Applying Binop Fold to the inner Union in Figure 4c produces:

(Union (Union (Union ...
(Rotate [0, 0, 0] cad1)
(Rotate [0, 0, 60] cad2)
(Rotate [0, 0, 120] cad3) ...)

▶

(Fold Union (List
(Rotate [0, 0, 0] cad1)
(Rotate [0, 0, 60] cad2)
(Rotate [0, 0, 120] cad3) ...))

A structure finder (detailed in Section 4) searches for a
list of affine transformations all using the same operator aff .
Structure Finding separates the affine parameters and CAD
arguments out into two Lists under a Map2 with aff :

PLDI ’20, June 15–20, 2020, London, UK

(Fold Union (List
(Rotate [0, 0, 0] cad1)
(Rotate [0, 0, 60] cad2)
(Rotate [0, 0, 120] cad3) ...))

▶

(Fold Union
(Map2 Rotate
(List [0, 0, 0] [0, 0, 60] [0, 0, 120] ...)
(List cad1 cad2 cad3 ...)))

The structure finder is applied repeatedly. Here it exposes
lists of identical elements, letting the Repeat rewrite produce:

(Fold Union
(Map2 Rotate
(List [0, 0, 0] [0, 0, 60] [0, 0, 120] ...)
(Map2 Translate
(List [1, −0.5, 0] ...)
(List (Cube [10, 1, 1]) ...))))

▶

(Fold Union
(Map2 Rotate
(List [0, 0, 0] [0, 0, 60] [0, 0, 120] ...)
(Map2 Translate
(Repeat 6 [1, −0.5, 0])
(Repeat 6 (Cube [10, 1, 1])))))

3.2 Introducing Tabulate by Solving Lists
Once structure finding has isolated a List of vectors ℓ, arith-
metic solvers attempt to find equivalent Tabulates. The current
Szalinski prototype provides simple solvers for first- and
second-degree polynomials in both Cartesian and spherical
coordinates. Given ℓ = (List [x1,y1, z1] ... [xn ,yn , zn]), these
solvers infer independent functions fx , fy , fz for the x , y, z
components of ℓ respectively. In practice, running arithmetic
solvers on floating point numbers output by existing mesh
decompilers requires accepting Tabulates within some ϵ of ℓ,
especially for tools that rely on randomized algorithms [11]
like RANSAC [28].

For the Rotate parameters (List [0, 0, 0] [0, 0, 60] ... [0, 0, 300]),
solvers find (Tabulate (i 6) [0, 0, 60i]). List Solve then produces:

(Fold Union
(Map2 Rotate
(List [0, 0, 0] [0, 0, 60] [0, 0, 120] ...)
(Map2 Translate
(Repeat 6 [1, −0.5, 0])
(Repeat 6 (Cube [10, 1, 1])))))

▶

(Fold Union
(Map2 Rotate
(Tabulate (i 6) [0, 0, 60i])
(Map2 Translate
(Repeat 6 [1, −0.5, 0])
(Repeat 6 (Cube [10, 1, 1])))))

In this example, the solvers relied on their input arriving
in just the right order. Section 5 shows how inverse transfor-
mations allow solvers to reorder their input to infer better
Tabulates while preserving equivalence.

3.3 The Final Squeeze: Recombining Map2s

Finally, since both the Repeats and Tabulate have matching
bounds, Repeat over Map2 and Tabulate over Map2 recombine
the separated affine parameters and CAD arguments to pro-
duce the desired output from the inner Union of Figure 4c:

(Fold Union
(Map2 Rotate
(Tabulate (i 6) [0, 0, 60i])
(Map2 Translate
(Repeat 6 [1, −0.5, 0])
(Repeat 6 (Cube [10, 1, 1])))))

▶

(Fold Union
(Tabulate (i 6)
(Rotate [0, 0, 60i]
(Translate [1, −0.5, 0]
(Cube [10, 1, 1])))))

This section illustrated Szalinski’s core strategy: shrinking
Caddy by rerolling loops. However, the example relied on
a specific rewrite order and Figure 4c as an unrealistically

ideal input. Subsequent sections show how E-graphs and
inverse transformations enable Szalinski to robustly shrink
noisy and unstructured CSGs.

4 E-graphs and CAD Equality Saturation
Rewrites to shrink Caddy by rerolling loops must be applied
in just the right order to programs that already make struc-
ture apparent as in Figure 4c. Simply interleaving additional
CAD rewrites to expose repetitive structure initially seems in-
feasible because the necessary rewrites are not confluent and
the space of possible orderings explodes exponentially. How-
ever, past work on Equality Saturation [34] demonstrates
how E-graphs [22] can make this strategy efficient for many
rewrite rules. This section shows how Szalinski applies Equal-
ity Saturation in the CAD domain to robustly handle CSG
variations when shrinking Caddy programs.

4.1 Rewrite Phase Ordering: What, When, Where
A slightly perturbed Caddy example for the spokes of the
ship’s wheel omits Rotate [0, 0, 0] and replaces Rotate [0, 0, 180]
by the equivalent Scale [−1, −1, 1]:
(Fold Union (List
(Translate [1, −0.5, 0] (Cube [10, 1, 1]))
(Rotate [0, 0, 60] (Translate [1, −0.5, 0] (Cube [10, 1, 1])))
(Rotate [0, 0, 120] (Translate [1, −0.5, 0] (Cube [10, 1, 1])))
(Scale [−1, −1, 1] (Translate [1, −0.5, 0] (Cube [10, 1, 1])))
(Rotate [0, 0, 240] (Translate [1, −0.5, 0] (Cube [10, 1, 1])))
(Rotate [0, 0, 300] (Translate [1, −0.5, 0] (Cube [10, 1, 1])))))

The three-phase loop rerolling strategy from Section 3
now breaks: Szalinski must interleave its search with addi-
tional CAD rewrites (Figure 6) to expose the repeated affine
transformations as in Figure 4c. This phase ordering prob-
lem [34, 38] makes it difficult to determine when to apply
which rewrites and where. Poor choices will only further
obfuscate repetitive structure and no single strategy is best
in general.
Equality Saturation [34] is a technique to mitigate phase

ordering that uses E-graphs to compactly represent equiv-
alence relations over large sets of expressions. Instead of
destructively modifying a particular concrete term, rewrites
extend the E-graph by adding and unifying classes of ex-
pressions. This eliminates the need to choose any particular
rewrite ordering. By repeatedly applying the rules in Fig-
ures 5 and 6 to an E-graph and using a structure finding
heuristic (Section 4.4), Szalinski’s loop rerolling strategy can
robustly handle variations in how mesh decompilers synthe-
size affine operators.

4.2 E-graph Background
An E-graph is a set of eclasses, and each eclass is a set of
equivalent enodes. An enode is an operator (Translate, Union,
literal, etc.) applied to zero or more child eclasses. An eclass c
represents expression e if c contains an enoden with the same
operator as e and the children of n represent the children of e .

PLDI ’20, June 15–20, 2020, London, UK C. Nandi et al.

Affine Identities

(Rotate [0, 0, 180] cad) ↭ (Scale [−1, −1, 1] cad)

(Rotate [0, 0, 0] cad) ↭ cad

(Translate [0, 0, 0] cad) ↭ cad

(Scale [1, 1, 1] cad) ↭ cad

Affine Interchanging

(Scale [a, b, c]
(Translate [d, e, f] cad))

↭ (Translate [ad, be, cf]
(Scale [a, b, c] cad))

Affine Combination

(Scale [a, b, c]
(Scale [d, e, f] cad))

⇝ (Scale [ad, be, cf] cad)

(Translate [a, b, c]
(Translate [d, e, f] cad))

⇝ (Translate [a + d, b + e, c + f] cad)

Primitive-Affine Conversion

(Cuboid [x, y, z]) ↭ (Scale [x, y, z] (Cuboid [1, 1, 1]))

(Sphere r) ↭ (Scale [r, r, r] (Sphere 1))

(Cylinder [h, r]) ↭ (Scale [r, r, h] (Cylinder [1, 1]))

(Hexprism [h, r]) ↭ (Scale [r, r, h] (Hexprism [1, 1]))

Figure 6. Selected CAD identities. Bidirectional arrows in-
dicates Szalinski has a rule for each direction.

(Scale [−1, −1, 1]
(Translate [1, −0.5, 0]
(Cube [10, 1, 1])))

▶
(Rotate [0, 0, 180]
(Translate [1, −0.5, 0]
(Cube [10, 1, 1])))

Cube

Trans

[1,-0.5,0]

Scale

[-1,-1,1]

Cube

Trans

[1,-0.5,0]

Scale

[-1,-1,1]

Rotate

[0,0,180]

Figure 7. E-graph before and after a CAD rewrite. Boxes rep-
resent enodes and dashed edges indicate equivalence (mem-
bership in the same eclass). Directed solid edges connect
enodes to their child eclasses. Both the original and trans-
formed programs are represented in the resulting E-graph.

Each eclass represents an exponential number of equivalent
expressions (w.r.t. the number of enodes), since each of its
enodes point to eclasses themselves.

Adding an expression to an E-graphworks bottom up: first
add the leaves as enodes each in their own eclasses, then
recursively add operators as enodes pointing to the eclasses
of their operands as children. Hashconsing ensures enodes
are never duplicated in an E-graph. This sharing compactly
represents many equivalent expressions.

E-graphs also provide a unify operation that combines
two eclasses and maintains their congruence closure. For
example, if eclasses c1 and c2 represent (+ x y) and (+ x z) re-
spectively, then unifying the eclasses representing y and z

would cause c1 and c2 to be unified as well since they both

def Szalinski(csg : core_caddy):

egraph, root = make_egraph(csg)

while egraph.changed()

for (lhs, rhs) in SZALINSKI_REWRITES:

matches = egraph.search(lhs)

for (eclass, subst) in matches:

c = egraph.add(apply(rhs, subst))

egraph.unify(eclass, c)

return egraph.extract(root, min_size)

Figure 8. Equality Saturation for Caddy in Szalinski

contain “+” enodes with equivalent children. Figure 7 shows
how an E-graph can compactly represent equivalent expres-
sions generated by rewrites, in this case, one of the CAD
rewrites needed to expose repetitive structure for the ship’s
wheel example.

E-graphs can easily be extended with syntactic rewrites
a ⇝ b: whenever an eclass c represents an expression that
matches pattern a under substitution ϕ, the eclass repre-
senting ϕ(b) is found (or constructed) and unified with c ; the
resulting eclass will represent both expressionsϕ(a) andϕ(b).
Rewrites only expand the E-graph, all previous expressions
are still represented.
We slightly generalize rewrites from two patterns to a

pattern L and a function R that, given a substitution ϕ, re-
turns an expression to be added to the E-graph and unified
with the eclass that matched L. This generalization allows
rewrites to implement rules which are not purely syntactic,
like constant folding (ex: rewriting 2 + 3 to 5). Many of Sza-
linski’s list-manipulating rewrites are implemented this way,
which is convenient for rules like Repeat which need to ex-
tract the length of a matched list pattern. This generalization
also allows Szalinski to integrate arithmetic solvers with the
E-graph—Tabulate expressions returned by solvers are unified
with the eclass that matched the List Solve rule’s list pattern.

4.3 Equality Saturation in Szalinski
Szalinski implements Equality Saturation [34] for Caddy (Fig-
ure 8). First, an E-graph is created from the input Core Caddy
expression. Then Szalinski expands the E-graph by repeat-
edly applying rewrites. Searching the E-graph for a rewrite’s
left-hand side pattern results in a list of (eclass, substitution)
pairs that indicate where and how a pattern was matched.
For each pair (c,ϕ), Szalinski generates an expression e by
applying the rewrite’s right-hand side function to ϕ, adding
e to the E-graph yielding eclass c ′, and unifying c and c ′.
Szalinski continues applying rewrites until the E-graph sat-
urates (reaches a fixpoint where no rewrites further expand
the E-graph), or a timeout is reached. In the case of satu-
ration, Szalinski has discovered all equivalences derivable
from its rewrites.

PLDI ’20, June 15–20, 2020, London, UK

Finally, Szalinski extracts the smallest Caddy program
represented by the initial Core Caddy input’s eclass in a
simple bottom-up traversal of the E-graph. Szalinski uses
program size as a proxy for editability. Past work provides
extraction strategies for various kinds of cost functions [24,
34], but we leave further exploration of CAD cost functions
in Szalinski to future work.

4.4 Structure Finding in E-graphs
Since Szalinski’s rewrites contain CAD identities that can
fire in every iteration, the structure finding procedure as
presented in Section 3.1 must be enhanced. It must consider
that multiple affine transformations may be introduced in
the same eclass by the CAD identities. Given a list of eclasses
e1, e2, ..., en , the structure finder aims to extract Map2s that
remove one level of structure. However, due to rules like
Affine Combination from Figure 6, each eclass may contain mul-
tiple equivalent enodes with the same affine operation. If
eclass ei has 2 enodes with the Rotate operator, for example,
the structure finder can choose from 2 different Rotates at
each of the n eclasses in the list. Each of these 2n Map2s has
distinct children, and will therefore be a distinct enode in
the E-graph, all unified in the same eclass as the list itself.
Szalinski must operate on large lists of Core Caddy programs,
but such an exponential number of enodes would blow up
the E-graph.
Szalinski instead capitalizes on the observation that it

is not useful to pick different affine enodes within similar-
looking eclasses. Consider again the ship’s wheel example
presented in Section 4.1. After applying the two Rotate identi-
ties from Figure 6, the eclasses for the top-level affines in the
list contain the following enodes (one eclass per row, enodes
shown with their parameters for clarity):

a: (Translate [1,-0.5,0] x1) (Rotate [0,0,0] a)
b : (Rotate [0,0,60] x2) (Rotate [0,0,0] b)
c : (Rotate [0,0,120] x3) (Rotate [0,0,0] c)
d : (Scale [-1,-1,1] x4) (Rotate [0,0,0] d) (Rotate [0,0,180] x4)
e : (Rotate [0,0,240] x5) (Rotate [0,0,0] e)
f : (Rotate [0,0,300] x6) (Rotate [0,0,0] f)

The structure finder calculates the affine signature of each
eclass as the multiset of the kinds affine operators in the
eclass. In the above example, eclass a’s affine signature is
{Translate, Rotate}, d’s is {Scale, Rotate, Rotate}, and the others
all share the same signature: {Rotate, Rotate}. A group is a
set of eclasses that share the same affine signature. When
trying to extract a Rotate, the structure finder will not take
the Cartesian product of the Rotates in each eclass—doing so
would lead to 25 possible ways to combine Rotate. Instead, it
takes the Cartesian product of affine choices for each group,
and extends the same choice of affine over all eclasses within
the group (using the order of affines in the eclasses). In this
example, the only affine that can be extracted is Rotate, since
the other affines do not appear in the affine signature of all
groups. For the Rotate affine, group a has one choice, group

(Fold Union (List
(Rotate [0, 0, 120] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
(Rotate [0, 0, 0] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
(Rotate [0, 0, 300] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
(Cylinder [1, 5])
(Rotate [0, 0, 180] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
(Rotate [0, 0, 240] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
(Rotate [0, 0, 60] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

Figure 9. Section 3 and 4 techniques find the “Rotate then
Translate” structure from the realistic Figure 4d. Without in-
verse transformations, loop rerolling now gets stuck.

d has 2 choices, and group b, c, e, f also has 2 choices. This
reduces the number of (Map2 Rotate ...) expressions introduced
from 25 = 32 to 4.

5 Inverse transformations
E-graphs and CAD rewrites allow Szalinski to expose repeti-
tive structure and reroll loops even when a Core Caddy input
exhibits obfuscating variations (e.g., Scale [-1,-1,1] instead of
Rotate [0,0,180]). However, existing mesh decompilers tend to
also order and group CAD subexpressions by geometric prox-
imity or other heuristics that, from Szalinski’s perspective,
make recovering high-level structure challenging. Unless the
right reordering and regrouping of subexpressions can be
found, list solvers will fail to infer Tabulates and Szalinski will
be unable to reroll loops and shrink Caddy programs.
To address this challenge, we introduce inverse transfor-

mations, a novel way for solvers to optimistically unify ex-
pressions in an E-graph that would be equivalent modulo
reordering or regrouping.

Figure 9 shows how far CAD rewrites combined with tech-
niques from previous sections get for the Figure 4d example.
Unfortunately, Cylinder is still Unioned with Cuboids, prevent-
ing the structure finder from pulling out the Rotate. Even
if the Cylinder were removed, the list order would prevent
solvers from inferring a Tabulate for the Rotate parameters.
Unlike the previous section, adding more rewrites does

not help.5 E-graphs do not compactly represent equivalences
due to reordering associative and commutative operators
like Union. This is known as the AC-matching problem [3]
(A stands for associativity, and C for commutativity) and it
prevents efficiently exploring all possible reorderings and
regroupings.
Szalinski addresses this with a new technique, inverse

transformations, that allows solvers to speculatively trans-
form their inputs to allow for more profitable rewriting. A
solver that cannot simplify input Amay, for some transfor-
mation F , be able simplify F (A) to B. Inverse transformations
simply allows the solver to “wrap” B with F−1 before unifying
it with A, even though A and B are not equivalent.

5 We can report that AC-matching is a problem both in theory and practice.

PLDI ’20, June 15–20, 2020, London, UK C. Nandi et al.

permutation::= ⟨ n, n, ... ⟩ partitioning ::= ⟨ n, n, ... ⟩

inv ::= (Sort ⟨permutation⟩ ⟨*-list⟩)
| (Unsort ⟨permutation⟩ ⟨*-list⟩)
| (Part ⟨partitioning⟩ ⟨*-list⟩)
| (Unpart ⟨partitioning⟩ ⟨*-list⟩)
| (Spherical ⟨vec3⟩ ⟨vec3-list⟩)
| (Unspherical ⟨vec3⟩ ⟨vec3-list⟩)

Figure 10. Syntax of Extended Caddy.

Inverse transformations enable locally-reasoning solvers
to register potentially profitable regroupings and reorder-
ings in an E-graph. Simple syntactic rewrites then propa-
gate these “hints” globally through the E-graph, allowing
other solvers to try them, and contextually eliminate inverse
transformations when possible (e.g., under order-insensitive
operations like Fold Union).

5.1 Extended Caddy
Extended Caddy (Figure 10 and 11) adds inverse transfor-
mations that allow solvers to record how they manipulated
their input. These extended forms are only introduced in
the E-graph; Szalinski’s cost function ensures extraction
produces regular Caddy programs. Semantically, these con-
structs either undo the transformation performed by the
solver to recover the input, or perform the transformation
on some other part of the program. Sort and Unsort take a
permutation p and a list ℓ, imposing (respectively, undoing)
p on ℓ. Part takes a partitioning P (a list of lengths) and a
list ℓ, breaking down ℓ into a list of sublists according to P .
Unpart takes a partitioning and a list of lists and flattens the
latter; the partitioning is only use to propagate information.
TranslateSpherical and Unspherical take a 3D vector c and a list
of 3D vectors in spherical coordinates about c , returning a
list of the vectors in Cartesian coordinates (and vice versa).

5.2 Restructuring with Unpart and Unsort

Using inverse transformations, Szalinski can finally get the
desired output given the realistic input for the ship’s wheel
(Figure 4d). Starting from Figure 9, Szalinski separates the
Cylinder from the Cuboids with partitioning and sorts the list
of Cuboids on their Rotate parameters, revealing repetitive
structure similar to the ideal input (Figure 4c).

Partitioning. Szalinski includes a partitioning solver that
uses inverse transformations and a set of heuristics to restruc-
ture lists in ways that group similar list elements together
(e.g., by kind of geometric primitive). The partitioner can
split up elements of a list by equivalence class, individual
components of 3D vectors, and kinds of affine transforma-
tions. In Figure 9, the partitioner will split the list into:
(Fold Union
(Unpart ⟨1, 6⟩
(List (Cylinder [1, 5]))

e ⇒ (List v1 v2 ... vn)

(Sort ⟨i1, i2, ..., in ⟩ e) ⇒ (List vi1 vi2 ... vin)

e ⇒ (List vi1 vi2 ... vin)

(Unsort ⟨i1, i2, ..., in ⟩ e) ⇒ (List v1 v2 ... vn)

sum0 = 0 sublisti = (List vsumi−1 ... vsumi)
sumi = sumi−1 + li e ⇒ (List v1 v2 ... vsumn)

(Part ⟨l1, l2, ..., ln ⟩ e) ⇒ (List sublist1 ... sublistn)

sum0 = 0 sublisti = (List vsumi−1 ... vsumi)
sumi = sumi−1 + li e ⇒ (List sublist1 ... sublistn)

(Unpart ⟨l1, l2, ..., ln ⟩ e) ⇒ (List v1 v2 ... vsumn)

e ⇒ (List v ′
1 v

′
2 ... v

′
n) vi = to_spherical (center , v ′

i)

(Spherical n center e) ⇒ (List v1 v2 ... vn)

e ⇒ (List v ′
1 v

′
2 ... v

′
n) vi = to_cartesian (center , v ′

i)

(Unspherical n center e) ⇒ (List v1 v2 ... vn)

Figure 11. Big step semantics for Extended Caddy.

(List (Rotate [0, 0, 120] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
(Rotate [0, 0, 0] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
(Rotate [0, 0, 300] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
(Rotate [0, 0, 180] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
(Rotate [0, 0, 240] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))
(Rotate [0, 0, 60] (Translate [1, −0.5, 0] (Cuboid [10, 1, 1])))))

The introduced Unpart is equivalent to Concat, but addi-
tionally stores partitioning hints. Now that the Rotates are
gathered uniformly in a list, the structure finder will rewrite
the list to:
(Map2 Rotate

(List [0, 0, 120] [0, 0, 0] [0, 0, 300] [0, 0, 180] [0, 0, 240] [0, 0, 60])
(Repeat 6 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))

The arithmetic solver from Section 3.2 cannot find a closed
form for this list of Rotate parameters. The solver could, how-
ever, find a closed form if it were free to sort the list (by
z-coordinate, in this case). The sorted list is not equivalent
to the original. Since the solver only rewrites locally, it does
not know if the list appears under a Fold Union (which is AC)
or a Fold Diff (which is not AC). In the E-graph, both situa-
tions could actually hold due to sharing. The solver cannot
soundly rewrite the original list to the closed form Tabulate,
but it can soundly rewrite the list to:

(Unsort ⟨1, 5, 0, 3, 4, 2⟩ (Tabulate (i 6) [0, 0, 60i]))

The Unsort inverse transformation allows the solver to
introduce the closed form Tabulate in the E-graph, but Sza-
linski will never extract it or any other program using the
inverse transformation forms from Extended Caddy. Instead,
rewrites propagate inverse transformations between invo-
cations of locally-reasoning solvers, and additional rules
eliminate inverse transformations in contexts invariant to

PLDI ’20, June 15–20, 2020, London, UK

the relevant transformation; these rules are shown in Fig-
ure 12. TheMap2 Unsort Params rewrite applies to our running
example, producing:
(Unsort ⟨1, 5, 0, 3, 4, 2⟩ (Sort ⟨1, 5, 0, 3, 4, 2⟩
(Map2 Rotate
(Unsort ⟨1, 5, 0, 3, 4, 2⟩ (Tabulate (i 6) [0, 0, 60i]))
(Repeat 6 (Translate [1, −0.5, 0] (Cuboid [10, 1, 1]))))))

Semantically, this is no different, as (Unsort p (Sort p x)) = x ,
but since the Map2 is in the same eclass as the original list of
Rotates, the Sort Application rule can fire, communicating the
profitable ordering of the Rotate parameters to the outer list.
Now, the structure finder and arithmetic solver apply to the
sorted list of Rotates, bringing the whole program to:

(Fold Union
(Unpart ⟨1, 6⟩
(List (Cylinder [1, 5]))
(Unsort ⟨1, 5, 0, 3, 4, 2⟩
(Tabulate (i 6)
(Rotate [0, 0, 60i]
(Translate [1, −0.5, 0]
(Cuboid [10, 1, 1]))))))))

From here an additional rewrite (elided from Figure 12)
can lift the Unsort over the Unpart:

(Fold Union
(Unsort ⟨0, 2, 6, 1, 4, 5, 3⟩
(Unpart ⟨1, 6⟩
(List (Cylinder [1, 5]))
(Tabulate (i 6)
(Rotate [0, 0, 60i]
(Translate [1, −0.5, 0]
(Cuboid [10, 1, 1]))))))))

Next, the Unsort Elimination rule removes the Unsort, since
Fold Union is invariant to order. Finally one additional rule
that transforms a Union of an Unpart into a Union of Unions (not
shown), produces the desired Caddy output (Figure 4b).

5.3 Solving for Spherical Coordinates
Inverse transformations are not restricted to list manipula-
tions. In addition to sorting, Szalinski’s arithmetic solvers
can convert lists to spherical coordinates [19]. The resulting
list may be easier to find a closed form Tabulate for, but it
is not equivalent to the input. Therefore, the solver wraps
the Tabulate in an inverse transformation, Unspherical, before
passing it to the E-graph for unification. If the Unspherical

propagates under a Translate, then the Unspherical Trans rule
can replace it with TranslateSpherical form. This approach al-
lows Szalinski to solve for closed forms of lists in spherical
coordinates without the solver knowing whether or not it is
solving for a list of Translate parameters.

5.4 Inverse Transformations, Broadly
This section and our evaluation show that inverse transfor-
mations are effective for shrinking Caddy programs, but the
technique could be applied more broadly to other uses of
Equality Saturation. The key insight is that solvers can re-
main simple because they only have to reason locally. They

Map2 Unsort Params - cads rule analogous

(Map2 affine
(Unsort perm params)
cads)

⇝
(Unsort perm (Sort perm
(Map2 affine
(Unsort perm params)
cads)))

Sort Application

(Sort ⟨i1, ...in ⟩ (List x1 ... xn)) ⇝ (List xi1 ... xin)

Unsort Elimination

(Fold Union (Unsort perm l)) ⇝ (Fold Union l)

(Unsort perm (Repeat n x)) ⇝ (Repeat n x)

Map2 Unpart Cads - params rule analogous

(Map2 affine
params
(Unpart part cads))

⇝
(Unpart part (Part part
(Map2 affine
params
(Unpart part cads))))

Unpart to Concat

(Unpart part lists) ⇝ (Concat lists)

Unspherical Trans

(Map2 Trans
(Unspherical n center params)
cads)

⇝
(Map2 Trans
(Repeat n center)
(Map2 TranslateSpherical
params cads))

Figure 12. Representative set of rewrite rules for propaga-
tion and elimination of inverse transformations.

are given the flexibility to speculate on potentially profitable
ways to transform their inputs. Rewrites can then propagate
this information and contextually eliminate the transforma-
tions. As in traditional Equality Saturation, these rewrites
(and now simple solvers) compose in emergent ways, lead-
ing to unexpectedly powerful outcomes, that would have
otherwise required more complicated solvers with deep, con-
textual reasoning ability.

6 Implementation
Szalinski is implemented in 3000 lines of Rust and uses
egg [41], an open source E-graph library. Table 1 provides a
break down of the LOC for each of Szalinski’s components.
Szalinski uses only simple, custom solvers for arithmetic
and list partitioning. The most of Szalinski’s 65 rewrites are
syntactic and compactly expressed, and the remainder either
call out to the solvers or manipulate lists. Szalinski is publicly
available at https://github.com/uwplse/szalinski.git.

Caddy Rewrites Solvers Main loop Validation
300 900 400 300 1100
Table 1. Approximate LOC breakdown of Szalinski

PLDI ’20, June 15–20, 2020, London, UK C. Nandi et al.

Input
CSG

Inferred
Caddy

Output
Mesh

Core
Caddy

Input
Mesh

Szalinski

Compile

Eva
l Com

pile

Hausdorff
Comparison

Output
CSG

Pre
tty

prin
t

Figure 13. The Szalinski tool. The simplification process
outputs a parameterized program in the Caddy language. The
validation step evaluates Szalinski’s output to Core Caddy,
pretty prints it to CSG and uses an open source CAD compiler
to generate a mesh. The input to Szalinski is also compiled to
a mesh. The two meshes are then compared using Hausdorff
distance.

Correctness
To validate Szalinski’s correctness, we test that the initial
and final Caddy programs compile to similar meshes (Fig-
ure 13). Szalinski first evaluates a Caddy program back to a
flat Core Caddy program which is then pretty printed to a
CSG program. We use the open source OpenSCAD [23] tool
to compile the CSGs to triangular meshes. We then use the
CGAL [4] library to compute the Hausdorff distance [11, 20]
between the two meshes. A Hausdorff distance less than a
small ϵ indicates equivalence (ideally it should be zero, but
due to rounding errors, it is sufficient to check against ϵ).

7 Evaluation
In evaluating Szalinski, were interested in the following re-
search questions:

• End-to-End. (Section 7.1) Does Szalinski compose with
prior mesh decompilation tools and find parametriz-
able programs from the flat CSG expressions generated
by the latter?

• Scalability. (Section 7.2) Does Szalinski scale to large
flat CSGs? How fast can it find equivalent smaller
Caddy programs?

• Sensitivity analysis. How do the different components
of Szalinski, in particular CAD rewrites and inverse
transformations, affect its results?

We ran our evaluation on a 6 core Intel i7-8700K processor
with 32 GB of RAM.

7.1 End-to-End Experiments
To evaluate the composability of Szalinski with mesh decom-
pilation tools, we ran Szalinski on flat CSGs generated by
the Reincarnate [21] mesh decompiler. This required investi-
gating what kinds of models Reincarnate supports; we found
that it worked best on models that do not contain round
edges. We found 10 such models from Thingiverse [35] and
ran Reincarnate on their mesh files to get flat CSGs and
converted those to Core Caddy.

Id SCAD # Tri cin cout No CAD No Inv

TackleBox 48 280 280 26 60 41
SDCardRack 13 236 206 26 57 49

SingleRowHolder 10 320 198 16 31 38
CircleCell 14 124 79 16 31 16

CNCBitCase 59 268 219 15 27 27
CassetteStorage 13 172 141 15 27 25
RaspberryPiCover 34 332 271 12 27 32
ChargingStation 45 192 141 18 27 29
CardFramer 11 200 172 42 83 42

HexWrenchHolder 13 516 317 16 31 52

Average 26.0 264.0 202.4 20.2 40.1 35.1

Table 2. End-to-end evaluation of Szalinski on the results of
Reincarnate [21]. SCAD show LOC in original parametrized
OpenSCAD implementations, # Tri shows the number of
triangles in the mesh, cin and cout are the input and output
costs. The last two columns indicate the cost of the output
Caddy program when Szalinski does not apply any CAD
identities, and when inverse transformations are turned off,
respectively.

Given the Core Caddy inputs, Szalinski synthesizes Caddy
programs (Figure 13). We compared the parametrized pro-
grams synthesized by Szalinski from Reincarnate’s output
withmanually written parametrized programs in OpenSCAD
(column 1 in Table 2). For four of the 10 models, we found a
parametrized OpenSCAD implementation on Thingiverse.
For the other six, we manually wrote a parametrized imple-
mentation in OpenSCAD. Table 2 shows the comparison of
the lines of code at every stage of the end-to-end synthesis
process, and the cost of the flat input Core Caddy and the
output Caddy. Szalinski was able to reduce the cost of the
programs by 86% on average. The last two columns report a
sensitivity analysis of Szalinski on Reincarnate’s output. It
shows that both CAD identities and inverse transformations
contribute significantly to shrinking Caddy programs.

Compiling the Caddy programs tomesh resulted inmeshes
equivalent to the source meshes (Hausdorff distance < 0.001).
We also manually validated that all 10 inferred Caddy pro-
grams are structurally similar to the parameterized input
OpenSCAD programs.

7.2 Large Scale Evaluation on Thingiverse Models
Mesh decompilation tools have limitations. Reincarnate for
example, works mainly on shapes without rounded corners
and edges. Therefore, in order to evaluate Szalinski further,
we performed a larger scale evaluation on models from Thin-
giverse [35], a popular online model sharing website.
The goals for this part of the evaluation are: (1) to simu-

late the behavior of mesh decompilation tools by flattening
parametrized programs and perturbing them to reproduce
the challenges (C1) and (C2) (introduced in Section 1), and
run Szalinski on these flat CSGs, (2) to analyze the scalability,

PLDI ’20, June 15–20, 2020, London, UK

Figure 14. Summary of input AST size for Szalinski’s large
scale evaluation.

correctness and efficiency of Szalinski on large-scale real
world programs.

Data Collection. We built a scraper that downloaded cus-
tomizable models from Thingiverse. While most models in
Thingiverse are shared as triangular meshes which are hard
to customize, models under the "Customizable" category [7]
are intended to be editable, and are therefore more likely
to be accompanied with higher-level programmatic repre-
sentation. Our scraper found 12,939 OpenSCAD files from
the "Customizable". 912 of these files were invalid, i.e. they
were empty, could not be compiled, or used debug features.
We filtered out files using features we do not support (like
linear extrusion), leaving 2,127 models. Similar to Caddy, the
OpenSCAD language supports CSG and also has features
like for loops that can be used to write more parametrizable
CAD programs. OpenSCAD can compile these programs to
flat CSG, which Szalinski then accepts as input. Figure 14
summarizes the AST sizes of these inputs.
OpenSCAD primitives like spheres and cylinders are pa-

rameterized by their geometric precision. The geometric
precision indicates the quality of the mesh obtained when
the CSG is compiled. For example, a sphere with resolution
100 has a more fine-grained mesh than a sphere with reso-
lution 10. We found several examples where the precision
of the primitives was as high as 100. However, OpenSCAD’s
compiler is slower when generating finer resolution meshes.
Since our verifier (Section 6) uses the OpenSCAD compiler,
we capped the precision of all primitives to 25.

Results. Figure 15 shows our results with a 60 second
timeout. We refer to the baseline result (leftmost) as slightly
perturbed, as OpenSCAD represents affine transformations

in an ambiguous way in its CSG format (ex: the representa-
tion of Scale [-1,-1,1] and Rotate [0,0,180] are identical). The sec-
ond result shows that Szalinski is fast; limiting it to 1 second
has very little effect on the result. The third result shows
Szalinski is robust to reordering of the inputs. The final two
results show CAD rewrites or inverse transformations signif-
icantly contribute to Szalinski’s performance. We validated
all results with the by comparing the meshes. All Hausdorff
distances were under 0.01, except for 148 cases where CGAL
failed to compute the distance and we visually compared the
meshes.

7.3 Case Studies and Editability
This section discusses three models from the end-to-end eval-
uation in Section 7.1 (a fourth is illustrated in Figure 1) and
three models from the large scale evaluation in Section 7.2.
The goal is to highlight some edits made easily possible by
Szalinski, which in the flat CSG (and mesh) are nearly impos-
sible. Figure 16 shows a rendering of these models and the
parametrized Caddy program found by Szalinski. We discuss
three categories of edits.

Adding or removing components: consider the gear shown
in Figure 16. Changing the tooth count in a flat CSG version
of this model requires manually computing the position of
every teeth and ensuring that the spacing between them
is still equal. The Caddy program synthesized by Szalinski
makes this modification trivial—it exposes a function (6 × i)
for Rotate and the number of teeth (in the Tabulate), which can
both be easily changed to get a different tooth count. Adding
rows or columns of components is also easy in a parametrized
model. For example, in the first model in Figure 16, another
set of compartments can be added by changing the bounds
of Tabulate.
Modifying the shape of multiple components: in the last

model in Figure 16, the cylinders can be all changed to
Hexprism by changing it in two places only. These modifi-
cation in the flat CSGs require changing the shape of each
cylinder individually, which is undesirable. Figure 1 shows
more examples of edits where the shape of the hex-wrench
holder can be changed by changing the parameters inferred
by Szalinski.
Applying additional affine transformations to components:

consider the SD card rack (the second model) in Figure 16.
This model can be easily customized in the Caddy program
to adjust the size of the slots. The Caddy program in the
figure shows that in each iteration (in Tabulate), two sizes
of Cuboid are removed from the outer box. The dimensions
of these can be changed in the function inferred for the
Cuboid parameters: (Cuboid [4.5, 25, j + 0.5]) to change the slot
size. Similarly, Figure 1 showed how an additional rotation
can be easily added to Cuboid to make an entirely different
model.
Performing these modifications in a flat CSG is tedious

and error-prone because they require manually recomputing

PLDI ’20, June 15–20, 2020, London, UK C. Nandi et al.

Figure 15. Result of running Szalinski on 2,127 Thingiverse examples. Models are grouped by AST size of initial Core Caddy
input: 769 were tiny (AST size < 30), 786 small (30 < size < 100), 374 medium (100 < size < 300), and 198 large (300 < size).

(Union (Difference

 (Cuboid [60, 120, 30])

 (Fold Union

 (Tabulate (i 5) (j 3)

 (Translate [12 * i + 2, 39.3 * j + 2, 2]

 (Cuboid [9.6 37.3 28])))))

 (Fold Difference

 (Map2 Translate

 (List [-67, -2, 0] [-65, 0, 2])

 (List (Cuboid [65, 125, 6])

 (Cuboid [60, 120, 4])))))

(Difference

 (Translate [-57, -3, 3]

 (Cuboid [117, 75, 175]))

 (Fold Union

 (Tabulate (i 10)

 (Translate [-51, -3, 16 * i + 6]

 (Cuboid [105, 58, 13])))))

(Difference

 (Cuboid [57, 30, 30])

 (Difference

 (Translate [0, 5, 1.5] (Cuboid [57, 25, 27]))

 (Fold Union

 (Map2 Translate

 (Tabulate (i 7) (j 2) [9 * i, 5, 28 - 26.5 * j])

 (Concat

 (List (Tabulate (i 6) (j 2)

 (Cuboid [4.5, 25, j + 0.5]))

 (List (Cuboid [3, 25, 0.5])

 (Cuboid [3, 25, 1.5]))))))))

(Fold Difference

 (List (Union

 (Cylinder [100, 80, 80])

 (Cylinder [50, 120, 120]))

 (Translate [0, 0, -1] (Cylinder [102, 25, 25]))

 (Fold Union (Tabulate (i 60)

 (Rotate [0, 0, 6 * i]

 (Translate [125, 0, 0]

 (Scale [2.5, 1, 1]

 (Rotate [0, 0, 45]

 (Translate [0, 0, 25]

 (Cuboid [10, 10, 52]))))))))))

(Fold Union

 (Tabulate (i 12)

 (Translate [0, 13* i, 0]

 (Fold Difference

 (List

 (Cuboid [53.1 14.5 58])

 (Translate [1.5, 1.5, 1.5]

 (Cuboid [51.6, 11.5, 56.6]))

 (Translate [0 0 58]

 (Rotate [0, 45, 0]

 (Cuboid [101.5, 14.5, 100]))))))))

(Fold Union
 (Tabulate (i 10) (j 5)
 (Translate
 [12.2 * i + 12.2, 12.2 * j + 12.2, 0]
 (Difference
 (Cylinder [13, 7.1, 7.1])
 (Translate [0, 0, 3]
 (Cylinder [11, 5.1, 5.1]))))))

Figure 16. The first three are examples of end-to-end evaluation where Szalinski ran on the flat CSG output of a mesh
decompiler [21]. The last three are representative examples that show the usefulness of Szalinski where the flat CSG was
generated using OpenSCAD and perturbed to simulate mesh decompilers.

many parameters for multiple components in the models.
Szalinski makes these modifications much easier by exposing
different design parameters.

7.4 Limitations
Some mesh decompilation tools like InverseCSG synthesize
flat CSG programs using enumerative synthesis and ran-
dom sampling based algorithms like RANSAC [11]. Inferring
structure from the output generated by these tools requires
equivalence under context using geometric reasoning that
our prototype currently does not support. InverseCSG pro-
vides 50 benchmarks, on all of which we ran Szalinski. The
majority of the benchmarks lacked the repetitive structure
Szalinski is intended to infer. For one of the models (bench-
mark 157, a gear), Szalinski was able to infer a TranslateSpherical

function. However, due to the structure of their outputs, we
had to add rewrites like:
(Difference (Union a b) c)⇝ (Union (Difference a c) b) which are un-
sound without a geometric solver that can check that the
intersection of b and c is empty. We manually applied this

rewrite to benchmark-157 but did not add these rewrites to
Szalinski’s rule database due to their unsoundness.

8 Related Work
E-graph basedDeductive ProgramSynthesis. E-graphs

have been used extensively in superoptimizers [2, 16, 33, 34],
and SMT solvers [8–10, 37]. Szalinski’s core algorithm is a
generalized version of equality saturation [34]. Integrating
linear solvers with compiler optimizers has a long history
with tools like Omega Calculator [25, 26]. Our approach of
using syntactic rewrites and an arithmetic function solver
to modify the E-graph can be considered similar to Sim-
plify [10] which uses an E-graph module for finding equiva-
lent expressions containing uninterpreted functions, and a
Simplex module that is used for arithmetic computations.

However, unlike Szalinski, past work does not allow solvers
to speculatively add potentially profitable expressions in the
E-graph. Inverse transformations allows Szalinski to accom-
plish this while also mitigating the AC-matching problem for

PLDI ’20, June 15–20, 2020, London, UK

associative and commutative operations like list reordering
and regrouping.

2D and 3D design synthesis. Nandi et al. [21] and Du
et al. [11] have developed tools that can decompile low-
level polygon meshes to flat CSGs. These tools use program
synthesis together with domain specific computational geo-
metric algorithms to discover structure in the meshes. CS-
GNet [30] uses machine learning to generate flat CSG pro-
grams for 2D and 3D shapes. Shape2Prog [36] uses machine
learning to infer programs from voxel-based 3Dmodels. They
use LSTMs to infer programs with loops. We ran Szalinski
on the flat CSGs from both CSGNet and Shape2Prog— since
their program lengths are very small (AST depth < 7), they
are not good candidates for design parameter inference. Sza-
linski however did find some structure in these program and
generated correct outputs. Ellis et al. [13] developed a tool
that can automatically generate programs that correspond
to hand-drawn images. They first use machine learning to
detect primitives in the drawings and then use Sketch [32]
to find loops and conditionals. Szalinski’s technique is dif-
ferent from theirs in that they use enumerative search to
explore all programs within a given depth (their max AST
depth is 3), based on a language grammar, a specification,
and a cost, whereas Szalinski uses a rewrite-based synthesis
technique where the specification is given as the initial CSG,
and Szalinski constructs an E-graph and updates it using
semantics preserving rewrites. In order to compare Szalinski
with Ellis et al.’s [13] tool, we ported their 2D models to 3D
and ran Szalinski on them. Szalinski’s results had similar
loop structure as theirs but further comparison is not pos-
sible since their DSL is different. Another line of work [12]
uses reinforcement learning to synthesize programs for 2D
and 3D models. However, the programs inferred by these
approaches are much smaller compared to Szalinski.

In computer graphics and vision, symmetry detection [18]
in 3D shapes is a well studied topic. It can improve perfor-
mance of geometry processing algorithms. The ability to
detect folds and maps in 3D models is more general than
symmetry detection because it can find patterns in models
that have repetitive structure that is not symmetry. A simple
example of this is a union of n cubes increasing in size. In
fabrication, Schulz et al. [29] developed algorithms for opti-
mizing parametric CADmodels using interpolation methods.
While their approach can optimize parameters, it does not
automatically infer maps and folds from flat CSG inputs.

9 Conclusion
This paper addresses the challenge of synthesizing smaller
high-level CAD models from the noisy and unstructured
outputs of existing triangle mesh to CSG decompilers. We
developed Szalinski, a prototype tool to synthesize Caddy
programs using semantics-preserving rewrites and simple
solvers to “reroll loops.” By adapting Equality Saturation to

the CAD domain, Szalinski can robustly handle common
CSG variations exhibited by existing mesh decompilers. Sza-
linski relies on novel inverse transformations to mitigate the
AC-matching problem that arises when reordering CAD op-
erations: solvers annotate and merge terms that are only
equivalent modulo reordering, then propagate and eliminate
such annotations through an E-graph to expose repetitive
structure and robustly enable loop rerolling. Inverse trans-
formations are not CAD-specific; we are excited to explore
future work investigating how they may be applied in other
ordering-sensitive optimization problems, e.g., instruction
scheduling [39, 40].

To the best of our knowledge, Szalinski is the first tool of
its kind. We performed an early survey of 2,127 real-world
CAD models from Thingiverse. Our evaluation shows that
Szalinski can dramatically shrink many CAD models in sec-
onds.
In future work, we are excited to explore richer rewrites

for contextual equivalence (Section 7.4), more expressive
cost functions for capturing richer notions of editability,
and connections to interactive CAD editing using direct
manipulation tools like Sketch-n-Sketch [5].

Acknowledgments
We thank René Just for valuable suggestions on data visual-
ization, and other members of the UWPLSE lab for feedback
on early drafts. We also thank our shepherd, Mukund Ragho-
taman, and the anonymous reviewers for their guidance
while preparing the final revision of this paper. This mate-
rial is based upon work supported by the National Science
Foundation under Grant No. CCF-1813166.

References
[1] Celena Alcock, Nathaniel Hudson, and Parmit K. Chilana. 2016. Bar-

riers to Using, Customizing, and Printing 3D Designs on Thingi-
verse. In Proceedings of the 19th International Conference on Support-
ing Group Work (GROUP ’16). ACM, New York, NY, USA, 195–199.
https://doi.org/10.1145/2957276.2957301

[2] Sorav Bansal and Alex Aiken. 2008. Binary Translation Using Peep-
hole Superoptimizers. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation (OSDI’08). USENIX
Association, Berkeley, CA, USA, 177–192. http://dl.acm.org/citation.
cfm?id=1855741.1855754

[3] Walid Belkhir and Alain Giorgetti. 2012. Lazy AC-Pattern Matching
for Rewriting. Electronic Proceedings in Theoretical Computer Science
82 (Apr 2012), 37–51. https://doi.org/10.4204/eptcs.82.3

[4] CGAL. 2018. CGAL. https://www.cgal.org.
[5] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016.

Programmatic and Direct Manipulation, Together at Last. In Proceed-
ings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’16). ACM, New York, NY, USA, 341–
354. https://doi.org/10.1145/2908080.2908103

[6] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Martí-Oliet, JoséMeseguer, and Carolyn Talcott. 2007. All About Maude
- a High-performance Logical Framework: How to Specify, Program and
Verify Systems in Rewriting Logic. Springer-Verlag, Berlin, Heidelberg.

https://doi.org/10.1145/2957276.2957301
http://dl.acm.org/citation.cfm?id=1855741.1855754
http://dl.acm.org/citation.cfm?id=1855741.1855754
https://doi.org/10.4204/eptcs.82.3
https://www.cgal.org
https://doi.org/10.1145/2908080.2908103

PLDI ’20, June 15–20, 2020, London, UK C. Nandi et al.

[7] Customizable. 2019. Thingiverse Customizable. https://www.
thingiverse.com/customizable.

[8] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of Software, 14th Inter-
national Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Hei-
delberg, 337–340. http://dl.acm.org/citation.cfm?id=1792734.1792766

[9] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn,
and Jakob von Raumer. 2015. The Lean Theorem Prover (System
Description). In Automated Deduction - CADE-25, Amy P. Felty and
Aart Middeldorp (Eds.). Springer International Publishing, Cham, 378–
388.

[10] David Detlefs, Greg Nelson, and James B. Saxe. 2005. Simplify: A
Theorem Prover for Program Checking. J. ACM 52, 3 (May 2005),
365–473. https://doi.org/10.1145/1066100.1066102

[11] Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana
Schulz, Daniela Rus, Armando Solar-Lezama, and Wojciech Matusik.
2018. InverseCSG: automatic conversion of 3D models to CSG trees.
1–16. https://doi.org/10.1145/3272127.3275006

[12] Kevin Ellis, Maxwell I. Nye, Yewen Pu, Felix Sosa, Joshua B. Tenenbaum,
and Armando Solar-Lezama. 2019. Write, Execute, Assess: Program
Synthesis with a REPL. In NeurIPS.

[13] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Joshua B.
Tenenbaum. 2018. Learning to Infer Graphics Programs from Hand-
Drawn Images. https://openreview.net/forum?id=H1DJFybC-

[14] Markus Friedrich, Pierre-Alain Fayolle, Thomas Gabor, and Claudia
Linnhoff-Popien. 2019. Optimizing Evolutionary CSG Tree Extraction.
In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO ’19). ACM, New York, NY, USA, 1183–1191. https://doi.org/
10.1145/3321707.3321771

[15] Nathaniel Hudson, Celena Alcock, and Parmit K. Chilana. 2016. Un-
derstanding Newcomers to 3D Printing: Motivations, Workflows, and
Barriers of Casual Makers. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems (CHI ’16). ACM, New York,
NY, USA, 384–396. https://doi.org/10.1145/2858036.2858266

[16] Rajeev Joshi, Greg Nelson, and Keith Randall. 2002. Denali: A Goal-
directed Superoptimizer. SIGPLAN Not. 37, 5 (May 2002), 304–314.
https://doi.org/10.1145/543552.512566

[17] Hélène Kirchner and Pierre-Etienne Moreau. 2001. Promoting Rewrit-
ing to a Programming Language: A Compiler for Non-deterministic
Rewrite Programs in Associative-commutative Theories. J. Funct. Pro-
gram. 11, 2 (March 2001), 207–251. http://dl.acm.org/citation.cfm?id=
968486.968488

[18] Niloy J. Mitra, Mark Pauly, Michael Wand, and Duygu Ceylan. 2013.
Symmetry in 3D Geometry: Extraction and Applications. Comput.
Graph. Forum 32, 6 (Sept. 2013), 1–23. https://doi.org/10.1111/cgf.12010

[19] P.H. Moon and D.E. Spencer. 1988. Field theory handbook: including
coordinate systems, differential equations, and their solutions. Springer-
Verlag. https://books.google.com/books?id=EDnvAAAAMAAJ

[20] James R Munkers. 2000. Topology.
[21] Chandrakana Nandi, James R. Wilcox, Pavel Panchekha, Taylor Blau,

Dan Grossman, and Zachary Tatlock. 2018. Functional Programming
for Compiling and Decompiling Computer-aided Design. Proc. ACM
Program. Lang. 2, ICFP, Article 99 (July 2018), 31 pages. https://doi.
org/10.1145/3236794

[22] Charles Gregory Nelson. 1980. Techniques for Program Verification.
Ph.D. Dissertation. Stanford, CA, USA. AAI8011683.

[23] OpenScad. 2019. OpenScad. The Programmers Solid 3D CADModeller.
http://www.openscad.org/.

[24] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary
Tatlock. 2015. Automatically Improving Accuracy for Floating Point
Expressions. SIGPLAN Not. 50, 6 (June 2015), 1–11. https://doi.org/10.
1145/2813885.2737959

[25] William Pugh. 1991. The Omega test: a fast and practical integer
programming algorithm for dependence analysis. In Proceedings Su-
percomputing ’91, Albuquerque, NM, USA, November 18-22, 1991. 4–13.
https://doi.org/10.1145/125826.125848

[26] William Pugh and David Wonnacott. 1992. Eliminating False Data
Dependences using the Omega Test. In Proceedings of the ACM SIG-
PLAN’92 Conference on Programming Language Design and Implemen-
tation (PLDI), San Francisco, California, USA, June 17-19, 1992. 140–151.
https://doi.org/10.1145/143095.143129

[27] C. Ronse. 1990. Regular open or closed sets.
[28] R. Schnabel, R. Wahl, and R. Klein. 2007. Efficient RANSAC for Point-

Cloud Shape Detection. Computer Graphics Forum (2007). https:
//doi.org/10.1111/j.1467-8659.2007.01016.x

[29] Adriana Schulz, Jie Xu, Bo Zhu, Changxi Zheng, Eitan Grinspun, and
Wojciech Matusik. 2017. Interactive Design Space Exploration and
Optimization for CAD Models. ACM Trans. Graph. 36, 4, Article 157
(July 2017), 14 pages. https://doi.org/10.1145/3072959.3073688

[30] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and
Subhransu Maji. 2017. CSGNet: Neural Shape Parser for Constructive
Solid Geometry. CoRR abs/1712.08290 (2017). arXiv:1712.08290 http:
//arxiv.org/abs/1712.08290

[31] Benjamin Sherman, Jesse Michel, and Michael Carbin. 2019. Sound
and Robust Solid Modeling via Exact Real Arithmetic and Continuity.
Proc. ACM Program. Lang. 3, ICFP, Article 99 (July 2019), 29 pages.
https://doi.org/10.1145/3341703

[32] Armando Solar-Lezama. 2008. Program Synthesis by Sketching.
Ph.D. Dissertation. Berkeley, CA, USA. Advisor(s) Bodik, Rastislav.
AAI3353225.

[33] Michael Stepp, Ross Tate, and Sorin Lerner. 2011. Equality-Based Trans-
lation Validator for LLVM. In Computer Aided Verification, Ganesh
Gopalakrishnan and Shaz Qadeer (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 737–742.

[34] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009.
Equality Saturation: A New Approach to Optimization. In Proceedings
of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’09). ACM, New York, NY, USA,
264–276. https://doi.org/10.1145/1480881.1480915

[35] Thingiverse. 2019. Thingiverse. https://www.thingiverse.com/.
[36] Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T.

Freeman, Joshua B. Tenenbaum, and Jiajun Wu. 2019. Learning to
Infer and Execute 3D Shape Programs. In International Conference on
Learning Representations.

[37] Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic
Virtual Machine for Solver-aided Host Languages. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’14). ACM, New York, NY, USA, 530–541.
https://doi.org/10.1145/2594291.2594340

[38] Sid-Ahmed-Ali Touati and Denis Barthou. 2006. On the Decidability
of Phase Ordering Problem in Optimizing Compilation. In Proceedings
of the 3rd Conference on Computing Frontiers (CF ’06). ACM, New York,
NY, USA, 147–156. https://doi.org/10.1145/1128022.1128042

[39] Jean-Baptiste Tristan and Xavier Leroy. 2008. Formal Verification
of Translation Validators: A Case Study on Instruction Scheduling
Optimizations. SIGPLAN Not. 43, 1 (Jan. 2008), 17–27. https://doi.org/
10.1145/1328897.1328444

[40] Jean-Baptiste Tristan and Xavier Leroy. 2009. Verified Validation of
Lazy Code Motion. SIGPLAN Not. 44, 6 (June 2009), 316–326. https:
//doi.org/10.1145/1543135.1542512

[41] MaxWillsey, Yisu RemyWang, Oliver Flatt, Chandrakana Nandi, Pavel
Panchekha, and Zachary Tatlock. 2020. egg: Easy, Efficient, and Ex-
tensible E-graphs. arXiv:cs.PL/2004.03082

[42] Chenming Wu, Haisen Zhao, Chandrakana Nandi, Jeffrey I. Lipton,
Zachary Tatlock, and Adriana Schulz. 2019. Carpentry Compiler.
ACM Trans. Graph. 38, 6, Article 195 (Nov. 2019), 14 pages. https:
//doi.org/10.1145/3355089.3356518

https://www.thingiverse.com/customizable
https://www.thingiverse.com/customizable
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1145/3272127.3275006
https://openreview.net/forum?id=H1DJFybC-
https://doi.org/10.1145/3321707.3321771
https://doi.org/10.1145/3321707.3321771
https://doi.org/10.1145/2858036.2858266
https://doi.org/10.1145/543552.512566
http://dl.acm.org/citation.cfm?id=968486.968488
http://dl.acm.org/citation.cfm?id=968486.968488
https://doi.org/10.1111/cgf.12010
https://books.google.com/books?id=EDnvAAAAMAAJ
https://doi.org/10.1145/3236794
https://doi.org/10.1145/3236794
http://www.openscad.org/
https://doi.org/10.1145/2813885.2737959
https://doi.org/10.1145/2813885.2737959
https://doi.org/10.1145/125826.125848
https://doi.org/10.1145/143095.143129
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1145/3072959.3073688
https://arxiv.org/abs/1712.08290
http://arxiv.org/abs/1712.08290
http://arxiv.org/abs/1712.08290
https://doi.org/10.1145/3341703
https://doi.org/10.1145/1480881.1480915
https://www.thingiverse.com/
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/1128022.1128042
https://doi.org/10.1145/1328897.1328444
https://doi.org/10.1145/1328897.1328444
https://doi.org/10.1145/1543135.1542512
https://doi.org/10.1145/1543135.1542512
https://arxiv.org/abs/cs.PL/2004.03082
https://doi.org/10.1145/3355089.3356518
https://doi.org/10.1145/3355089.3356518

	Abstract
	1 Introduction
	2 Caddy and Second Stage Decompilation
	2.1 Core Caddy, Caddy, Equivalence
	2.2 A Running Example for Shrinking Caddy

	3 Shrinking Caddy by Rerolling Loops
	3.1 Finding Structure: A Bird's-eye View
	3.2 Introducing Tabulate by Solving Lists
	3.3 The Final Squeeze: Recombining Map2s

	4 E-graphs and CAD Equality Saturation
	4.1 Rewrite Phase Ordering: What, When, Where
	4.2 E-graph Background
	4.3 Equality Saturation in Szalinski
	4.4 Structure Finding in E-graphs

	5 Inverse transformations
	5.1 Extended Caddy
	5.2 Restructuring with Unpart and Unsort
	5.3 Solving for Spherical Coordinates
	5.4 Inverse Transformations, Broadly

	6 Implementation
	7 Evaluation
	7.1 End-to-End Experiments
	7.2 Large Scale Evaluation on Thingiverse Models
	7.3 Case Studies and Editability
	7.4 Limitations

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

