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Preface

We live in a highly connected world, with multiple self-interested agents inter-
acting, leading to myriad opportunities for conflict and cooperation. Understanding
these is the goal of game theory. It finds application in fields such as economics,
business, political science, biology, psychology, sociology, computer science, and en-
gineering. Conversely, ideas from the social sciences (e.g., fairness), from biology
(evolutionary stability), from statistics (adaptive learning), and from computer sci-
ence (complexity of finding equilibria) have greatly enriched game theory. In this
book, we present an introduction to this field. We will see applications from a vari-
ety of disciplines and delve into some of the fascinating mathematics that underlies
game theory.

An overview of the book

Part I: Analyzing games: Strategies and equilibria. We begin in Chap-
ter 1 with combinatorial games, in which two players take turns making moves
until a winning position for one of them is reached.

Figure 1. Two people playing Nim.

A classic example of a combinatorial game is Nim. In this game, there are
several piles of chips, and players take turns removing one or more chips from a
single pile. The player who takes the last chip wins. We will describe a winning
strategy for Nim and show that a large class of combinatorial games can be reduced
to it.

Other well-known combinatorial games are Chess, Go, and Hex. The youngest
of these is Hex, which was invented by Piet Hein in 1942 and independently by John
Nash in 1947. Hex is played on a rhombus-shaped board tiled with small hexagons
(see Figure 2). Two players, Blue and Yellow, alternate coloring in hexagons in their
assigned color, blue or yellow, one hexagon per turn. Blue wins if she produces

1
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2 PREFACE

Figure 2. The board for the game of Hex.

a blue chain crossing between her two sides of the board and Yellow wins if he
produces a yellow chain connecting the other two sides.

We will show that the player who moves first has a winning strategy; finding
this strategy remains an unsolved problem, except when the board is small.
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Figure 3. The board position near the end of the match between Queenbee
and Hexy at the 5th Computer Olympiad. Each hexagon is labeled by the
time at which it was placed on the board. Blue moves next, but Yellow has a
winning strategy. Can you see why?

In an interesting variant of the game, the players, instead of alternating turns,
toss a coin to determine who moves next. In this case, we can describe optimal
strategies for the players. Such random-turn combinatorial games are the
subject of Chapter 9.

In Chapters 2–5, we consider games in which the players simultaneously
select from a set of possible actions. Their selections are then revealed, resulting
in a payoff to each player. For two players, these payoffs are represented using the
matrices A = (aij) and B = (bij). When player I selects action i and player II
selects action j, the payoffs to these players are aij and bij , respectively. Two-
person games where one player’s gain is the other player’s loss, that is, aij +bij = 0
for all i, j, are called zero-sum games. Such games are the topic of Chapter 2.
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AN OVERVIEW OF THE BOOK 3

We show that every zero-sum game has a value V such that player I can ensure
her expected payoff is at least V (no matter how II plays) and player II can ensure
he pays I at most V (in expectation) no matter how I plays.

For example, in Penalty Kicks, a zero-sum game inspired by soccer, one
player, the kicker, chooses to kick the ball either to the left or to the right of the
other player, the goalie. At the same instant as the kick, the goalie guesses whether
to dive left or right.

Figure 4. The game of Penalty Kicks.

The goalie has a chance of saving the goal if he dives in the same direction as the
kick. The kicker, who we assume is right-footed, has a greater likelihood of success
if she kicks right. The probabilities that the penalty kick scores are displayed in
the table below:

goalie
L R

k
ic

ke
r L 0.5 1

R 1 0.8

For this set of scoring probabilities, the optimal strategy for the kicker is to kick left
with probability 2/7 and kick right with probability 5/7 — then regardless of what
the goalie does, the probability of scoring is 6/7. Similarly, the optimal strategy for
the goalie is to dive left with probability 2/7 and dive right with probability 5/7.

Chapter 3 goes on to analyze a number of interesting zero-sum games on
graphs. For example, we consider a game between a Troll and a Traveler. Each
of them chooses a route (a sequence of roads) from Syracuse to Troy, and then they
simultaneously disclose their routes. Each road has an associated toll. For each
road chosen by both players, the traveler pays the toll to the troll. We find optimal
strategies by developing a connection with electrical networks.

In Chapter 4 we turn to general-sum games. In these games, players
no longer have optimal strategies. Instead, we focus on situations where each
player’s strategy is a best response to the strategies of the opponents: a Nash
equilibrium is an assignment of (possibly randomized) strategies to the players,
with the property that no player can gain by unilaterally changing his strategy.
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4 PREFACE

It turns out that every general-sum game has at least one Nash equilibrium. The
proof of this fact requires an important geometric tool, the Brouwer fixed-point
theorem, which is covered in Chapter 5.

Figure 5. Prisoner’s Dilemma: the prisoners considering the possible conse-
quences of confessing or remaining silent.

The most famous general-sum game is the Prisoner’s Dilemma. If one pris-
oner confesses and the other remains silent, then the first goes free and the second
receives a ten-year sentence. They will be sentenced to eight years each if they both
confess and to one year each if they both remain silent. The only equilibrium in
this game is for both to confess, but the game becomes more interesting when it is
repeated, as we discuss in Chapter 6. More generally, in Chapter 6 we consider
games where players alternate moves as in Chapter 1, but the payoffs are general
as in Chapter 4. These are called extensive-form games. Often these games in-
volve imperfect information, where players do not know all actions that have
been taken by their opponents. For instance, in the 1962 Cuban Missile Crisis, the
U.S. did not know whether the U.S.S.R. had installed nuclear missiles in Cuba and
had to decide whether to bomb the missile sites in Cuba without knowing whether
or not they were fitted with nuclear warheads. (The U.S. used a naval blockade
instead.) We also consider games of incomplete information where the players
do not even know exactly what game they are playing. For instance, in poker, the
potential payoffs to a player depend on the cards dealt to his opponents.

One criticism of optimal strategies and equilibria in game theory is that finding
them requires hyperrational players that can analyze complicated strategies. How-
ever, it was observed that populations of termites, spiders, and lizards can arrive
at a Nash equilibrium just via natural selection. The equilibria that arise in such
populations have an additional property called evolutionary stability, which is
discussed in Chapter 7.

In the same chapter, we also introduce correlated equilibria. When two
drivers approach an intersection, there is no good Nash equilibrium. For example,
the convention of yielding to a driver on your right is problematic in a four-way
intersection. A traffic light serves as a correlating device that ensures each driver is
incentivized to follow the indications of the light. Correlated equilibria generalize
this idea.
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AN OVERVIEW OF THE BOOK 5

In Chapter 8, we compare outcomes in Nash equilibrium to outcomes that
could be achieved by a central planner optimizing a global objective function. For
example, in Prisoner’s Dilemma, the total loss (combined jail time) in the unique
Nash equilibrium is 16 years; the minimum total loss is 2 years (if both stay silent).
Thus, the ratio, known as the price of anarchy of the game, is 8. Another example
compares the average driving time in a road network when the drivers are selfish
(i.e., in a Nash equilibrium) to the average driving time in an optimal routing.

Figure 6. An unstable pair.

Part II: Designing games and mechanisms. So far, we have considered
predefined games, and our goal was to understand the outcomes that we can expect
from rational players. In the second part of the book, we also consider mechanism
design where we start with desired properties of the outcome (e.g., high profit or
fairness) and attempt to design a game (or market or scheme) that incentivizes
players to reach an outcome that meets our goals. Applications of mechanism
design include voting systems, auctions, school choice, environmental regulation,
and organ donation.

For example, suppose that there are n men and n women, where each man has
a preference ordering of the women and vice versa. A matching between them is
stable if there is no unstable pair, i.e., a man and woman who prefer each other
to their partners in the matching. In Chapter 10, we introduce the Gale-Shapley
algorithm for finding a stable matching. A generalization of stable matching is
used by the National Resident Matching Program, which matches about 20,000
new doctors to residency programs at hospitals every year.

Chapter 11 considers the design of mechanisms for fair division. Consider
the problem of dividing a cake with several different toppings among several peo-
ple. Each topping is distributed over some portion of the cake, and each person
prefers some toppings to others. If there are just two people, there is a well-known
mechanism for dividing the cake: One cuts it in two, and the other chooses which
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6 PREFACE

piece to take. Under this system, each person is at least as happy with what he
receives as he would be with the other person’s share. What if there are three or
more people? We also consider a 2000-year-old problem: how to divide an estate
between several creditors whose claims exceed the value of the estate.

The topic of Chapter 12 is cooperative game theory, in which players form
coalitions in order to maximize their utility. As an example, suppose that three
people have gloves to sell. Two are each selling a single, left-handed glove, while the
third is selling a right-handed one. A wealthy tourist enters the store in dire need of
a pair of gloves. She refuses to deal with the glove-bearers individually, so at least
two of them must form a coalition to sell a left-handed and a right-handed glove to
her. The third player has an advantage because his commodity is in scarcer supply.
Thus, he should receive a higher fraction of the price the tourist pays. However, if
he holds out for too high a fraction of the payment, the other players may agree
between themselves that he must pay both of them in order to obtain a left glove.
A related topic discussed in the chapter is bargaining, where the classical solution
is again due to Nash.

Figure 7. Voting in Florida during the 2000 U.S. presidential election.

In Chapter 13 we turn to social choice: designing mechanisms that aggregate
the preferences of a collection of individuals. The most basic example is the design
of voting schemes. We prove Arrow’s Impossibility Theorem, which implies that
all voting systems are strategically vulnerable. However, some systems are better
than others. For example, the widely used system of runoff elections is not even
monotone; i.e., transferring votes from one candidate to another might lead the
second candidate to lose an election he would otherwise win. In contrast, Borda
count and approval voting are monotone and more resistant to manipulation.

Chapter 14 studies auctions for a single item. We compare different auction
formats such as first-price (selling the item to the highest bidder at a price equal
to his bid) and second-price (selling the item to the highest bidder at a price
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AN OVERVIEW OF THE BOOK 7

Figure 8. An auction for a painting.

equal to the second highest bid). In first-price auctions, bidders must bid below
their value if they are to make any profit; in contrast, in a second-price auction, it is
optimal for bidders to simply bid their value. Nevertheless, the Revenue Equiva-
lence Theorem shows that, in equilibrium, if the bidders’ values are independent
and identically distributed, then the expected auctioneer revenue in the first-price
and second-price auctions is the same. We also show how to design optimal (i.e.,
revenue-maximizing) auctions under the assumption that the auctioneer has good
prior information about the bidders’ values for the item he is selling.

Chapters 15 and 16 discuss truthful mechanisms that go beyond the second-
price auction, in particular, the Vickrey-Clarke-Groves (VCG) mechanism for
maximizing social surplus, the total utility of all participants in the mechanism. A
key application is to sponsored search auctions, the auctions that search engines
like Google and Bing run every time you perform a search. In these auctions, the
bidders are companies who wish to place their advertisements in one of the slots
you see when you get the results of your search. In Chapter 16, we also discuss
scoring rules. For instance, how can we incentivize a meteorologist to give the
most accurate prediction he can?

Chapter 17 considers matching markets. A certain housing market has n
homeowners and n potential buyers. Buyer i has a value vij for house j. The goal
is to find an allocation of houses to buyers and corresponding prices that are stable;
i.e., there is no pair of buyer and homeowner that can strike a better deal. A related
problem is allocating rooms to renters in a shared rental house. See Figure 9.

Finally, Chapter 18 concerns adaptive decision making. Suppose that
each day several experts suggest actions for you to take; each possible action has a
reward (or penalty) that varies between days and is revealed only after you choose.
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8 PREFACE

Figure 9. Three roommates need to decide who will get each room, and how
much of the rent each person will pay.

Surprisingly, there is an algorithm that ensures your average reward over many days
(almost) matches that of the best expert. If two players in a repeated zero-sum
game employ such an algorithm, the empirical distribution of play for each of them
will converge to an optimal strategy.

For the reader and instructor

Prerequisites. Readers should have taken basic courses in probability and
linear algebra. Starred sections and subsections are more difficult; some require
familiarity with mathematical analysis that can be acquired, e.g., in [Rud76].

Courses. This book can be used for different kinds of courses. For instance, an
undergraduate game theory course could include Chapter 1 (combinatorial games),
Chapter 2 and most of Chapter 3 on zero-sum games, Chapters 4 and 7 on general-
sum games and different types of equilibria, Chapter 10 (stable matching), parts
of Chapters 11 (fair division), 13 (social choice) and possibly 12 (especially the
Shapley value). Indeed, this book started from lecture notes to such a course that
was given at Berkeley for several years by the second author.

A course for computer science students might skip some of the above chapters
(e.g., combinatorial games), and instead emphasize Chapter 9 on price of anarchy,
Chapters 14–16 on auctions and VCG, and possibly parts of Chapters 17 (matching
markets) and 18 (adaptive decision making). The topic of stable matching (Chapter
10) is a gem that requires no background and could fit in any course. The logical
dependencies between the chapters are shown in Figure 10.

There are solution outlines to some problems in Appendix D. Such solutions
are labeled with an “S” in the text. More difficult problems are labeled with a ∗.
Additional exercises and material can be found at:

http://homes.cs.washington.edu/~karlin/GameTheoryAlive
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Figure 10. Chapter dependencies

Notes

There are many excellent books on game theory. In particular, in writing this book,
we consulted Ferguson [Fer08], Gintis [Gin00], González-Dı́az et al. [GDGJFJ10a], Luce
and Raiffa [LR57], Maschler, Solan, and Zamir [MSZ13], Osborne and Rubinstein [OR94],
Owen [Owe95], the survey book on algorithmic game theory [Nis07], and the handbooks
of game theory, Volumes 1–4 (see, e.g., [AH92]).

The entries in the payoff matrices for zero-sum games represent the utility of the
players, and throughout the book we assume that the goal of each agent is maximizing
his expected utility. Justifying this assumption is the domain of utility theory, which is
discussed in most game theory books.
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10 PREFACE

The Penalty Kicks matrix we gave was idealized for simplicity. Actual data on 1,417
penalty kicks from professional games in Europe was collected and analyzed by Palacios-
Huerta [PH03]. The resulting matrix is

goalie
L R

k
ic

k
er L 0.58 0.95

R 0.93 0.70

Here ‘R’ represents the dominant (natural) side for the kicker. Given these probabilities,
the optimal strategy for the kicker is (0.38, 0.62) and the optimal strategy for the goalie
is (0.42, 0.58). The observed frequencies were (0.40, 0.60) for the kicker and (0.423, 0.577)
for the goalie.

The early history of the theory of strategic games from Waldegrave to Borel is dis-
cussed in [DD92].
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CHAPTER 1

Combinatorial games

In a combinatorial game, there are two players, a set of positions, and a set of
legal moves between positions. The players take turns moving from one position
to another. Some of the positions are terminal. Each terminal position is labelled
as winning for either player I or player II. We will concentrate on combinatorial
games that terminate in a finite number of steps.

Example 1.0.1 (Chomp). In Chomp, two players take turns biting off a chunk
of a rectangular bar of chocolate that is divided into squares. The bottom left corner
of the bar has been removed and replaced with a broccoli floret. Each player, in
his turn, chooses an uneaten chocolate square and removes it along with all the
squares that lie above and to the right of it. The person who bites off the last piece
of chocolate wins and the loser has to eat the broccoli (i.e., the terminal position
is when all the chocolate is gone.) See Figure 1.1. We will return to Chomp in
Example 1.1.6.

Figure 1.1. Two moves in a game of Chomp.

Definition 1.0.2. A combinatorial game with a position set X is said to be
progressively bounded if, for every starting position x ∈ X, there is a finite
bound on the number of moves until the game terminates. Let B(x) be the maxi-
mum number of moves from x to a terminal position.

Combinatorial games generally fall into two categories: Those for which the
winning positions and the available moves are the same for both players (e.g., Nim),
are called impartial. The player who first reaches one of the terminal positions
wins the game. All other games are called partisan. In such games (e.g., Hex),
either the players have different sets of winning positions, or from some position
their available moves differ.1

1 In addition, some partisan games (e.g., Chess) may terminate in a draw (or tie), but we
will not consider those here.

12
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1.1. IMPARTIAL GAMES 13

For a given combinatorial game, our goal will be to find out whether one of
the players can always force a win and, if so, to determine the winning strategy –
the moves this player should make under every contingency. We will show that, in
a progressively bounded combinatorial game with no ties, one of the players has a
winning strategy.

1.1. Impartial games

Example 1.1.1 (Subtraction). Starting with a pile of x ∈ N chips, two players
alternate taking 1 to 4 chips. The player who removes the last chip wins.

Observe that starting from any x ∈ N, this game is progressively bounded with
B(x) = x. If the game starts with 4 or fewer chips, the first player has a winning
move: she just removes them all. If there are 5 chips to start with, however, the
second player will be left with between 1 and 4 chips, regardless of what the first
player does.

What about 6 chips? This is again a winning position for the first player
because if he removes 1 chip, the second player is left in the losing position of 5
chips. The same is true for 7, 8, or 9 chips. With 10 chips, however, the second
player again can guarantee that he will win.

Define:

N =
{
x ∈ N : the first (“next”) player can ensure a win

if there are x chips at the start

}
,

P =

{
x ∈ N :

the second (“previous”) player can ensure a win
if there are x chips at the start

}
.

So far, we have seen that {1, 2, 3, 4, 6, 7, 8, 9} ⊆ N and {0, 5} ⊆ P. Continuing this
line of reasoning, we find that P = {x ∈ N : x is divisible by 5} and N = N \P.

The approach that we used to analyze the Subtraction game can be extended
to other impartial games.

Definition 1.1.2. An impartial combinatorial game has two players and a
set of possible positions. To make a move is to take the game from one position to
another. More formally, a move is an ordered pair of positions. A terminal position
is one from which there are no legal moves. For every nonterminal position, there
is a set of legal moves, the same for both players. Under normal play, the player
who moves to a terminal position wins.

We can think of the game positions as nodes and the moves as directed links.
Such a collection of nodes (vertices) and links (edges) between them is called a
(directed) graph. At the start of the game, a token is placed at the node corre-
sponding to the initial position. Subsequently, players take turns moving the token
along directed edges until one of them reaches a terminal node and is declared the
winner.

With this definition, it is clear that the Subtraction Game is an impartial game
under normal play. The only terminal position is x = 0. Figure 1.2 gives a directed
graph corresponding to the Subtraction Game with initial position x = 14.

We saw that starting from a position x ∈ N, the next player to move can force
a win by moving to one of the elements in P = {5n : n ∈ N}, namely 5bx/5c.

Definition 1.1.3. A strategy for a player is a function that assigns a legal
move to each nonterminal position. A winning strategy from a position x is a
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14 1. COMBINATORIAL GAMES
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Figure 1.2. Moves in the Subtraction Game. Positions in N are marked in
red and those in P are marked in black.

strategy that, starting from x, is guaranteed to result in a win for that player in a
finite number of steps.

We can extend the notions of N and P to any impartial game.

Definition 1.1.4. For any impartial combinatorial game, define N (for “next”)
to be the set of positions such that the first player to move can guarantee a win.
The set of positions for which every move leads to an N-position is denoted by P
(for “previous”), since the player who can force a P-position can guarantee a win.

Let Ni (respectively, Pi) be the set of positions from which the next player
(respectively, the previous player) can guarantee a win within at most i moves (of
either player). Note that P0 ⊆ P1 ⊆ P2 ⊆ · · · and N1 ⊆ N2 ⊆ · · · . Clearly

N =
⋃
i≥1

Ni, P =
⋃
i≥0

Pi.

The sets Ni and Pi can be determined recursively:

P1 := P0 := { terminal positions } ,
Ni+1 := {positions x for which there is a move leading to Pi } ,
Pi+1 := {positions y such that each move leads to Ni } .

In the Subtraction Game, we have

P1 = P0 = {0},
N2 = N1 = {1, 2, 3, 4}, P3 = P2 = {0, 5},
N4 = N3 = {1, 2, 3, 4, 6, 7, 8, 9}, P5 = P4 = {0, 5, 10},

...
...

N = Nr 5N. P = 5N.

Theorem 1.1.5. In a progressively bounded impartial combinatorial game un-
der normal play 2, all positions lie in N ∪ P. Thus, from any initial position, one
of the players has a winning strategy.

Proof. Recall that B(x) is the maximum number of moves from x to a ter-
minal position. We prove by induction on n, that all positions x with B(x) ≤ n are
in Nn ∪Pn.

2 Recall that normal play means that the player who moves to a terminal position wins.
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1.1. IMPARTIAL GAMES 15

Certainly, for all x such that B(x) = 0, we have that x ∈ P0 ⊆ P. Now
consider any position z for which B(z) = n+ 1. Then every move from z leads to
a position w with B(w) ≤ n. There are two cases:

Case 1: Each move from z leads to a position in Nn. Then z ∈ Pn+1.
Case 2: There is a move from z to a position w 6∈ Nn. Since B(w) ≤ n, the

inductive hypothesis implies that w ∈ Pn. Thus, z ∈ Nn+1.
Hence, all positions lie in N∪P. If the starting position is in N, then the first

player has a winning strategy, otherwise, the second player does.
�

Example 1.1.6 (Chomp Revisited). Recall the game of Chomp from Exam-
ple 1.0.1. Since Chomp is progressively bounded, Theorem 1.1.5 implies that one
of the players must have a winning strategy. We will show that it is the first player.

N

P

N

N

N

N

N

P

P

Figure 1.3. The graph representation of a 2 × 3 game of Chomp: Every
move from a P-position leads to an N-position (bold black links); from every
N-position there is at least one move to a P-position (red links).

Theorem 1.1.7. Starting from a position in which the remaining chocolate bar
is rectangular of size greater than 1 × 1, the next player to move has a winning
strategy.

Proof. Given a rectangular bar of chocolate R of size greater than 1× 1, let
R− be the result of chomping off the upper-right 1× 1 corner of R.

If R− ∈ P, then R ∈ N, and a winning move is to chomp off the upper-right
corner.

If R− ∈ N, then there is a move from R− to some position x in P. But if we
can chomp R− to get x, then chomping R in the same way will also give x, since
the upper-right corner will be removed by any such chomp. Since there is a move
from R to the position x in P, it follows that R ∈ N. �
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16 1. COMBINATORIAL GAMES

The technique used in this proof is called strategy-stealing. Note that the proof
does not show that chomping the upper-right corner is a winning move. In the
2 × 3 case, chomping the upper-right corner happens to be a winning move (since
this leads to a move in P; see Figure 1.3), but for the 3 × 3 case, chomping the
upper-right corner is not a winning move. The strategy-stealing argument merely
shows that a winning strategy for the first player must exist; it does not help us
identify the strategy.

1.1.1. Nim. Next we analyze the game of Nim, a particularly important pro-
gressively bounded impartial game.

Example 1.1.8 (Nim). In Nim, there are several piles, each containing finitely
many chips. A legal move is to remove a positive number of chips from a single
pile. Two players alternate turns with the aim of removing the last chip. Thus, the
terminal position is the one where there are no chips left.

Because Nim is progressively bounded, all the positions are in N or P, and
one of the players has a winning strategy. We will describe the winning strategy
explicitly in the next section.

As usual, we will analyze the game by working backwards from the terminal
positions. We denote a position in the game by (n1, n2, . . . , nk), meaning that there
are k piles of chips and that the first has n1 chips in it, the second has n2, and so
on.

Certainly (0, 1) and (1, 0) are in N. On the other hand, (1, 1) ∈ P because
either of the two available moves leads to (0, 1) or (1, 0). We see that (1, 2), (2, 1) ∈
N because the next player can create the position (1, 1) ∈ P. More generally,
(n, n) ∈ P for n ∈ N and (n,m) ∈ N if n,m ∈ N are not equal.

Figure 1.4. This figure shows why (n,m) with n < m is in N: The next
player’s winning strategy is to remove m− n chips from the bigger pile.

Moving to three piles, we see that (1, 2, 3) ∈ P, because whichever move the
first player makes, the second can force two piles of equal size. It follows that
(1, 2, 3, 4) ∈ N because the next player to move can remove the fourth pile.

To analyze (1, 2, 3, 4, 5), we will need the following lemma:

Lemma 1.1.9. For two Nim positions X = (x1, . . . , xk) and Y = (y1, . . . , y`),
we denote the position (x1, . . . , xk, y1, . . . , y`) by (X,Y ).

(1) If X and Y are in P, then (X,Y ) ∈ P.
(2) If X ∈ P and Y ∈ N (or vice versa), then (X,Y ) ∈ N.
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1.1. IMPARTIAL GAMES 17

Proof. If (X,Y ) has 0 chips, then X, Y , and (X,Y ) are all P-positions, so
the lemma is true in this case.

Next, we suppose by induction that whenever (X,Y ) has n or fewer chips,

X ∈ P and Y ∈ P implies (X,Y ) ∈ P

and
X ∈ P and Y ∈ N implies (X,Y ) ∈ N.

Suppose (X,Y ) has at most n+1 chips. If X ∈ P and Y ∈ N, then the next player
to move can reduce Y to a position in P, creating a (P,P) configuration with at
most n chips, so by the inductive hypothesis it must be in P. Thus, (X,Y ) ∈ N.

If X ∈ P and Y ∈ P, then the next player must move to an (N,P) or (P,N)
position with at most n chips, which by the inductive hypothesis is an N position.
Thus, (X,Y ) ∈ P. �

Going back to our example, (1, 2, 3, 4, 5) can be divided into two subgames:
(1, 2, 3) ∈ P and (4, 5) ∈ N. By the lemma, (1, 2, 3, 4, 5) ∈ N.

Remark 1.1.10. Note that if X,Y ∈ N, then (X,Y ) can be either in P or
in N. E.g., (1, 1) ∈ P but (1, 2) ∈ N. Thus, the divide-and-sum method (that
is, using Lemma 1.1.9) for analyzing a position is limited. For instance, it does
not classify any configuration of three piles of different sizes, since every nonempty
subset of piles is in N.

1.1.2. Bouton’s solution of Nim. We next describe a simple way of deter-
mining if a state is in P or N: We explicitly describe a set Z of configurations
(containing the terminal position) such that, from every position in Z, all moves
lead to Zc, and from every position in Zc, there is a move to Z. It will then follow
by induction that Z = P.

Such a set Z can be defined using the notion of Nim-sum. Given integers
x1, x2, . . . , xk, the Nim-sum x1 ⊕ x2 ⊕ · · · ⊕ xk is obtained by writing each xi in
binary and then adding the digits in each column mod 2. For example:

decimal binary
x1 3 0 0 1 1
x2 9 1 0 0 1
x3 13 1 1 0 1

x1 ⊕ x2 ⊕ x3 7 0 1 1 1

Definition 1.1.11. The Nim-sum x1 ⊕ x2 ⊕ · · · ⊕ xk of a configuration
(x1, x2, . . . , xk) is defined as follows: Write each pile size xi in binary; i.e., xi =∑
j≥0 xij2

j where xij ∈ {0, 1}. Then

x1 ⊕ x2 ⊕ · · · ⊕ xk =
∑
j≥0

(x1j ⊕ · · · ⊕ xkj)2j

where for bits,

x1j ⊕ x2j ⊕ · · · ⊕ xkj =

(
k∑
i=1

xij

)
mod 2.

Theorem 1.1.12 (Bouton’s Theorem). A Nim position x = (x1, x2, . . . , xk)
is in P if and only if the Nim-sum of its components is 0.
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18 1. COMBINATORIAL GAMES

To illustrate the theorem, consider the starting position (1, 2, 3):

decimal binary
1 0 1
2 1 0
3 1 1
0 0 0

Adding the two columns of the binary expansions modulo two, we obtain 00. The
theorem affirms that (1, 2, 3) ∈ P. Now, we prove Bouton’s Theorem.

Proof of Theorem 1.1.12. Define Z to be those positions with Nim-sum
zero. We will show that:

(a) From every position in Z, all moves lead to Zc.
(b) From every position in Zc, there is a move to Z.

(a) Let x = (x1, . . . , xk) ∈ Z \0. Suppose that we reduce pile `, leaving x′` < x`
chips. This must result in some bit in the binary representation of x`, say the jth,
changing from 1 to 0. The number of 1’s in the jth column was even, so after the
reduction it is odd.

(b) Next, suppose that x = (x1, x2, . . . , xk) /∈ Z. Let s = x1 ⊕ · · · ⊕ xk 6= 0.
Let j be the position of the leftmost 1 in the expression for s. There are an odd
number of values of i ∈ {1, . . . , k} with a 1 in position j. Choose one such i. Now
xi ⊕ s has a 0 in position j and agrees with xi in positions j + 1, j + 2, . . . to the
left of j, so xi ⊕ s < xi. Consider the move which reduces the ith pile size from xi
to xi⊕ s. The Nim-sum of the resulting position (x1, . . . , xi−1, xi⊕ s, xi+1, . . . , xk)
is 0, so this new position lies in Z. Here is an example with i = 1 and x1 ⊕ s = 3.

decimal binary
x1 6 0 1 1 0
x2 12 1 1 0 0
x3 15 1 1 1 1

s = x1 ⊕ x2 ⊕ x3 5 0 1 0 1

decimal binary
x1 ⊕ s 3 0 0 1 1
x2 12 1 1 0 0
x3 15 1 1 1 1

(x1 ⊕ s)⊕ x2 ⊕ x3 0 0 0 0 0

This verifies (b).
It follows by induction on n that Z and P coincide on configurations with at

most n chips. We also obtain the winning strategy: For any Nim-position that is
not in Z, the next player should move to a position in Z, as described in the proof
of (b). �

1.1.3. Other impartial games. We next consider two other games that are
just Nims in disguise.

Example 1.1.13 (Rims). A starting position consists of a finite number of
dots in the plane and a finite number of continuous loops that do not intersect.
Each loop must pass through at least one dot. Each player, in his turn, draws a
new loop that does not intersect any other loop. The goal is to draw the last such
loop.

Next, we analyze the game. For a given position of Rims, we say that two
uncovered dots are equivalent if there is a continuous path between them that does
not intersect any loops. This partitions the uncovered dots into equivalence classes.
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Figure 1.5. Two moves in a game of Rims.

Classical plane topology ensures that for any equivalence class of, say, k dots, and
any integers w, u, v ≥ 0 such that w + u + v = k and w ≥ 1, a loop can be drawn
though w dots so that u dots are inside the loop (forming one equivalence class)
and v dots are outside (forming another).

To see the connection to Nim, think of each class of dots as a pile of chips. A
loop, because it passes through at least one dot, in effect, removes at least one chip
from a pile and splits the remaining chips into two new piles. This last part is not
consistent with the rules of Nim unless the player draws the loop so as to leave the
remaining chips in a single pile.
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Figure 1.6. Equivalent sequence of moves in Nim with splittings allowed.

Thus, Rims is equivalent to a variant of Nim where players have the option of
splitting a pile into two piles after removing chips from it. As the following theorem
shows, the fact that players have the option of splitting piles has no impact on the
analysis of the game.

Theorem 1.1.14. The sets N and P coincide for Nim and Rims.

Proof. Let x = (x1, . . . , xk) be a position in Rims, represented by the number
of dots in each equivalence class. Let Z be the collection of Rims positions with
Nim-sum 0.

From any position x 6∈ Z, there is a move in Nim, which is also legal in Rims,
to a position in Z.

Given a Rims position x ∈ Z \0, we must verify that every Rims move leads to
Zc. We already know this for Nim moves, so it suffices to consider a move where
some equivalence class x` is reduced to two new equivalence classes of sizes u and
v, where u + v < x`. Since u ⊕ v ≤ u + v < x`, it follows that u ⊕ v and x` must
disagree in some binary digit, so replacing x` by (u, v) must change the Nim-sum.

�
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20 1. COMBINATORIAL GAMES

Exercise 1.a (Staircase Nim). This game is played on a staircase of n steps.
On each step j for j = 1, . . . , n is a stack of coins of size xj ≥ 0.

Each player, in his turn, picks j and moves one or more coins from step j to step
j − 1. Coins reaching the ground (step 0) are removed from play. The game ends
when all coins are on the ground, and the last player to move wins. See Figure 1.7.

Show that the P-positions in Staircase Nim are the positions such that the
stacks of coins on the odd-numbered steps have Nim-sum 0.

Corresponding move of Nim

1
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Figure 1.7. A move in Staircase Nim, in which two coins are moved from
step 3 to step 2. Considering the odd stairs only, the above move is equivalent
to the move in regular Nim from (3, 5) to (3, 3).

1.2. Partisan games

A combinatorial game in which the legal moves in some positions, or the sets
of winning positions, differ for the two players, are called partisan.

While an impartial combinatorial game can be represented as a graph with a
single edge-set, a partisan game is most often given by a set of nodes X representing
the positions of the game and two sets of directed edges that represent the legal
moves available to either player. Let EI, EII be the two edge-sets for players I
and II, respectively. If (x, y) is a legal move for player i ∈ {I, II}, then (x, y) ∈ Ei,
and we say that y is a successor of x. We write Si(x) = {y : (x, y) ∈ Ei}.

We start with a simple example:

Example 1.2.1 (A partisan subtraction game). Starting with a pile of
x ∈ N chips, two players, I and II, alternate taking a certain number of chips.
Player I can remove 1 or 4 chips. Player II can remove 2 or 3 chips. The last player
who removes chips wins the game.

This is a progressively bounded partisan game where both the terminal nodes
and the moves are different for the two players. See Figure 1.8.

From this example we see that the number of steps it takes to complete the
game from a given position now depends on the state of the game, s = (x, i),
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Figure 1.8. The partisan Subtraction game: The red dotted (respectively,
green solid) edges represent moves of player I (respectively, II). Node 0 is
terminal for either player, and node 1 is also terminal if the last move was by
player I.

where x denotes the position and i ∈ {I, II} denotes the player that moves next.
We let B(x, i) denote the maximum number of moves to complete the game from
state (x, i).

The following theorem is analogous to Theorem 1.1.5.

Theorem 1.2.2. In any progressively bounded combinatorial game with no ties
allowed, one of the players has a winning strategy which depends only upon the
current state of the game.

Exercise 1.b. Prove Theorem 1.2.2.

Theorem 1.2.2 relies essentially on the game being progressively bounded. Next
we show that many games have this property.

Lemma 1.2.3. In a game with a finite position set, if the players cannot move
to repeat a previous game state, then the game is progressively bounded.

Proof. If there are n positions x in the game, there are 2n possible game states
(x, i), where i is one of the players. When the players play from position (x, i), the
game can last at most 2n steps, since otherwise a state would be repeated. �

The games of Chess and Go both have special rules to ensure that the game
is progressively bounded. In Chess, whenever the board position (together with
whose turn it is) is repeated for a third time, the game is declared a draw. (Thus
the real game state effectively has built into it all previous board positions.) In Go,
it is not legal to repeat a board position (together with whose turn it is), and this
has a big effect on how the game is played.
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22 1. COMBINATORIAL GAMES

1.2.1. The game of Hex. Recall the description of Hex from the preface.

Example 1.2.4 (Hex). Hex is played on a rhombus-shaped board tiled with
hexagons. Each player is assigned a color, either blue or yellow, and two opposing
sides of the board. The players take turns coloring in empty hexagons. The goal
for each player is to link his two sides of the board with a chain of hexagons in his
color. Thus, the terminal positions of Hex are the full or partial colorings of the
board that have a chain crossing.

Figure 1.9. A completed game of Hex with a yellow chain crossing.

Note that Hex is a partisan, progressively bounded game where both the termi-
nal positions and the legal moves are different for the two players. In Theorem 1.2.6
below, we will prove that any fully colored, standard Hex board contains either a
blue crossing or a yellow crossing but not both. This topological fact guarantees
that ties are not possible, so one of the players must have a winning strategy. We
will now prove, again using a strategy-stealing argument, that the first player can
always win.

Theorem 1.2.5. On a standard, symmetric Hex board of arbitrary size, the
first player has a winning strategy.

Proof. We know that one of the players has a winning strategy. Suppose that
the second player has a winning strategy S. The first player, on his first move, just
colors in an arbitrarily chosen hexagon. Subsequently, the first player ignores his
first move and plays S rotated by 90◦. If S requires that the first player move in
the spot that he chose in his first turn and there are empty hexagons left, he just
picks another arbitrary spot and moves there instead.

Having an extra hexagon on the board can never hurt the first player — it can
only help him. In this way, the first player, too, is guaranteed to win, implying that
both players have winning strategies, a contradiction. �

1.2.2. Topology and Hex: A path of arrows*. We now present two proofs
that any colored standard Hex board contains a monochromatic crossing (and all
such crossings have the same color). The proof in this section is quite general
and can be applied to nonstandard boards. The proof in the next section has the
advantage of showing that there can be no more than one crossing, a statement
that seems obvious but is quite difficult to prove.
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In the following discussion, precolored hexagons are referred to as boundary.
Uncolored hexagons are called interior. Without loss of generality, we may assume
that the edges of the board are made up of precolored hexagons (see Figure 1.10).
Thus, the interior hexagons are surrounded by hexagons on all sides.

Theorem 1.2.6. For a filled-in standard Hex board with nonempty interior and
with the boundary divided into two disjoint yellow and two disjoint blue segments,
there is always at least one crossing between a pair of segments of like color.

Proof. Along every edge separating a blue hexagon and a yellow one, insert
an arrow so that the blue hexagon is to the arrow’s left and the yellow one to its
right. In the initial position, there will be four such arrows, two directed toward
the interior of the board (call these entry arrows) and two directed away from the
interior (call these exit arrows). See the left side of Figure 1.10.

Figure 1.10. The left figure shows the entry and exit arrows on an empty
board. The right figure shows a filled-in board with a blue crossing on the left
side of the directed path.

Now, suppose the board has been arbitrarily filled with blue and yellow hexagons.
Starting with one of the entry arrows, we will show that it is possible to construct
a continuous path by adding arrows tail-to-head always keeping a blue hexagon on
the left and a yellow on the right.

In the interior of the board, when two hexagons share an edge with an arrow,
there is always a third hexagon which meets them at the vertex toward which the
arrow is pointing. If that third hexagon is blue, the next arrow will turn to the
right. If the third hexagon is yellow, the arrow will turn to the left. See (a) and
(b) of Figure 1.11. Thus, every arrow (except exit arrows) has a unique successor.
Similarly, every arrow (except entry arrows) has a unique predecessor.

Because we started our path at the boundary, where yellow and blue meet, our
path will never contain a loop. If it did, the first arrow in the loop would have two
predecessors. See (c) of Figure 1.11. Since there are finitely many available edges
on the board and our path has no loops, it must eventually exit the board via one
of the exit arrows.

All the hexagons on the left of such a path are blue, while those on the right
are yellow. If the exit arrow touches the same yellow segment of the boundary as
the entry arrow, there is a blue crossing (see Figure 1.10). If it touches the same
blue segment, there is a yellow crossing. �
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(b)(a) (c)

Figure 1.11. In (a) the third hexagon is blue and the next arrow turns to
the right; in (b) the next arrow turns to the left; in (c) we see that in order to
close the loop an arrow would have to pass between two hexagons of the same

color.

1.2.3. Hex and Y. That there cannot be more than one crossing in the game
of Hex seems obvious until you actually try to prove it carefully. To do this di-
rectly, we would need a discrete analog of the Jordan curve theorem, which says
that a continuous closed curve in the plane divides the plane into two connected
components. The discrete version of the theorem is considerably easier than the
continuous one, but it is still quite challenging to prove.

Thus, rather than attacking this claim directly, we will resort to a trick: We
will instead prove a similar result for a related, more general game — the game of
Y, also known as Tripod.

Example 1.2.7. The Game of Y is played on a triangular board tiled with
hexagons. As in Hex, the two players take turns coloring in hexagons, each using his
assigned color. A player wins when he establishes a Y, a monochromatic connected
region in his color that meets all three sides of the triangle.

Playing Hex is equivalent to playing Y with some of the hexagons precolored,
as shown in Figure 1.12.

Blue has a winning Y here. Reduction of Hex to Y

Figure 1.12. Hex is a special case of Y.

We will first show below that a filled-in Y board always contains a single Y.
Because Hex is equivalent to Y with certain hexagons precolored, the existence and
uniqueness of the chain crossing is inherited by Hex from Y.

Theorem 1.2.8. Any blue/yellow coloring of the triangular board contains ei-
ther a blue Y or a yellow Y, but not both.
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Proof. We can reduce a colored board with sides of length n to one with sides
of length n − 1 as follows: Think of the board as an arrow pointing right. Except
for the leftmost column of hexagons, each hexagon is the right tip of a small arrow-
shaped cluster of three adjacent hexagons pointing the same way as the board.
We call such a triple a triangle. See Figure 1.13. Starting from the right, recolor
each hexagon the majority color of the triangle that it tips, removing the leftmost
column of hexagons altogether.

Figure 1.13. A step-by-step reduction of a colored Y board.

We claim that a board of side-length n contains a monochromatic Y if and only
if the resulting board of size n− 1 does: Suppose the board of size n contains, say,
a blue Y. Let (h1, h2, . . . , hL) be a path in this Y from one side of the board to
another, where each hi is a blue hexagon. We claim that there is a corresponding
path T1, . . . , TL−1 of triangles where Ti is the unique triangle containing (hi, hi+1).
The set of rightmost hexagons in each of these triangles yields the desired blue
path in the reduced graph. Similarly, there is a blue path from h1 to the third side
of the original board that becomes a blue path in the reduced board, creating the
desired Y.

Figure 1.14. The construction of a blue path in the reduced board.

For the converse, a blue path between two sides A and B in the smaller board
induces a path T1, . . . , T` of overlapping, majority blue triangles between A and B
on the larger board. Suppose that we have shown that there is a path h1, . . . , h`
(possibly with repetitions) of blue hexagons that starts at A and ends at h` ∈ Tk in
the larger board. If Tk ∩ Tk+1 is blue, take h`+1 = Tk ∩ Tk+1. Otherwise, the four
hexagons in the symmetric difference Tk ∆Tk+1 are all blue and form a connected
set. Extending the path by at most two of these hexagons, h`+1, h`+2 will reach
Tk+1. See Figure 1.15.
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Figure 1.15. An illustration of the four possibilities for how a blue path going
through Tk and Tk+1 reduces to a blue path in the smaller board.

Thus, we can inductively reduce the board of size n to a board of size one, a
single, colored cell. By the argument above, the color of this last cell is the color
of a winning Y on the original board. �

Because any colored Y board contains one and only one winning Y, it follows
that any colored Hex board contains one and only one crossing.

Remark 1.2.9. Why did we introduce Y instead of carrying out the proof
directly for Hex? Hex corresponds to a subclass of Y boards, but this subclass is
not preserved under the reduction we applied in the proof.

1.2.4. More general boards*. The statement that any colored Hex board
contains exactly one crossing is stronger than the statement that every sequence of
moves in a Hex game always leads to a crossing, i.e., a terminal position. To see
why it’s stronger, consider the following variant of Hex.

Example 1.2.10. Six-sided Hex is similar to ordinary Hex, but the board
is hexagonal, rather than square. Each player is assigned three nonadjacent sides
and the goal for each player is to create a crossing in his color between two of his
assigned sides. Thus, the terminal positions are those that contain one and only
one monochromatic crossing between two like-colored sides.

In Six-sided Hex, there can be crossings of both colors in a completed board,
but the game ends when the first crossing is created.

Theorem 1.2.11. Consider an arbitrarily shaped simply-connected 3 filled-in
Hex board with nonempty interior with its boundary partitioned into n blue and n
yellow segments, where n ≥ 2. Then there is at least one crossing between some
pair of segments of like color.

Exercise 1.c. Adapt the proof of Theorem 1.2.6 to prove Theorem 1.2.11.
(As in Hex, each entry and exit arrow lies on the boundary between a yellow and
blue segment. Unlike in Hex, in shapes with with six or more sides, these four
segments can be distinct. In this case there is both a blue and a yellow crossing.
See Figure 1.16.)

3 “Simply-connected” means that the board has no holes. Formally, it requires that every
continuous closed curve on the board can be continuously shrunk to a point.
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1.2. PARTISAN GAMES 27

Figure 1.16. A filled-in Six-sided Hex board can have both blue and yellow
crossings. In a game when players take turns to move, one of the crossings
will occur first, and that player will be the winner.

1.2.5. Other partisan games played on graphs. We now discuss several
other partisan games which are played on graphs. For each of our examples, we
can explicitly describe a winning strategy for the first player.

Example 1.2.12. The Shannon Switching Game is a variant of Hex played
by two players, Cut and Short, on a connected graph with two distinguished nodes,
A and B. Short, in his turn, reinforces an edge of the graph, making it immune to
being cut. Cut, in her turn, deletes an edge that has not been reinforced. Cut wins
if she manages to disconnect A from B. Short wins if he manages to link A to B
with a reinforced path.

A

B

Short

A

B

CutShort

B

A

Figure 1.17. Shannon Switching Game played on a 5 × 6 grid (the top and
bottom rows have been merged to the points A and B). Shown are the first
three moves of the game, with Short moving first. Available edges are indi-
cated by dotted lines, and reinforced edges by thick lines. Scissors mark the
edge that Cut deleted.

We focus here on the case where the graph is an L × (L + 1) grid with the
vertices of the bottom side merged into a single vertex, A, and the vertices on the
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top side merged into another node, B. In this case, the roles of the two players are
symmetric, due to planar duality. See Figure 1.18.

A

A

A

B

B

B

Short

ShortCut

Cut

Figure 1.18. The dual graph G† of planar graph G is defined as follows:
Associated with each face of G is a vertex in G†. Two faces of G are adjacent if
and only if there is an edge between the corresponding vertices of G†. Cutting
in G is shorting in G† and vice versa.

B

A

Figure 1.19. The figure shows corresponding positions in the Shannon
Switching Game and an equivalent game known as Bridg-It. In Bridg-It,
Black, in his turn, chooses two adjacent black dots and connects them with a
edge. Green tries to block Black’s progress by connecting an adjacent pair of
green dots. Black and green edges cannot cross. Black’s goal is to construct
a path from top to bottom, while Green’s goal is to block him by building a
left-to-right path. The black dots are on the square lattice, and the green dots
are on the dual square lattice.

Exercise 1.d. Use a strategy-stealing argument to show that the first player
in the Shannon switching game has a winning strategy.

Next we will describe a winning strategy for the first player, which we will
assume is Short. We will need some definitions from graph theory.

Definition 1.2.13. A tree is a connected undirected graph without cycles.
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(1) Every tree must have a leaf, a vertex of degree 1.
(2) A tree on n vertices has n− 1 edges.
(3) A connected graph with n vertices and n− 1 edges is a tree.
(4) A graph with no cycles, n vertices, and n− 1 edges is a tree.

The proofs of these properties of trees are left as an exercise (Exercise 1.10).

Theorem 1.2.14. In Shannon’s Switching Game on an L×(L+1) board, Short
has a winning strategy if he moves first.

Proof. Short begins by reinforcing an edge of the graph G, connecting A to
an adjacent dot, a. We identify A and a by “fusing” them into a single new A. On
the resulting graph there is a pair of edge-disjoint trees such that each tree spans
(contains all the nodes of) G. (Indeed, there are many such pairs.)

B

BB

A

A

a A

Figure 1.20. Two spanning trees — the blue one is constructed by first
joining top and bottom using the leftmost vertical edges and then adding
other vertical edges, omitting exactly one edge in each row along an imaginary
diagonal; the red tree contains the remaining edges. The two circled nodes

are identified.

For example, the blue and red subgraphs in the 4 × 5 grid in Figure 1.20 are
such a pair of spanning trees: Each of them is connected and has the right number
of edges. The same construction can be repeated on an arbitrary L× (L+ 1) grid.

Using these two spanning trees, which necessarily connect A to B, we can define
a strategy for Short.

The first move by Cut disconnects one of the spanning trees into two compo-
nents. Short can repair the tree as follows: Because the other tree is also a spanning
tree, it must have an edge, e, that connects the two components. Short reinforces
e. See Figure 1.21.

If we think of a reinforced edge e as being both red and blue, then the resulting
red and blue subgraphs will still be spanning trees for G. To see this, note that
both subgraphs will be connected and they will still have n edges and n−1 vertices.
Thus, by property (3), they will be trees that span every vertex of G.

Continuing in this way, Short can repair the spanning trees with a reinforced
edge each time Cut disconnects them. Thus, Cut will never succeed in disconnecting
A from B, and Short will win. �
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e

A

BB

A

Figure 1.21. The left side of the figure shows how Cut separates the blue
tree into two components. The right side shows how Short reinforces a red
edge to reconnect the two components.

Example 1.2.15. Recursive Majority is a game played on a complete ternary
tree of height h (see Figure 1.22). The players take turns marking the leaves, player I
with a “+” and player II with a “−”. A parent node acquires the majority sign of
its children. Because each interior (non-leaf) vertex has three children, its sign is
determined unambiguously. The player whose mark is assigned to the root wins.

This game always ends in a win for one of the players, so one of them has a
winning strategy.

1
2

3

1 2 3
1 2 31 2 3

Figure 1.22. A ternary tree of height 2; the leftmost leaf is denoted by 11.
Here player I wins the Recursive Majority game.

To analyze the game, label each of the three edges emanating downward from
a single node 1, 2 or 3 from left to right. (See Figure 1.22.) Using these labels, we
can identify each node below the root with the label sequence on the path from the
root that leads to it. For instance, the leftmost leaf is denoted by 11 . . . 1, a word
of length h consisting entirely of ones. A strategy-stealing argument implies that
the first player to move has the advantage.

We can describe his winning strategy explicitly: On his first move, player I
marks the leaf 11 . . . 1 with a “+”. To determine his moves for the remaining even
number of leaves, he first pairs up the leaves as follows: Letting 1k be shorthand for
a string of ones of fixed length k ≥ 0 and letting w stand for an arbitrary fixed word
of length h− k − 1, player I pairs the leaves by the following map: 1k2w 7→ 1k3w.
(See Figure 1.23).

Once the pairs have been identified, whenever player II marks a leaf with a
“−”, player I marks its mate with a “+”.
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2

1 2 3
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 3

1
2

3 1

2
3 1

2

3

Figure 1.23. Player I marks the leftmost leaf in the first step. Some matched
leaves are marked with the same shade of green or blue.

Theorem 1.2.16. The player I strategy described above is a winning strategy.

Proof. The proof is by induction on the height h of the tree. The base case
of h = 1 is immediate. By the induction hypothesis, we know that player I wins in
the left subtree of depth h− 1.

As for the remaining two subtrees of depth h − 1, whenever player II wins in
one, player I wins in the other because each leaf in the middle subtree is paired
with the corresponding leaf in the right subtree. Hence, player I is guaranteed to
win two of the three subtrees, thus determining the sign of the root. �

Notes

The birth of combinatorial game theory as a mathematical subject can be traced to
Bouton’s 1902 characterization of the winning positions in Nim [Bou02]. In this chap-
ter, we saw that many impartial combinatorial games can be reduced to Nim. This has
been formalized in the Sprague-Grundy theory [Spr36, Spr37, Gru39] for analyzing all
progressively bounded impartial combinatorial games.

The game of Chomp was invented by David Gale [BCG82a]. It is an open research
problem to describe a general winning strategy for Chomp.

The game of Hex was invented by Piet Hein and reinvented by John Nash. Nash
proved that Hex cannot end in a tie and that the first player has a winning strategy [Mil95,
Gal79]. Shimon Even and Robert Tarjan [ET76] showed that determining whether a
position in the game of Hex is a winning position is PSPACE-complete. This result was
further generalized by Stefan Reisch [Rei81]. These results mean that an efficient algorithm
for solving Hex on boards of arbitrary size is unlikely to exist. For small boards, however,
an Internet-based community of Hex enthusiasts has made substantial progress (much
of it unpublished). Jing Yang [Yan], a member of this community, has announced the
solution of Hex (and provided associated computer programs) for boards of size up to
9×9. Usually, Hex is played on an 11×11 board, for which a winning strategy for player I
is not yet known.

The game of Y and the Shannon Switching Game were introduced by Claude Shan-
non [Gar88]. The Shannon Switching Game can be played on any graph. The special case
where the graph is a rectangular grid was invented independently by David Gale under
the name Bridg-It (see Figure 1.19). Oliver Gross proved that the player who moves first
in Bridg-It has a winning strategy. Several years later, Alfred B. Lehman [Leh64] (see
also [Man96]) devised a solution to the general Shannon Switching Game. For more on
the Shannon Switching Game, see [BCG82b].
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For a more complete account of combinatorial games, see the books [Sie13, BCG82a,
BCG82b, BCG04, Now96, Now02] and [YZ15, Chapter 15].

Exercises

1.1. Consider a game of Nim with four piles, of sizes 9, 10, 11, 12.
(a) Is this position a win for the next player or the previous player (as-

suming optimal play)? Describe the winning first move.
(b) Consider the same initial position, but suppose that each player is

allowed to remove at most 9 chips in a single move (other rules of
Nim remain in force). Is this an N- or P-position?

1.2. Consider a game where there are two piles of chips. On a player’s turn,
he may remove between 1 and 4 chips from the first pile or else remove
between 1 and 5 chips from the second pile. The person who takes the
last chip wins. Determine for which m,n ∈ N it is the case that (m,n) ∈ P.

1.3. In the game of Nimble, there are n slots arranged from left to right, and
a finite number of coins in each slot. In each turn, a player moves one of
the coins to the left, by any number of places. The first player who can’t
move (since all coins are in the leftmost slot) loses. Determine which of
the starting positions are P-positions.

1.4. Given combinatorial games G1, . . . , Gk, let G1 + G2 + · · · + Gk be the
following game: A state in the game is a tuple (x1, x2, . . . , xk), where xi
is a state in Gi. In each move, a player chooses one Gi and takes a step
in that game. A player who is unable to move, because all games are in a
terminal state, loses.

Let G1 be the Subtraction game with subtraction set S1 = {1, 3, 4},
G2 be the Subtraction game with S2 = {2, 4, 6}, and G3 be the Subtraction
game with S3 = {1, 2, . . . , 20}. Who has a winning strategy from the
starting position (100, 100, 100) in G1 +G2 +G3?

1.5. Consider two arbitrary progressively bounded combinatorial games G1 and
G2 with positions x1 and x2. If for any third such game G3 and position x3,
the outcome of (x1, x3) in G1 +G3 (i.e., whether it’s an N- or P-position)
is the same as the outcome of (x2, x3) in G2 + G3, then we say that the
game-position pairs (G1, x1) and (G2, x2) are equivalent.

Prove that equivalence for game-position pairs is transitive, reflexive,
and symmetric. (Thus, it is indeed an equivalence relation.)

1.6. Let Gi, i = 1, 2, be progressively bounded impartial combinatorial games.
Prove that the position (x1, x2) in G1 + G2 is a P-position if and only if
(G1, x1) and (G2, x2) are equivalent.
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1.7. Consider the game of Up-and-Down Rooks played on a standard chess-
board. Player I has a set of white rooks initially located in the bottom
row, while player II has a set of black rooks in the top row. In each turn, a
player moves one of its rooks up or down a column, without skipping over
the other rook or occupying its position. The first player who cannot move
loses. This game is not progressively bounded, yet an optimal strategy
exists. Find such a strategy by relating this game to a Nim position with
8 piles.

a b c d e f g h a b c d e f g h

a b c d e f g h

1.8. Two players take turns placing dominos on an n × 1 board of squares,
where each domino covers two squares and dominos cannot overlap. The
last player to play wins.
(a) Where would you place the first domino when n = 11?
(b) Show that for n even and positive, the first player can guarantee a

win.

1.9. Recall the game of Y shown in Figure 1.12. Prove that the first player has
a winning strategy.

1.10. Prove the following statements. Hint: Use induction.
(a) Every tree on n > 1 vertices must have a leaf — a vertex of degree 1.

(Indeed, it must have at least two leaves.)
(b) A tree on n vertices has n− 1 edges.
(c) A connected graph with n vertices and n− 1 edges is a tree.
(d) A graph with no cycles, n vertices, and n− 1 edges is a tree.
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CHAPTER 2

Two-person zero-sum games

We begin with the theory of two-person zero-sum games, developed in a
seminal paper by John von Neumann [vN28]. In these games, one player’s loss is
the other player’s gain. The central theorem for two-person zero-sum games is that
even if each player’s strategy is known to the other, there is an amount that one
player can guarantee as her expected gain, and the other, as his maximum expected
loss. This amount is known as the value of the game.

2.1. Examples

Figure 2.1. Two people playing Pick-a-Hand.

Consider the following game:

Example 2.1.1 (Pick a Hand, a betting game). There are two players,
Chooser (player I) and Hider (player II). Hider has two gold coins in his back
pocket. At the beginning of a turn, he 1 puts his hands behind his back and either

1 In almost all two-person games, we adopt the convention that player I is female and player
II is male.

34
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2.1. EXAMPLES 35

takes out one coin and holds it in his left hand (strategy L1) or takes out both and
holds them in his right hand (strategy R2). Chooser picks a hand and wins any
coins the hider has hidden there. She may get nothing (if the hand is empty), or
she might win one coin, or two. How much should Chooser be willing to pay in
order to play this game?

The following matrix summarizes the payoffs to Chooser in each of the cases:

Hider
L1 R2

C
h

o
os

er

L 1 0
R 0 2

How should Hider and Chooser play? Imagine that they are conservative and
want to optimize for the worst-case scenario. Hider can guarantee himself a loss of
at most 1 by selecting action L1, whereas if he selects R2, he has the potential to
lose 2. Chooser cannot guarantee herself any positive gain since, if she selects L, in
the worst-case, Hider selects R2, whereas if she selects R, in the worst case, Hider
selects L1.

Now consider expanding the possibilities available to the players by incorpo-
rating randomness. Suppose that Hider selects L1 with probability y1 and R2 with
probability y2 = 1−y1. Hider’s expected loss is y1 if Chooser plays L, and 2(1−y1)
if Chooser plays R. Thus Hider’s worst-case expected loss is max(y1, 2(1 − y1)).
To minimize this, Hider will choose y1 = 2/3. Thus, no matter how Chooser
plays, Hider can guarantee himself an expected loss of at most 2/3. See
Figure 2.2.

Expected
 gain

of Chooser
Worst-case gain 

1

2

2/30

Chooser’s choice of 

 : when Hider 
     plays L1

         : when Hider
             plays R2

 Expected
loss

of Hider Worst-case 
     loss 

Hider’s choice of

 : when Chooser 
plays L

         : when Chooser 
             plays R

1

2

2/30

Figure 2.2. The left side of the figure shows the worst-case expected gain of
Chooser as a function of x1, the probability with which she plays L. The right
side of the figure shows the worst-case expected loss of Hider as a function of
y1, the probability with which he plays L1. (In this example, the two graphs
“look” the same because the payoff matrix is symmetric. See Exercise 2.a for
a game where the two graphs are different.)
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36 2. TWO-PERSON ZERO-SUM GAMES

Similarly, suppose that Chooser selects L with probability x1 and R with prob-
ability x2 = 1−x1. Then Chooser’s worst-case expected gain is min(x1, 2(1−x1)).
To maximize this, she will choose x1 = 2/3. Thus, no matter how Hider plays,
Chooser can guarantee herself an expected gain of at least 2/3.

Observe that without some extra incentive, it is not in Hider’s interest to play
Pick a Hand, because he can only lose by playing. To be enticed into joining the
game, Hider will need to be paid at least 2/3. Conversely, Chooser should be willing
to pay any sum below 2/3 to play the game. Thus, we say that the value of this
game is 2/3.

S Exercise 2.a. Consider the betting game with the following payoff matrix:

player II
L R

p
la

ye
r

I
T 0 2
B 5 1

Draw graphs for this game analogous to those shown in Figure 2.2, and determine
the value of the game.

2.2. Definitions

A two-person zero-sum game can be represented by an m× n payoff matrix
A = (aij), whose rows are indexed by the m possible actions of player I and whose
columns are indexed by the n possible actions of player II. Player I selects an
action i and player II selects an action j, each unaware of the other’s selection.
Their selections are then revealed and player II pays player I the amount aij .

If player I selects action i, in the worst case her gain will be minj aij , and thus
the largest gain she can guarantee is maxi minj aij . Similarly, if II selects action
j, in the worst case his loss will be maxi aij , and thus the smallest loss he can
guarantee is minj maxi aij . It follows that

max
i

min
j
aij ≤ min

j
max
i
aij (2.1)

since player I can guarantee gaining the left-hand side and player II can guarantee
losing no more than the right-hand side. (For a formal proof, see Lemma 2.6.3.)
As in Example 2.1.1, without randomness, the inequality is usually strict.

A strategy in which each action is selected with some probability is a mixed
strategy. A mixed strategy for player I is determined by a vector (x1, . . . , xm)T

where xi represents the probability of playing action i. The set of mixed strategies
for player I is denoted by

∆m =

{
x ∈ Rm : xi ≥ 0,

m∑
i=1

xi = 1

}
.

Similarly, the set of mixed strategies for player II is denoted by

∆n =

y ∈ Rn : yj ≥ 0,
n∑
j=1

yj = 1

 .
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2.3. THE MINIMAX THEOREM AND ITS MEANING 37

A mixed strategy in which a particular action is played with probability 1 is called
a pure strategy. Observe that in this vector notation, pure strategies are repre-
sented by the standard basis vectors, though we often identify the pure strategy ei
with the corresponding action i.

If player I employs strategy x and player II employs strategy y, the expected
gain of player I (which is the same as the expected loss of player II) is

xTAy =
∑
i

∑
j

xiaijyj .

Thus, if player I employs strategy x, she can guarantee herself an expected gain of

min
y∈∆n

xTAy = min
j

(xTA)j (2.2)

since for any z ∈ Rn, we have miny∈∆n zTy = minj zj .

A conservative player will choose x to maximize (2.2), that is, to maximize her
worst-case expected gain. This is a safety strategy.

Definition 2.2.1. A mixed strategy x∗ ∈ ∆m is a safety strategy for
player I if the maximum over x ∈ ∆m of the function

x 7→ min
y∈∆n

xTAy

is attained at x∗. The value of this function at x∗ is the safety value for player
I. Similarly, a mixed strategy y∗ ∈ ∆n is a safety strategy for player II if the
minimum over y ∈ ∆n of the function

y 7→ max
x∈∆m

xTAy

is attained at y∗. The value of this function at y∗ is the safety value for player
II.

Remark 2.2.2. For the existence of safety strategies see Lemma 2.6.3.

2.3. The Minimax Theorem and its meaning

Safety strategies might appear conservative, but the following celebrated theo-
rem shows that the two players’ safety values coincide.

Theorem 2.3.1 (Von Neumann’s Minimax Theorem). For any two-person
zero-sum game with m× n payoff matrix A, there is a number V , called the value
of the game, satisfying

max
x∈∆m

min
y∈∆n

xTAy = V = min
y∈∆n

max
x∈∆m

xTAy. (2.3)

We will prove the Minimax Theorem in §2.6.

Remarks 2.3.2.

(1) It is easy to check that the left-hand side of equation (2.3) is upper
bounded by the right-hand side, i.e.

max
x∈∆m

min
y∈∆n

xTAy ≤ min
y∈∆n

max
x∈∆m

xTAy. (2.4)

(See the argument for (2.1) and Lemma 2.6.3.) The magic of zero-sum
games is that, in mixed strategies, this inequality becomes an equality.
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(2) If x∗ is a safety strategy for player I and y∗ is a safety strategy for player
II, then it follows from Theorem 2.3.1 that

min
y∈∆n

(x∗)TAy = V = max
x∈∆m

xTAy∗. (2.5)

In words, this means that the mixed strategy x∗ yields player I an expected
gain of at least V , no matter how II plays, and the mixed strategy y∗ yields
player II an expected loss of at most V , no matter how I plays. Therefore,
from now on, we will refer to the safety strategies in zero-sum games as
optimal strategies.

(3) The Minimax Theorem has the following interpretation: If, for every strat-
egy y ∈ ∆m of player II, player I has a counterstrategy x = x(y) that
yields her expected payoff at least V , then player I has one strategy x∗

that yields her expected payoff at least V against all strategies of player
II.

2.4. Simplifying and solving zero-sum games

In this section, we will discuss techniques that help us understand zero-sum
games and solve them (that is, find their value and determine optimal strategies
for the two players).

2.4.1. Pure optimal strategies: Saddle points. Given a zero-sum game,
the first thing to check is whether or not there is a pair of optimal strategies that
is pure.

For example, in the following game, by playing action 1, player I guarantees
herself a payoff at least 2 (since that is the smallest entry in the row). Similarly, by
playing action 1, player II guarantees himself a loss of at most 2. Thus, the value
of the game is 2.

player II
action 1 action 2

p
la

ye
r

I action 1 2 3
action 2 1 0

Definition 2.4.1. A saddle point2 of a payoff matrix A is a pair (i∗, j∗) such
that

max
i
aij∗ = ai∗j∗ = min

j
ai∗j (2.6)

If (i∗, j∗) is a saddle point, then ai∗j∗ is the value of the game. A saddle point
is also called a pure Nash equilibrium: Given the action pair (i∗, j∗), neither
player has an incentive to deviate. See §2.5 for a more detailed discussion of Nash
equilibria.

2 The term saddle point comes from the continuous setting where a function f(x, y) of two
variables has a point (x∗, y∗) at which locally maxx f(x, y∗) = f(x∗, y∗) = miny f(x∗, y) . Thus,

the surface resembles a saddle that curves up in the y-direction and curves down in the x-direction.
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2.4. SIMPLIFYING AND SOLVING ZERO-SUM GAMES 39

2.4.2. Equalizing payoffs. Most zero-sum games do not have pure optimal
strategies. At the other extreme, some games have a pair (x∗,y∗) of optimal strate-
gies that are fully mixed, that is, where each action is assigned positive probability.
In this case, it must be that against y∗, player I obtains the same payoff from
each action. If not, say (Ay∗)1 > (Ay∗)2, then player I could increase her gain by
moving probability from action 2 to action 1: This contradicts the optimality of x∗.
Applying this observation to both players enables us to solve for optimal strategies
by equalizing payoffs. Consider, for example, the following payoff matrix, where
each row and column is labeled with the probability that the corresponding action
is played in the optimal strategy:

player II
y1 1− y1

p
la

y e
r

I
x1 3 0

1− x1 1 4

Equalizing the gains for player I’s actions, we obtain

3y1 = y1 + 4(1− y1),

i.e., y1 = 2/3. Thus, if player II plays (2/3, 1/3), his loss will not depend on player
I’s actions; it will be 2 no matter what I does.

Similarly, equalizing the losses for player II’s actions, we obtain

3x1 + (1− x1) = 4(1− x1),

i.e., x1 = 1/2. So if player I plays (1/2, 1/2), her gain will not depend on player
II’s action; again, it will be 2 no matter what II does. We conclude that the value
of the game is 2.

See Proposition 2.5.3 for a general version of the equalization principle.

Exercise 2.b. Show that any 2 × 2 game (i.e., a game in which each player
has exactly two strategies) has a pair of optimal strategies that are both pure or
both fully mixed. Show that this can fail for 3× 3 games.

2.4.3. The technique of domination. Domination is a technique for re-
ducing the size of a game’s payoff matrix, enabling it to be more easily analyzed.
Consider the following example.

Example 2.4.2 (Plus One). Each player chooses a number from {1, 2, . . . , n}
and writes it down; then the players compare the two numbers. If the numbers
differ by one, the player with the higher number wins $1 from the other player. If
the players’ choices differ by two or more, the player with the higher number pays
$2 to the other player. In the event of a tie, no money changes hands.
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40 2. TWO-PERSON ZERO-SUM GAMES

The payoff matrix for the game is

player II
1 2 3 4 5 6 · · · n

p
la

y e
r

I

1 0 −1 2 2 2 2 · · · 2
2 1 0 −1 2 2 2 · · · 2
3 −2 1 0 −1 2 2 · · · 2
4 −2 −2 1 0 −1 2 · · · 2
5 −2 −2 −2 1 0 −1 2 2
6 −2 −2 −2 −2 1 0 2 2

n− 1 −2 −2 · · · 0 −1
n −2 −2 · · · -2 1 0

In this payoff matrix, every entry in row 4 is at most the corresponding entry
in row 1. Thus player I has no incentive to play 4 since it is dominated by row 1.
In fact, rows 4 through n are all dominated by row 1, and hence player I can ignore
these rows.

By symmetry, we see that player II need never play any of actions 4 through
n. Thus, in Plus One we can search for optimal strategies in the reduced payoff
matrix:

player II
1 2 3

p
la

ye
r

I 1 0 −1 2
2 1 0 −1
3 −2 1 0

To analyze the reduced game, let xT = (x1, x2, x3) be player I’s mixed strategy.
For x to be optimal, each component of

xTA = (x2 − 2x3, −x1 + x3, 2x1 − x2) (2.7)

must be at least the value of the game. In this game, there is complete symmetry
between the players. This implies that the payoff matrix is antisymmetric: the
game matrix is square, and aij = −aji for every i and j.

Claim 2.4.3. If the payoff matrix of a zero-sum game is antisymmetric, then
the game has value 0.

Proof. This is intuitively clear by symmetry. Formally, suppose that the
value of the game is V . Then there is a vector x ∈ ∆n such that for all y ∈ ∆n,
xTAy ≥ V. In particular

xTAx ≥ V. (2.8)

Taking the transpose of both sides yields xTATx = −xTAx ≥ V . Adding this
latter inequality to (2.8) yields V ≤ 0. Similarly, there is a y ∈ ∆n such that for all
x̃ ∈ ∆n we have x̃TAy ≤ V . Taking x̃ = y yields in the same way that 0 ≤ V . �
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2.4. SIMPLIFYING AND SOLVING ZERO-SUM GAMES 41

We conclude that for any optimal strategy x in Plus One

x2 − 2x3 ≥ 0,

−x1 + x3 ≥ 0,

2x1 − x2 ≥ 0.

If one of these inequalities were strict, then adding the first, twice the second, and
the third, we could deduce 0 > 0, so in fact each of them must be an equality.
Solving the resulting system, with the constraint x1 +x2 +x3 = 1, we find that the
optimal strategy for each player is (1/4, 1/2, 1/4).

Summary of domination. We say a row ` of a two-person zero-sum game dom-
inates row i if a`j ≥ aij for all j. When row i is dominated, then there is no loss to
player I if she never plays it. More generally, we say that subset I of rows dominates
row i if some convex combination of the rows in I dominates row i; i.e., there is a
probability vector (β`)`∈I such that for every j∑

`∈I

β`a`j ≥ aij . (2.9)

Similar definitions hold for columns.

S Exercise 2.c. Prove that if equation (2.9) holds, then player I can safely ignore
row i.

S

B

S

Figure 2.3. The bomber chooses one of the nine squares to bomb. She cannot
see which squares represent the location of the submarine.

2.4.4. Using symmetry.

Example 2.4.4 (Submarine Salvo). A submarine is located on two adjacent
squares of a 3× 3 grid. A bomber (player I), who cannot see the submerged craft,
hovers overhead and drops a bomb on one of the nine squares. She wins $1 if she
hits the submarine and $0 if she misses it. (See Figure 2.3.) There are nine pure
strategies for the bomber and twelve for the submarine, so the payoff matrix for
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42 2. TWO-PERSON ZERO-SUM GAMES

the game is quite large. To determine some, but not all, optimal strategies, we can
use symmetry arguments to simplify the analysis.

There are three types of moves that the bomber can make: She can drop a
bomb in the center, in the middle of one of the sides, or in a corner. Similarly, there
are three types of positions that the submarine can assume: taking up the center
square, taking up a corner square and the adjacent square clockwise, or taking up a
corner square and the adjacent square counter-clockwise. It is intuitive (and true)
that both players have optimal strategies that assign equal probability to actions
of the same type (e.g., corner-clockwise). To see this, observe that in Submarine
Salvo a 90◦ rotation describes a permutation π of the possible submarine positions
and a permutation σ of the possible bomber actions. Clearly π4 (rotating by 90◦

four times) is the identity and so is σ4. For any bomber strategy x, let πx be the
rotated row strategy. (Formally (πx)i = xπ(i)). Clearly, the probability that the
bomber will hit the submarine if they play πx and σy is the same as it is when
they play x and y, and therefore

min
y

xTAy = min
y

(πx)TA(σy) = min
y

(πx)TAy.

Thus, if V is the value of the game and x is optimal, then πkx is also optimal for
all k.

Fix any submarine strategy y. Then πkx gains at least V against y; hence so
does

x∗ =
1

4
(x + πx + π2x + π3x).

Therefore x∗ is a rotation-invariant optimal strategy.
Using these equivalences, we may write down a more manageable payoff matrix:

submarine
center corner-clockwise corner-counterclockwise

b
om

b
er corner 0 1/4 1/4

midside 1/4 1/4 1/4
middle 1 0 0

Note that the values for the new payoff matrix are different from those in the
standard payoff matrix. They incorporate the fact that when, say, the bomber is
playing corner and the submarine is playing corner-clockwise, there is only a one-
in-four chance that there will be a hit. In fact, the pure strategy of corner for the
bomber in this reduced game corresponds to the mixed strategy of bombing each
corner with probability 1/4 in the original game. Similar reasoning applies to each
of the pure strategies in the reduced game.

Since the rightmost two columns yield the same payoff to the submarine, it’s
natural for the submarine to give them the same weight. This yields the mixed
strategy of choosing uniformly one of the eight positions containing a corner. We
can use domination to simplify the matrix even further. This is because for the
bomber, the strategy midside dominates that of corner (because the submarine,
when touching a corner, must also be touching a midside). This observation reduces
the matrix to
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submarine
center corner

b
om

b
er midside 1/4 1/4

middle 1 0

Now note that for the submarine, corner dominates center, and thus we obtain
the reduced matrix:

submarine
corner

b
om

b
er midside 1/4

middle 0

The bomber picks the better alternative — technically, another application of
domination — and picks midside over middle. The value of the game is 1/4; an
optimal strategy for the bomber is to hit one of the four midsides with probability
1/4 each, and an optimal submarine strategy is to hide with probability 1/8 each
in one of the eight possible pairs of adjacent squares that exclude the center. The
symmetry argument is generalized in Exercise 2.21.

Remark 2.4.5. It is perhaps surprising that in Submarine Salvo there also
exist optimal strategies that do not assign equal probability to all actions of the
same type. (See Exercise 2.15.)

2.5. Nash equilibria, equalizing payoffs, and optimal strategies

A notion of great importance in game theory is Nash equilibrium. In §2.4.1,
we introduced pure Nash equilibria. In this section, we introduce mixed Nash
equilibria.

Definition 2.5.1. A pair of strategies (x∗,y∗) is a Nash equilibrium in a
zero-sum game with payoff matrix A if

min
y∈∆n

(x∗)TAy = (x∗)TAy∗ = max
x∈∆m

xTAy∗. (2.10)

Thus, x∗ is a best response to y∗ and vice versa.

Remark 2.5.2. If x∗ = ei∗ and y∗ = ej∗ , then by (2.2), this definition coincides
with Definition 2.4.1.

Proposition 2.5.3. Let x ∈ ∆m and y ∈ ∆n be a pair of mixed strategies.
The following are equivalent:

(i) The vectors x and y are in Nash equilibrium.
(ii) There are V1, V2 such that∑

i

xiaij

{
= V1 for every j such that yj > 0,

≥ V1 for every j such that yj = 0.
(2.11)

and ∑
j

aijyj

{
= V2 for every i such that xi > 0,

≤ V2 for every i such that xi = 0.
(2.12)

(iii) The vectors x and y are optimal.
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Remark 2.5.4. If (2.11) and (2.12) hold, then

V1 =
∑
j

yj
∑
i

xiaij =
∑
i

xi
∑
j

aijyj = V2.

Proof. (i) implies (ii): Clearly, y is a best response to x if and only if y
assigns positive probability only to actions that yield II the minimum loss given x;
this is precisely (2.11). The argument for (2.12) is identical. Thus (i) and (ii) are
equivalent.

(ii) implies (iii): Player I guarantees herself a gain of at least V1 and player II
guarantees himself a loss of at most V2. By the remark, V1 = V2, and therefore
these are optimal.

(iii) implies (i): Let V = xTAy be the value of the game. Since playing x
guarantees I a gain of a least V , player II has no incentive to deviate from y.
Similarly for player I. �

2.5.1. A first glimpse of incomplete information.

Example 2.5.5 (A random game). Consider the zero-sum two-player game
in which the game to be played is randomized by a fair coin toss. If the toss comes
up heads, the payoff matrix is given by AH , and if tails, it is given by AT .

AH =

player II
L R

p
la

ye
r

I

U 8 2
D 6 0

AT =

player II
L R

p
la

ye
r

I

U 2 6
D 4 10

If the players don’t know the outcome of the coin flip before playing, they are
merely playing the game given by the average matrix

1

2
AH +

1

2
AT =

(
5 4
5 5

)
,

which has a value of 5. (For this particular matrix, the value does not change if I
is required to reveal her move first.)

Now suppose that I (but not II) is told the result of the coin toss and is required
to reveal her move first. If I adopts the simple strategy of picking the best row in
whichever game is being played and II realizes this and counters, then I has an
expected payoff of only 3, less than the expected payoff if she ignores the extra
information! See Exercise 6.3 and §6.3.3 for a detailed analysis of this and related
games.

This example demonstrates that sometimes the best strategy is to ignore extra
information and play as if it were unknown. A related example arose during World
War II. Polish and British cryptanalysts had broken the secret code the Germans
were using (the Enigma machine) and could therefore decode the Germans’ com-
munications. This created a challenging dilemma for the Allies: Acting on the
decoded information could reveal to the Germans that their code had been broken,
which could lead them to switch to more secure encryption.

Exercise 2.d. What is the value of the game if both players know the outcome
of the coin flip?
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2.6. Proof of von Neumann’s Minimax Theorem∗

We now prove the von Neumann Minimax Theorem. A different, constructive,
proof is given in §18.4.3. The proof will rely on a basic theorem from convex
geometry.

Recall first that the (Euclidean) norm of a vector v is the (Euclidean)

distance between 0 and v and is denoted by ‖v‖. Thus ‖v‖ =
√

vTv. A subset
of a metric space is closed if it contains all its limit points, and bounded if it is
contained inside a ball of some finite radius R.

Definition 2.6.1. A set K ⊆ Rd is convex if, for any two points a,b ∈ K,
the line segment connecting them also lies in K. In other words, for every a,b ∈ K
and p ∈ [0, 1]

pa + (1− p)b ∈ K.

Theorem 2.6.2 (The Separating Hyperplane Theorem). Suppose that
K ⊆ Rd is closed and convex. If 0 /∈ K, then there exist z ∈ Rd and c ∈ R such
that

0 < c < zTv

for all v ∈ K.

Here 0 denotes the vector of all 0’s. The theorem says that there is a hyper-
plane (a line in two dimensions, a plane in three dimensions, or, more generally,
an affine Rd−1-subspace in Rd) that separates 0 from K. In particular, on any
continuous path from 0 to K, there is some point that lies on this hyperplane. The
separating hyperplane is given by

{
x ∈ Rd : zTx = c

}
. The point 0 lies in the

half-space
{
x ∈ Rd : zTx < c

}
, while the convex body K lies in the complementary

half-space
{
x ∈ Rd : zTx > c

}
.

0

K

line

Figure 2.4. Hyperplane separating the closed convex body K from 0.

In what follows, the metric is the Euclidean metric.

Proof of Theorem 2.6.2. Choose r so that the ball Br = {x ∈ Rd : ‖x‖ ≤
r} intersects K. Then the function w 7→ ‖w‖, considered as a map from K ∩ Br
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to [0,∞), is continuous, with a domain that is nonempty, closed, and bounded (see
Figure 2.5). Thus the map attains its infimum at some point z in K. For this
z ∈ K, we have

‖z‖ = inf
w∈K

‖w‖.

r

0

B
r

z

K

v

Figure 2.5. Intersecting K with a ball to get a nonempty closed bounded domain.

Let v ∈ K. Because K is convex, for any ε ∈ (0, 1), we have that εv+(1−ε)z =
z− ε(z− v) ∈ K. Since z has the minimum norm of any point in K,

‖z‖2 ≤ ‖z− ε(z− v)‖2 = ‖z‖2 − 2εzT (z− v) + ε2‖z− v‖2.
Rearranging terms, we get

2εzT (z− v) ≤ ε2‖z− v‖2, that is, zT (z− v) ≤ ε

2
‖z− v‖2.

Letting ε approach 0, we find

zT (z− v) ≤ 0, which means that ‖z‖2 ≤ zTv.

Since z ∈ K and 0 /∈ K, the norm ‖z‖ > 0. Choosing c = 1
2‖z‖

2, we get 0 < c <

zTv for all v ∈ K. �

We will also need the following simple lemma:

Lemma 2.6.3. Let X and Y be closed and bounded sets in Rd. Let f : X×Y →
R be continuous. Then

max
x∈X

min
y∈Y

f(x,y) ≤ min
y∈Y

max
x∈X

f(x,y). (2.13)

Proof. We first prove the lemma for the case where X and Y are finite sets
(with no assumptions on f). Let (x̃, ỹ) ∈ X × Y . Clearly

min
y∈Y

f(x̃,y) ≤ f(x̃, ỹ) ≤ max
x∈X

f(x, ỹ).

Because the inequality holds for any x̃ ∈ X,

max
x̃∈X

min
y∈Y

f(x̃,y) ≤ max
x∈X

f(x, ỹ).

Minimizing over ỹ ∈ Y , we obtain (2.13).
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To prove the lemma in the general case, we just need to verify the existence
of the relevant maxima and minima. Since continuous functions achieve their min-
imum on compact sets, g(x) = miny∈Y f(x,y) is well-defined. The continuity of
f and compactness of X × Y imply that f is uniformly continuous on X × Y . In
particular,

∀ε ∃δ : |x1 − x2| < δ =⇒ |f(x1,y)− f(x2,y)| ≤ ε
and hence |g(x1) − g(x2)| ≤ ε. Thus, g : X → R is a continuous function and
maxx∈X g(x) exists. �

We can now prove

Theorem 2.3.1 (Von Neumann’s Minimax Theorem). Let A be an m×n
payoff matrix, and let ∆m = {x ∈ Rm : x ≥ 0,

∑
i xi = 1} and ∆n = {y ∈ Rn :

y ≥ 0,
∑
j yj = 1}. Then

max
x∈∆m

min
y∈∆n

xTAy = min
y∈∆n

max
x∈∆m

xTAy. (2.14)

As we discussed earlier, this quantity is called the value of the two-person
zero-sum game with payoff matrix A.

Proof. The inequality

max
x∈∆m

min
y∈∆n

xTAy ≤ min
y∈∆n

max
x∈∆m

xTAy

follows immediately from Lemma 2.6.3 because f(x,y) = xTAy is a continuous
function in both variables and ∆m ⊂ Rm, ∆n ⊂ Rn are closed and bounded.

To prove that the left-hand side of (2.14) is at least the right-hand side, suppose
that

λ < min
y∈∆n

max
x∈∆m

xTAy. (2.15)

Define a new game with payoff matrix Â given by âi,j = aij−λ. For this new game

0 < min
y∈∆n

max
x∈∆m

xT Ây. (2.16)

Each mixed strategy y ∈ ∆n for player II yields a gain vector Ây ∈ Rm. Let
K denote the set of all vectors which dominate some gain vector Ây; that is,

K =
{
Ây + v : y ∈ ∆n, v ∈ Rm,v ≥ 0

}
.

The set K is convex and closed since ∆n is closed, bounded, and convex, and
the set {v ∈ Rm,v ≥ 0} is closed and convex. (See Exercise 2.19.) Also, K cannot
contain the 0 vector, because if 0 was in K, there would be some mixed strategy
y ∈ ∆n such that Ây ≤ 0. But this would imply that maxx∈∆m xT Ây ≤ 0,
contradicting (2.16).

Thus K satisfies the conditions of the Separating Hyperplane Theorem (Theo-
rem 2.6.2), which gives us z ∈ Rm and c > 0 such that zTw > c > 0 for all w ∈ K.
That is,

zT (Ây + v) > c > 0 for all y ∈ ∆n and v ≥ 0. (2.17)

We claim that z ≥ 0. If not, say zj < 0 for some j, then for v ∈ Rm with vj
sufficiently large and vi = 0 for all i 6= j, we would have zT (Ây+v) = zT Ây+zjvj <
0 for some y ∈ ∆n, which would contradict (2.17).

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



48 2. TWO-PERSON ZERO-SUM GAMES

It also follows from (2.17) that z 6= 0. Thus s =
∑m
i=1 zi is strictly positive, so

x̃ = 1
s (z1, . . . , zm)T = z/s ∈ ∆m satisfies x̃T Ây > c/s > 0 for all y ∈ ∆n.

Therefore, miny∈∆n
x̃TAy > λ, whence

max
x∈∆m

min
y∈∆n

xTAy > λ.

Since this holds for every λ satisfying (2.15), the theorem follows. �

2.7. Zero-sum games with infinite action spaces∗

Theorem 2.7.1. Consider a zero-sum game in which the players’ action spaces
are [0, 1] and the gain is A(x, y) when player I chooses action x and player II chooses
action y. Suppose that A(x, y) is continuous on [0, 1]2. Let ∆ = ∆[0,1] be the space
of probability distributions on [0, 1]. Then

max
F∈∆

min
G∈∆

∫ ∫
A(x, y)dF (x)dG(y) = min

G∈∆
max
F∈∆

∫ ∫
A(x, y)dF (x)dG(y). (2.18)

Proof. If there is a matrix (aij) for which

A(x, y) = adnxe,dnye, (2.19)

then (2.18) reduces to the finite case. If A is continuous, then there are functions
A0 and A1 of the form (2.19) so that A0 ≤ A ≤ A1 and |A1−A0| ≤ ε. This implies
(2.18) with infs and sups in place of min and max. The existence of the maxima
and minima follows from compactness of ∆[0,1] as in the proof of Lemma 2.6.3. �

Remark 2.7.2. The previous theorem applies in any setting where the action
spaces are compact metric spaces and the payoff function is continuous.

S Exercise 2.e. Two players each choose a number in [0, 1]. If they choose the
same number, the payoff is 0. Otherwise, the player that chose the lower number
pays $1 to the player who chose the higher number, unless the higher number
is 1, in which case the payment is reversed. Show that this game has no mixed
Nash equilibrium. Show that the safety values for players I and II are -1 and 1,
respectively.

Remark 2.7.3. The game from the previous exercise shows that the continu-
ity assumption on the payoff function A(x, y) cannot be removed. See also Exer-
cise 2.23.

Notes

The theory of two-person zero-sum games was first laid out in a 1928 paper by John
von Neumann [vN28], where he proved the Minimax Theorem (Theorem ??). The foun-
dations were further developed in the book by von Neumann and Morgenstern [vNM53],
first published in 1944.

The original proof of the Minimax Theorem used a fixed point theorem. A proof based
on the Separating Hyperplane Theorem (Theorem 2.6.2) was given by Weyl [Wey50], and
an inductive proof was given by Owen [Owe67]. Subsequently, many other minimax theo-
rems were proved, such as Theorem 2.7.1, due to Glicksberg [Gli52], and Sion’s minimax
theorem [Sio58]. An influential example of a zero-sum game on the unit square with dis-
continuous payoff functions and without a value is in [SW57a]. Games of timing also have
discontinuous payoff functions, but do have a value. See, e.g., [Gar00].
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John von Neumann Oskar Morgenstern

Given an m×n payoff matrix A, the optimal strategy for player I might be supported
on all m rows. However, Lipton and Young [LY94] showed that (assuming 0 ≤ aij ≤ 1 for
all i, j), player I has an ε-optimal strategy supported on k = d lnn

2ε2
e rows. This follows by

sampling k rows at random from the optimal mixed strategy and applying the Hoeffding-
Azuma Inequality (Theorem B.2.2).

Exercise 2.2 is from [Kar59]. Exercise 2.17 comes from [HS89]. Exercise 2.18 is an
example of a class of recursive games studied in [Eve57].

More detailed accounts of the material in this chapter can be found in Ferguson [Fer08],
Karlin [Kar59], and Owen [Owe95], among others.

In §2.4, we present techniques for simplifying and solving zero-sum games by hand.
However, for large games, there are efficient algorithms for finding optimal strategies
and the value of the game based on linear programming. A brief introduction to linear
programming can be found in Appendix A. There are also many books on the topic
including, for example, [MG07].

The Minimax Theorem played a key role in the development of linear programming.
George Dantzig, one of the pioneers of linear programming, relays the following story
about his first meeting with John von Neumann [Dan82].

Figure 2.6. Von Neumann explaining duality to Dantzig.

On October 3, 1947, I visited him (von Neumann) for the first time at
the Institute for Advanced Study at Princeton. I remember trying to
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50 2. TWO-PERSON ZERO-SUM GAMES

describe to von Neumann, as I would to an ordinary mortal, the Air
Force problem. I began with the formulation of the linear program-
ming model in terms of activities and items, etc. Von Neumann did
something which I believe was uncharacteristic of him. “Get to the
point,” he said impatiently. Having at times a somewhat low kindling-
point, I said to myself “O.K., if he wants a quicky, then thats what he
will get.” In under one minute I slapped the geometric and algebraic
version of the problem on the blackboard. Von Neumann stood up
and said “Oh that!” Then for the next hour and a half, he proceeded
to give me a lecture on the mathematical theory of linear programs.

At one point seeing me sitting there with my eyes popping and my
mouth open (after I had searched the literature and found nothing),
von Neumann said: “I don’t want you to think I am pulling all this
out of my sleeve at the spur of the moment like a magician. I have
just recently completed a book with Oskar Morgenstern on the theory
of games. What I am doing is conjecturing that the two problems are
equivalent. The theory that I am outlining for your problem is an
analogue to the one we have developed for games.” Thus I learned
about Farkas’ Lemma, and about duality for the first time.

Exercises

2.1. Show that all saddle points in a zero-sum game (assuming there is at least
one) result in the same payoff to player I.

2.2. Show that if a zero-sum game has a saddle point in every 2× 2 submatrix,
then it has a saddle point.

2.3. Find the value of the following zero-sum game and determine some optimal
strategies for each of the players: 8 3 4 1

4 7 1 6
0 3 8 5

 .

2.4. Find the value of the zero-sum game given by the following payoff matrix,
and determine some optimal strategies for each of the players: 0 9 1 1

5 0 6 7
2 4 3 3

 .

2.5. Find the value of the zero-sum game given by the following payoff matrix
and determine all optimal strategies for both players: 3 0

0 3
2 2

 .
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2.6.S Given a 5×5 zero-sum game, such as the following, how would you quickly
determine by hand if it has a saddle point:

20 1 4 3 1
2 3 8 4 4
10 8 7 6 9
5 6 1 2 2
3 7 9 1 5

?

2.7. Give an example of a two-person zero-sum game where there are no pure
Nash equilibria. Can you give an example where all the entries of the payoff
matrix are different?

2.8. Define a zero-sum game in which one player’s unique optimal strategy is
pure and all of the other player’s optimal strategies are mixed.

2.9. Player II is moving an important item in one of three cars, labeled 1, 2,
and 3. Player I will drop a bomb on one of the cars of her choosing. She
has no chance of destroying the item if she bombs the wrong car. If she
chooses the right car, then her probability of destroying the item depends
on that car. The probabilities for cars 1, 2, and 3 are equal to 3/4, 1/4,
and 1/2.

Write the 3× 3 payoff matrix for the game, and find an optimal strat-
egy for each player.

2.10. Using the result of Proposition 2.5.3, give an exponential time algorithm to
solve an n×m two-person zero-sum game. Hint: Consider each possibility
for which subset S of player I strategies have xi > 0 and which subset T of
player II strategies have yj > 0.

2.11. Consider the following two-person zero-sum game. Both players simulta-
neously call out one of the numbers {2, 3}. Player I wins if the sum of the
numbers called is odd and player II wins if their sum is even. The loser
pays the winner the product of the two numbers called (in dollars). Find
the payoff matrix, the value of the game, and an optimal strategy for each
player.

2.12. Consider the four-mile stretch of road shown in Figure 2.7. There are three
locations at which restaurants can be opened: Left, Central, and Right.
Company I opens a restaurant at one of these locations and company II
opens two restaurants (both restaurants can be at the same location). A
customer is located at a uniformly random location along the four-mile
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52 2. TWO-PERSON ZERO-SUM GAMES

stretch. He walks to the closest location at which there is a restaurant and
then into one of the restaurants there, chosen uniformly at random. The
payoff to company I is the probability that the customer visits a company I
restaurant. Determine the value of the game, and find some optimal mixed
strategies for the companies.

I II

1 mile 1 mile 1 mile 1 mile
Left

Pizza Burgers Burgers

Central Right

Customer is at uniformly random location
Figure 2.7. Restaurant location game.

2.13. Bob has a concession at Yankee Stadium. He can sell 500 umbrellas at
$10 each if it rains. (The umbrellas cost him $5 each.) If it shines, he
can sell only 100 umbrellas at $10 each and 1000 sunglasses at $5 each.
(The sunglasses cost him $2 each.) He has $2500 to invest in one day, but
everything that isn’t sold is trampled by the fans and is a total loss.

This is a game against nature. Nature has two strategies: rain and
shine. Bob also has two strategies: buy for rain or buy for shine.

Find the optimal strategy for Bob assuming that the probability for
rain is 50%.

2.14. The Number Picking Game: Two players I and II pick a positive integer
each. If the two numbers are the same, no money changes hands. If the
players’ choices differ by 1, the player with the lower number pays $1 to
the opponent. If the difference is at least 2, the player with the higher
number pays $2 to the opponent. Find the value of this zero-sum game
and determine optimal strategies for both players. (Hint: Use domination.)

2.15. Show that in Submarine Salvo the submarine has an optimal strategy where
all choices containing a corner and a clockwise adjacent site are excluded.

2.16. A zebra has four possible locations to cross the Zambezi River; call them a,
b, c, and d, arranged from north to south. A crocodile can wait (undetected)
at one of these locations. If the zebra and the crocodile choose the same
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location, the payoff to the crocodile (that is, the chance it will catch the
zebra) is 1. The payoff to the crocodile is 1/2 if they choose adjacent
locations, and 0 in the remaining cases, when the locations chosen are
distinct and nonadjacent.
(a) Write the payoff matrix for this game.
(b) Can you reduce this game to a 2× 2 game?
(c) Find the value of the game (to the crocodile) and optimal strategies

for both.

2.17.S Generalized Matching Pennies: Consider a directed graph G = (V,E) with
nonnegative weights wij on each edge (i, j). Let Wi =

∑
j wij . Each player

chooses a vertex, say i for player I and j for player II. Player I receives a
payoff of wij if i 6= j and loses Wi − wii if i = j. Thus, the payoff matrix
A has entries aij = wij − 1{i=j}Wi. If n = 2 and the wij ’s are all 1, this
game is called Matching Pennies.
• Show that the game has value 0.
• Deduce that for some x ∈ ∆n, xTA = 0.

2.18. A recursive zero-sum game: Trumm Seafood has wild salmon on the menu.
Each day, the owner, Mr. Trumm, decides whether to cheat and serve the
cheaper farmed salmon instead. An inspector selects a day in 1, . . . , n and
inspects the restaurant on that day. The payoff to the inspector is 1 if he
inspects while Trumm is cheating. The payoff is −1 if the Trumm cheats
and is not caught. The payoff is also −1 if the inspector inspects but
Trumm did not cheat and there is at least one day left. This leads to the
following matrices Γn for the game with n days: The matrix Γ1 is shown
on the left, and the matrix Γn is shown on the right.

Trumm
cheat honest

in
sp

ec
to

r

inspect 1 0
wait −1 0

Trumm
cheat honest

in
sp

ec
to

r

inspect 1 −1
wait −1 Γn−1

Find the optimal strategies and the value of Γn.

2.19.S Prove that if set G ⊆ Rd is compact and H ⊆ Rd is closed, then G + H
is closed. (This fact is used in the proof of the Minimax Theorem to show
that the set K is closed.)

2.20.S Find two closed sets F1, F2 ⊂ R2 such that F1 − F2 is not closed.

2.21.*S Consider a zero-sum game A and suppose that π and σ are permutations of
I’s strategies {1, . . . ,m} and player II’s strategies {1, . . . , n}, respectively,
such that

aπ(i)σ(j) = aij (2.1)
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54 2. TWO-PERSON ZERO-SUM GAMES

for all i and j. Show that there exist optimal strategies x∗ and y∗ such
that x∗i = x∗π(i) for all i and y∗j = y∗σ(j) for all j.

2.22.S Player I chooses a positive integer x > 0 and player II chooses a positive
integer y > 0. The player with the lower number pays a dollar to the player
with the higher number unless the higher number is more than twice larger
in which case the payments are reversed.

A(x, y) =


1 if y < x ≤ 2y or x < y/2,

−1 if x < y ≤ 2x or y < x/2,

0 if x = y.

Find the unique optimal strategy in this game.

2.23. Two players each choose a positive integer. The player that chose the lower
number pays $1 to the player who chose the higher number (with no pay-
ment in case of a tie). Show that this game has no Nash equilibrium. Show
that the safety values for players I and II are −1 and 1 respectively.

2.24. Two players each choose a number in [0, 1]. Suppose that A(x, y) = |x−y|.
• Show that the value of the game is 1/2.
• More generally, suppose that A(x, y) is a convex function in each of
x and y and that it is continuous. Show that player I has an opti-
mal strategy supported on 2 points and player II has an optimal pure
strategy.

2.25. Consider a zero-sum game in which the strategy spaces are [−1, 1] and the
gain of player I when she plays x and player II plays y is

A(x, y) = log
1

|x− y|
.

Show that I picking X = cos Θ, where Θ is uniform on [−1, 1], and II using
the same strategy is a pair of optimal strategies.
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CHAPTER 3

Zero-sum games on graphs

In this chapter, we consider a number of graph-theoretic zero-sum games.

3.1. Games in series and in parallel

Example 3.1.1 (Hannibal and the Romans). Hannibal and his army (player
I) and the Romans (player II) are on opposite sides of a mountain. There are two
routes available for crossing the mountain. If they both choose the wide mountain
pass, their confrontation is captured by a zero-sum gameG1. If they both choose the
narrow mountain pass, their confrontation is captured by zero-sum game G2, with
different actions and payoffs (e.g., the elephants cannot cross the narrow pass). If
they choose different passes, no confrontation occurs and the payoff is 0. We assume
that the value of both G1 and G2 is positive. The resulting game is a parallel-sum
of G1 and G2.

Figure 3.1. Hannibal approaching battle.

In the second scenario, Hannibal has two separate and consecutive battles with
two Roman armies. Again, each battle is captured by a zero-sum game, the first
G1 and the second G2. This is an example of a series-sum game.

Definition 3.1.2. Given two zero-sum games G1 and G2, their series-sum
game corresponds to playing G1 and then G2. In a parallel-sum game, each
player chooses either G1 or G2 to play. If each picks the same game, then it is that
game which is played. If they differ, then no game is played, and the payoff is zero.

Exercise 3.a. Show that if Gi has value vi for i = 1, 2, then their series-sum
game has value v1 + v2.

55
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56 3. ZERO-SUM GAMES ON GRAPHS

To solve for optimal strategies in the parallel-sum gum, we write a big payoff
matrix, in which player I’s strategies are the union of her strategies in G1 and her
strategies in G2 as follows:

player II
pure strategies of G1 pure strategies of G2

p
la

ye
r

I

pure strategies of G1 G1 0
pure strategies of G2 0 G2

In this payoff matrix, we have abused notation and written G1 and G2 inside the
matrix to denote the payoff matrices of G1 and G2, respectively. If the two players
play G1 and G2 optimally, the payoff matrix can be reduced to:

player II
play in G1 play in G2

p
la

y e
r

I

play in G1 v1 0
play in G2 0 v2

Thus to find optimal strategies, the players just need to determine with what prob-
ability they should play G1 and with what probability they should play G2. If
both payoffs v1 and v2 are positive, the optimal strategy for each player consists
of playing G1 with probability v2/(v1 + v2) and G2 with probability v1/(v1 + v2).
The value of the parallel-sum game is

v1v2

v1 + v2
=

1

1/v1 + 1/v2
.

Those familiar with electrical networks will note that the rules for computing
the value of series or parallel games in terms of the values of the component games
are precisely the same as the rules for computing the effective resistance of a pair
of resistors in series or in parallel. In the next section, we explore a game that
exploits this connection.

3.1.1. Resistor networks and troll games.

Example 3.1.3 (Troll and Traveler). A troll (player I) and a traveler (player
II) will each choose a route along which to travel from Syracuse (s) to Troy (t) and
then they will disclose their routes. Each road has an associated toll. In each case
where the troll and the traveler have chosen the same road, the traveler pays the
toll to the troll.

In the special case where there are exactly two parallel roads from A to B (or
two roads in series), this is the parallel-sum (respectively, series-sum) game we saw
earlier. For graphs that are constructed by repeatedly combining graphs in series
or in parallel, there is an elegant and general way to solve the Troll and Traveler
game, by interpreting the road network as an electrical network and the tolls as
resistances.

Definition 3.1.4. An electrical network is a finite connected graph G with
positive edge labels (representing edge resistances) and a specified source s and sink
t.
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3.1. GAMES IN SERIES AND IN PARALLEL 57

Figure 3.2. The Troll and the Traveler.

We combine two networks G1 and G2, with sources si and sinks ti, for i = 1, 2,
either in series, by identifying t1 with s2, or in parallel, by identifying s1 with
s2, and t1 with t2.

A network G is a series-parallel network if it is either a single directed
edge from the source to the sink or it is obtained by combining two series-parallel
networks G1 and G2 in series or in parallel.

See the upper left of Figure 3.4 for a graph constructed by combining two edges
in series and in parallel, and see Figure 3.16 for a more complex series-parallel graph.

Recall that if two nodes are connected by a resistor with resistance R and there
is a voltage drop of V across the two nodes, then the current that flows through the
resistor is V/R. The conductance is the reciprocal of the resistance. When the pair
of nodes are connected by a pair of resistors with resistances R1 and R2 arranged
in series (see the top of Figure 3.3), the effective resistance between the nodes
is R1 + R2, because the current that flows through the resistors is V/(R1 + R2).
When the resistors are arranged in parallel (see the bottom of Figure 3.3), it is
the conductances that add; i.e., the effective conductance between the nodes is
1/R1 + 1/R2 and the effective resistance is

1

1/R1 + 1/R2
=

R1R2

R1 +R2
.

These series and parallel rules for computing the effective resistance can be
used repeatedly to compute the effective resistance of any series-parallel network,
as illustrated in Figure 3.4. Applying this argument inductively yields the following
claim.

Claim 3.1.5. The value of the Troll and Traveler game played on a series-
parallel network G with source s and sink t is the effective resistance between s and
t. Optimal strategies in the Troll and Traveler game are defined as follows: If G
is obtained by combining G1 and G2 in series, then each player plays his or her
optimal strategy in G1 followed by his optimal strategy in G2. If G is obtained by
combining G1 and G2 (with sources s1, s2 and sinks t1, t2) in parallel, then each
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1/(1/R
1 
+ 1/R

2
)

R
2

R
1

R
1

R
2

R
1 
+ R

2

s1

s1

s2

t1

t1

t2

t2

t2s1

s1,s2 t1,t2

s2

Figure 3.3. In a network consisting of two resistors with resistances R1 and
R2 in series (shown on top), the effective resistance is R1 + R2. When the
resistors are in parallel, the effective conductance is 1/R1 + 1/R2, so the
effective resistance is 1/(1/R1 + 1/R2) = R1R2/(R1 + R2). If these figures
represent the roads leading from s to t in the Troll and Traveler game and the
toll on each road corresponds to the resistance on that edge, then the effective
resistance is the value of the game, and the optimal strategy for each player
is to move along an edge with probability proportional to the conductance on
that edge.

1
1

1

1

1 1/2

1

1

3/2 3/5

Figure 3.4. A resistor network, with resistances all equaling to 1, has an
effective resistance of 3/5. Here the parallel rule was used first, then the series
rule, and then the parallel rule again.

player plays his optimal strategy in Gi with probability Ci/(C1 + C2), where Ci is
the effective conductance between si and ti in Gi.

3.2. Hide and Seek games

Example 3.2.1 (Hide and Seek). A robber, player II, hides in one of a set
of safehouses located at certain street/avenue intersections in Manhattan. A cop,
player I, chooses one of the avenues or streets to travel along. The cop wins a unit
payoff if she travels on a road that intersects the robber’s location and nothing
otherwise.

We represent this situation with a 0/1 matrix H where hij = 1 if there is a
safehouse at the intersection of street i and avenue j, and hij = 0 otherwise. The
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POLICE

1
0
01

0
0

100

Figure 3.5. The figure shows an example scenario for the Hide and Seek
game. In this example, the robber chooses to hide at the safehouse at the
intersection of 2nd St. and 4th Ave., and the cop chooses to travel along 1st
St. Thus, the payoff to the cop is 0.

following matrix corresponds to Figure 3.5:0 1 0 1 0
0 0 0 1 1
0 1 0 1 0

 .

The cop’s actions correspond to choosing a row or column of this matrix and
the robber’s actions correspond to picking a 1 in the matrix.

Clearly, it is useless for the cop to choose a road that doesn’t contain a safe-
house; a natural strategy for her is to find a smallest set of roads that contain
all safehouses and choose one of these at random. Formally, a line-cover of the
matrix H is a set of lines (rows and columns) that cover all nonzero entries of H.
The proposed cop strategy is to fix a minimum-sized line-cover C and choose one
of the lines in C uniformly at random. This guarantees the cop an expected gain of
at least 1/|C| against any robber strategy.

Next we consider robber strategies. A vulnerable strategy would be to choose
from among a set of safehouses that all lie on the same road. The “opposite” of
that is to find a maximum-sized setM of safehouses, where no two lie on the same
road, and choose one of these uniformly at random. This guarantees that the cop’s
expected gain is at most 1/|M|.

It is not obvious that the proposed strategies are optimal. However, in the next
section, we prove that

|C| = |M|. (3.1)

This implies that the proposed pair of strategies is jointly optimal for Hide and
Seek.

3.2.1. Maximum matching and minimum covers. Given a set of boys
B and a set of girls G, draw an edge between a boy and a girl if they know each
other. The resulting graph is called a bipartite graph since there are two disjoint
sets of nodes and all edges go between them. Bipartite graphs are ubiquitous.
For instance, there is a natural bipartite graph where one set of nodes represents
workers, the other set represents jobs, and an edge from worker w to job j means
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60 3. ZERO-SUM GAMES ON GRAPHS

that worker w can perform job j. Other examples involve customers and suppliers,
or students and colleges.

A matching in a bipartite graph is a collection of disjoint edges, e.g., a set of
boy-girl pairs that know each other, where every individual occurs in at most one
pair. (See Figure 3.6.)

Suppose |B| ≤ |G|. Clearly there cannot be a matching that includes more than
|B| edges. Under what condition is there a matching of size |B|, i.e. a matching in
which every boy is matched to a girl he knows?

Figure 3.6. On the left is a bipartite graph where an edge between a boy and
a girl means that they know each other. The edges in a matching are shown
by bold lines in the figure on the right.

An obvious necessary condition, known as Hall’s condition, is that each sub-
set B′ of the boys collectively knows enough girls, at least |B′| of them. Hall’s
Marriage Theorem asserts that this condition is also sufficient.

Theorem 3.2.2 (Hall’s Marriage Theorem). Suppose that B is a finite set
of boys and G is a finite set of girls. For any particular boy b ∈ B, let f(b) denote
the set of girls that b knows. For a subset B′ ⊆ B of the boys, let f(B′) denote
the set of girls that boys in B′ collectively know; i.e., f(B′) =

⋃
b∈B′ f(b). There is

a matching of size |B| if and only if Hall’s condition holds: Every subset B′ ⊆ B
satisfies |f(B′)| ≥ |B′|.

Proof. We need only prove that Hall’s condition is sufficient, which we do by
induction on the number of boys. The case |B| = 1 is straightforward. For the
induction step, we consider two cases:
Case 1: |f(B′)| > |B′| for each nonempty B′ ( B. Then we can just match an
arbitrary boy b to any girl he knows. The set of remaining boys and girls still
satisfies Hall’s condition, so by the inductive hypothesis, we can match them up.
Case 2: There is a nonempty B′ ( B for which |f(B′)| = |B′|. By the inductive
hypothesis, there is a matching of size |B′| between B′ and f(B′). Once we show
that Hall’s condition holds for the bipartite graph between B \ B′ and G \ f(B′),
another application of the inductive hypothesis will yield the theorem.

Suppose Hall’s condition fails; i.e., there is a set A of boys disjoint from B′

such that the set S = f(A) \ f(B′) of girls they know outside f(B′) has |S| < |A|.
(See Figure 3.7.) Then

|f(A ∪B′)| = |S ∪ f(B′)| < |A|+ |B′|,

violating Hall’s condition for the full graph, a contradiction. �
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boys girls

f (A)\f (B')

f (B')

f (A)
A

B'

Figure 3.7. Hall’s Marriage Theorem: Case 2 of the inductive argument.
By hypothesis there is a matching of size |B′| between B′ and f(B′). If
|S| = |f(A) \ f(B′)| < |A| for A ⊂ B \B′, then the set A ∪B′ violates Hall’s

condition.

As we saw earlier, a useful way to represent a bipartite graph whose edges go
between vertex sets I and J is via its adjacency matrix H. This is a 0/1 matrix
where the rows correspond to vertices in I, the columns to vertices in J , and hij = 1
if and only if there is an edge between i and j. Conversely, any 0/1 matrix is the
adjacency matrix of a bipartite graph. A set of pairs S ⊂ I × J is a matching for
the adjacency matrix H if hij = 1 for all (i, j) ∈ S and no two elements of S are in
the same row or column. This corresponds to a matching between I and J in the
graph represented by H.

For example, the following matrix is the adjacency matrix for the bipartite
graph shown in Figure 3.6, with the edges corresponding to the matching in bold
red in the matrix. (Rows represent boys from top to bottom and columns represent
girls from left to right.)


1 1 0 0
0 1 0 0
1 0 0 1
0 0 1 0


We restate Hall’s Marriage Theorem in matrix language and in graph language.

Theorem 3.2.3 (Hall’s Marriage Theorem – matrix version). Let H be
an m×n nonnegative 0/1 matrix with m ≤ n. Given a set S of rows, say column j
intersects S positively if hij = 1 for some i ∈ S. Suppose that for any set S of rows
in H, there are at least |S| columns in H that intersect S positively. Then there is
a matching of size m in H.

Theorem 3.2.4 (Hall’s Marriage Theorem – graph version). Let G =
(U, V,E) be a bipartite graph, with |U | = m, |V | = n, with m ≤ n. Suppose that
the neighborhood 1of each subset of vertices S ⊆ U has size at least |S|. Then there
is a matching of size m in G.

1 The neighborhood of a set S of vertices in a graph is {v| ∃u ∈ S such that (u, v) ∈ E}.
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Lemma 3.2.5 (König’s lemma). Given an m × n 0/1 matrix H, the size of
the maximum matching is equal to the size of the minimum line-cover 2.

Proof. Suppose the maximum matching has size k and the minimum line-
cover C has size `. At least one member of each pair in the matching has to be in
C and therefore k ≤ `.

For the other direction, we use Hall’s Marriage Theorem. Suppose that there
are r rows and c columns in the minimum line-cover C, so r + c = `. Let S be a
subset of rows in C, and let T be the set of columns outside C that have a positive
intersection with some row of S. Then (C \ S) ∪ T is also a line-cover, so by the
minimality of C, we have |T | ≥ |S|. Thus, Hall’s condition is satisfied for the rows
in C and the columns outside C, and hence there is a matching M of size r in this
submatrix. Similarly, there is a matching M ′ of size c in the submatrix defined by
the rows outside C and the columns in C. Therefore, M ∪M ′ is a matching of size
at least `, and hence ` ≤ k, completing the proof. See Figure 3.8. �

rrows

c columns
1

1

111
1

11

1

11
1

1
1
1

11
1
1

1
1

11
11

11

1111 111 1 1 11 11 111
1

111 1 1111 1 11 111

T

S

Figure 3.8. An illustration of the last part of the proof of Lemma 3.2.5. The
first r rows and c columns in the matrix are in the cover C. If T , as defined
in the proof, was smaller than S, this would contradict the minimality of C.

Corollary 3.2.6. For the Hide and Seek game, an optimal strategy for the
cop is to choose uniformly at random a line in a minimum line-cover. An optimal
strategy for the robber is to hide at a uniformly random safehouse in a maximum
matching.

3.3. A pursuit-evasion game: Hunter and Rabbit∗

Consider the following game3: A hunter (player I) is chasing a rabbit (player II).
At every time step, each player occupies a vertex of the cycle Zn. At time 0, the

2 This is also called a cover or a vertex cover.
3 This game was first analyzed in [ARS+03]; the exposition here follows, almost verbatim,

the paper [BPP+14].
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hunter and rabbit choose arbitrary initial positions. At each subsequent step, the
hunter may move to an adjacent vertex or stay where she is; simultaneously, the
rabbit may stay where he is or jump to any vertex on the cycle. The hunter captures
the rabbit at time t if both players occupy the same vertex at that time. Neither
player can see the other’s position unless they occupy the same vertex. The payoff
to the hunter is 1 if she captures the rabbit in the first n steps, and 0 otherwise.

Figure 3.9. The hunter and the rabbit.

Clearly, the value of the game is the probability pn of capture under optimal
play.

Here are some possible rabbit strategies:

• If the rabbit chooses a random node and stays there, the hunter can sweep
the cycle and capture the rabbit with probability 1.
• If the rabbit jumps to a uniformly random node at every step, he will be

caught with probability 1/n at each step. Thus, the probability of capture
in n steps is 1− (1− 1/n)n → 1− 1/e as n→∞.

The Sweep strategy for the hunter consists of choosing a uniformly random
starting point and a random direction and then walking in that direction. A rabbit
counterstrategy is the following: From a random starting node, walk

√
n steps to the

right, then jump 2
√
n steps to the left; repeat. Figure 3.10 shows a representation of

the rabbit counterstrategy to Sweep. Consider the space-time integer lattice, where
the vertical coordinate represents time t and the horizontal coordinate represents
the position x on the circle. Sincem during the n steps, the rabbit’s space-time
path will intersect Θ(

√
n) diagonal lines (lines of the form x = t+ i mod n) and the

hunter traverses exactly one random diagonal line in space-time, the probability of
capture is Θ(1/

√
n). In fact, the Sweep strategy guarantees the hunter a probability

of capture Ω(1/
√
n) against any rabbit strategy. (See Exercise 3.6.)

It turns out that, to within a constant factor, the best the hunter can do
is to start at a random point and move at a random speed. We analyze this
strategy in the next section and show that it increases the probability of capture
to Θ(1/ log(n)).

3.3.1. Towards optimal strategies. Let Ht be the position of the hunter
at time t. Then the set of pure strategies H available to her are

H = {(Ht)
n−1
t=0 : Ht ∈ Zn, |Ht+1 −Ht| ≤ 1}.
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tim
e

space

Figure 3.10. The figure shows a typical path in space-time for a rabbit em-
ploying the counterstrategy to Sweep.

Similarly, if Rt is the position of the rabbit at time t, then R is the set of pure
strategies available to him:

R = {(Rt)n−1
t=0 : Rt ∈ Zn}.

If V is the value of the game, then there exists a randomized strategy for the
hunter so that against every strategy of the rabbit the probability that they collide
in the first n steps is at least V ; and there exists a randomized strategy for the
rabbit, so that against every strategy of the hunter, the probability that they collide
is at most V .

Theorem 3.3.1. There are positive constants c and c′ such that

c

log n
≤ V ≤ c′

log n
. (3.2)

3.3.2. The hunter’s strategy. Consider the following Random Speed strat-
egy for the hunter: Let a, b be independent random variables uniformly distributed
on [0, 1] and define Ht = ban+ btc mod n for 0 ≤ t < n.

Proposition 3.3.2. If the hunter employs the Random Speed strategy, then
against any rabbit strategy,

P(capture) ≥ c

log n
,

where c is a universal positive constant.

Proof. Let Rt be the location of the rabbit on the cycle at time t; i.e., Rt ∈
{0, . . . , n − 1}. Denote by Kn the number of collisions before time n; i.e., Kn =∑n−1
t=0 It, where

It = 1{Ht=Rt} = {an+ bt ∈ [Rt, Rt + 1) ∪ [Rt + n,Rt + n+ 1)}. (3.3)
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By Lemma B.1.1, we have

P(Kn > 0) ≥ (E[Kn])2

E[K2
n]

. (3.4)

For any fixed b and t, the random variable (an+ bt) mod n is uniformly distributed
in [0, n). Therefore ban + btc mod n is uniform on {0, . . . , n − 1}, so P(It) = 1/n.
Thus,

E[Kn] =
n−1∑
t=0

P(It) = 1. (3.5)

Next, we estimate the second moment:

E
[
K2
n

]
= E

(n−1∑
t=0

It

)2
 = E[Kn] +

∑
t6=m

E[It ∩ Im]

= 1 + 2
n−1∑
t=0

n−t−1∑
j=1

P(It ∩ It+j) . (3.6)

To bound P(It ∩ It+j), observe that for any r, s, the relations an + bt ∈ [r, r + 1)
and an+ b(t+ j) ∈ [s, s+ 1) together imply that bj ∈ [s− r − 1, s− r + 1], so

P(an+ bt ∈ [r, r + 1) and an+ b(t+ j) ∈ [s, s+ 1))

≤ P(bj ∈ [s− r − 1, s− r + 1]) ·max
b
P(an+ bt ∈ [r, r + 1) | b) ≤ 2

j
· 1

n
.

Summing over r ∈ {Rt, n+Rt} and s ∈ {Rt+j , n+Rt+j}, we obtain

P(It ∩ It+j) ≤
8

jn
.

Plugging back into (3.6), we obtain

E
[
K2
n

]
≤ 1 + 2

n−1∑
t=0

n∑
j=1

8

jn
≤ C log n, (3.7)

for a positive constant C. Combining (3.5) and (3.7) using (3.4), we obtain

P(capture) = P(Kn > 0) ≥ 1

C log n
,

completing the proof of the proposition. �

3.3.3. The rabbit’s strategy. In this section we prove the upper bound in
Theorem 3.3.1 by constructing a randomized strategy for the rabbit. It is natural
for the rabbit to try to maximize the uncertainty the hunter has about his location.
Thus, he will choose a strategy in which, at each point in time, the probability
that he is at any particular location on the cycle is 1/n. With such a strategy, the
expected number of collisions of the hunter and the rabbit over the n steps is 1.
However, the rabbit’s goal is to ensure that the probability of collision is low; this
will be obtained by concentrating the collisions on a small number of paths.

As before, let Kt be the number of collisions during the first t time steps. As
a computational device, we will extend both players’ strategies to 2n steps. Since

E[K2n] ≥ E[K2n|Kn > 0] · P(Kn > 0)
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66 3. ZERO-SUM GAMES ON GRAPHS

and E[K2n] = 2, we have

P(Kn > 0) ≤ 2

E[K2n|Kn > 0]
. (3.8)

To keep P(Kn > 0) small, we will construct the rabbit’s strategy so that E[K2n|Kn > 0]
is large; that is, given that the rabbit and the hunter meet in the first n steps, the
expected number of meetings in 2n steps is large.

tim
e

space
Figure 3.11. The figure shows how the random walk determines Rt+1 from Rt.

space

(0,0)

(t,t)(-t,t)

(t,-t))(-t,-t)

(k,t)

tim
e

Figure 3.12. The figure shows a random walk escaping the 2t × 2t square.
Since the walk first hits the line y = t at position (k, t), at time t, the rabbit
is in position k.

The strategy is easiest to describe via the following thought experiment: Again,
draw the space-time integer lattice, where the y-coordinate represents time and the
x-position represents the position on the circle. We identify all the points (x+in, y)
for integer i. Suppose that at time t, the rabbit is at position Rt. Execute a simple
random walk on the 2D lattice starting at (x, y) = (Rt, t). At the next step, the
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3.3. A PURSUIT-EVASION GAME: HUNTER AND RABBIT∗ 67

rabbit jumps to Rt+1, where (Rt+1, t + 1) is the first point at which the random
walk hits the line y = t+ 1. See Figure 3.12.

Lemma 3.3.3. There is a constant c > 0 such that for all ` ∈ [−t, t]

P(Rt = (R0 + `) mod n) ≥ c

t
. (3.9)

(0,0)

Figure 3.13. The figure illustrates the reflection principle. The purple
(darker) path represents the random walk. The pink (lighter) line is the re-
flection of that path across the line x = k/2 starting from the first time the
random walk hits the line.

Proof. Let (R̃t, t) be the first point that a simple random walk starting at
(0, 0) hits on the line y = t. Let St be the square [−t, t]2. First, since a random
walk starting at (0, 0) is equally likely to exit this square on each of the four sides,
we have

P(random walk exits St on top) =
1

4
. (3.10)

(See Figure 3.12.) Therefore

t∑
k=−t

P
(
R̃t = k

)
≥ 1

4
. (3.11)

Next, we show that

P
(
R̃t = 0

)
≥ P

(
R̃t = k

)
(3.12)

for all k ∈ [−t, t]. First consider the case where k is even. An application of the
reflection principle (see Figure 3.13) shows that for each path from [0, 0] to [k, t]
there is another equally likely path from [0, 0] to [0, t]. To handle the case of k odd,
we extend our lattice by adding a mid-point along every edge. This slows down the
random walk, but does not change the distribution of R̃k and allows the reflection
argument to go through.
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Inequalities (3.11) and (3.12) together imply that

P
(
R̃t = 0

)
≥ 1

4(2t+ 1)
. (3.13)

To prove that there is a constant c such that

P
(
R̃t = k

)
≥ c

t
,

consider the smaller square from −k to k. With probability 1/4, the random walk
first hits the boundary of the square on the right side. If so, run the argument used
to show (3.13) starting from this hitting point. See Figure 3.14. �

tim
e

space

(k,k)

(k,-k)

(-k,k)

(-k,-k)

(0,0)

(k,t)

(k,r)

Figure 3.14. The figure shows a random walk escaping the 2k × 2k square.

Corollary 3.3.4. There is a constant c such that

E[K2n|Kn > 0] ≥ c log(n).

Proof. Suppose that the hunter and the rabbit both start out at position
(0, 0) together. Then the position of the hunter on the cycle at time t must be in
{−t, t}. The lemma then implies that the probability of a collision at time t is at
least c/t. Thus, in T steps, the expected number of collisions is at least c log(T ). Let
Ft denote the event that the hunter and the rabbit first collide at time t. Observing
that

∑
0≤t<n P(Ft|Kn > 0) = 1, we have

E[K2n|Kn > 0] =
∑

0≤t<n

E[K2n|Ft]P(Ft|Kn > 0)

≥
∑

0≤t<n

c log (2n− t)P(Ft|Kn > 0)

≥ c log n. �

Substituting the result of this corollary into (3.8) completes the proof of the
upper bound in Theorem 3.3.1.
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3.4. The Bomber and Battleship game

In this family of games, a battleship is initially located at the origin in Z.
At each time step in {0, 1, . . .}, the ship moves either left or right to a new site
where it remains until the next time step. The bomber (player I), who can see
the current location of the battleship (player II), drops one bomb at some time j
over some site in Z. The bomb arrives at time j + 2 and destroys the battleship if
it hits it. (The battleship cannot see the bomber or the bomb in time to change
course.) For the game Gn, the bomber has enough fuel to drop its bomb at any
time j ∈ {0, 1, . . . , n}. What is the value of the game?

Exercise 3.b. (i) Show that the value of G0 is 1/3. (ii) Show that the value
of G1 is also 1/3. (iii) Show that the value of G2 is greater than 1/3.

-3

time 1

time 2

time 3

-2 -1 0 1 2 3

Figure 3.15. The bomber drops her bomb where she hopes the battleship
will be two time units later. In the picture the bomber is at position 1 at
time 1 and drops a bomb. The battleship does not see the bomb coming and
randomizes his path to avoid the bomb, but if he is at position 1 at time 3,
he will be hit.

Consider the following p-reversal strategy for Gn. On the first move, go left
with probability p and right with probability 1 − p. From then on, at each step
reverse direction with probability 1− p and keep going with probability p.

The battleship chooses p to maximize the probability of survival. Its probabil-
ities of arrival at sites −2, 0, or 2 at time 2 are p2, 1− p, and p(1− p). Thus, p will
be chosen so that max{p2, 1 − p} is minimized. This is attained when p2 = 1 − p,
whose solution in (0, 1) is given by p = 2/(1+

√
5). For any time j that the bomber

chooses to drop a bomb, the battleship’s relative position two time steps later has
the same distribution. Therefore, the payoff for the bomber against this strategy
is at most 1 − p, so v(Gn) ≤ 1 − p for every n. While there is no value of n for
which the p-reversal strategy is optimal in Gn, it is asymptotically optimal, i.e.
limn→∞ v(Gn) = 1− p = (

√
5− 1)/(

√
5 + 1). See the notes.

Notes

A generalization of the Troll and Traveler game from §3.1.1 can be played on an
arbitrary (not necessarily series-parallel) undirected graph with two distinguished vertices
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70 3. ZERO-SUM GAMES ON GRAPHS

s and t: If the troll and the traveler traverse an edge in the same direction, the traveler
pays the cost of the road to the troll, whereas if they traverse a road in opposite directions,
then the troll pays the cost of the road to the traveler. If we interpret the cost of each
road e as an edge resistance Re, then the value of the game turns out to be the effective
resistance between s and t: There is a unique unit flow F from s to t (called the unit
current flow) that satisfies the cycle law

∑
eReFe = 0 along any directed cycle. This flow

can be decomposed into a convex combination of path flows from s to t. Let pγ be the
weight for path γ in this convex combination. Then an optimal strategy for each player
is to choose γ with probability pγ . For more details on effective resistance and current
flows, see, e.g., [DS84, LPW09].

The Hide and Seek game in §3.2 comes from [vN53]. The theory of maximum matching
and minimum covers in §3.2.1 was first developed by Frobenius [Fro17] and König [Kön31],
and rediscovered by Hall [Hal35]. For a detailed history, see Section 16.7h in Schri-
jver [Sch03], and for a detailed exposition of these topics, see, e.g., [LP09a, vLW01, Sch03].

As noted in §3.3, the Hunter and Rabbit game discussed there was first analyzed
in [ARS+03]; our exposition follows verbatim the paper [BPP+14].

An interesting open problem is whether there is a hunter strategy that captures a
weak rabbit (that can only jump to adjacent nodes) in n steps with constant probability
on any n vertex graph.

The Hunter and Rabbit game is an example of a search game. These games are the
subject of the book [AG03]. See also the classic [Isa65].

The Bomber and Battleship game of §3.4 was proposed by R. Isaacs [Isa55], who de-
vised the battleship strategy discussed in the text. The value of the game was determined
by Dubins [Dub57] and Karlin [Kar57].

Exercise 3.5 is from Kleinberg and Tardos [KT06]. Exercise 3.4 is from [vN53].

Exercises

3.1. Solve Troll and Traveler on the graph in Figure 3.16 assuming that the toll
on each edge is 1.

Figure 3.16. A series-parallel graph.

3.2. Prove that every k-regular bipartite graph has a perfect matching. (A bi-
partite graph is k-regular if it is n×n, and each vertex has exactly k edges
incident to it.)
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3.3. Let M be the 0-1 matrix corresponding to a bipartite graph G. Show that
if there is no perfect matching in M , then there is a set I of rows of M and
a set J of columns of M such that |I|+ |J | > n and there is no edge from
I to J .

3.4. Birkhoff-von Neumann Theorem: Prove that every doubly stochastic
n× n matrix is a convex combination of permutation matrices.
Hint: Use Hall’s Marriage Theorem and induction on the number of nonzero
entries.

3.5. Let G be an n × n bipartite graph, where vertices on one side correspond
to actors, vertices on the other side correspond to actresses, and there
is an edge between actor i and actress j if they have starred in a movie
together. Consider a game where the players alternate naming names, with
player I naming an actor i from the left side of the graph, then player II
naming an actress j that has starred with i from the right side, then player
I naming an actor i′ from the left side that has starred with j, and so on.
No repetition of names is allowed. The player who cannot respond with
a new name loses the game. For an example, see Figure 3.17. Show that
II has a winning strategy if the graph G has a perfect matching, and I
has a winning strategy otherwise. Hint: Player I’s winning strategy in the
latter case is to find a maximum matching in the graph, and then begin by
naming an actor that is not in that maximum matching.

Nicole Kidman

Johnny Depp

Brad Pitt

Tom Cruise

Angelina Jolie

Penelope Cruz

Figure 3.17. In this game, if player I names Johnny Depp, then player II
must name either Angelina Jolie or Penelope Cruz. In the latter case, player
I must then name Tom Cruise, and player II must name Nicole Kidman. At
this point, player I cannot name a new actor and loses the game.

3.6. Show that the Sweep strategy described in §3.3 guarantees the hunter a
probability of capture Ω(1/

√
n) against any rabbit strategy. Hint: Project

the space-time path of the rabbit on both diagonals. One of these projec-
tions must have size Ω(

√
n).

3.7. Prove that the following hunter strategy also guarantees probability of cap-
ture Ω(1/ log(n)). Pick a uniform u ∈ [0, 1] and a random starting point.
At each step, walk to the right with probability u, and stay in place other-
wise.
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3.8. Suppose that the Hunter and Rabbit game runs indefinitely. Consider the
zero-sum game in which the gain to the rabbit is the time until he is cap-
tured. Show that the hunter has a strategy guaranteeing that the expected
capture time is O(n log n) and that the rabbit has a strategy guaranteeing
that the expected capture time is is Ω(n log n).

3.9. Consider the Hunter and Rabbit game on an arbitrary undirected n-vertex
graph G. Show that there is a hunter strategy guaranteeing that

P(capture in n steps) ≥ c

log n
,

where c > 0 is an absolute constant. Hint: Construct a spanning tree of
the graph and then reduce to the cycle case by traversing the spanning tree
in a depth-first order.

3.10.* Show that for the Hunter and Rabbit game on a
√
n×
√
n grid,

P(capture in n steps) ≥ c > 0

for some hunter strategy. Hint: Random direction, random speed.

3.11. Show that a weak rabbit that can only jump to adjacent nodes will be
caught in n steps on the n-cycle with probability at least c > 0 by a sweep-
ing hunter.

3.12. A pirate hides a treasure somewhere on a circular desert island of radius r.
The police fly across the island k times in a straight path. They will locate
the treasure (and win the game) if their path comes within distance w of it.
See Figure 3.18. Find the value of the game and some optimal strategies.
Hint: Archimedes showed that the surface area on a sphere in R3 that lies
between two parallel planes that intersect the sphere is proportional to the
distance between the planes. Verify this (if you are so inclined) and use it
to construct an optimal strategy for the thief.

3.13. Set up the payoff matrix for the Bomber and Battleship game from §3.4
and find the value of the game G2.
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w
w

w

Figure 3.18. Plane criss-crossing a desert island.
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CHAPTER 4

General-sum games

We now turn to the theory of general-sum games. Such a game is specified
by two matrices A = (aij) and B = (bij). If player I chooses action i and player II
chooses action j, their payoffs are aij and bij , respectively. In contrast to zero-sum
games, there is no reasonable definition of “optimal strategies”. Safety strategies
still exist, but they no longer correspond to equilibria. The most important notion
is that of a Nash equilibrium, i.e., a pair of strategies, one per player, such that
each is a best response to the other. General-sum games and the notion of Nash
equilibrium extend naturally to more than two players.

4.1. Some examples

Example 4.1.1 (Prisoner’s Dilemma). Two suspects are imprisoned by the
police who ask each of them to confess. The charge is serious, but there is not
enough evidence to convict. Separately, each prisoner is offered the following plea
deal. If he confesses and the other prisoner remains silent, the confessor goes free,
and his confession is used to sentence the other prisoner to ten years in jail. If both
confess, they will both spend eight years in jail. If both remain silent, the sentence
is one year to each for the minor crime that can be proved without additional
evidence.

Figure 4.1. Two prisoners considering whether to confess or remain silent.
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The following matrix summarizes the payoffs, where negative numbers represent
years in jail, and an entry (−10, 0) means payoff −10 to prisoner I and 0 to prisoner
II.

prisoner II
silent confess

p
ri

so
n

er
I

silent (−1,−1) (−10, 0)
confess (0,−10) (−8,−8)

In this game, the prisoners are better off if both of them remain silent than they are
if both of them confess. However, the two prisoners select their actions separately,
and for each possible action of one prisoner, the other is better off confessing; i.e.,
confessing is a dominant strategy.

The same phenomenon occurs even if the players play this game a fixed number
of times. This can be shown by a backwards induction argument. (See Exercise 4.4.)
However, as we shall see in §6.4, if the game is played repeatedly, but play ends at
a random time, then the mutually preferable solution may become an equilibrium.

Example 4.1.2 (Stag Hunt). Two hunters are following a stag when a hare
runs by. Each hunter has to make a split-second decision: to chase the hare or to
continue tracking the stag. The hunters must cooperate to catch the stag, but each
hunter can catch the hare on his own. (If they both go for the hare, they share it.)
A stag is worth four times as much as a hare. This leads to the following payoff
matrix

Hunter II
Stag (S) Hare (H)

H
u

n
te

r
I Stag (S) (4, 4) (0, 2)

Hare (H) (2, 0) (1, 1)

What are good strategies for the hunters? We begin by considering safety
strategies.1 For each player, H is the unique safety strategy and yields a payoff of
1. The strategy pair (H, H) is also a pure Nash equilibrium, since given the choice
by the other hunter to pursue a hare, a hunter has no incentive to continue tracking
the stag. There is another pure Nash equilibrium, (S, S), which yields both players
a payoff of 4. Finally, there is a mixed Nash equilibrium, in which each player
selects S with probability 1/3. This results in an expected payoff of 4/3 to each
player.

This example illustrates a phenomenon that doesn’t arise in zero-sum games:
a multiplicity of equilibria with different expected payoffs to the players.

Example 4.1.3 (War and Peace). Two countries in conflict have to decide
between diplomacy and military action. One possible payoff matrix is:

Firm II
diplomacy attack

F
ir

m
I diplomacy (2, 2) (-2, 0)

attack (0, -2) (-1, -1)

1 A safety strategy for player I is defined as in Definition 2.2.1. For player II the same
definition applies with the payoff matrix B replacing A.
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Figure 4.2. Stag Hunt.

Like Stag Hunt, this game has two pure Nash equilibria, where one arises from
safety strategies, and the other yields higher payoffs. In fact, this payoff matrix is
the Stag Hunt matrix, with all payoffs reduced by 2.

Example 4.1.4 (Driver and Parking Inspector). Player I is choosing be-
tween parking in a convenient but illegal parking spot (payoff 10 if she’s not caught)
and parking in a legal but inconvenient spot (payoff 0). If she parks illegally and is
caught, she will pay a hefty fine (payoff −90). Player II, the inspector representing
the city, needs to decide whether to check for illegal parking. There is a small cost
(payoff −1) to inspecting. However, there is a greater cost to the city if player I has
parked illegally since that can disrupt traffic (payoff −10). This cost is partially
mitigated if the inspector catches the offender (payoff −6).

The resulting payoff matrix is the following:

Inspector
Don’t Inspect Inspect

D
ri

ve
r Legal (0, 0) (0,−1)
Illegal (10,−10) (−90,−6)

In this game, the safety strategy for the driver is to park legally (guaranteeing
her a payoff of 0), and the safety strategy for the inspector is to inspect (guarantee-
ing him/the city a payoff of −6). However, the strategy pair (legal, inspect) is not
a Nash equilibrium. Indeed, knowing the driver is parking legally, the inspector’s
best response is not to inspect. It is easy to check that this game has no Nash
equilibrium in which either player uses a pure strategy.

There is, however, a mixed Nash equilibrium. Suppose that the strategy pair
(x, 1 − x) for the driver and (y, 1 − y) for the inspector is a Nash equilibrium. If
0 < y < 1, then both possible actions of the inspector must yield him the same
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payoff. If, for instance, inspecting yielded a higher payoff, then (0, 1) would be
a better strategy than (y, 1 − y). Thus, −10(1 − x) = −x − 6(1 − x). Similarly,
0 < x < 1 implies that 0 = 10y − 90(1 − y). These equations yield x = 0.8 (the
driver parks legally with probability 0.8 and obtains an expected payoff of 0) and
y = 0.9 (the inspector inspects with probability 0.1 and obtains an expected payoff
of −2).

4.2. Nash equilibria

A two-person general-sum game can be represented by a pair2 of m×n payoff
matrices A = (aij) and B = (bij), whose rows are indexed by the m possible
actions of player I and whose columns are indexed by the n possible actions of
player II. Player I selects an action i and player II selects an action j, each unaware
of the other’s selection. Their selections are then revealed and player I receives a
payoff of aij and player II receives a payoff of bij .

A mixed strategy for player I is determined by a vector (x1, . . . , xm)T where
xi represents the probability that player I plays action i and a mixed strategy for
player II is determined by a vector (y1, . . . , yn)T where yj is the probability that
player II plays action j. A mixed strategy in which a particular action is played
with probability 1 is called a pure strategy.

Definition 4.2.1 (Nash equilibrium). A pair of mixed strategy vectors
(x∗,y∗) with x∗ ∈ ∆m (where ∆m = {x ∈ Rm : xi ≥ 0,

∑m
i=1 xi = 1}) and y∗ ∈ ∆n

is a Nash equilibrium if no player gains by unilaterally deviating from it. That
is,

(x∗)TAy∗ ≥ xTAy∗

for all x ∈ ∆m and

(x∗)TBy∗ ≥ (x∗)TBy

for all y ∈ ∆n.
The game is called symmetric ifm = n and ai,j = bj,i for all i, j ∈ {1, 2, . . . , n}.

A pair (x,y) of strategies in ∆n is called symmetric if xi = yi for all i = 1, . . . , n.

One reason that Nash equilibria are important is that any strategy profile that
is not a Nash equilibrium is, by definition, unstable: There is always at least one
player who prefers to switch strategies. We will see that there always exists a Nash
equilibrium; however, there can be many of them, and they may yield different
payoffs to the players. Thus, Nash equilibria do not have the predictive power in
general-sum games that safety strategies have in zero-sum games. See the notes for
a discussion of critiques of Nash equilibria.

Example 4.2.2 (Cheetahs and Antelopes). Two cheetahs are chasing a pair
of antelopes, one large and one small. Each cheetah has two possible strategies:
Chase the large antelope (L) or chase the small antelope (S). The cheetahs will
catch any antelope they choose, but if they choose the same one, they must share
the spoils. Otherwise, the catch is unshared. The large antelope is worth ` and the
small one is worth s. Here is the payoff matrix:

2 In examples, we write one matrix whose entries are pairs (aij , bij).
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cheetah II
L S

ch
ee

ta
h

I

L (`/2, `/2) (`, s)
S (s, `) (s/2, s/2)

Figure 4.3. Cheetahs deciding whether to chase the large or the small antelope.

If the larger antelope is worth at least twice as much as the smaller (` ≥ 2s),
then strategy L dominates strategy S. Hence each cheetah should just chase the
larger antelope. If s < ` < 2s, then there are two pure Nash equilibria, (L, S) and
(S,L). These pay off quite well for both cheetahs — but how would two healthy
cheetahs agree which should chase the smaller antelope? Therefore it makes sense
to look for symmetric mixed equilibria.

If the first cheetah chases the large antelope with probability x, then the ex-
pected payoff to the second cheetah from chasing the larger antelope is

L(x) =
`

2
x+ (1− x)`,

and the expected payoff from chasing the smaller antelope is

S(x) = xs+ (1− x)
s

2
.

These expected payoffs are equal when

x = x∗ :=
2`− s
`+ s

. (4.1)

For any other value of x, the second cheetah would prefer either the pure strategy
L or the pure strategy S, and then the first cheetah would do better by simply
playing pure strategy S or pure strategy L. But if both cheetahs chase the large
antelope with probability x∗ in (4.1), then neither has an incentive to deviate, so
this is a (symmetric) Nash equilibrium.

There is a fascinating connection between symmetric mixed Nash equilibria in
games such as this and equilibria in biological populations. Consider a population
of cheetahs, and suppose a fraction x of them are greedy (i.e., play strategy L).
Each time a cheetah plays this game, he plays it against a random cheetah in the
population. Then a greedy cheetah obtains an expected payoff of L(x), whereas a
nongreedy cheetah obtains an expected payoff of S(x). If x > x∗, then S(x) > L(x)
and nongreedy cheetahs have an advantage over greedy cheetahs. On the other
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15
7

cheetah 1 chases large antelope

behavior of nongreedy

behavior of greedy

Figure 4.4. L(x) (respectively, S(x)) is the payoff to cheetah II from chasing
the large antelope worth ` = 8 (respectively, the small antelope worth s = 6).

hand, if x < x∗, greedy cheetahs have an advantage. See Figure 4.4. Altogether,
the population seems to be pushed by evolution towards the symmetric mixed
Nash equilibrium (x∗, 1− x∗). Indeed, such phenomena have been observed in real
biological systems. The related notion of an evolutionarily stable strategy is
formalized in §7.1.

Example 4.2.3 (Chicken). Two drivers speed head-on toward each other and
a collision is bound to occur unless one of them chickens out and swerves at the
last minute. If both swerve, everything is OK (in this case, they both get a payoff
of 1). If one chickens out and swerves, but the other does not, then it is a great
success for the player with iron nerves (yielding a payoff of 2) and a great disgrace
for the chicken (a penalty of 1). If both players have iron nerves, disaster strikes
(and both incur a large penalty M).

player II
Swerve (S) Drive (D)

p
la

ye
r

I

Swerve (S) (1, 1) (−1, 2)
Drive (D) (2, −1) (−M , −M)

There are two pure Nash equilibria in this game, (S,D) and (D,S): if one
player knows with certainty that the other will drive on (respectively, swerve), that
player is better off swerving (respectively, driving on).

To determine the mixed equilibria, suppose that player I plays S with probabil-
ity x and D with probability 1−x. This presents player II with expected payoffs of
x+ (1−x) · (−1), i.e., 2x−1 if he plays S, and 2x+ (1−x) · (−M) = (M + 2)x−M
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Figure 4.5. The game of Chicken.

if he plays D. We seek an equilibrium where player II has positive probability on
each of S and D. Thus,

2x− 1 = (M + 2)x−M ; i.e., x = 1− 1

M
.

The resulting payoff for player II is 2x− 1 = 1− 2/M .

Remarks 4.2.4.

(1) Even though both payoff matrices decrease asM increases, the equilibrium
payoffs increase. This contrasts with zero sum games where decreasing a
player’s payoff matrix can only lower her expected payoff in equilibrium.

(2) The payoff for a player is lower in the symmetric Nash equilibrium than it
is in the pure equilibrium where that player plays D and the other plays
S. One way for a player to ensure3 that the higher payoff asymmetric
Nash equilibrium is reached is to irrevocably commit to the strategy D,
for example, by ripping out the steering wheel and throwing it out of the
car. In this way, it becomes impossible for him to chicken out, and if the
other player sees this and believes her eyes, then she has no other choice
but to chicken out.

In a number of games, making this kind of binding commitment
pushes the game into a pure Nash equilibrium, and the nature of that
equilibrium strongly depends on who managed to commit first. Here, the
payoff for the player who did not make the commitment is lower than the
payoff in the unique mixed Nash equilibrium, while in some games it is
higher (e.g., see the Battle of the Sexes in §7.2).

(3) An amusing real-life example of commitments in a different game4 arises
in a certain narrow two-way street in Jerusalem. Only one car at a time

3 This assumes rationality of the other player – a dubious assumption for people who play

Chicken.
4 See War of Attrition in §14.4.3.
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Figure 4.6. Ripping out the steering wheel is a binding commitment in Chicken.

can pass. If two cars headed in opposite directions meet in the street,
the driver that can signal to the opponent that he will not yield will
convincingly force the other to back out. Some drivers carry a newspaper
with them, which they can strategically pull out to signal that they are
not in a rush.

Figure 4.7. A driver signaling that he has all the time in the world.

4.3. General-sum games with more than two players

We now consider general-sum games with more than two players and generalize
the notion of Nash equilibrium to this setting. Each player i has a set Si of pure
strategies. We are given payoff or utility functions ui : S1 × S2 × · · · × Sk → R,
for each player i, where i ∈ {1, . . . , k}. If player j plays strategy sj ∈ Sj for each
j ∈ {1, . . . , k}, then player i has a payoff or utility of ui(s1, . . . , sk).

Example 4.3.1 (One Hundred Gnus and a Lioness). A lioness is chasing
one hundred gnus. It seems clear that if the gnus cooperated, they could chase the
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lioness away, but typically they do not. Indeed, for all the gnus to run away is a
Nash equilibrium, since it would be suicidal for just one of them to confront the
lioness. On the other hand, cooperating to attack the lioness is not an equilibrium,
since an individual gnu would be better off letting the other ninety-nine attack.

Figure 4.8. One Hundred Gnus and a Lioness.

Example 4.3.2 (Pollution game). Three firms will either pollute a lake in
the following year or purify it. They pay 1 unit to purify, but it is free to pollute.
If two or more pollute, then the water in the lake is useless, and each firm must
pay 3 units to obtain the water that they need from elsewhere. If at most one firm
pollutes, then the water is usable, and the firms incur no further costs.

If firm III purifies, the cost matrix (cost = − payoff) is

firm II
purify pollute

fi
rm

I purify (1,1,1) (1,0,1)
pollute (0,1,1) (3,3,4)

If firm III pollutes, then it is

firm II
purify pollute

fi
rm

I purify (1,1,0) (4,3,3)
pollute (3,4,3) (3,3,3)
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Figure 4.9. Three firms deciding whether or pollute a lake or not.

To discuss the game, we generalize the notion of Nash equilibrium to games
with more players.

Definition 4.3.3. For a vector s = (s1, . . . , sn), we use s−i to denote the
vector obtained by excluding si; i.e.,

s−i = (s1, . . . , si−1, si+1, . . . , sn).

We interchangeably refer to the full vector (s1, . . . , sn) as either s, or, slightly
abusing notation, (si, s−i).

Definition 4.3.4. A pure Nash equilibrium in a k-player game is a sequence
of pure strategies (s∗1, . . . , s

∗
k) ∈ S1×· · ·×Sk such that for each player j ∈ {1, . . . , k}

and each sj ∈ Sj , we have

uj(s
∗
j , s
∗
−j) ≥ uj(sj , s∗−j).

In other words, for each player j, his selected strategy s∗j is a bestresponse to the
selected strategies s∗−j of the other players.

Definition 4.3.5. A (mixed) strategy profile in a k-player game is a se-
quence (x1, . . . ,xk), where xj ∈ ∆|Sj | is a mixed strategy for player j. A mixed
Nash equilibrium is a strategy profile (x∗1, . . . ,x

∗
k) such that for each player

j ∈ {1, . . . , k} and each probability vector xj ∈ ∆|Sj |, we have

uj(x
∗
j ,x
∗
−j) ≥ uj(xj ,x∗−j).

Here

uj(x1,x2, . . . ,xk) :=
∑

s1∈S1,...,sk∈Sk

x1(s1) · · ·xk(sk)uj(s1, . . . , sk),

where xi(s) is the probability that player i assigns to pure strategy s in the mixed
strategy xi.

We will prove the following result in §5.1.
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Theorem 4.3.6 (Nash’s Theorem). Every finite general-sum game has a
Nash equilibrium.

For determining Nash equilibria in (small) games, the following lemma (which
we have already applied several times) is useful.

Lemma 4.3.7. Consider a k-player game where xi is the mixed strategy of player
i. For each i, let Ti = {s ∈ Si | xi(s) > 0}. Then (x1, . . . ,xk) is a Nash equilibrium
if and only if for each i, there is a constant ci such that 5

∀si ∈ Ti ui(si,x−i) = ci and ∀si 6∈ Ti ui(si,x−i) ≤ ci.

Exercise 4.a. Prove Lemma 4.3.7.

Remark 4.3.8. Lemma 4.3.7 extends the equivalence (i) ↔ (ii) of Proposi-
tion 2.5.3.

Returning to the Pollution game, it is easy to check that there are two pure
equilibria. The first consists of all three firms polluting, resulting in a cost of 3 to
each player, and the second consists of two firms purifying (at cost 1 each) and one
firm polluting (at no cost). The symmetric polluting equilibrium is an example of
the Tragedy of the Commons 6: All three firms would prefer any of the asymmetric
equilibria, but cannot unilaterally transition to these equilibria.

Next we consider mixed strategies. First, observe that if player III purifies,
then it is a best response for each of player I and II to purify with probability 2/3
and pollute with probability 1/3. Conversely, it is a best response for player III to
purify, since his cost is 1·8/9+4·1/9 = 12/9 for purifying, but 0·4/9+3·5/9 = 15/9
for polluting. Similarly, there are Nash equilibria where player I (resp. player II)
purifies and the other two mix in the proportions (2/3, 1/3).

Finally, we turn to fully mixed strategies. Suppose that player i’s strategy is
xi = (pi, 1 − pi) (that is, i purifies with probability pi). It follows from Lemma
4.3.7 that these strategies are a Nash equilibrium with 0 < pi < 1, if and only if

ui(purify,x−i) = ui(pollute,x−i).

Thus, if 0 < p1 < 1, then

p2p3 + p2(1− p3)+p3(1− p2) + 4(1− p2)(1− p3)

= 3p2(1− p3) + 3p3(1− p2) + 3(1− p2)(1− p3),

or, equivalently,
1 = 3(p2 + p3 − 2p2p3). (4.2)

Similarly, if 0 < p2 < 1, then

1 = 3(p1 + p3 − 2p1p3), (4.3)

and if 0 < p3 < 1, then
1 = 3(p1 + p2 − 2p1p2). (4.4)

Subtracting (4.3) from (4.4), we get 0 = 3(p2 − p3)(1 − 2p1). This means that
if all three firms use mixed strategies, then either p2 = p3 or p1 = 1/2. In the
first case (p2 = p3), equation (4.2) becomes quadratic in p2, with two solutions

5 The notation (si,x−i) is an abbreviation where we identify the pure strategy si with the

probability vector 1si that assigns si probability 1.
6 In games of this type, individuals acting in their own self-interest deplete a shared resource,

(in this case, clean water) thereby making everybody worse off. See also Example 4.5.1.
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p2 = p3 = (3 ±
√

3)/6, both in (0, 1). Substituting these solutions into the other
equations yields p1 = p2 = p3, resulting in two symmetric mixed equilibria. If,
instead of p2 = p3, we let p1 = 1/2, then (4.3) becomes 1 = 3/2, which is nonsense.
This means that there is no asymmetric equilibrium with three mixed (non-pure)
strategies. One can also check that there is no equilibrium with two pure and
one non-pure strategy. Thus the set of Nash equilibria consists of one symmetric
and three asymmetric pure equilibria, three equilibria where one player has a pure
strategy and the other two play the same mixed strategy, and two symmetric mixed
equilibria.

The most reasonable interpretation of the symmetric mixed strategies involves
population averages, as in Example 4.2.2. If p denotes the fraction of firms that
purify, then the only stable values of p are (3±

√
3)/6, as shown in Exercise 4.15.

4.3.1. Symmetric games. With the exception of Example 4.1.4, all of the
games in this chapter so far are symmetric. Indeed, they are unchanged by any
relabeling of the players. Here is a game with more restricted symmetry.

Example 4.3.9 (Location-sensitive Pollution). Four firms are located around
a lake. Each one chooses to pollute or purify. It costs 1 unit to purify, but it is
free to pollute. But if a firm i and its two neighbors i± 1(mod 4) pollute, then the
water is unusable to i and ui = −3.

This game is symmetric under rotation. In particular, u1(s1, s2, s3, s4) =
u2(s4, s1, s2, s3). Consequently, u1(s,x,x,x) = u2(x, s,x,x) for all pure strategies
s and mixed strategies x.

This motivates the following general definition.

Definition 4.3.10. Suppose that all players in a k-player game have the same
set of pure strategies S. Denote by uj(s; x) the utility of player j when he plays
pure strategy s ∈ S and all other players play the mixed strategy x. We say the
game is symmetric if

ui(s; x) = uj(s; x)

for every pair of players i, j, pure strategy s, and mixed strategy x.

We will prove the following proposition in §5.1.

Proposition 4.3.11. In a symmetric game, there is a symmetric Nash equi-
librium (where all players use the same strategy).

4.4. Potential games

In this section, we consider a class of games that always have a pure Nash
equilibrium. Moreover, we shall see that a Nash equilibrium in such a game can be
reached by a series of best-response moves. We begin with an example.

Example 4.4.1 (Congestion Game). There is a road network with R roads
and k drivers, where the jth driver wishes to drive from point sj to point tj . Each
driver, say the jth, chooses a path Pj from sj to tj and incurs a cost or latency due
to the congestion on the path selected.

This cost is determined as follows. Suppose that the paths selected by the k
drivers are P = (P1, P2, . . . , Pk). For each road r, let nr(P) be the number of
drivers j that use r; i.e., r is on Pj . Denote by cr(n) the cost incurred by a driver
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using road r when n drivers use that road. The total cost incurred by driver i
taking path Pi is the sum of the costs on the roads he uses; i.e.,

costi(P) =
∑
r∈Pi

cr(nr(P)).

Imagine adding the players one at a time and looking at the cost each player
incurs at the moment he is added. We claim that the sum of these quantities7 is

φ(P) :=
R∑
r=1

nr(P)∑
`=1

cr(`). (4.5)

Indeed, if player i is the last one to be added, the claim follows by induction from
the identity

φ(P) = φ(P−i) + costi(P) (4.6)

Moreover, φ(P) does not depend on the order in which the players are added, and
(4.6) holds for all i. Thus, any player can be viewed as the last player.

Corollary 4.4.2. Let φ be defined by (4.5). Fix a strategy profile P =
(P1, . . . , Pk). If player i switches from path Pi to an alternative path P ′i , then
the change in the value of φ equals the change in the cost he incurs:

φ(P ′i ,P−i)− φ(P) = costi(P
′
i ,P−i)− costi(P). (4.7)

(See Figure 4.10.)

We call φ a potential function for this congestion game. Corollary 4.4.2 implies
that the game has a pure Nash equilibrium: If P minimizes φ, then it is a Nash
equilibrium, since costi(P

′
i ,P−i)− costi(P) ≥ 0.

a b

c

a b

c

Figure 4.10. In this example, the cost is the same on all three roads, and is
c(n) if the number of drivers is n. The figure shows the potential φ before and
after the player going from c to b switches from the direct path to the indirect
path through a. The change in potential is the change in cost experienced by
this player.

7 Note that φ(P) is not the total cost incurred by the players.
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4.4.1. The general notion. The congestion game we just saw is an example
of a potential game. More generally, consider a k-player game, in which player j’s
strategy space is the finite set Sj . Let ui(s1, s2, . . . , sk) denote the payoff to player
i when player j plays strategy sj for each j ∈ {1, . . . , k}. In a potential game, there
is a function ψ : S1 × · · · × Sk → R such that for each i and s−i ∈ S−i

ψ
(
si, s−i

)
− ui

(
si, s−i

)
is independent of si. (4.8)

Equivalently, for each i, si, s̃i ∈ Si and s−i ∈ S−i
ψ
(
s̃i, s−i

)
− ψ

(
si, s−i

)
= ui

(
s̃i, s−i

)
− ui

(
si, s−i

)
. (4.9)

We call the function ψ a potential function associated with the game.

Claim 4.4.3. Every potential game has a Nash equilibrium in pure strategies.

Proof. The set S1 × · · · × Sk is finite, so there exists some s that maximizes
ψ(s). Note that for this s, the expression on the right-hand side in (4.9) is at most
zero for any i ∈ {1, . . . , k} and any choice of s̃i. This implies that s is a Nash
equilibrium. �

Remark 4.4.4. Clearly, it suffices that s is a local maximum; i.e., for all i and
s′i,

ψ
(
s) ≥ ψ

(
s′i, s−i

)
.

In Example 4.4.1 the game was more naturally described in terms of agents
trying to minimize their costs; i.e.

ui(s) = −costi(s).

In potential games with costs, as we saw above, it is more convenient to have
the potential function decrease as the cost of each agent decreases. Thus, φ =
−ψ is a potential for a game with given cost functions if ψ is a potential for the
corresponding utilities ui.

Remark 4.4.5. If a function ψ is defined for strategy profiles of k − 1 as well
as k players and satisfies

ψ(s) = ψ(s−i) + ui(s) ∀s ∀i, (4.10)

then ψ is a potential function; i.e., (4.9) holds. Note that this held in congestion
games. In fact, every potential function has such an extension. See Exercise 4.19.
This suggests a recipe for constructing potential functions in games which are well-
defined for any number of players: Let players join the game one at a time and add
the utility of each player when he joins.

4.4.1.1. Repeated play dynamics. Consider a set of k players repeatedly playing
a game starting with some initial strategy profile. In each step, exactly one player
changes strategy and (strictly) improves his payoff. When no such improvement
is possible, the process stops and the strategy profile reached must be a Nash
equilibrium. In general, such a process might continue indefinitely, e.g., Rock,
Paper, Scissors.

Proposition 4.4.6. In a potential game, the repeated play dynamics above
terminate in a Nash equilibrium.
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Proof. Equation (4.9) implies that in each improving move, the utility of the
player that switches actions and the potential ψ increase by the same amount.
Since there are finitely many strategy profiles s, and in each improving move ψ(s)
increases, at some point a (local) maximum is reached and no player can increase
his utility by switching strategies. In other words, a Nash equilibrium is reached.

�

In the important special case where each player chooses his best improving
move, the repeated play process above is called best-response dynamics.

4.4.2. Additional examples.

Example 4.4.7 (Consensus). Consider a finite undirected graph G = (V,E).
In this game, each vertex {1, . . . , n} ∈ V is a player, and her action consists of
choosing a bit in {0, 1}. We represent vertex i’s choice by bi ∈ {0, 1}. Let N(i) be
the set of neighbors of i in G and write b = (b1, . . . , bn). The loss Di(b) for player
i is the number of neighbors that she disagrees with; i.e.,

Di(b) =
∑

j∈N(i)

|bi − bj |.

For example, the graph could represent a social network for a set of people, each
deciding whether to go to Roxy or Hush (two nightclubs); each person wants to go
to the club where most of his or her friends will be partying.

We define φ(b) = 1
2

∑
iDi(b) and observe that this counts precisely the number

of edges on which there is a disagreement. This implies that φ(·) is a potential func-
tion for this game. Indeed, if we define φ(b−i) to be the number of disagreements
on edges excluding i, then φ(b) = φ(b−i) +Di(b). Therefore, a series of improving
moves, where exactly one player moves in each round, terminates in a pure Nash
equilibrium. Two of the Nash equilibria are when all players are in agreement, but
in some graphs there are other equilibria.

0 1

0 1

10

Figure 4.11. This is a Nash equilibrium in the Consensus game.

Now consider what happens when all players that would improve their payoff by
switching their bit, do so simultaneously. In this case, the process might continue
indefinitely. However, it will converge to a cycle of period at most two; i.e., it
either stabilizes or alternates between two bit vectors. To see this, suppose that
the strategy profile at time t is bt = (bt1, b

t
2, . . . , b

t
n). Let

ft =
∑
i

∑
j∈N(i)

|bti − bt−1
j |.

Observe that ∑
j∈N(i)

|bt+1
i − btj | ≤

∑
j∈N(i)

|bt−1
i − btj |
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since bt+1
i is chosen at time t+ 1 to minimize the left hand side. Moreover, equality

holds only if bt+1
i = bt−1

i . Summing over i shows that ft+1 ≤ ft. Thus, when ft
reaches its minimum, we must have bt+1

i = bt−1
i for all i.

Remark 4.4.8. To prove that a game has a pure Nash equilibrium that is
reached by a finite sequence of improving moves, it suffices to find a generalized
potential function, i.e., a function ψ : S1 × · · · × Sk → R such that for each i and
s−i ∈ S−i

sgn
(
ψ
(
s̃i, s−i

)
− ψ

(
si, s−i

))
= sgn

(
ui
(
s̃i, s−i

)
− ui

(
si, s−i

))
(4.11)

for all si, s̃i ∈ Si, where sgn(x) = x/|x| if x 6= 0 and sgn(0) = 0.

Example 4.4.9 (Graph Coloring). Consider an arbitrary undirected graph
G = (V,E) on n vertices. In this game, each vertex vi ∈ V is a player, and its
possible actions consist of choosing a color si from the set [n] := {1, . . . , n}. For
any color c, define

nc(s) = number of vertices with color c when players color according to s.

The payoff of a vertex vj (with color sj) is equal to the number of other vertices
with the same color if vj ’s color is different from that of its neighbors, and it is 0
otherwise; i.e.,

uj(s) =

{
nsj (s) if no neighbor of vj has the same color as vj ,

0 otherwise.

For example, the graph could represent a social network, where each girl wants to
wear the most popular dress (color) that none of her friends have.

Figure 4.12. A social network.

Consider a series of moves in which one player at a time makes a best-response
move. Then as soon as every player who has an improving move to make has done
so, the graph will be properly colored; that is, no neighbors will have the same
color. This is because a node’s payoff is positive if it doesn’t share its color with
any neighbor and it is nonpositive otherwise. Moreover, once the graph is properly
colored, it will never become improperly colored by a best-response move. Thus,
we can restrict our attention to strategy profiles s in which the graph is properly
colored.
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Lemma 4.4.10. Graph Coloring has a pure Nash equilibrium.

Proof. We claim that, restricted to proper colorings, the function

ψ(s) =
n∑
c=1

nc(s)∑
`=1

`

is a potential function: For any proper coloring s and any player i,

ψ(s) = ψ(s−i) + nsi(s) = ψ(s−i) + ui(s);

i.e., (4.10) holds for proper colorings. �

Corollary 4.4.11. Let χ(G) be the chromatic number of the graph G, that
is, the minimum number of colors in any proper coloring of G. Then the graph
coloring game has a pure Nash equilibrium with χ(G) colors.

Proof. Suppose that s is a proper coloring with χ(G) colors. Then in a series
of single-player improving moves starting at s, no player will ever introduce an
additional color, and the coloring will remain proper always. In addition, since the
game is a potential game, the series of moves will end in a pure Nash equilibrium.
Thus, this Nash equilibrium will have χ(G) colors. �

4.5. Games with infinite strategy spaces

In some cases, a player’s strategy space Si is infinite.

Example 4.5.1 (Tragedy of the Commons). Consider a set of k players
that each want to send data along a shared channel of maximum capacity 1. Each
player decides how much data to send along the channel, measured as a fraction
of the capacity. Ideally, a player would like to send as much data as possible. The
problem is that the quality of the channel degrades as a larger fraction of it is
utilized, and if it is over-utilized, no data gets through. In this setting, each agent’s
strategy space Si is [0, 1]. The utility function of each player i is

ui(si, s−i) := si

(
1−

∑
j

sj

)
if
∑
j sj ≤ 1, and it is 0 otherwise.
We check that there is a pure Nash equilibrium in this game. Fix a player i and

suppose that the other players select strategies s−i. Then player i’s best response
consists of choosing si ∈ [0, 1] to maximize si(1−

∑
j sj), which results in

si =
(

1−
∑
j 6=i

sj

)
/2. (4.12)

To be in Nash equilibrium, (4.12) must hold for all i. The unique solution to this
system of equations has si = 1/(k + 1) for all i.

This is a “tragedy” because each player’s resulting utility is 1/(k+1)2, whereas
if si = 1/2k for all i, then each player would have utility 1/4k. However, the latter
choice is not an equilibrium.
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4.5. GAMES WITH INFINITE STRATEGY SPACES 91

Example 4.5.2 (Nightclub Pricing). Three neighboring colleges have n stu-
dents each that hit the nightclubs on weekends. Each of the two clubs, Roxy and
Hush, chooses a price (cover charge) in [0, 1]. College A students go to Roxy, Col-
lege C students go to Hush, and College B students choose whichever of Roxy or
Hush has the lower cover charge that weekend, breaking ties in favor of Roxy. (See
Figure 4.13.)

I II
Roxy Hush

College BCollege A College C
(breaks ties in favor of Roxy)

Figure 4.13. The Nightclub Pricing game.

Thus, if Roxy sets the price at p1 and Hush sets the price at p2, with p1 ≤ p2,
then Roxy’s utility is 2np1 (n students from each of college A and college B pay
the price p1) and Hush’s utility is np2, whereas if p1 > p2, then Roxy’s utility is
np1 and Hush’s utility is 2np2.

In this game, there is no pure Nash equilibrium. To see this, suppose that Hush
chooses a price p2 > 1/2. Then Roxy’s best response is to choose p1 = p2. But
then p2 is no longer a best response to p1. If p2 = 1/2, then Roxy’s best response
is either p1 = 1/2 or p1 = 1, but in either case p2 = 1/2 is not a best-response.
Finally, Hush will never set p2 < 1/2 since this yields a payoff less than n, whereas
a payoff of n is always achievable.

There is, however, a symmetric mixed Nash equilibrium. Any pure strategy
with p1 < 1/2 is dominated by the strategy p1 = 1, and thus we can restrict
attention to mixed strategies supported on [1/2, 1]. Suppose that Roxy draws its
price from distribution F and Hush from distribution G, where both distributions
are continuous and supported on all of [1/2, 1]. Then the expected payoff to Hush
for any price p it might choose is

n
(
pF (p) + 2p

(
1− F (p)

))
= np(2− F (p)), (4.13)

which must8 equal cn for some constant c and all p in [1/2, 1]. Setting p = 1 shows
that c = 1, so F (x) = 2− 1/x in [1/2, 1] (corresponding to density f(x) = 1/x2 on
that interval). Setting G = F yields a Nash equilibrium. Note that the continuous
distributions ensure that the chance of a tie is zero.

Exercise 4.b. Consider two nightclubs with cover charges p1 > 0 and p2 > 0
respectively. Students at the nearby college always go to the cheaper club, breaking
ties for club 1. The revenues per student will be (p1, 0) if p1 ≤ p2 and (0, p2) if

8 We are using a continuous version of Lemma 4.3.7. If p̃(2− F (p̃)) > p(2− F (p)) for some
p, p̃ ∈ [1/2, 1], then the same inequality would hold if p, p̃ are slightly perturbed (by the continuity

of F ), and Hush would benefit by moving mass from a neighborhood of p to a neighborhood of p̃.
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p1 > p2. Show that for any c > 0, there is a mixed Nash equilibrium that yields an
expected revenue of c to each club.

Figure 4.14. The seller, who knows the type of the car, may misrepresent it
to the buyer, who doesn’t know the type. (Drawing courtesy of Ranjit Samra;
see http://rojaysoriginalart.com.)

4.6. The market for lemons

Economist George Akerlof won the Nobel Prize for analyzing how a used car
market can break down in the presence of asymmetric information. Here is an
extremely simplified version of his model. Suppose that there are cars of only two
types: good cars (G) and lemons (L). A good car is worth $9,000 to all sellers and
$12,000 to all buyers, while a lemon is worth only $4,000 to sellers and $6,000 to
buyers. Obviously a seller knows what kind of car he is selling. If a buyer knew the
type of the car being offered, he could split the difference in values with the seller
and gain $1,500 for a good car and $1,000 for a lemon. However, a buyer doesn’t
know what kind of car he bought: lemons and good cars are indistinguishable at
first, and a buyer only discovers what kind of car he bought after a few weeks, when
the lemons break down. What a buyer does know is the fraction p of cars on the
market that are lemons. Thus, the maximum amount that a rational buyer will
pay for a car is 6, 000p+ 12, 000(1− p) = f(p), and a seller who advertises a car at
f(p)− ε will sell it.

However, if p > 1
2 , then f(p) < $9, 000, and sellers with good cars won’t sell

them. Thus, p will increase, f(p) will decrease, and soon only lemons will be left
on the market. In this case, asymmetric information hurts sellers with good cars,
as well as buyers.

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

http://rojaysoriginalart.com


NOTES 93

Notes

The Prisoner’s Dilemma game was invented in 1950 by Flood and Dresher [Axe84,
Pou11]. The game is most relevant when it is repeated. See §6.4. Although Prisoner’s
Dilemma is most famous, Skyrms [Sky04] makes the case that Stag Hunt is more repre-
sentative of real-life interactions. Stag Hunt and Chicken were both used as models for
nuclear deterrence, e.g., by Schelling, who won a Nobel Prize in 2005 for “having enhanced
our understanding of conflict and cooperation through game-theory analysis.” See [O’N94]
for a survey of game theory models of peace and war. Cheetahs and Antelopes and the
Pollution Game are taken from [Gin00]. One Hundred Gnus and a Lioness is from [Sha17].
Finding Nash equilibria in multiplayer games often involves solving systems of polynomial
equations as, for example, in the Pollution Game. An excellent survey of this topic is
in [Stu02]. The Driver and Parking Inspector Game (Example 4.1.4) is from [TvS02].

Congestion games and best-response dynamics therein were introduced and analyzed
by Rosenthal [Ros73]. Monderer and Shapley [MS96] studied the more general concept
of potential games. The Consensus game (Example 4.4.7) is from [GO80], and the Graph
Coloring game (Example 4.4.9) is from [PS12b]. Although the best-response dynamics
in potential games is guaranteed to reach an equilibrium, this process might not be the
most efficient method. Fabrikant et al. [FPT04] showed that there are congestion games in
which best responses can be computed efficiently (in time polynomial in N , the sum of the
number of players and the number of resources), but the minimum number of improving
moves needed to reach a pure Nash equilibrium is exponential in N .

Tragedy of the Commons was introduced in a classic paper by Hardin [Har68a],
who attributes the idea to Lloyd. Example 4.5.1 and Example 4.5.2 are from Chapter
1 of [Nis07].

The market for lemons (§4.6) is due to Akerlof [Ake70]. George Akerlof won the 2001
Nobel Prize in Economics, together with A. Michael Spence and Joseph Stiglitz, “for their
analyses of markets with asymmetric information.”

John Nash George Akerlof

The notion of Nash equilibrium, and Nash’s Theorem showing that every finite game
has a Nash equilibrium, are from [Nas50a].

While the Nash equilibrium concept is a cornerstone of game theory, the practical
relevance of Nash equilibria is sometimes criticized for the following reasons. First, the
ability of a player to play their Nash equilibrium strategy depends on knowledge and,
indeed, common knowledge of the game payoffs. Second, Nash equilibria are viewed as
representing a selfish point of view: A player would switch actions if it improves his
utility, even if the damage to other players’ utilities is much greater. Third, in situations
where there are several Nash equilibria, it is unclear how players would agree on one.
Finally, it may be difficult to find a Nash equilibrium, even in small games, when players
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have bounded rationality (see, e.g., [Rub98]). In large games, a series of recent results in
computational complexity show that the problem of finding Nash equilibria is likely to be
intractable (see, e.g., [DGP09, CD06, CDT06, Das13]). To quote Kamal Jain (personal
communication), “If your laptop can’t find an equilibrium, neither can the market.”

A number of refinements have been proposed to address multiplicity of Nash equilbria.
These include evolutionary stability (discussed in §7.1), focal points [Tho60], and trembling
hand perfect equilibria [Sel75]. The latter are limits of equilibria in perturbed games,
where each player must assign positive probability to all possible actions. In a trembling
hand perfect equilibrium, every (weakly) dominated strategy is played with probability 0.
See Section 7.3 in [MSZ13].

Regarding mixed Nash equilibria, critics sometimes doubt that players will explicitly
randomize. There are several responses to this. First, in some contexts, e.g., the Penalty
Kicks example from the Preface, randomness represents the uncertainty one player has
about the selection process of the other. Second, sometimes players do explicitly random-
ize; for example, randomness is used to decide which entrances to an airport are patrolled,
which passengers receive extra screening, and which days discounted airline tickets will
be sold. Finally, probabilities in a mixed Nash equilibrium may represent population
proportions as in §7.1.

Exercises

4.1. Modify the game of Chicken as follows. There is p ∈ (0, 1) such that, when
a player swerves (plays S), the move is changed to drive (D) with probabil-
ity p. Write the matrix for the modified game, and show that, in this case,
the effect of increasing the value of M changes from the original version.

4.2. Two smart students form a study group in some math class where home-
work is handed in jointly by each group. In the last homework of the se-
mester, each of the two students can choose to either work (“W”) or party
(“P”). If at least one of them solves the homework that week (chooses
“W”), then they will both receive 10 points. But solving the homework in-
curs a substantial effort, worth −7 points for a student doing it alone, and
an effort worth −2 points for each student, if both students work together.
Partying involves no effort, and if both students party, they both receive
0 points. Assume that the students do not communicate prior to deciding
whether they will work or party. Write this situation as a matrix game and
determine all Nash equilibria.

4.3. Consider the following game:

player II
C D

p
la

ye
r

I

A (6,−10) (0, 10)
B (4, 1) (1, 0)

• Show that this game has a unique mixed Nash equilibrium.
• Show that if player I can commit to playing strategy A with probability

slightly more than x∗ (the probability she plays A in the mixed Nash
equilibrium), then (a) player I can increase her payoff and (b) player
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II also benefits, obtaining a greater payoff than he did in the Nash
equilibrium.
• Show similarly that if player II can commit to playing strategy C with

probability slightly less than y∗ (the probability he plays C in the
mixed Nash equilibrium), then (a) player II can increase his payoff
and (b) player I also benefits, obtaining a greater payoff than she did
in the Nash equilibrium.

4.4. Show that if the Prisoner’s Dilemma game is played k times, where a
player’s payoff is the sum of his payoffs in the k rounds, then it is a domi-
nant strategy to confess in every round. Hint: backwards induction.

4.5. Two cheetahs and three antelopes: Two cheetahs each chase one of three
antelopes. If they catch the same one, they have to share. The antelopes
are Large, Small, and Tiny, and their values to the cheetahs are `, s and
t. Write the 3 × 3 matrix for this game. Assume that t < s < ` < 2s and
that

`

2

(2l − s
s+ `

)
+ s
(2s− `
s+ `

)
< t.

Find the pure equilibria and the symmetric mixed equilibria.

4.6.S Consider the game below and show that there is no pure Nash equilibrium,
only a unique mixed one. Also, show that both commitment strategy pairs
have the property that the player who did not make the commitment still
gets the Nash equilibrium payoff.

player II
C D

p
la

ye
r

I

A (6,−10) (0, 10)
B (4, 1) (1, 0)

4.7. Volunteering dilemma: There are n players in a game show. Each
player is put in a separate room. If some of the players volunteer to help
the others, then each volunteer will receive $1000 and each of the remaining
players will receive $1500. If no player volunteers, then they all get zero.
Show that this game has a unique symmetric (mixed) Nash equilibrium.
Let pn denote the probability that player 1 volunteers in this equilibrium.
Find p2 and show that limn→∞ npn = log(3).

4.8. Three firms (players I, II, and III) put three items on the market and adver-
tise them either on morning or evening TV. A firm advertises exactly once
per day. If more than one firm advertises at the same time, their profits are
zero. If exactly one firm advertises in the morning, its profit is $200K. If
exactly one firm advertises in the evening, its profit is $300K. Firms must
make their advertising decisions simultaneously. Find a symmetric mixed
Nash equilibrium.
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4.9. Consider any two-player game of the following type:

player II
A B

p
la

ye
r

I

A (a, a) (b, c)
B (c, b) (d, d)

• Compute optimal safety strategies and show that they are not a Nash
equilibrium.
• Compute the mixed Nash equilibrium and show that it results in the

same player payoffs as the optimal safety strategies.

4.10. Consider Example 4.1.3. Assume that with some probability p each coun-
try will be overtaken by extremists and will attack. Write down the game
matrix and find Nash equilibria.

4.11. The Welfare Game: John has no job and might try to get one. Or he
might prefer to take it easy. The government would like to aid John if he
is looking for a job but not if he stays idle. The payoffs are

jobless John
try not try

go
ve

rn
m

en
t

aid (3,2) (−1, 3)
no aid (−1, 1) (0,0)

Find the Nash equilibria.

4.12.* Use Lemma 4.3.7 to derive an exponential time algorithm for finding a Nash
equilibrium in two-player general-sum games using linear programming.

4.13. The game of Hawks and Doves: Find the Nash equilibria in the game of
Hawks and Doves whose payoffs are given by the matrix:

player II
D H

p
la

ye
r

I

D (1,1) (0,3)
H (3,0) (−4,−4)

4.14. Consider the following n-person game. Each person writes down an integer
in the range 1 to 100. A reward is given to the person whose number is
closest to the mean. (In the case of ties, a winner is selected at random
from among those whose number is closest to the mean.) What is a Nash
equilibrium in this game?

4.15. Suppose that firm III shares a lake with two randomly selected firms from
a population of firms of which proportion p purify. Show that firm III is
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better off purifying if |p − 1/2| <
√

3/6, whereas firm III is better off pol-

luting if |p− 1/2| >
√

3/6.

4.16. Consider a k player game, where each player has the same set S of pure
strategies. A permutation π of the set of players {1, . . . , k} is an auto-
morphism of the game if for every i, and every strategy profile s, we
have

ui(s1, . . . , sk) = uπ(i)(sπ−1(1), . . . , sπ−1(k)).

Show that if all players have the same set of pure strategies, and for any two
players i0, j0 ∈ {1, . . . , k}, there is an automorphism π such that π(i0) = j0,
then the game is symmetric in the sense of Definition 4.3.10.

4.17. A simultaneous congestion game: There are two drivers, one who will travel
from A to C, the other from B to D. Each road is labelled (x, y), where
x is the cost to any driver who travels the road alone, and y is the cost to
each driver if both drivers use this road. Write the game in matrix form,
and find all of the pure Nash equilibria.

A D

B C
(1,2)

(1,5)

(3,6) (2,4)

4.18. Consider the following market sharing game discussed in §8.3. There are
k NBA teams, and each of them must decide in which city to locate. Let
vj be the profit potential, i.e., number of basketball fans, of city j. If `
teams select city j, they each obtain a utility of vj/`. Let c = (c1, . . . , ck)
denote a strategy profile where ci is the city selected by team i, and let
nci(c) be the number of teams that select city ci in this profile. Show that
the market sharing game is a potential game with potential function

Φ(c) =
∑
j∈C

nci (c)∑
`=1

vj
`

and hence has a pure Nash equilibrium.

4.19. Show that if ψ is a potential function for a game of k players, then ψ can
be extended to strategy profiles of k − 1 players to satisfy (4.10).

4.20. Consider the following variant of the Consensus game (Example 4.4.7).
Again, consider an arbitrary undirected graph G = (V,E). In this game,
each vertex {1, . . . , n} ∈ V is a player, and her action consists of choosing a
bit in {0, 1}. We represent vertex i’s choice by bi ∈ {0, 1}. Let N(i) be the
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98 4. GENERAL-SUM GAMES

set of neighbors of i in G and write b = (b1, . . . , bn). The difference now
is that there is a weight wij on each edge (i, j) that measures how much
the two players i and j care about agreeing with each other. (Assume that
wij = wji.) In this case, the loss Di(b) for player i is the total weight of
neighbors that she disagrees with; i.e.,

Di(b) =
∑

j∈N(i)

|bi − bj |wij .

Show that this is a potential game and that simultaneous improving moves
converge to a cycle of period at most 2.

4.21. Consider the setting of the previous exercise and show that if the weights
wij and wji are different, then the game is not a potential game.

4.22. Construct an example showing that the Graph Coloring game of Example
4.4.9 has a Nash equilibrium with more than χ(G) colors.

4.23. The definition of a potential game extends to infinite strategy spaces Si:
Call ψ :

∏
i Si → R a potential function if for all i, the function si →

ψ(si, s−i) − ui(si, s−i) is constant on Si. Show that Example 4.5.1 is a
potential game. Hint: Consider the case of two players with strategies
x, y ∈ [0, 1]. It must be that

ψ(x, y) = cy + x(1− x− y) = cx + y(1− x− y);

i.e., cy + x(1− x) = cx + y(1− y).
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CHAPTER 5

Existence of Nash equilibria and fixed points

5.1. The proof of Nash’s Theorem

Recall Nash’s Theorem:

Theorem 5.1.1. For any general-sum finite game with k ≥ 2 players, there
exists at least one Nash equilibrium.

We will use the following theorem that is proved in the next section.

Theorem 5.1.2 (Brouwer’s Fixed-Point Theorem). Suppose that K ⊆ Rd
is closed, convex, and bounded. If T : K → K is continuous, then there exists
x ∈ K such that T (x) = x.

Proof of Nash’s Theorem via Brouwer’s theorem. First, consider the
case of two players. Suppose that the game is specified by payoff matrices Am×n
and Bm×n for players I and II. Let K = ∆m × ∆n. We will define a continuous
map T : K → K that takes a pair of strategies (x, y) to a new pair (x̂, ŷ) with the
following properties:

(i) x̂ is a better response to y than x is, if such a response exists; otherwise
x̂ = x.

(ii) ŷ is a better response to x than y is, if such a response exists; otherwise
ŷ = y.

A fixed point of T will then be a Nash equilibrium.
Fix the strategy y of player II. Define ci to be the maximum of zero and the

gain player I obtains by switching from strategy x to pure strategy i. Formally, for
x ∈ ∆m

ci := ci(x,y) := max
{
Aiy − xTAy , 0

}
,

where Ai denotes the ith row of the matrix A. Define x̂ ∈ ∆m by

x̂i :=
xi + ci

1 +
∑m
k=1 ck

;

i.e., the weight of each action for player I is increased according to its performance
against the mixed strategy y.

Similarly, let

dj := dj(x,y) := max
{
xTBj − xTBy , 0

}
,

where Bj denotes the jth column of B, and define ŷ ∈ ∆n by

ŷj :=
yj + dj

1 +
∑n
k=1 dk

.

Finally, let T (x,y) =
(
x̂, ŷ

)
.

99
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100 5. EXISTENCE OF NASH EQUILIBRIA AND FIXED POINTS

We claim that property (i) holds for this mapping. If ci = 0 (i.e., xTAy ≥ Aiy)
for all i, then x̂ = x is a best response to y. Otherwise, S :=

∑m
i=1 ci > 0. We need

to show that
m∑
i=1

x̂iAiy > xTAy. (5.1)

Multiplying both sides by 1 + S, this is equivalent to

m∑
i=1

(xi + ci)Aiy > (1 + S)xTAy,

which holds since
m∑
i=1

ciAiy > SxTAy =
∑
i

cix
TAy.

Similarly, property (ii) is satisfied.
Finally, we observe that K is convex, closed, and bounded and that T is con-

tinuous since ci and dj are. Thus, an application of Brouwer’s theorem shows that
there exists (x,y) ∈ K for which T (x,y) = (x,y); by properties (i) and (ii), (x,y)
is a Nash equilibrium.

For k > 2 players, we define for each player j and pure strategy ` of that

player the quantity c
(j)
` which is the gain player j gets by switching from his current

strategy x(j) to pure strategy `, if positive, given the current strategies of all the
other players. The rest of the argument follows as before. �

Proposition 4.3.11 claimed that in a symmetric game, there is always a sym-
metric Nash equilibrium.

Proof of Proposition 4.3.11: The map T , defined in the preceding proof
from the k-fold product ∆n × · · · ×∆n to itself, can be restricted to the diagonal

D = {(x, . . . ,x) ∈ ∆k
n : x ∈ ∆n}.

The image of D under T is a subset of D, because, in a symmetric game,

c
(1)
i (x, . . . ,x) = · · · = c

(k)
i (x, . . . ,x)

for all pure strategies i and x ∈ ∆n. Brouwer’s Fixed-Point Theorem yields a fixed
point within D, which is a symmetric Nash equilibrium. �

5.2. Fixed-point theorems∗

Brouwer’s Theorem is straightforward in dimension 1. Given T : [a, b]→ [a, b],
define f(x) := T (x) − x. Clearly, f(a) ≥ 0, while f(b) ≤ 0. By the Intermediate
Value Theorem, there is x ∈ [a, b] for which f(x) = 0, so T (x) = x.

In higher dimensions, Brouwer’s Theorem is rather subtle; in particular, there
is no generally applicable recipe to find or approximate a fixed point, and there
may be many fixed points. Thus, before we turn to a proof of Theorem 5.1.2, we
discuss some easier fixed point theorems, where iteration of the mapping from any
starting point converges to the fixed point.
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5.2. FIXED-POINT THEOREMS∗ 101

Figure 5.1. Under the transformation T a square is mapped to a smaller
square, rotated with respect to the original. When iterated repeatedly, the
map produces a sequence of nested squares. If we were to continue this process
indefinitely, a single point (fixed by T ) would emerge.

5.2.1. Easier fixed-point theorems. Banach’s Fixed-Point Theorem ap-
plies when the mapping T contracts distances, as in Figure 5.1

Recall that a metric space is complete if each Cauchy sequence therein con-
verges to a point in the space. For example, any closed subset of Rn endowed with
the Euclidean metric is complete.

Theorem 5.2.1 (Banach’s Fixed-Point Theorem). Let K be a complete
metric space. Suppose that T : K → K satisfies d(Tx, Ty) ≤ λd(x,y) for all
x,y ∈ K, with 0 < λ < 1 fixed. Then T has a unique fixed point z ∈ K. Moreover,
for any x ∈ K, we have

d(Tnx, z) ≤ d(x, Tx)λn

1− λ
.

Proof. Uniqueness of fixed points: If Tx = x and Ty = y, then

d(x,y) = d(Tx, Ty) ≤ λd(x,y).

Thus, d(x,y) = 0, so x = y.
As for existence, given any x ∈ K, we define xn = Txn−1 for each n ≥ 1,

setting x0 = x. Set a = d(x0,x1), and note that d(xn,xn+1) ≤ λna. If k > n, then
by the triangle inequality,

d(xn,xk) ≤ d(xn,xn+1) + · · ·+ d(xk−1,xk)

≤ a
(
λn + · · ·+ λk−1

)
≤ aλn

1− λ
. (5.2)

This implies that
{
xn : n ∈ N

}
is a Cauchy sequence. The metric space K is

complete, whence xn → z as n→∞. Note that

d(z, Tz) ≤ d(z,xn) + d(xn,xn+1) + d(xn+1, Tz) ≤ (1 + λ)d(z,xn) + λna→ 0

as n→∞. Hence, d(z, Tz) = 0, and Tz = z.
Thus, letting k →∞ in (5.2) yields

d(Tnx, z) = d(xn, z) ≤ aλn

1− λ
. �

As the next theorem shows, the strong contraction assumption in Banach’s
Fixed-Point Theorem can be relaxed to decreasing distances if the space is compact.
Recall that a metric space is compact if each sequence therein has a subsequence
that converges to a point in the space. A subset of the Euclidean space Rd is
compact if and only if it is closed and bounded.

See Exercise 5.2 for an example of a map T : R → R that decreases distances
but has no fixed points.

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



102 5. EXISTENCE OF NASH EQUILIBRIA AND FIXED POINTS

Theorem 5.2.2 (Compact Fixed-Point Theorem). If K is a compact met-
ric space and T : K → K satisfies d(T (x), T (y)) < d(x,y) for all x 6= y ∈ K, then
T has a unique fixed point z ∈ K. Moreover, for any x ∈ K, we have Tn(x)→ z.

Proof. Let f : K → R be given by f(x) := d (x, Tx). We first show that f is
continuous. By the triangle inequality we have

d (x, Tx) ≤ d(x,y) + d (y, Ty) + d (Ty, Tx) ,

so

f(x)− f(y) ≤ d(x,y) + d (Ty, Tx) ≤ 2d(x,y).

By symmetry, we also have f(y)− f(x) ≤ 2d(x,y), and hence f is continuous.
Since K is compact, there exists z ∈ K such that

f(z) = min
x∈K

f(x). (5.3)

If Tz 6= z, then f(T (z)) = d(Tz, T 2z) < d(z, Tz) = f(z), and we have a con-
tradiction to the minimizing property (5.3) of z. Thus Tz = z. Uniqueness is
obvious.

Finally, we observe that iteration converges from any starting point x. Let
xn = Tnx, and suppose that xn does not converge to z. Then for some ε > 0, the
set S = {n|d(xn, z) ≥ ε} is infinite. Let {nk} ⊂ S be an increasing sequence such
that yk := xnk → y 6= z. Now

d(Tyk, z)→ d(Ty, z) < d(y, z). (5.4)

But Tnk+1−nk−1(Tyk) = yk+1, so

d(Tyk, z) ≥ d(yk+1, z)→ d(y, z),

contradicting (5.4). �

Exercise 5.a. Prove that the convergence in the Compact Fixed-Point Theo-
rem can be arbitrarily slow by showing that for any decreasing sequence {an}n≥0

tending to 0, there is a distance decreasing T : [0, a0]→ [0, a0] such that T (0) = 0
and d(Tna0, 0) ≥ an for all n.

5.2.2. Sperner’s Lemma. In this section, we establish a combinatorial lemma
that is key to proving Brouwer’s Fixed-Point Theorem.

Lemma 5.2.3 (Sperner’s Lemma). In d = 1: Suppose that the unit interval
is subdivided 0 = t0 < t1 < · · · < tn = 1, with each ti being marked zero or one. If
t0 is marked zero and tn is marked one, then the number of adjacent pairs (tj , tj+1)
with different markings is odd.

In d = 2: Subdivide a triangle into smaller triangles in such a way that a vertex
of any of the small triangles may not lie in the interior of an edge of another. Label
the vertices of the small triangles 0, 1 or 2: the three vertices of the big triangle
must be labeled 0, 1, and 2; vertices of the small triangles that lie on an edge of the
big triangle must receive the label of one of the endpoints of that edge. Then the
number of properly labeled1 small triangles is odd; in particular, it is non-zero.

1 All three vertices have different labels.
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Figure 5.2. Sperner’s lemma when d = 2.

Proof. For d = 1, this is obvious: In a string of bits that starts with 0 and
ends with 1, the number of bit flips is odd.

For d = 2, we will count in two ways the set Q of pairs consisting of a small
triangle and an edge labeled 12 on that triangle. Let A12 denote the number of
12-labeled edges of small triangles that lie on the boundary of the big triangle. Let
B12 be the number of such edges in the interior. Let Nabc denote the number of
small triangles where the three labels are a, b and c. Note that

N012 + 2N112 + 2N122 = |Q| = A12 + 2B12,

because the left-hand side counts the contribution to Q from each small triangle
and the right-hand side counts the contribution to Q from each 12-labeled edge.
From the case d = 1, we know that A12 is odd, and hence N012 is odd too. �

For another proof, see Figure 5.3.

Remark 5.2.4. Sperner’s Lemma can be generalized to higher dimensions. See
§5.4.

5.2.3. Brouwer’s Fixed-Point Theorem.

Definition 5.2.5. A set S ⊆ Rd has the fixed-point property (abbreviated
f.p.p.) if for any continuous function T : S → S, there exists x ∈ S such that
T (x) = x.

Brouwer’s Theorem asserts that every closed, bounded, convex set K ⊂ Rd has
the f.p.p. Each of the hypotheses on K in the theorem is needed, as the following
examples show:

(1) K = R (closed, convex, not bounded) with T (x) = x+ 1.
(2) K = (0, 1) (bounded, convex, not closed) with T (x) = x/2.
(3) K =

{
x ∈ R : |x| ∈ [1, 2]

}
(bounded, closed, not convex) with T (x) = −x.

Remark 5.2.6. On first reading of the following proof, the reader should take
n = 2. In two dimensions, simplices are triangles. To understand the proof for
n > 2, §5.4 should be read first.

Theorem 5.2.7 (Brouwer’s Fixed-Point Theorem for the simplex). The
standard n-simplex ∆ = {x |

∑n
i=0 xi = 1,∀i xi ≥ 0} has the fixed-point property.
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104 5. EXISTENCE OF NASH EQUILIBRIA AND FIXED POINTS

Figure 5.3. Sperner’s Lemma: The left side of the figure shows a labeling
and the three fully labeled subtriangles it induces. The right side of the figure
illustrates an alternative proof of the case d = 2: Construct a graph G with
a node inside each small triangle, as well as a vertex outside each 1-3 labeled
edge on the outer right side of the big triangle. Put an edge in G between
each pair of vertices separated only by a 1-3 labeled edge. In the resulting
graph G (whose edges are shown in purple), each vertex has degree either 0, 1
or 2, so the graph consists of paths and cycles. Moreover, each vertex outside
the big triangle has degree 0 or 1, and an odd number of these vertices have
degree 1. Therefore, at least one (in fact an odd number) of the paths starting
at these degree 1 vertices must end at a vertex interior to the large triangle.
Each of the latter vertices lies inside a properly labeled small triangle. This
is the highlighted subtriangle.

Proof. Let Γ be a subdivision (as in Sperner’s Lemma) of ∆ where all triangles
(or, in higher dimension, simplices) have diameter at most ε. Given a continuous
mapping T : ∆→ ∆, write T (x) = (T0(x), . . . , Tn(x)). For any vertex x of Γ, let

`(x) = min{i : Ti(x) < xi}.
(Note that since

∑n
i=0 xi = 1 and

∑n
i=0 Ti(x) = 1, if there is no i with Ti(x) < xi,

then x is a fixed point.)
By Sperner’s Lemma, there is a properly labeled simplex ∆1 in Γ, and this can

already be used to produce an approximate fixed point of T ; see the remark below.
To get a fixed point, find, for each k, a simplex with vertices {zi(k)}ni=0 in ∆

and diameter at most 1
k , satisfying

Ti(z
i(k)) < zii(k) for all i ∈ [0, n]. (5.5)

Find a convergent subsequence z0(kj)→ z and observe that zi(kj)→ z for all
i. Thus, Ti(z) ≤ zi for all i, so T (z) = z. �

Remark 5.2.8. Let ∆1 be a properly labeled simplex of diameter at most ε as
in the proof above. Denote by z0, z1, . . . , zn the vertices of ∆1, where `(zi) = i.

Let ω(ε) := max|x−y|≤ε |T (x)− T (y)|. Then

Ti(z
0) ≤ Ti(zi) + ω(ε) < zii + ω(ε) ≤ z0

i + ε+ ω(ε).

On the other hand,

Ti(z
0) = 1−

∑
j 6=i

Tj(z
0) ≥ 1−

∑
j 6=i

(z0
j + ε+ ω(ε)) = z0

i − n(ε+ ω(ε)).
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Thus,

|T (z0)− z0| ≤ n(n+ 1)(ε+ ω(ε)),

so z0 is an approximate fixed point.

Definition 5.2.9. Let S ⊆ Rd and S̃ ⊆ Rn. A homeomorphism h : S → S̃
is a one-to-one continuous map with a continuous inverse.

Definition 5.2.10. Let S ⊆ A ⊆ Rd. A retraction g : A→ S is a continuous
map where g restricted to S is the identity map.

Lemma 5.2.11. Let S ⊆ A ⊆ Rd and S̃ ⊆ Rn.

(i) If S has the f.p.p. and h : S → S̃ is a homeomorphism, then S̃ has the
f.p.p.

(ii) If g : A→ S is a retraction and A has the f.p.p., then S has the f.p.p.

Proof. (i) Given T : S̃ → S̃ continuous, let x ∈ S be a fixed point of h−1 ◦ T ◦ h :
S → S. Then h(x) is a fixed point of T .
(ii) Given T : S → S, any fixed point of T ◦ g : A→ S is a fixed point of T . �

Lemma 5.2.12. For K ⊂ Rd closed and convex, the nearest-point map Ψ :
Rd → K where

‖x−Ψ(x)‖ = d(x,K) := min
y∈K
‖x− y‖

is uniquely defined and continuous.

Proof. For uniqueness, suppose that ‖x − y‖ = ‖x − z‖ = d(x,K) with
y, z ∈ K. Assume by translation that x = 0. Since (y + z)/2 ∈ K, we have

d(0,K)2 +
‖y − z‖2

4
≤ ‖y + z‖2

4
+
‖y − z‖2

4
=
‖y‖2 + ‖z‖2

2
= d(0,K)2,

so y = z.
To show continuity, let Ψ(x) = y and Ψ(x + u) = y + v. We show that

‖v‖ ≤ ‖u‖.
We know from the proof of the Separating Hyperplane Theorem that

vT (y − x) ≥ 0

and

vT (x + u− y − v) ≥ 0.

Adding these gives vT (u− v) ≥ 0, so

‖v‖2 = vTv ≤ vTu ≤ ‖v‖ · ‖u‖

by the Cauchy-Schwarz inequality. Thus ‖v‖ ≤ ‖u‖. �

Proof of Brouwer’s Theorem (Theorem 5.1.2). Let K ⊂ Rd be compact
and convex. There is a simplex ∆0 that contains K. Clearly ∆0 is homeomorphic to
a standard simplex, so it has the f.p.p. by Lemma 5.2.11(i). Then by Lemma 5.2.12,
the nearest point map Ψ : ∆0 → K is a retraction. Thus, Lemma 5.2.11(ii) implies
that K has the f.p.p. �
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x

y

Figure 5.4. Illustration of the continuity argument in Lemma 5.2.12.

5.3. Brouwer’s Fixed-Point Theorem via Hex*

In this section, we present a proof of Theorem 5.1.2 via Hex. Thinking of a Hex
board as a hexagonal lattice, we can construct what is known as a dual lattice in
the following way: The nodes of the dual are the centers of the hexagons and the
edges link every two neighboring nodes (those are a unit distance apart).

Coloring the hexagons is now equivalent to coloring the nodes.

Figure 5.5. Hexagonal lattice and its dual triangular lattice.

This lattice is generated by two vectors u, v ∈ R2 as shown on the left side of
Figure 5.6. The set of nodes can be described as {au + bv : a, b ∈ Z}. Let’s put

u = (0, 1) and v = (
√

3
2 ,

1
2 ). Two nodes x and y are neighbors if ‖x− y‖ = 1.

We can obtain a more convenient representation of this lattice by applying a
linear transformation G defined by

G(u) =

(
−
√

2

2
,

√
2

2

)
; G(v) = (0, 1).

The game of Hex can be thought of as a game on the corresponding graph
(see Figure 5.7). There, a Hex move corresponds to coloring one of the nodes. A
player wins if she manages to create a connected subgraph consisting of nodes in
her assigned color, which also includes at least one node from each of the two sets
of her boundary nodes.
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T(u)

T(v)

u

v

Figure 5.6. Action of G on the generators of the lattice.

Figure 5.7. Under G an equilateral triangular lattice is transformed to an
equivalent lattice.

The fact that any colored graph contains one and only one such subgraph is
inherited from the corresponding theorem for the original Hex board.

Proof of Brouwer’s theorem using Hex. As noted in §1.2.1, the fact
that there is a winner in any play of Hex is the discrete analogue of the two-
dimensional Brouwer fixed-point theorem. We now use this fact about Hex (proved
as Theorem 1.2.6) to prove Brouwer’s theorem, at least in two dimensions.

By Lemma 5.2.11, we may restrict our attention to a unit square. Con-
sider a continuous map T : [0, 1]2 → [0, 1]2. Componentwise we write T (x) =
(T1(x), T2(x)). Suppose it has no fixed points. Then define a function f(x) =
T (x) − x. The function f is never zero and continuous on a compact set; hence
‖f‖ has a positive minimum ε > 0. In addition, as a continuous map on a com-
pact set, T is uniformly continuous; hence ∃ δ > 0 such that ‖x − y‖ < δ implies

‖T (x) − T (y)‖ < ε. Take such a δ with a further requirement δ < (
√

2 − 1)ε. (In
particular, δ < ε√

2
.)

Consider a Hex board drawn in [0, 1]2 such that the distance between neighbor-
ing vertices is at most δ, as shown in Figure 5.8. Color a vertex v on the board yellow
if |f1(v)| is at least ε/

√
2. If a vertex v is not yellow, then ‖f(v)‖ ≥ ε implies that

|f2(v)| is at least ε/
√

2; in this case, color v blue. We know from Hex that in this
coloring, there is a winning path, say, in yellow, between certain boundary vertices
a and b. For the vertex a∗ neighboring a on this yellow path, we have 0 < a∗1 ≤ δ.
Also, the range of T is in [0, 1]2. Since a∗ is yellow, |T1(a∗) − a∗1| ≥ ε/

√
2, and by

the requirement on δ, we necessarily have T1(a∗) − a∗1 ≥ ε/
√

2. Similarly, for the

vertex b∗ neighboring b, we have T1(b∗) − b∗1 ≤ −ε/
√

2. Examining the vertices
on this yellow path one-by-one from a∗ to b∗, we must find neighboring vertices u
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108 5. EXISTENCE OF NASH EQUILIBRIA AND FIXED POINTS

and v such that T1(u)− u1 ≥ ε/
√

2 and T1(v)− v1 ≤ −ε/
√

2. Therefore,

T1(u)− T1(v) ≥ 2
ε√
2
− (v1 − u1) ≥

√
2ε− δ > ε.

However, ‖u− v‖ ≤ δ should also imply ‖T (u)− T (v)‖ < ε, a contradiction. �

a

b

a*

b*

 [0,1]2

Figure 5.8. Proving Brouwer via Hex.

5.4. Sperner’s Lemma in higher dimensions∗

Definition 5.4.1 (Simplex). An n-simplex ∆(v0, v1, . . . , vn) is the convex
hull of a set of n + 1 points v0, v1, . . . , vn ∈ Rn that are affinely independent; i.e.,
the n vectors vi − v0, for 1 ≤ i ≤ n, are linearly independent.

Definition 5.4.2 (Face). A k-face of an n-simplex ∆(v0, v1, . . . , vn) is the
convex hull of any k+1 of the points v0, v1, . . . , vn. (See the left side of Figure 5.9.)

Exercise 5.b.

(1) Show that n+ 1 points v0, v1, . . . , vn ∈ Rd are affinely independent if and
only if for every non-zero vector (α0, . . . , αn) for which

∑
0≤i≤n αi = 0, it

must be that
∑

0≤i≤n αivi 6= 0. Thus, affine independence is a symmetric
notion.

(2) Show that a k-face of an n-simplex is a k-simplex.

Definition 5.4.3 (Subdivision of a simplex). A subdivision of a simplex
∆(v0, v1, . . . , vn) is a collection Γ of n-simplices such that for every two simplices
in Γ, either they are disjoint or their intersection is a face of both.

Remark 5.4.4. Call an (n − 1)-face of ∆1 ∈ Γ an outer face if it lies on an
(n − 1)-face of ∆(v0, v1, . . . , vn); otherwise, call it an inner face. (See the right
side of Figure 5.9.) It follows from the definition of subdivision that each inner face
of ∆1 ∈ Γ is an (n− 1)-face of exactly one other simplex in Γ. Moreover, if F is an
(n− 1)-face of ∆(v0, v1, . . . , vn), then

Γ(F ) := {∆1 ∩ F}∆1∈Γ

is a subdivision of F . (See Figure 5.10.)
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1-face
2-face

0-face

innerface

outerface

Figure 5.9. The left side shows a 2-simplex and its faces. The right side
shows an inner face and an outer face in a subdivision.

Figure 5.10. The figure shows a subdivision and its restriction to face F .

Lemma 5.4.5. For any simplex ∆(v0, v1, . . . , vn) and ε > 0, there is a subdivi-
sion Γ such that all simplices in Γ have diameter less than ε.

The case of n = 2 is immediate. See Figure 5.12. To prove the lemma in higher
dimensions, we introduce barycentric subdivision defined as follows: Each subset
S ⊂ {0, . . . , n} defines a face of the simplex of dimension |S| − 1, the convex hull
of vi, for i ∈ S. The average

vS :=
1

|S|
∑
i∈S

vi

is called the barycenter of the face. Define a graph G∆ on the vertices vS with an
edge (vS , vT ) if and only if S ⊂ T . Each simplex in the subdivision is the convex
hull of the vertices in a maximum clique in G∆.

Such a maximum clique corresponds to a collection of subsets S0 ⊂ S1 ⊂
S2 · · · ⊂ Sn with |Si| = i + 1. Thus there is a permutation on {0, . . . , n} with
π(0) = S0 and π(i) = Si \ Si−1 for all i ≥ 1. If we write wi = vπ(i), then

vSk =
w0 + w1 + . . .+ wk

k + 1
.

Thus the vertices of this clique are

w0,
w0 + w1

2
,
w0 + w1 + w2

3
, . . . ,

1

n+ 1

n∑
i=0

wi.

The convex hull of these vertices, which we denote by ∆π, is

∆π := {
∑

0≤i≤n

αivi | απ(0) ≥ · · · ≥ απ(n) ≥ 0 and
∑

0≤i≤n

αi = 1}.

The full subdivision is Γ1 = {∆π | π a permutation of {0, . . . , n}}. See Figures 5.11
and 5.12.
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Exercise 5.c.

(1) Verify the affine independence of vS0
, . . . , vSn .

(2) Verify that ∆π is the convex hull of vS0
, . . . , vSn , where π(i) = Si \ Si−1.

Figure 5.11. This figure shows two steps of barycentric subdivision in two dimensions.

Figure 5.12. The left-hand side of this figure shows (most of) the vertices
resulting from one step of barycentric subdivision in 3 dimensions. The green
vertices are barycenters of simplices of dimension 1, the purple vertices (not
all shown) are barycenters of simplices of dimension 2, and the pink vertex is
the barycenter of the full simplex. The right-hand side of this figure shows
two of the subsimplices that would result from barycentric subdivision. The
upper subsimplex outlined corresponds to the permutation {0, 3, 1, 2} and the
bottom subsimplex corresponds to the permutation {2, 3, 1, 0}.

Proof of Lemma 5.4.5: The diameter of each simplex ∆π in Γ1 is the max-
imum distance between any two vertices in ∆π. We claim this diameter is at
most n

n+1D, where D is the diameter of ∆(v0, . . . , vn). Indeed, for any k, r in

{1, . . . , n+ 1},
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∣∣∣∣∣∣1k
k−1∑
i=0

wi −
1

r

r−1∑
j=0

wj

∣∣∣∣∣∣ =
1

kr

∣∣∣∣∣∣
k−1∑
i=0

r−1∑
j=0

(wi − wj)

∣∣∣∣∣∣
≤ kr − r

kr
D

=

(
k − 1

k

)
D.

Iterating the barycentric subdivision m times yields a subdivision Γm in which

the maximum diameter of any simplex is at most
(

n
n+1

)m
D.

See Exercise 5.d below for the verification that this subdivision has the required
intersection property. �

The following corollary will be useful in Chapter 11.

Corollary 5.4.6. Let ∆ be a simplex on k vertices. Let Γ be any subdivision
of ∆ obtained by iterative barycentric subdivision. Let GΓ be the graph whose edges
are the 1-faces of Γ. Then GΓ can be properly colored with k colors; i.e., all vertices
in each subsimplex have different colors.

Proof. To see that such a proper coloring exists, suppose that Γ is constructed
by iterating barycentric subdivision m times. Then color each vertex in the m−1st

barycentric subdivision with ck. Within each of the subsimplices in this level, color
each vertex that is a barycenter of a face of dimension i with ci. Since every edge
connects barycenters of faces of different dimension, this is a proper coloring. �

Figure 5.13. This picture shows the coloring of Corollary 5.4.6 for a simplex
on three vertices to which iterative barycentric subdivision has been applied
twice. The subdivision after one step is highlighted in gray. The corresponding
vertices after the first subdivision are colored black (c3). All vertices that are
barycenters of dimension 1 are colored green (c1), and all vertices that are
barycenters of dimension 2 are colored purple (c2).

Exercise 5.d. (1) Verify that ∆π has one outer face determined by the equa-
tion απ(n) = 0 and n inner faces determined by the equations απ(k) = απ(k+1) for
0 ≤ k ≤ n − 1. (2) Verify that Γ1 is indeed a subdivision. (3) Verify that for
any (n − 1)-face F of ∆(v0, v1, . . . , vn), the subdivision Γ1(F ) is the barycentric
subdivision of F .
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112 5. EXISTENCE OF NASH EQUILIBRIA AND FIXED POINTS

Definition 5.4.7 (Proper labeling of a simplex). A labeling ` of the ver-
tices of an n-simplex ∆(v0, v1, . . . , vn) is proper if `(v0), `(v1), . . . , `(vn) are all dif-
ferent.

Definition 5.4.8 (Sperner labeling of a subdivision). A Sperner labeling
` of the vertices in a subdivision Γ of an n-simplex ∆(v0, v1, . . . , vn) is a labeling in
which

• ∆(v0, v1, . . . , vn) is properly labeled,
• all vertices in Γ are assigned labels in {`(v0), `(v1), . . . , `(vn)}, and
• the labeling restricted to each face of ∆(v0, . . . , vn) is a Sperner labeling

there.

Lemma 5.4.9 (Sperner’s Lemma for general n). Let ` be a Sperner labeling
of the vertices in Γ, where Γ is a subdivision of the n-simplex ∆(v0, v1, . . . , vn).
Then the number of properly labeled simplices in Γ is odd.

Proof. We prove the lemma by induction on n. The cases n = 1, 2 were
proved in §5.2.2. For n ≥ 2, consider a Sperner labeling of Γ. Call an (n− 1)-face
good if its vertex labels are `(v0), . . . , `(vn−1).

Let g denote the number of good inner faces; let g∂ be the number of good
outer faces on ∆(v0, . . . , vn−1), and let Nj be the number of simplices in Γ with

labels {`(vi)}n−1
i=0 and `(vj). Counting pairs

(simplex in Γ, good face of that simplex),

by the remark preceding Lemma 5.4.5 we obtain

2
n−1∑
j=0

Nj +Nn = 2g + g∂ .

Since g∂ is odd by the inductive hypothesis, so is Nn. �

Notes

In his 1950 Ph.D. thesis, John Nash proved the existence of an equilibrium using
Brouwer’s Fixed Point Theorem [Bro11]. In the journal publication [Nas50a], he used
Kakutani’s Fixed Point Theorem instead. According to [OR14], the proof of Brouwer’s
Theorem from Sperner’s Lemma [Spe28] is due to Knaster, Kuratowski, and Mazurkiewicz.
The proof of Brouwer’s theorem via Hex is due to David Gale [Gal79]. Theorem 5.2.2 is
due to [Ede62]. See the book by Border [Bor85] for a survey of fixed-point theorems and
their applications.

See [Rud64] for a discussion of general metric spaces.

Exercises

5.1. Fill in the details showing that, in a symmetric game, with A = BT , there
is a symmetric Nash equilibrium. As suggested in the text, use the set
D =

{
(x, x) : x ∈ ∆n

}
in place of K in the proof of Nash’s Theorem.

5.2. Show that the map T : R→ R given by

T (x) = x+
1

1 + exp(x)
.
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John Nash

decreases distances but has no fixed point.

5.3. Use Lemma 5.2.11(ii) to show that there is no retraction from a ball to a
sphere.

5.4. Show that there is no retraction from a simplex to its boundary directly
from Sperner’s Lemma, and use this to give an alternative proof of Brouwer’s
Theorem. (This is equivalent to the previous exercise because a simplex is
homeomorphic to a ball.)

5.5. Use Brouwer’s Theorem to show the following: Let B = B(0, 1) be the
closed ball in Rd. There is no retraction from B to its boundary ∂B.

5.6.S Show that any d-simplex in Rd contains a ball.

5.7.S Let K ⊂ Rd be a compact convex set which contains a d-simplex. Show
that K is homeomorphic to a closed ball.
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CHAPTER 6

Games in extensive form

One of the key features of real-life games is that they take place over time
and involve interaction, often with players taking turns. Such games are called
extensive-form games.

6.1. Introduction

We begin with an example from Chapter 1.

Example 6.1.1 (Subtraction). Starting with a pile of four chips, two players
alternate taking one or two chips. Player I goes first. The player who removes the
last chip wins.

IIa IIb

(-1, 1)

(-1, 1)

(1, -1) (1, -1)(1, -1)

Ia
1a

1b 2b

1b 1c 1d2b

2a1a

2a

Play will end at one of these nodes

IIc

Ib Ic Id

Figure 6.1. A game tree corresponding to the Subtraction game: Each leaf
is labeled with the payoffs of the players. At nodes IIc, Ic, and Id, there is
only one action that can be taken. At node Ib, player I loses if she removes
one chip and wins if she removes two, so her choice, highlighted in the figure,
is obvious. Proceeding up the tree, at node IIb, player II loses if he removes
one chip and wins if he removes two, so again his choice is obvious. At node
IIa, he loses either way, so in fact, his strategy at this node doesn’t matter
(indicated by the dots on the edges). Finally, at node Ia, player I wins if she
removes one chip and loses if she removes two.

A natural way to find the best strategy for each player in a simple game like this
is to consider the game tree, a representation of how the game unfolds, and then

114
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6.1. INTRODUCTION 115

apply backward induction , that is, determine what action to play from the leaves
up. At each node, the player will pick the action that leads to the highest payoff.
Since we consider nodes in order of decreasing depth, when a node is considered, the
payoffs that player will receive for each action he might take are already determined,
and thus, the best response is determined. Figure 6.1 illustrates this process for
the Subtraction game and shows that player I has a winning strategy.

Given an extensive-form game, we can in principle list the possible pure state-
gies of each of the players and the resulting payoffs. (This is called normal form.)
In the Subtraction game, a strategy for player I specifies his action at node Ia and
his action at node Ib. Similarly for player II. The resulting normal-form game is
the following (where we show only the payoff to player I since this is a zero-sum
game):

player II
1a, 1b 1a, 2b 2a, 1b 2a, 2b

p
la

ye
r

I 1a, 1b −1 -1 1 1
1a, 2b 1 1 1 1
2a, 1b 1 -1 1 −1
2a, 2b 1 -1 1 −1

Definition 6.1.2. A k-player finite extensive-form game is defined by a
finite, rooted tree T . Each node in T represents a possible state in the game,
with leaves representing terminal states. Each internal (nonleaf) node v in T is
associated with one of the players, indicating that it is his turn to play if/when
v is reached. The edges from an internal node to its children are labeled with
actions, the possible moves the corresponding player can choose from when the
game reaches that state. Each leaf/terminal state results in a certain payoff for
each player. We begin with games of complete information, where the rules of the
game (the structure of the tree, the actions available at each node, and the payoffs
at each leaf) are common knowledge1 to all players.

A pure strategy for a player in an extensive-form game specifies an action
to be taken at each of that player’s nodes. A mixed strategy is a probability
distribution over pure strategies.

The kind of equilibrium that is computed by backward induction is called a
subgame-perfect equilibrium because the behavior in each subgame, is also
an equilibrium. (Each node in the game tree defines a subgame, the game that
would result if play started at that point.)

Example 6.1.3 (Line-Item Veto). Congress and the President are at odds
over spending. Congress prefers to increase military spending (M), whereas the
President prefers a jobs package (J). However, both prefer a package that includes
military spending and jobs to a package that includes neither. The following table
gives their payoffs:

Military Jobs Both Neither
Congress 4 1 3 2
President 1 4 3 2

1 That is, each player knows the rules, he knows the other players know the rules, he knows

that they know that he knows the rules, etc.
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A line-item veto gives the President the power to delete those portions of a
spending bill he dislikes. Surprisingly though, as Figure 6.2 shows, having this
power can lead to a less favorable outcome for the President.

In the games we’ve just discussed, we focused on subgame-perfect equilibria.
However, as the following example shows, not all equilibria have this property.

Example 6.1.4 (Mutual Assured Destruction (MAD)). Two countries,
say A and B, each possess nuclear weapons. A is aggressive and B is benign.
Country A chooses between two options. The first is to escalate the arms race,
e.g., by firing test missiles, attacking a neighboring country, etc. The second is to
do nothing and simply maintain the peace. If A escalates, then B has two options:
retaliate, or back down. Figure 6.3 shows how the game might evolve.

If A believes that B will retaliate if she escalates, then her best action is to
maintain the peace. Thus (maintain the peace, retaliate), resulting in payoffs of
(0,0), is a Nash equilibrium in this game. However, it is not a subgame-perfect equi-
librium since in the subgame rooted at B’s node, B’s payoff is maximized by backing
down, rather than retaliating — the subgame-perfect equilibrium is (escalate, back
down).

Which equilibrium makes more sense? The threat by B to retaliate in the event
that A escalates may or may not be credible since it will result in a significantly
worse outcome to B than if he responds by backing down. Thus, A may not believe
that B will, in fact, respond this way. On the other hand, nuclear systems are
sometimes set up to automatically respond in the event of an attack, precisely to
ensure that the threat is credible. This example illustrates the importance of being
able to commit to a strategy.

Remark 6.1.5. The structure of the extensive game shown in Figure 6.3 comes
up in many settings. For example, consider a small and efficient airline (player A)
trying to decide whether to offer a new route that encroaches on the territory of
a big airline (player B). Offering this route corresponds to “escalating”. Player
B can then decide whether or not to offer a discount on its corresponding flights
(retaliate) or simply cede this portion of the market (back down).

Example 6.1.6 (Centipede). There is a pot of money that starts out with $4
and increases by a dollar each round the game continues. Two players take turns.
When it is a player’s turn and the pot has $p, that player can either split the pot in
his favor by taking $bp+4

2 c (the “greedy” strategy), or allow the game to continue
(the “continue” strategy) enabling the pot to increase.

Figure 6.4 shows that the unique subgame-perfect equilibrium is for the players
to be greedy at each step. If, indeed, they play according to the subgame-perfect
equilibrium, then player I receives $4 and player II gets nothing, whereas if they
cooperate, they each end up with $50. (See Exercise 6.1.)

This equilibrium is counterintuitive. Indeed, laboratory experiments have shown
that this equilibrium rarely arises when “typical” humans play this game. On the
other hand, when the experimental subjects were chess players, the subgame-perfect
outcome did indeed arise. Perhaps this is because chess players are more adept at
backward induction. (See the notes for some of the relevant references.)

Regardless, a possible explanation for the fact that the subgame-perfect equi-
librium does not arise in typical play is that the game is simply unnatural. It is not
necessarily reasonable that the game goes on for a very long, but fixed, number n
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(4, 1)(2, 2)

(3, 3)(1, 4)(4, 1)(2, 2)

(2, 2)

(1, 4)(2, 2)

neither

M+J

President

military

jobs

veto both
sign both

veto M
veto Jsignveto

signveto

President

with line item veto

President

President

Congress

signveto
(4, 1)(2, 2)

(3, 3)(2, 2)

(2, 2)

(1, 4)(2, 2)

neither

M+J

President

military

jobs

signveto

signveto

President

without line item veto

Congress

President

President

Figure 6.2. The top part of the figure shows the game from Example 6.1.3
without the line-item veto. The bottom part of the figure shows the game
with the line-item veto. The highlighted edges show the actions taken in
the subgame-perfect equilibrium: With the line-item veto, the result will be
military spending, whereas without the line-item veto, the result will be a
military and jobs bill.
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(1, -1)(-L, -L)

(0, 0) B

A
maintain peace

retaliate

escalate

back down

Figure 6.3. In the MAD game, (maintain peace, escalate) is a Nash equilib-
rium which is not subgame-perfect.

4 5 6 7 96 97 98 99... (50, 50)

(48, 51)(51, 47)(47, 50)(50, 46)(2, 5)(5, 1)(1, 4)(4, 0)

pot sizes:
III III III III

Figure 6.4. The top part of the figure shows the game and the resulting
payoffs at each leaf. At each node, the “greedy” strategy consists of following
the downward arrow, and the “continue” strategy is represented by the arrow
to the right. Backward induction from the node with pot-size 99 shows that
at each step the player is better off being greedy.

of rounds, and that it is common knowledge to all players that n is the number of
rounds.

The extensive-form games we have seen so far are games of perfect informa-
tion. At all times during play, a player knows the history of previous moves and
hence which node of the tree represents the current state of play. In particular, she
knows, for each possible sequence of actions that players take, exactly what payoffs
each player will obtain.

In such games, the method of backward induction applies. Since this method
leads to a strategy in which play at each node in the game tree is a best response
to previous moves of the other players, we obtain the following:

Theorem 6.1.7. Every finite extensive-form game of perfect information has a
subgame-perfect pure Nash equilibrium which can be computed by backward induc-
tion.

Exercise 6.a. Prove Theorem 6.1.7.
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6.2. Games of imperfect information

Example 6.2.1. Recall the game of Chicken with the following payoff matrix:

player II
Swerve (S) Drive (D)

p
la

ye
r

I

Swerve (S) (1, 1) (−1, 2)
Drive (D) (2, −1) (−M , −M)

II II

(-M, -M)(-1, 2) (2, -1)(1, 1)

I

Swerve DriveSwerve Drive

Swerve Drive

II II

(-M, -M)

(-1, 2)

(2, -1)

(1, 1)

(-1, 2)(1, 1)

I

I I
Swerve Drive

Danger Node

Escape Drive Escape Drive

Swerve Drive

Swerve Drive

Figure 6.5. The figure shows an extensive-form version of the Chicken game.
Player II’s nodes are in the same information set because player I’s and
player II’s actions occur simultaneously. Therefore, player II cannot distin-
guish which of two states he is in and must choose the same action at both.
The figure on the right shows the version of Chicken in which player I’s car is
so easy to maneuver that she can escape at the very last minute after seeing
player II’s choice.

This, and any normal-form game, can be represented as an extensive-form
game, as shown in Figure 6.5. When player II moves, he doesn’t know what his
opponent’s move was. We capture this by defining an information set, consisting
of the two player II nodes, and insisting that player II’s action is the same at both
nodes.

Consider now a variant of the game in which player I has a sports car that can
escape collision in the last second, whereas player II’s car cannot. This leads to the
game shown on the right-hand side of Figure 6.5.

If we reduce to normal form, we obtain the following matrix, which is just
the original matrix shown above, with one row repeated, and thus has the same
equilibria:

player II
Swerve (S) Drive (D)

p
la

ye
r

I

Swerve (S) (1, 1) (−1, 2)
Drive/Drive (DD) (2, −1) (−M , −M)

Drive/Escape (DE) (1, 1) (−1, 2)
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However, at the danger node, after players I and II both choose Drive, the Escape
strategy is dominant for player I. Thus, the subgame-perfect equilibria are strategy
pairs where player I escapes at the danger node and player II always drives. It is
still a Nash equilibrium for player I to always drive and player II to swerve, but this
equilibrium includes the “incredible threat” that player I will drive at the danger
node.2 The reduction from extensive form to normal form suppresses crucial timing
of player decisions.

In an extensive game of imperfect information (but still complete informa-
tion), each player knows the payoffs that all players will get for each possible action
sequence, but does not know all actions that have been taken. This happens either
because an opponents’ action occurs simultaneously or simply because the player
is not privy to information about what an opponent is doing.

Information sets are used to model the uncertainty a player has about which
node of the tree the game is at when it’s his turn to choose an action:

Definition 6.2.2. In an extensive-form game, a player’s nodes are partitioned
into information sets. (In games of perfect information, each information set is
a single node.) For any player i and any two nodes v, w in an information set S
of that player, the set of actions available at v is identical to the set of actions
available at w, and the same action must be selected at both nodes.

For any node v associated with player i, let I1(v), I2(v), . . . , ITv (v) be the
information sets of i along the path to v, and let at(v) be the action i took at It(v).
The information available to player i at v is the history of information sets and
actions he took, which we denote by H(v) := {It(v)}Tvt=1 ∪ {at(v)}Tv−1

t=1 .
A pure strategy for a player in a game with information sets defines an action

for that player at each of his information sets, and, as always, a mixed strategy
is a probability distribution over pure strategies.

Note that in a game of imperfect information, backward induction usually can
not be employed to find an equilibrium. For example, the optimal strategy for
player I depends on which node in the information set she is at, which depends
on player II’s strategy, and that decision is made at parents of player I’s nodes in
the tree. Indeed, once nonsingleton information sets are present, the notion of a
subgame has to be defined more carefully: Subgames can’t split up nodes in the
same information set.

Remark 6.2.3. Only a forgetful player would consider two nodes with different
histories to be in the same information set. We restrict attention to players with
perfect recall. For such a player, if two nodes v and w are in the same information
set, then H(v) = H(w).

6.2.1. Behavioral strategies. The use of the normal form version of an ex-
tensive game as a method for finding a Nash equilibrium is computationally complex
for games that involve multiple rounds of play – the number of pure strategies a
player i has is exponential in the number of information sets associated to i. A
more natural way to construct a mixed strategy is to define the behavior at each
information set independently. This is called a behavioral strategy.

2 So she is worse off for having a better car.
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Definition 6.2.4. A behavioral strategies bi for a player i in an extensive-
form game is a map that associates to each information set I of i a probability
distribution bi(I) over the actions available to i at I. (For v ∈ I, we write bi(v) =
bi(I).)

Every behavioral strategy bi induces a corresponding mixed strategy, obtained
by choosing an action independently at every information set S of player i according
to the distribution bi(S).

Remark 6.2.5. Some mixed strategies are not induced by a behavioral strategy
because of dependence between the choice of actions at different information sets.
(See Figure 6.6.) Thus, while a Nash equilibrium in mixed strategies always exists
via reduction to the normal form case, it is not obvious that a Nash equilibrium in
behavioral strategies exists.

II II

I

Figure 6.6. In this example, player II’s mixed strategy puts probability p1
on the two left actions and probability 1 − p1 on the two right actions. This
mixed strategy is not induced by any behavioral strategy because the action
player II takes at its two nodes is correlated. Notice though that if player II’s
strategy was to play the left action with probability p1 and the right action
with probability 1− p1 at each node independently instead, then for any fixed
player I strategy, her expected payoff would be the same as it is under the
correlated strategy.

To show that Nash equilibria in behavioral strategies exist, we will need the
following definition:

Definition 6.2.6 (Realization-equivalence). Two strategies si and s′i for
player i in an extensive-form game are realization-equivalent if for each strategy s−i
of the opponents and every node v in the game tree, the probability of reaching v
when strategy profile (si, s−i) is employed is the same as the probability of reaching
v when (s′i, s−i) is employed.

Remark 6.2.7. It is enough to verify realization-equivalence for opponent strat-
egy profiles s−i that are pure.

Theorem 6.2.8. Consider an extensive game of perfect recall. Then for any
player i and every mixed strategy si, there is a realization-equivalent s′i that is in-
duced by a behavioral strategy bi. Hence, for every possible strategy of the opponents
s−i, every player i’s expected utility under (si, s−i) is the same as his expected utility
under (s′i, s−i).
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A

B
C

Figure 6.7. This figure gives a simple example of the construction of the
behavioral strategy at nodes A and B. The labels on the edges represent the
transition probabilities in the behavioral strategy.

Proof. Let si(A) denote the probability the mixed strategy si places on a set
of pure strategies A. If v is a player i node, let v1, . . . , vt−1 be the player i nodes
on the path to v, and let aj be the action at vj leading towards v. Let Ω(v) be the
set of pure strategies of player i where he plays aj at vj for j < t. The strategies in
Ω(v) where he also plays action a at v are denoted Ω(v, a). The behavioral strategy
bi(v) is defined to be the conditional distribution over actions at v, given that v is
reached. Thus the probability bi(v)a of taking action a is

bi(v)a =
si(Ω(v, a))

si(Ω(v))

if the denominator is nonzero. Otherwise, let bi(v) be the uniform distribution over
the actions at v. (See Figure 6.7.)

The key observation is that, by the assumption of perfect recall, bi(v)a =
bi(w)a if v and w are in the same information set I, and therefore this is a valid
behavioral strategy.

Finally, for a fixed pure strategy s−i, it follows by induction on the depth of
the node v that the probability of reaching that node using the behavioral strategy
bi is the same as the probability of reaching that node using si. �

Corollary 6.2.9. In a finite extensive game of perfect recall, there is a Nash
equilibrium in behavioral strategies.

6.3. Games of incomplete information

Sometimes a player does not know exactly what game he is playing, e.g., how
many players there are, which moves are available to the players, and what the
payoffs at terminal nodes are. For example, in a game of poker, each player doesn’t
know which cards his opponents received, and therefore doesn’t know the payoffs in
each terminal state; in an eBay auction, a player doesn’t know how many competing
bidders there are or how much they value the object being auctioned. These are
games of incomplete information.
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Figure 6.8. Poker is a game of incomplete information.

In such a game, there is not much a player can do except guard against the
worst case. Thus, a natural strategy in such a game is a safety strategy, wherein a
player chooses a strategy which maximizes his payoff in the worst case.

6.3.1. Bayesian games. In many situations, however, the players have prob-
abilistic prior information about which game is being played. Under this assump-
tion, a game of incomplete information can be converted to a game of complete but
imperfect information using moves by nature and information sets.

Example 6.3.1 (Fish-Selling Game). Fish being sold at the market is fresh
with probability 2/3 and old otherwise, and the customer knows this. The seller
knows whether the particular fish on sale now is fresh or old. The customer asks
the fish-seller whether the fish is fresh, the seller answers, and then the customer
decides to buy the fish or to leave without buying it. The price asked for the fish
is $12. It is worth $15 to the customer if fresh and nothing if it is old. Thus, if the
customer buys a fresh fish, her gain is $3. The seller bought the fish for $6, and if
it remains unsold, then he can sell it to another seller for the same $6 if it is fresh,
and he has to throw it out if it is old. On the other hand, if the fish is old, the
seller claims it to be fresh, and the customer buys it, then the seller loses $R in
reputation. The game tree is depicted in Figure 6.10.

The seller clearly should not say “old” if the fish is fresh. Hence we should
examine two possible pure strategies for him: FF means he always says “fresh”;
OF means he always tells the truth. For the customer, there are four ways to react
to what he might hear. Hearing “old” means that the fish is indeed old, so it is
clear that she should leave in this case. Thus two rational strategies remain: BL
means she buys the fish if she hears “fresh” and leaves if she hears “old”; LL means
she always leaves. Here are the expected payoffs for the two players, averaged over
the randomness coming from the actual condition of the fish:
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Figure 6.9. The seller knows whether the fish is fresh; the customer only
knows the probability.

(6-R, -12) (-6, 0)(0, 0)(6, 3) (-6, 0)(6, -12)

NatureNature
Fresh2/3

“Fresh” “Fresh”

Buy Leave Buy Leave Buy Leave

“Old”

Old1/3

Customer

Seller Seller

Customer Customer

Figure 6.10. The game tree for the Fish-Selling game. The top node in the
tree is a move by nature, with the outcome being fresh with probability 2/3
or old with probability 1/3.

customer
BL LL

se
ll

er FF (6−R/3,−2) (−2, 0)
OF (2, 2) (−2, 0)

We see that if losing reputation does not cost too much in dollars, i.e., if R < 12,
then there is only one pure Nash equilibrium: FF against LL. However, if R ≥ 12,
then the (OF, BL) pair also becomes a pure equilibrium, and the payoffs to both
players from this equilibrium are much higher than the payoffs from the other
equilibrium.
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Nature

II

I

II

(16, 0)
Player I doesn’t know which state she’s in

(-4, 20) (20, -4)(4, 12) (4, 12)

I
Stayin Sellout

Stayin Sellout

announce competitive product
announce competitive product

cede the market

firm II can produce a competitive product0.5
firm II cannot produce a competitive product0.5

e

Figure 6.11. The figure shows the Large Company vs Startup game. Prior
to the beginning of the game, player I announces her new technology. At the
beginning of the game, there is a move by nature, which determines whether
or not II actually can pull together a competitive product. Only player II is
privy to the outcome of this move by nature. The two nodes at which player
I makes a move form a single information set: player I does not know which
of these states she is in. All she knows is that II has announced a competitive
product, and knowing only that, she has to decide between competing with
the giant or letting the giant buy her out. Thus, her strategy is the same at
both nodes in the information set.

Example 6.3.2 (Large Company versus Startup). A startup (player I)
announces an important technology threatening a portion of the business that a
very large company (player II) engages in. Given the resources available to II,
e.g., a very large research and development group, it is possible that II will be
able to pull together a competitive product in short order. One way or another,
II may want to announce that a competitive product is in the works regardless of
its existence, simply to intimidate the startup and motivate it to accept a buyout
offer. The resulting game tree, which has a move by nature and an information set
is shown in Figure 6.11. We can reduce the game to normal form by averaging over
the randomness:

player II
announce/cede announce/announce

p
la

ye
r

I

stay in (I) (6, 10) (8, 8)
sell out (O) (10, 6) (4, 12)
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For example, if player I’s strategy is to stay in and player II’s strategy is an-
nounce/cede (i.e., announces a competitive strategy only if he can produce a com-
petitive product), then the payoffs are the average of (−4, 20) and (16, 0).

A Bayesian game is an extensive-form game of imperfect information, with
a first move by nature and probabilities that are in common knowledge to all the
players. Different players may have different information about the outcome of the
move by nature. This is captured by their information sets.

We summarize the procedure for constructing a normal-form game GN associ-
ated to a two-player Bayesian game G: The actions available to player I in GN are
her pure strategies in G, and similarly for player II. The payofff matrices A and B
for players I and II have entries

A(sI, sII) = E [uI(sI, sII,M)] and B(sI, sII) = E [uII(sI, sII,M)]

where ui(sI, sII,M) is the payoff to player i when player I plays pure strategy sI,
player II plays pure strategy sII, and M is the move by nature in G.

6.3.2. Signaling.

Example 6.3.3 (Lions and Antelopes). Antelopes have been observed to
jump energetically when they notice a lion. Why do they expend energy in this way?
One theory is that the antelopes are signaling danger to others at some distance,
in a community-spirited gesture. However, the antelopes have been observed doing
this even when there are no other antelopes nearby. The currently accepted theory
is that the signal is intended for the lion, to indicate that the antelope is in good
health and is unlikely to be caught in a chase. This is the idea behind signaling.

II II

I I

I

NatureNature

(-1, -1) (0, 0)

(-1, -1) (0, 0) (0, 0)(5, -100)

healthy0.8 weak0.2

chase ignore

chase ignore chase ignore

stot don’t stot don’t stot

Figure 6.12. Lions and antelopes. Given that an antelope doesn’t stot, chas-
ing yields the lioness a positive payoff. Therefore, a healthy antelope is moti-
vated to stot.
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Figure 6.13. An antelope stotting to indicate its good health.

Consider the situation of an antelope catching sight of a lioness in the distance.
Suppose there are two kinds of antelope, healthy (H) and weak (W ). A lioness can
catch a weak antelope but has no chance of catching a healthy antelope (and would
expend a lot of energy if he tried).

This can be modeled as a combination of two simple games (AH and AW ),
depending on whether the antelope is healthy or weak, in which case the antelope
has only one strategy (to run if chased), but the lioness has the choice of chasing
(C) or ignoring (I):

AH =

antelope
run if chased

li
on

es
s chase (−1,−1)

ignore (0, 0)

and AW =

antelope
run if chased

li
on

es
s chase (5,−100)

ignore (0, 0)

The lioness does not know which game she is playing — and if 20% of the
antelopes are weak, then the lioness can expect a payoff of (.8)(−1)+(.2)(5) = .2 by
chasing. However, the antelope does know, and if a healthy antelope can credibly3

convey that information to the lioness by jumping very high, both will be better
off — the antelope much more than the lioness!

6.3.3. Zero-sum games of incomplete information.

Example 6.3.4 (A simultaneous randomized game). A zero-sum game
is chosen by a fair coin toss. The players then make simultaneous moves. These
moves are revealed and then they play a second round of the same game before any
payoffs are revealed:

AH =

player II
L R

p
la

ye
r

I

U −1 0
D 0 0

and AT =

player II
L R

p
la

ye
r

I

U 0 0
D 0 −1

3 A weak antelope cannot jump that high.
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If neither player knows the result of the initial coin toss, each player will use the
mixed strategy ( 1

2 ,
1
2 ), and the value of the game to player I (for the two rounds)

is − 1
2 . Now suppose that player I learns the result of the coin toss before playing

the game. Then she can simply choose the row with all zeros and lose nothing,
regardless of whether player II knows the coin toss as well.

Next consider the same story, but with matrices

AH =

player II
L R

p
la

ye
r

I

U 1 0
D 0 0

and AT =

player II
L R

p
la

ye
r

I

U 0 0
D 0 1

Again, without knowing the result of the coin toss, the value to player I in each
round is 1

4 . If player I is informed of the coin toss at the start, then in the second
round, she will be greedy, i.e., choose the row with the 1 in it. The question remains
of what she should do in the first round.

Player I has a simple strategy that will get her 3
4 — this is to ignore the coin

flip on the first round (and choose U with probability 1
2 ), but then, on the second

round, to be greedy.
In fact, 3

4 is the value of the game. A strategy for player II that shows this

is the following: In the first round, he plays L with probability 1
2 . In the second

round, he flips a fair coin. If it comes up heads, then he assumes that player I
played greedily in the first round4 and he responds accordingly; if it comes up tails,
then he chooses L with probability 1

2 . If player I plays greedily in the first round,

then she gets 1
2 in the first round and 1

4 in the second round. If player I is sneaky

(plays D in AH and U in AT ), then she gets 0 in the first round and 3
4 in the second

round. Finally, if player I plays the same action in round 1 for both AH and AT ,
then she will receive 1

4 in that round and 1
2 in the second round.

It is surprising that sometimes the best use of information is to ignore it.

6.3.4. Summary: comparing imperfect and incomplete information.
Recall that in a game of perfect information, each player knows the entire game tree
and, whenever it is his turn, he knows the history of all previous moves (including
any moves by nature). Thus, all information sets are of size one.

In a game of imperfect information, each player knows the entire game tree
(including the probabilities associated with any move by nature). A player also
knows the information set he is in whenever it is his turn. However, there is at
least one information set of size greater than one.

In a game of incomplete information, players do not know the entire game tree
or exactly which game they are playing. This is, in general, an intractable setting
without further assumptions.

One way to handle this is to extend the game tree by adding an initial move
by nature, with a commonly known prior on this move. This approach converts the
game of incomplete information to a Bayesian game, which is a game of complete
but imperfect information.

4 That is, played U in AH and D in AT .
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6.4. Repeated games

A special kind of extensive-form game arises when a regular one-round game
of simultaneous moves is played repeatedly for some number of rounds.

For example, recall Prisoner’s Dilemma.5 We saw that the unique Nash equi-
librium, indeed dominant strategy, in this game is for both players to defect:

player II
cooperate (C) defect (D)

p
la

ye
r

I
cooperate (C) (6, 6) (0, 8)

defect (D) (8, 0) (2, 2)

What if the game is played n times? We assume that each player is trying to
maximize the sum of his payoffs over the rounds. Both players’ actions in each
round are revealed simultaneously, and they know the actions taken on previous
rounds when deciding how to play in the current round.

As in the one-shot game, in the final round, it will be a dominant strategy for
each player to defect. Therefore, it is also a dominant strategy for each player to
defect in the previous round, etc. Backward induction implies that the unique Nash
equilibrium is to defect in each round.

It is crucial for the analysis we just gave that the number of rounds of the game
is common knowledge. But for very large n, this is not necessarily realistic. Rather,
we would like to model the fact that the number of times the game will be played
is not known in advance.

One possibility is to let the game run forever and consider the limsup aver-
age payoff :

lim sup
T→∞

1

T

T∑
t=1

(the player’s payoff in round t). (6.1)

(When the limit exists, we will refer to it as the average payoff .)
We emphasize that this is very different from a limit of fixed horizon games. In

the latter case, a player can select a strategy that depends on the horizon T , while
if the goal is to maximize the (limiting) average payoff, then the player must select
one strategy independently of T .

Another way to assign utility to a player in an infinitely repeated game is to
use a discount factor β < 1 and consider the discounted payoff :

∞∑
t=1

βt(the player’s payoff in round t). (6.2)

There are two common interpretations for this:

• For each t ≥ 1, given that the game has lasted for t−1 rounds, it continues
to the next round with probability β. Then the probability of still playing
at time t is βt and equation (6.2) represents the player’s expected payoff.
• A dollar earned today is better than a dollar earned next year since it can

be enjoyed in the intervening year or invested to earn interest.

The strategies we consider in repeated games are analogous to behavioral strate-
gies in extensive-form games:

5 This version differs from the one in Chapter 4 in that a constant has been added to all

payoffs to make them nonnegative.
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Definition 6.4.1. Let G be a k-player normal-form game, where player i’s

action set is Ai. Let A :=
∏k
i=1Ai be the set of action profiles. A (behavioral)

strategy si for player i in the infinitely repeated game G∞ is a mapping that
for each t assigns to every possible history of actions Ht−1 ∈ At−1 a mixed strategy
si(Ht−1) for player i in G (i.e., a distribution over Ai) to be played in round t.

6.4.1. Repetition with discounting. Consider Iterated Prisoner’s Dilemma6

with discount factor β.

Definition 6.4.2. The Tit-for-Tat strategy in Iterated Prisoner’s Dilemma
is the following:

• Cooperate in round 1.
• For every round k > 1, play what the opponent played in round k − 1.

This strategy fares surprisingly well against a broad range of competing strate-
gies. See the notes.

Lemma 6.4.3. For β > 1/3, it is a Nash equilibrium in Iterated Prisoner’s
Dilemma for both players to play Tit-for-Tat.

Remark 6.4.4. The threshold of 1/3 for β depends on the specific payoff matrix
used, but the principle applies more broadly.

Player ITit-for-Tat
Player IIdeviates
Payoff vector versus

with no deviation

D CCCC C C D D D

C C CCD D D DC C

(6, 6) (0, 8) (2, 2) (8, 0)
(6, 6) (6, 6) (6, 6)

t+1t t

Figure 6.14. Illustration of deviation in Tit-for-Tat strategies

Proof. If both players play Tit-for-Tat, then the payoff to each player in every
round is 6. Suppose though that the first player plays Tit-for-Tat and the second
player deviates. Consider the first round t at which he defects. Suppose first that he
never switches back to cooperating. Then his payoff from t on is 8 ·βt + 2

∑
j>t β

j ,

versus 6
∑
j≥t β

j if he had kept on cooperating. The latter is larger for β > 1/3.

If he does switch back to cooperating at some round t′ > t then his payoff in
rounds t through t′ is

8 · βt + 2
∑
t<j<t′

βj , versus 6
∑
t≤j≤t′

βj

if he doesn’t defect during this period. The latter is also greater when β > 1/3
(and even for β slightly smaller).

Applying this argument to each interval where player II defected proves the
theorem. �

6 This is the game G∞, where G is the version of Prisoner’s Dilemma shown at the beginning
of §6.4.
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The following strategy constitutes a more extreme form of punishment for an
opponent who doesn’t cooperate.

Definition 6.4.5. The Grim strategy in Iterated Prisoner’s Dilemma is the
following: Cooperate until a round in which the other player defects, and then
defect from that point on.

Exercise 6.b. Determine for which values of β it is a Nash equilibrium in
Iterated Prisoner’s Dilemma for both players to use the Grim strategy.

The previous exercise shows that (Grim, Grim) is a Nash equilibrium in Iterated
Prisoner’s Dilemma if β is sufficiently large. In fact, (Grim, Tit-for-Tat) is also a
Nash equilibrium. But these are far from the only equilibria.

In the next section we characterize the payoffs achievable in a Nash equilibrium.
To simplify the discussion, we consider average, rather than discounted, payoffs.

6.4.2. The Folk Theorem for average payoffs. Consider two infinite se-
quences of actions aII and aI. One way for player II to try to force player I to stick
with aI is to “punish” player I if she deviates from that sequence. In order for this
threat to work, any gain from deviating must be outweighed by the punishment.

average payoff (7, 3)

Player ICD
Player IIGrim’
Payoff vector

D CDC D C C D C

C C CC C C CC C

(6, 6) (8, 0) (6, 6) (8, 0)

Figure 6.15. (CD, Grim′) strategy pair without deviation.

Example 6.4.6. Consider the Cooperate-Defect (CD) strategy for player I
in Iterated Prisoner’s Dilemma defined as follows: Alternate between cooperating
and defecting as long as the other player cooperates. If the other player ever defects,
defect from that point on. Let Grim′ be the player II strategy that cooperates as
long as player I alternates between cooperate and defect, but if player I ever defects
on an odd round, then player II defects henceforth.

We claim that the strategy pair (CD, Grim′) is a Nash equilibrium that yields
an average payoff of 7 to player I and 3 to player II.

To see that these are the average payoffs, observe that if neither player deviates,
then in alternate rounds, they play (cooperate, cooperate) yielding payoffs of (6,
6), and (defect, cooperate), yielding payoffs of (8,0) for average payoffs of (7, 3).

Figures 6.15 and 6.16 illustrate why this is a Nash equilibrium.

The previous example gives a special case of one of the famous folk theorems,
characterizing the payoffs achievable by Nash equilibria in repeated games.

We will need two definitions:

Definition 6.4.7 (Payoff polytope). Let G be a finite k-person normal-form
game, where player i’s action set is Ai. Let A := A1 × A2 × · · · × Ak, the set
of action profiles, and ui : A → R the utility of player i. For a ∈ A, write
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Player Ideviates Punishment:Payoff ≤ 2 henceforth
Player ICD
Player IIGrim’
Payoff vector

DC D C D

C DC C D DC C

(6, 6) (8, 0)

Figure 6.16. (CD, Grim′) strategy pair with deviation. The figure shows
that the Cooperate-Defect (CD) player’s average payoff drops by deviating.
Similar analysis shows that Grim′ is a best response to CD.

u(a) = (u1(a), . . . , uk(a)) for the utility vector in G corresponding to the action
profile a. The convex hull of {u(a) | a ∈ A} is called the payoff polytope of the
game.

Definition 6.4.8 (Individually-rational payoff profiles). Let G be a finite
k-person game with action sets Ai. We say a payoff vector g = (g1, . . . , gk) is
individually rational if each player’s payoff is at least his minmax value, the lowest
payoff his opponents can limit him to. That is, for all i

gi ≥ min
x−i

max
ai

ui(ai,x−i).

Note that the strategies xj in x−i could be randomized. (Recall that xj is a mixed
strategy for player j in a single round of the game G.)

Payoffs:

Player I
Player II

C C C C C C C C C C D D

CC C C C C C C CD D D

712
(6, 6)

312
(0, 8)

212
(8, 0)

Figure 6.17. This figure shows the cycle that would be used in Iterated
Prisoner’s Dilemma when the probability distribution is pC,C = 7

12
, pC,D = 1

4
,

and pD,C = 1
6
. In this case, the cycle is of length 12, and the average payoffs

are 7
12
· 6 + 3

12
· 0 + 2

12
· 8 = 4 5

6
for player I and 5 1

2
for player II.

Definition 6.4.9 (Nash equilibrium in a repeated game with average
payoffs). A strategy profile s = (s1, . . . , sk) in the infinitely repeated game G∞

yields a payoff uti := ui(s(Ht−1)) to player i in round t. (Notice that uti is a random
variable since each sj(Ht−1) is a mixed strategy; see Definition 6.4.1.) The profile
s is a Nash equilibrium (average payoffs) if the following two conditions hold:
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• The limit of payoffs exists; i.e., for each player j, with probability 1,

lim
T→∞

1

T

∞∑
t=1

utj

exists.
• There is a vector (the average payoff vector) g = (g1, . . . , gk) such that

for each player j and deviation s′j ,

E

[
lim
T→∞

1

T

∞∑
t=1

utj

]
= gj ≥ E

[
lim sup
T→∞

1

T

T∑
t=1

uj
(
s′j(Ht−1), s−j(Ht−1)

)]
.

Theorem 6.4.10 (The Folk Theorem for Average Payoffs:). Let G be a
finite k-person game.

(1) If s∗ = (s∗1, . . . , s
∗
k) is a Nash equilibrium (average payoffs) in the infinitely

repeated game G∞, then the resulting average payoff vector (g1, . . . , gk) is
in the payoff polytope and is individually rational.

(2) If g = (g1, . . . , gk) is individually rational and is in the payoff polytope,
then there is a Nash equilibrium in G∞ for which the players obtain these
average payoffs.

6.4.3. Proof of Theorem 6.4.10∗. Part (1): First, since the payoff limit
exists for s∗, the strategies are in the payoff polytope. Second, if the strategies s∗

yield an average payoff gi to player i that is not individually rational, then player i
has a better response. Specifically, for each round t, have her play a best response
to whatever strategy s∗ prescribes for the other agents in round t given the history
up to and including t − 1. By construction, this yields her at least her minmax
utility in each round, showing that s∗ is not an equilibrium.

Part (2): Let p be a probability distribution over action profiles for which
g =

∑
a pau(a). We first prove the theorem assuming that the entries in p are

rational. Let D be a common denominator of the numbers in p. Construct a cycle
of action tuples a = (a1, a2, . . . , ak) of length D consisting of D · pa occurrences of
tuple a for each possible action profile. The equilibrium strategies are then defined
as follows: Each player plays the strategy specified by the cycle just described. (See
Figure 6.17 for an example.) If some player j ever deviates from this strategy, then
from that point on, the rest of the players punish him by switching to the strategy
that yields the minmax payoff to j. This is a Nash equilibrium because if player i
deviates in any way, his payoff from the next round on is the minmax payoff which
is at most gi.

Next we show how to extend this to a Nash equilibrium for an irrational payoff
vector g. Let g(1),g(2), . . . be a sequence of rational payoff vectors in the payoff
polytope, that converges to g and satisfies ‖g(j)−g‖ ≥ ‖g(j+1)−g‖ for all j. Let
Dj be the common denominator of the action tuple probabilities corresponding to
g(j) (as in the previous paragraph). The Nash equilibrium we construct will have
the following form: For j = 1, 2, . . . play the strategy profile cycle achieving g(j)
as described above for nj rounds, where nj is selected so that

njDj > 2j

Dj+1 +
∑
k<j

nkDk

 . (6.3)
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134 6. GAMES IN EXTENSIVE FORM

We refer to these nj rounds as the jth stage. By construction, the jth stage lasts
longer than 2j times all earlier stages plus a single round of stage j + 1.

We now argue that the limiting payoff the players obtain is g. Without loss
of generality assume that ‖u(a)‖ ≤ 1 for all a. Also, let at be the action vector
prescribed for step t of the game. Now suppose that at some time T , the players
are in stage `+ 1; that is,

0 < T −

∑̀
j=1

njDj +mD`+1

 ≤ D`+1,

for some nonnegative integer m < n`+1. Then by (6.3), the current stage ` + 1
round plus all stages 1, . . . , `− 1 last for no more than T2−` steps. Therefore,∥∥∥ T∑

t=1

u(at)− Tg
∥∥∥ < T‖g(`)− g‖+ T21−`,

and therefore as `→∞, the average payoff vector converges to g.
If a player ever deviates from the plan above, then from that point on, the rest

of the players punish him so he receives his minmax payoff. Since g is individually
rational, this strategy profile is a Nash equilibrium.

Notes

The notion of subgame-perfect equilibrium was formalized by Selten [Sel65]. The
proof that every finite game of perfect information has a pure Nash equilibrium, indeed a
subgame-perfect equilibrium, is due to Zermelo [Zer13, SW01a] and Kuhn [Kuh53]. In the
same paper, Kuhn [Kuh53] proved Theorem 6.2.8 showing that in games of perfect recall,
every mixed strategy has a realization-equivalent behavior strategy. The Line-Item Veto
game is from [DN08]; it represents the conflict that arose in 1987 between Reagan and
Congress, though with the preferences reversed from our example. The Large Company
versus Startup game is from [TvS02]. The Centipede Game is due to Rosenthal [Ros81].
See [PHV09, MP92] for the results of behavioral experiments and related literature on the
Centipede Game.

The mathematical approach to the analysis of games of incomplete information was
initiated by John Harsanyi [Har67, Har68b, Har68c] and was the major factor in his
winning of the 1994 Nobel Prize in Economics. The prize was shared with Nash and
Selten “for their pioneering analysis of equilibria in the theory of non-cooperative games.”

In §6.3.1, we found equilibria in Bayesian games by reducing the game to normal
form with payoffs averaged over the moves by nature. We know that such equilibria
have realization-equivalent equilibria in behavioral strategies. These equilibria have the
property that for each player, given the information he has on the move by nature, his
strategy is a best response to the strategies of the other players. This is called a Bayesian
equilibrium. The way Harsanyi made these ideas precise was by referring to the information
a player has about the move by nature as his type.7 Thus, we can think of the move by
nature as assigning types to the different players. The interpretation of an equilibrium in
behavioral strategies, in a game with moves by nature, as a Bayesian equilibrium is due
to Harsanyi [Har67]. For more details, see [MSZ13, Theorem 9.53].

Influential early works on signaling and asymmetric information were the book by
Spence [Spe74] on signaling in economics and society and the paper of Zahavi [Zah75]
on the handicap principle that emphasized the role of costly signaling. For a broad in-
troduction to signaling theory, see [Ber06]. A. Michael Spence won the 2001 Nobel Prize

7 We take this perspective in Chapter 14.
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in Economics, together with George Akerlof and Joseph Stiglitz, “for their analyses of
markets with asymmetric information.”

Repeated games have been the subject of intense study. In a famous experiment
(see [AH81b, Axe84]), Axelrod asked people to send him computer programs that play
Iterated Prisoner’s Dilemma and pitted them against each other. Tit-for-Tat, a four-line
program sent by Anatol Rapoport, won the competition.

Robert Aumann Thomas Schelling

The Folk Theorem was known in the game theory community before it appeared in
journals. A version of Theorem 6.4.10 for discounted payoffs is also known. See [MSZ13].
Some relevant references are [Fri71, Rub79, Aum81, Aum85, AS94]. For a broader look
at the topic of repeated games, see [MSZ15].

In 2005, Robert Aumann won the Nobel Prize in Economics for his work on repeated
games, and more generally “for having enhanced our understanding of conflict and coop-
eration through game-theory analysis.” The prize was shared with Thomas Schelling.

A theory of repeated games with incomplete information was initiated by Aumann
and Maschler in the 1960s but only published in 1995 [AM95]. In particular, if the games
in §6.3.3 are repeated T times, then the gain to player I from knowing which game is being
played is T/2 in the first example, but only o(T ) in the second example.

This chapter provides only a brief introduction to the subject of extensive-form games.
The reader is encouraged to consult one of the many books that cover the topic in depth
and analyze other equilibrium notions, e.g., Rasmusen [Ras07], Maschler, Solan, and Za-
mir [MSZ13], and Fudenberg and Tirole [FT91].

Exercises

6.1. Find all pure equilibria of the Centipede Game (Example 6.1.6).

6.2. In the Fish Seller Game (Example 6.3.1), suppose that the seller only knows
with probability 0.9 the true status of his fish (fresh or old). Draw the game
tree for this Bayesian game and determine the normal-form representation
of the game.

6.3.S Consider the zero-sum two-player game in which the game to be played is
randomized by a fair coin toss. (This example was discussed in §2.5.1.) If
the toss comes up heads, the payoff matrix is given by AH , and if tails, it
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136 6. GAMES IN EXTENSIVE FORM

is given by AT :

AH =

player II
L R

p
la

ye
r

I

U 8 2
D 6 0

and AT =

player II
L R

p
la

ye
r

I

U 2 6
D 4 10

For each of the settings below, draw the Bayesian game tree, convert
to normal form, and find the value of the game.
• Suppose that player I is told the result of the coin toss and both players

play simultaneously.
• Suppose that player I is told the result of the coin toss but she must

reveal her move first.

6.4. Kuhn Poker: Consider a simplified form of poker in which the deck has only
three cards: a Jack, a Queen and a King (ranked from lowest to highest),
and there are two players, I and II. The game proceeds as follows:
• The game starts with each player anteing $1.
• Each player is dealt one of the cards.
• Player I can either pass (P) or bet (B) $1.

– If player I bets, then player II can either fold (F) or call (C)
(adding $1 to the pot).

– if player I passes, then player II can pass ( P ) or bet $1 (B).
∗ If player II raises, then player I can either fold or call.

• If one of the players folds, the other player takes the pot. If neither
folds, the player with the high card wins what’s in the pot.

Find a Nash equilibrium in this game via reduction to the normal form.
Observe that in this equilibrium, there is bluffing and overbidding.

6.5. Consider an extensive-form game consisting of a series of sequential auc-
tions for three different laptops. In round 1, there is an auction for laptop
1, with participants A and B. In round 2, there is an auction for laptop 2,
with participants C and D. In round 3, there is an auction for laptop 3,
with participants B and C. Each auction is a second-price auction: Each
participant submits a bid, and the person with the higher bid wins but
pays the bid of the loser. Suppose also that each participant has a value
for a laptop: Assume that vA = 1, vB = 100, vC = 100, and vD = 99.
The utility of a participant is 0 if he loses in all auctions he participates
in, and it is his value for a laptop minus the sum of all payments he makes
otherwise.

A strategy for each player specifies, given the history, what bid that
player submits in each auction he participates in. Show that there is an
equilibrium in which players A, B, and C win.
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CHAPTER 7

Evolutionary and correlated equilibria

7.1. Evolutionary game theory

Biology has brought a kind of thuggish brutality to the refined intellectual world
of game theory. – Alan Grafen

Most of the games we have considered so far involve rational players optimiz-
ing their strategies. A new perspective was proposed by John Maynard Smith and
George Price in 1973: Each player could be an organism whose pure strategy is
encoded in its genes1. A strategy that yields higher payoffs enables greater repro-
ductive success.2 Thus, genes coding for such strategies increase in frequency in
the next generation.

Interactions in the population are modeled by randomly selecting two indi-
viduals, who then play a game. Thus, each player faces a mixed strategy with
probabilities corresponding to population frequencies.

We begin with an example, a variant of our old nemesis, the game of Chicken.

7.1.1. Hawks and Doves. The game described in Figure 7.1 is a simple
model for two behaviors – one bellicose, the other pacifist – within the population
of a single species. This game has the following payoff matrix:

player II
H D

p
la

y e
r

I

H (v2 − c,
v
2 − c) (v, 0)

D (0, v) (v2 ,
v
2 )

Now imagine a large population, each of whose members are hardwired genetically
either as hawks or as doves, and assume that those who do better at this game have
more offspring. We will argue that if (x, 1− x) is a symmetric Nash equilibrium in
this game, then these will also be equilibrium proportions in the population.

Let’s see what the Nash equilibria are. If c < v
2 , the game is a version of

Prisoner’s Dilemma and (H,H) is the only equilibrium. When c > v
2 , there are

two pure Nash equilibria: (H,D) and (D,H); and since the game is symmetric,
there is a symmetric mixed Nash equilibrium. Suppose each player plays H with
probability x ∈ (0, 1). For this to be player I’s strategy in a Nash equilibrium, the
payoffs to player II from playing H and D must be equal:

(L) x
(v

2
− c
)

+ (1− x)v = (1− x)
v

2
(R). (7.1)

1 A player may not be aware of his strategy.
2 This is known as natural selection.
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138 7. EVOLUTIONARY AND CORRELATED EQUILIBRIA

v

v/2−cv/2−c

v/2

0

v/2

Figure 7.1. Two players play this game for a prize of value v > 0. They
confront each other, and each chooses (simultaneously) to fight or to flee;
these two strategies are called the “hawk” (H) and the “dove” (D) strategies,
respectively. If they both choose to fight (two hawks), then each incurs a cost
c, and the winner (either is equally likely) takes the prize. If a hawk faces a
dove, the dove flees, and the hawk takes the prize. If two doves meet, they
split the prize equally.

For this to hold, we need x = v
2c , which by the assumption is less than 1. By

symmetry, player II will do the same thing.

Population dynamics for Hawks and Doves. Now suppose we have the fol-
lowing dynamics in the population: Throughout their lives, random members of
the population pair off and play Hawks and Doves; at the end of each generation,
members reproduce in numbers proportional to their winnings. Let x denote the
fraction of hawks in the population.

If x < v
2c , then in equation (7.1), (L) > (R) – the expected payoff for a hawk

is greater than that for a dove, and so in the next generation, x, the fraction of
hawks, will increase.

On the other hand, if x > v
2c , then (L) < (R) – the expected payoff for a dove

is higher than that of a hawk, and so in the next generation, x will decrease.

7.1.2. Evolutionarily stable strategies. Consider a symmetric, two-player
game with n pure strategies each and payoff matrices A and B for players I and II,
with Ai,j = Bj,i.

We take the point of view that a symmetric mixed strategy in this game cor-
responds to the proportions of each type within the population.
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7.1. EVOLUTIONARY GAME THEORY 139

To motivate the formalism, suppose a population with strategy x is invaded by
a small population of mutants of type z (that is, playing strategy z), so the new
composition is εz + (1− ε)x, where ε is small. The new payoffs will be

εxTAz + (1− ε)xTAx (for x’s), (7.2)

εzTAz + (1− ε)zTAx (for z’s). (7.3)

The criteria for x to be an evolutionary stable strategy will imply that, for
small enough ε, the average payoff for x’s will be strictly greater than that for z’s,
so the invaders will disappear. Formally:

Definition 7.1.1. A mixed strategy x in ∆n is an evolutionarily stable
strategy (ESS) if for any pure “mutant” strategy z:

(a) zTAx ≤ xTAx.
(b) If zTAx = xTAx, then zTAz < xTAz.

Observe that criterion (a) is equivalent to x being a (symmetric) Nash equilib-
rium.3 Thus, if x is a Nash equilibrium, criterion (a) holds with equality for any z
in the support of x.

Assuming (a), no mutant will fare strictly better against the current population
strategy x than x itself. However, a mutant strategy z could still successfully invade
if it does just as well as x when playing against x and when playing against another
z mutant. Criterion (b) excludes this possibility.

Example 7.1.2 (Hawks and Doves). We will verify that the mixed Nash
equilibrium x =

(
v
2c , 1−

v
2c

)
(i.e., H is played with probability v

2c ) is an ESS when
c > v

2 . First, we observe that both pure strategies satisfy criterion (a) with equality,
so we check (b).

• If z = (1, 0) (“H”), then zTAz = v
2 − c, which is strictly less than xTAz =

x( v2 − c) + (1− x)0.

• If z = (0, 1) (“D”), then zTAz = v
2 < xTAz = xv + (1− x)v2 .

Thus, the mixed Nash equilibrium for Hawks and Doves is an ESS.

Example 7.1.3 (Rock-Paper-Scissors). The unique Nash equilibrium in
Rock-Paper-Scissors, x = ( 1

3 ,
1
3 ,

1
3 ), is not evolutionarily stable.

player II
Rock Paper Scissors

p
la

ye
r

I

Rock 0 −1 1
Paper 1 0 −1

Scissors −1 1 0

This is because the payoff of x against any strategy is 0, and the payoff of any
pure strategy against itself is also 0, and thus, the expected payoff of x and z will
be equal. This suggests that under appropriate notions of population dynamics,
cycling will occur: A population with many Rocks will be taken over by Paper,
which in turn will be invaded (bloodily, no doubt) by Scissors, and so forth. These
dynamics have been observed in nature — in particular, in a California lizard4.

3 This is shorthand for (x,x) being a Nash equilibrium.
4The description of this example follows, almost verbatim, the exposition of Gintis [Gin00].
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140 7. EVOLUTIONARY AND CORRELATED EQUILIBRIA

The side-blotched lizard Uta stansburiana has three distinct types of male:
orange-throat, blue-throat, and yellow-striped. All females of the species are yellow-
striped. The orange-throated males are violently aggressive, keep large harems
of females, and defend large territories. The yellow-striped males are docile and
look like receptive females. In fact, the orange-throats can’t distinguish between
the yellow-striped males and females. This enables the yellow-striped males to
sneak into their territory and secretly copulate with the females. The blue-throats
are less aggressive than the orange-throats, keep smaller harems (small enough to
distinguish their females from yellow-striped males), and defend small territories.

Researchers have observed a six-year cycle starting with domination, say, by
the orange-throats. Eventually, the orange-throats amass territories and harems
so large that they can no longer be guarded effectively against the sneaky yellow-
striped males, who are able to secure a majority of copulations and produce the
largest number of offspring. When the yellow-striped lizards become very com-
mon, however, the males of the blue-throated variety get an edge: Since they have
small harems, they can detect yellow-striped males and prevent them from invad-
ing their harems. Thus, a period when the blue-throats become dominant follows.
However, the aggressive orange-throats do comparatively well against blue-throats
since they can challenge them and acquire their harems and territories, thus prop-
agating themselves. In this manner, the population frequencies eventually return
to the original ones, and the cycle begins anew.

When John Maynard Smith learned that Uta stansburia were “playing” Rock-
Paper-Scissors, he reportedly5 exclaimed, “They have read my book!”

Figure 7.2. The three types of male lizard Uta stansburiana. Picture cour-
tesy of Barry Sinervo; see http://bio.research.ucsc.edu/~barrylab.

5 This story is reported in [Sig05].
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Example 7.1.4 (Unstable mixed Nash equilibrium). In this game,

player II
A B

p
la

ye
r

I

A (10, 10) (0, 0)
B (0, 0) (5, 5)

both pure strategies (A,A) and (B,B) are evolutionarily stable, while the symmet-
ric mixed Nash equilibrium x = ( 1

3 ,
2
3 ) is not.

Although (B,B) is evolutionarily stable, if a sufficiently large population of A’s
invades, then the “stable” population will in fact shift to being entirely composed
of A’s. Specifically, if, after the A’s invade, the new composition is α fraction A’s
and 1− α fraction B’s, then using (7.2), the payoffs for each type are

5(1− α) (for B’s)

10α (for A’s).

Thus if α > 1/3, the payoffs of the A’s will be higher and they will “take over”.

Exercise 7.a (Mixed population invasion). Consider the following game:

player II
A B C

p
la

ye
r

I

A (0, 0) (6, 2) (−1,−1)
B (2, 6) (0, 0) (3, 9)
C (−1,−1) (9, 3) (0, 0)

Find two mixed Nash equilibria, one supported on {A,B}, the other supported on
{B,C}. Show that they are both ESS, but the {A,B} equilibrium is not stable
when invaded by an arbitrarily small population composed of half B’s and half C’s.

Example 7.1.5 (Sex ratios). Evolutionary stability can be used to explain sex
ratios in nature. In mostly monogomous species, it seems natural that the birth rate
of males and females should be roughly equal. But what about sea lions, in which
a single male gathers a large harem of females, while many males never reproduce?
Game theory helps explain why reproducing at a 1:1 ratio remains stable. To
illustrate this, consider the following highly simplified model. Suppose that each
harem consists of one male and ten females. If M is the number of males in the
population and F the number of females, then the number of “lucky” males, that
is, males with a harem, is ML = min(M,F/10). Suppose also that each mating pair
has b offspring on average. A random male has a harem with probability ML/M ,
and if he does, he has 10b offspring on average. Thus, the expected number of
offspring a random male has is E [Cm] = 10bML/M = bmin(10, F/M). On the
other hand, the number of females that belong to a harem is FL = min(F, 10M),
and thus the expected number of offspring a female has is E [Cf ] = bFL/F =
bmin(1, 10M/F ).

If M < F , then E [Cm] > E [Cf ], and individuals with a higher propensity to
have male offspring than females will tend to have more grandchildren, resulting in
a higher proportion of genes in the population with a propensity for male offspring.
In other words, the relative birthrate of males will increase. On the other hand, if
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142 7. EVOLUTIONARY AND CORRELATED EQUILIBRIA

Figure 7.3. Sea lion life.

M > F , then E [Cm] < E [Cf ], and the relative birthrate of females increases. (Of
course, when M = F , we have E [Cm] = E [Cf ], and the sex ratio is stable.)

7.2. Correlated equilibria

If there is intelligent life on other planets, in a majority of them, they would
have discovered correlated equilibrium before Nash equilibrium. – Roger Myerson

Example 7.2.1 (Battle of the Sexes). The wife wants to head to the opera,
but the husband yearns instead to spend an evening watching baseball. Neither is
satisfied by an evening without the other. In numbers, player I being the wife and
player II the husband, here is the scenario:

husband
opera baseball

w
if

e opera (4,1) (0,0)
baseball (0,0) (1,4)

In this game, there are two pure Nash equilibria: Both go to the opera or both
watch baseball. There is also a mixed Nash equilibrium which yields each player
an expected payoff of 4/5 (when the wife plays (4/5, 1/5) and the husband plays
(1/5, 4/5)). This mixed equilibrium hardly seems rational: The payoff a player gets
is lower than what he or she would obtain by going along with his or her spouse’s
preference. How might this couple decide between the two pure Nash equilibria?

One way to do this would be to pick a joint action based on a flip of a single
coin. For example, the two players could agree that if the coin lands heads, then
both go to the opera; otherwise, both watch baseball. Observe that even after the
coin toss, neither player has an incentive to unilaterally deviate from the agreement.

To motivate the concept of correlated equilibrium introduced below, observe
that a mixed strategy pair in a two-player general-sum game with action spaces [m]
and [n] can be described by a random pair of actions: R with distribution x ∈ ∆m

and C with distribution y ∈ ∆n, picked independently by players I and II. Thus,

P [R = i, C = j] = xiyj .
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7.2. CORRELATED EQUILIBRIA 143

It follows from Lemma 4.3.7 that x, y is a Nash equilibrium if and only if

P [R = i] > 0 =⇒ E [ai,C ] ≥ E [a`,C ]

for all i and ` in [n] and

P [C = j] > 0 =⇒ E [bR,j ] ≥ E [bR,k]

for all j and k in [m].

pi piqj

pm

p1

q1 j

i

qj qn

...

... ...

...

...
...

zij

z11 z1j

zi1

z1n

zm1

... ...

Player I

Player II

Figure 7.4. This figure illustrates the difference between a Nash equilibrium
and a correlated equilibrium. In a Nash equilibrium, the probability that
player I plays i and player II plays j is the product of the two correspond-
ing probabilities (in this case piqj), whereas a correlated equilibrium puts a
probability, say zij , on each pair (i, j) of strategies.

Definition 7.2.2. A correlated strategy pair is a pair of random actions
(R, C) with an arbitrary joint distribution

zij = P [R = i, C = j].

The next definition formalizes the idea that, in a correlated equilibrium, if
player I knows that the players’ actions (R, C) are picked according to the joint
distribution z and player I is informed only that R = i, then she has no incentive
to switch to some other action `.

Definition 7.2.3. A correlated strategy pair in a two-player game with payoff
matrices A and B is a correlated equilibrium if

P [R = i] > 0 =⇒ E [ai,C | R = i] ≥ E [a`,C | R = i] (7.4)

for all i and ` in [n] and

P [C = j] > 0 =⇒ E [bR,j | C = j] ≥ E [bR,k | C = j]

for all j and k in [m].

Remark 7.2.4. In terms of the distribution z, the inequality in condition (7.4)
is ∑

j

(
zij∑
k zik

)
aij ≥

∑
j

(
zij∑
k zik

)
a`j .

Thus, z is a correlated equilibrium iff for all i and `,∑
j

zijaij ≥
∑
j

zija`j
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j...

...i

zi2
z

zin
zz

zi1

z
z1j

z
z2j

z
zmj

Player II strategy conditioned on i

Player I
strategy

conditioned
on j

Figure 7.5. The left figure shows the distribution player I faces (the labels
on the columns) when the correlated equilibrium indicates that she should
play i. Given this distribution over columns, Definition 7.2.3 says that she
has no incentive to switch to a different row strategy. The right figure shows
the distribution player II faces when told to play j.

and for all j and k, ∑
i

zijbij ≥
∑
i

zijbik.

The next example illustrates a more sophisticated correlated equilibrium that
is not simply a mixture of Nash equilibria.

Example 7.2.5 (Chicken, revisited). In this game, (S,D) and (D, S) are
Nash equilibria with payoffs of (2, 7) and (7, 2), respectively. There is also a mixed
Nash equilibrium in which each player plays S with probability 2/3 and D with
probability 1/3 resulting in an expected payoff of 4 2

3 .

player II
Swerve (S) Drive (D)

p
la

ye
r

I

Swerve (S) (6, 6) (2, 7)
Drive (D) (7, 2) (0, 0)

The following probability distribution z is a correlated equilibrium which results
in an expected payoff of 41

2 to each player, worse than the mixed Nash equilibrium:

player II
Swerve (S) Drive (D)

p
la

ye
r

I

Swerve(S) 0 1/2
Drive (D) 1/2 0

A more interesting correlated equilibrium, that yields a payoff outside the convex
hull of the Nash equilibrium payoffs, is the following:

player II
Swerve (S) Drive (D)

p
la

ye
r

I

Swerve (S) 1/3 1/3
Drive (D) 1/3 0
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For this correlated equilibrium, it is crucial that the row player only knows R and
the column player only knows C. Otherwise, in the case that the outcome is (C,C),
each player would have an incentive to deviate (unilaterally).

Thus, to implement a correlated equilibrium, an external mediator is typically
needed. Here, the external mediator chooses the pair of actions (R, C) according to
this distribution ((S,D),(D,S),(S,S)) with probability 1

3 each) and then discloses to
each player which action he or she should take (but not the action of the opponent).
At this point, each player is free to follow or to reject the suggested action. It is in
their best interest to follow the mediator’s suggestion, and thus this distribution is
a correlated equilibrium.

To see this, suppose the mediator tells player I to play D. In this case, she
knows that player II was told to play S and player I does best by complying to
collect the payoff of 7. She has no incentive to deviate.

On the other hand, if the mediator tells her to play S, she is uncertain about
what player II was told, but conditioned on what she is told, she knows that (S,S)
and (S,D) are equally likely. If she follows the mediator’s suggestion and plays S,
her payoff will be 6 × 1

2 + 2 × 1
2 = 4, while her expected payoff from switching is

7× 1
2 = 3.5, so player I is better off following the suggestion.
We emphasize that the random actions (R, C) used in this correlated equilib-

rium are dependent, so this is not a Nash equilibrium. Moreover, the expected
payoff to each player when both follow the suggestion is 2× 1

3 + 6× 1
3 + 7× 1

3 = 5.
This is better than what they would obtain from the symmetric Nash equilibrium
or from averaging the two asymmetric Nash equilibria.

Notes

The Alan Grafen quote at the beginning of the chapter is from [HH07]. Evolutionary
stable strategies were introduced by John Maynard Smith and George Price [SP73, Smi82]
(though Nash in his thesis [Nas50b] already discussed the interpretation of a mixed strat-
egy in terms of population frequencies). For a detailed account of how game theory affected
evolutionary biology, see the classic book by John Maynard Smith [Smi82]. The concept
has found application in a number of fields including biology, ecology, psychology, and
political science. For more information on evolutionary game theory, see Chapters 6, 11,
and 13 in [YZ15]. The study of evolutionary stable strategies has led to the development
of evolutionary game dynamics, usually studied via systems of differential equations. See,
e.g., [HS98].

John Maynard Smith
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146 7. EVOLUTIONARY AND CORRELATED EQUILIBRIA

The description of cycling in the frequencies of different types of Uta stansburi-
ana males and the connection to Rock-Paper-Scissors is due to B. Sinervo and C. M.
Lively [SL96].

The notion of correlated equilibrium was introduced in 1974 by Robert Aumann
[Aum74, Aum87]. The fact that every finite game has at least one Nash equilibrium
implies that every finite game has a correlated equilibrium. Hart and Schmeidler [HS89]
provide an elementary direct proof (via the minimax theorem) of the existence of correlated
equilibria in games with finitely many players and strategies. Note that while we have
only defined correlated equilibrium here in two-player games, the notion extends naturally
to more players. See, e.g., Chapter 8 of [MSZ13].

Surprisingly, finding a correlated equilibrium in large scale problems is computation-
ally easier than finding a Nash equilibrium. In fact, there are no computationally efficient
algorithms known for finding Nash equilibria, even in two-player games. However, cor-
related equilibria can be computed via linear programming. (See, e.g., [MG07] for an
introduction to linear programming.) For a discussion of the complexity of computing
Nash equilibria and correlated equilibria, see the survey by Papadimitriou in [YZ15].

Exercises

7.1. Find all Nash equilibria and determine which of the symmetric equilibria
are evolutionarily stable in the following games:

player II
A B

p
la

y e
r

I

A (4, 4) (2, 5)
B (5, 2) (3, 3)

and

player II
A B

p
la

ye
r

I

A (4, 4) (3, 2)
B (2, 3) (5, 5)

7.2.S Consider the following symmetric game as played by two drivers, both
trying to get from Here to There (or two computers routing messages along
cables of different bandwidths). There are two routes from Here to There;
one is wider and therefore faster, but congestion will slow them down if
both take the same route. Denote the wide route W and the narrower
route N . The payoff matrix is

Payoffs: Payoffs:Payoffs:

3 4522 3

Figure 7.6. The leftmost image shows the payoffs when both drivers drive
on the narrower route, the middle image shows the payoffs when both drivers
drive on the wider route, and the rightmost image shows what happens when
the red driver (player I) chooses the wide route and the yellow driver (player
II) chooses the narrow route.
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player II (yellow)
W N

p
la

y e
r

I
(r

ed
)

W (3, 3) (5, 4)
N (4, 5) (2, 2)

Find all Nash equilibria and determine which ones are evolutionarily stable.

7.3. Argue that in a symmetric game, if aii > bi,j (= aj,i) for all j 6= i, then
pure strategy i is an evolutionarily stable strategy.

7.4. Occasionally, two parties resolve a dispute (pick a “winner”) by playing a
variant of Rock-Paper-Scissors. In this version, the parties are penalized if
there is a delay before a winner is declared; a delay occurs when both players
choose the same strategy. The resulting payoff matrix is the following:

player II
Rock Paper Scissors

p
la

ye
r

I Rock (−1,−1) (0, 1) (1, 0)
Paper (1, 0) (−1,−1) (0, 1)

Scissors (0, 1) (1, 0) (−1,−1)

Show that this game has a unique Nash equilibrium that is fully mixed,
and results in expected payoffs of 0 to both players. Then show that the
following probability distribution is a correlated equilibrium in which the
players obtain expected payoffs of 1/2:

player II
Rock Paper Scissors

p
la

ye
r

I Rock 0 1/6 1/6
Paper 1/6 0 1/6

Scissors 1/6 1/6 0
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CHAPTER 8

The price of anarchy

In this chapter, we study the price of anarchy, the worst-case ratio between
the quality of a socially optimal outcome and the quality of a Nash equilibrium
outcome.

8.1. Selfish routing

On Earth Day in 1990, the New York City traffic commissioner made the de-
cision to close 42nd Street, one of the most congested streets in Manhattan. Many
observers predicted that disastrous traffic conditions would ensue. Surprisingly,
however, overall traffic and typical travel times actually improved. As we shall see
next, phenomena like this, where reducing the capacity of a road network actually
improves travel times, can be partially explained with game theory.

1 unit of traffic flows in 1 unit of traffic flows out

no congestionlatency always 1 latency depends linearly on congestion

A B
D

C
1 unit of traffic flows in 1 unit of traffic flows outA

D

1

1
B

CAC

DB

12
12

latency 1

12latency

12latency

latency 1

Figure 8.1. Each link in the left figure is labeled with a latency function `(x)
which describes the travel time on an edge as a function of the congestion x
on that edge. (The congestion x is the fraction of traffic going from A to B
that takes this edge.) In Nash equilibrium, each driver chooses the route that
minimizes his own travel time, given the routes chosen by the other drivers.
The unique Nash equilibrium in this network, shown on the right, is obtained
by sending half the traffic to the top and half to the bottom. Thus, the
latency each driver experiences is 3/2. This is also the optimal routing; i.e.,
it minimizes the average latency experienced by the drivers.

Example 8.1.1 (Braess Paradox). A large number of drivers head from point
A to point B each morning. There are two routes, through C and through D. The
travel time on each road may depend on the traffic on it as shown in Figure 8.1.
Each driver, knowing the traffic on each route, will choose his own path selfishly,
that is, to minimize his own travel time, given what everyone else is doing. In this
example, in equilibrium, exactly half of the traffic will go on each route, yielding
an average travel time of 3/2. This setting, where the proportion of drivers taking
a route can have any value in [0, 1], is called “infinitesimal drivers”.

148
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8.1. SELFISH ROUTING 149

Now consider what can happen when a new, very fast highway is added between
C and D. Indeed, we will assume that this new route is so fast that we can simply
think of the travel time on it as being 0.

01 unit of traffic flows in 1 unit of traffic flows out

1

1
A

D
B

CxAC

xDB

1 unit of traffic flows in 1 unit of traffic flows outA
D

B
C

12
12

latency 1

12latency

12latency

latency 1

optimal flow

1 unit of traffic flows in 1 unit of traffic flows out
1A

D
B

Clatency 1

latency 1

latency0

Nash equilibrium flow
Figure 8.2. The Braess Paradox: Each link in the top figure is labeled with
a latency function `(x) which describes the travel time on that edge as a
function of the fraction x of traffic using that edge. These figures show the
effect of adding a 0 latency road from C to D: The travel time on each of
γC = A−C−B and γD = A−D−B is always at least the travel time on the
new route γ = A − C −D − B. Moreover, if a positive fraction of the traffic
takes route γC (resp. γD), then the travel time on γ is strictly lower than
that of γC (resp. γD). Thus, the unique Nash equilibrium is for all the traffic
to go on the path γ, as shown in the bottom left figure. In this equilibrium,
the average travel time the drivers experience is 2, as shown on the bottom
left. On the other hand, if the drivers could be forced to choose routes that
would minimize the average travel time, it would be reduced to 3/2, the social
optimum, as shown on the bottom right.

One would think that adding a fast road could never slow down traffic, but
surprisingly in this case it does: As shown in Figure 8.2, average travel time in
equilibrium increases from 3/2 to 2. This phenomenon, where capacity is added
to a system and, in equilibrium, average driver travel time increases, is called the
Braess Paradox.

We define the socially optimal traffic flow to be the partition of traffic
that minimizes average latency. The crux of the Braess Paradox is that while the
social optimum can only improve when roads are added to the network, the Nash
equilibrium can get worse.

We use the term price of anarchy to measure the ratio between performance
in equilibrium and the social optimum. In Example 8.1.1,

price of anarchy :=
average travel time in worst Nash equilibrium

average travel time in socially optimal outcome
=

2

3/2
=

4

3
.

In fact, we will see that in any road network with affine latency functions and
infinitesimal drivers, as in this example, the price of anarchy is at most 4/3! We will
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150 8. THE PRICE OF ANARCHY

develop this result soon, but first, let’s calculate the price of anarchy in a couple of
simple scenarios.

Example 8.1.2 (Pigou-type examples). In the example of Figure 8.3, with
latency functions ax and bx (a and b are both constants greater than 0), the Nash
equilibrium and optimal flow are the same: the solution to ax = b(1 − x). Thus,
the price of anarchy is 1.

1 unit of flow in 1 unit of flow out

latency

latency

ts
ba + b
aa + b

aba + b

aba + b

1 unit of flow in 1 unit of flow out

latency withx1 units of flow

latency withx2 units of flow

ax1

bx2

ts

Figure 8.3. The figure on the right shows the equilibrium and optimal flows
(which are identical in this case). Both have a fraction b/(a+ b) of the traffic
on the upper link, resulting in the same latency of ab/(a+ b) on both the top
and bottom links. Thus, the price of anarchy in this network is 1.

1 unit of flow in 1 unit of flow out

latency withx units of flow

constant latency(independent of flow)
1

s t

1 unit of flow in 1 unit of flow out

latency  1

12
latency 12

12
ts

optimal flow

1 unit of flow in 1 unit of flow out

latency 1

1
ts

Nash equilibrium flow

Figure 8.4. The top figure shows the latency functions on each edge. The
bottom left figure shows the Nash equilibrium flow, which has an average
latency of 1. The bottom right shows the optimal flow, which has an average
latency of 3/4.

On the other hand, as shown in Figure 8.4, with latency functions of x and
1, the Nash equilibrium sends all traffic to the top link, whereas the optimal flow
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8.1. SELFISH ROUTING 151

sends half the traffic to the top and half to the the bottom, for a price of anarchy
of 4/3.

8.1.1. Bounding the price of anarchy. Consider an arbitrary road net-
work, in which one unit of traffic flows from source s to destination t. Let Pst be
the set of paths in G from s to t. Each driver chooses a path P ∈ Pst. Let fP
be the fraction of drivers that take path P . Write f := (fP )P∈Pst for the resulting
traffic flow. The space of possible flows is

∆(Pst) =
{

f : fP ≥ 0 ∀P and
∑
P∈Pst

fP = 1
}
.

Given such a flow, the induced (traffic) flow on an edge e is

Fe :=
∑
P |e∈P

fP . (8.1)

s t
fR fBfP

edge e

fGfY

Figure 8.5. This figure shows the relationship between the edge flow Fe and
the path flows that contribute to it (in this example fB , fP , and fG) and
depicts the computation of `e(Fe). The contribution of edge e to L(f) =∑
P fPLP (f) is precisely Fe`e(Fe). See (8.3).

Denote by `e(x), the latency on edge e as a function of x, the amount of traffic
on the edge. Throughout this section, we assume that latency functions are weakly
increasing and continuous. Notice that each driver that chooses path P experiences
the same latency:

LP (f) =
∑
e∈P

`e(Fe). (8.2)

We denote by L(f) the total latency of all the traffic. Since a fraction fP of the
traffic has latency LP (f), this total latency is

L(f) =
∑
P

fPLP (f).

In equilibrium, each driver will choose some lowest latency path with respect to the
current choices of other drivers:
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152 8. THE PRICE OF ANARCHY

Definition 8.1.3. A flow f is a (Nash) equilibrium flow if and only if
whenever fP > 0, the path P is a minimum latency path; that is

LP (f) =
∑
e∈P

`e(Fe) = min
P ′∈Pst

LP ′(f).

Remark 8.1.4. In §8.1.3, we show that equilibrium flows exist.

Remark 8.1.5. We can equivalently calculate the latency L(f) from the edge
flows Fe. (See Figure 8.5.) Since the latency experienced by the flow Fe across edge
e is `e(Fe), we can write L(f) in two ways:

L(f) =
∑
P

fPLP (f) =
∑
e

Fe`e(Fe). (8.3)

The next proposition generalizes this equation to the setting where the edge
latencies are determined by one flow (f) and the routing is specified by a different

flow (f̃).

Proposition 8.1.6. Let f and f̃ be two path flows with corresponding edge flows
{Fe}e∈E and {F̃e}e∈E, respectively. Then∑

P

f̃PLP (f) =
∑
e

F̃e`e(Fe). (8.4)

Proof. We have∑
P

f̃PLP (f) =
∑
P

f̃P
∑
e∈P

`e(Fe) =
∑
e

`e(Fe)
∑
P |e∈P

f̃P =
∑
e

F̃e`e(Fe),

using (8.2) for the first equality and (8.1) for the last. �

The next lemma asserts that if the edge latencies are determined by an equi-
librium flow and are fixed at these values, then any other flow has weakly higher
latency.

Lemma 8.1.7. Let f be an equilibrium flow and let f̃ be any other path flow,
with corresponding edge flows {Fe}e∈E and {F̃e}e∈E, respectively. Then∑

e

(F̃e − Fe)`e(Fe) ≥ 0. (8.5)

Proof. Let L = minP ′∈Pst LP ′(f). By Definition 8.1.3, if fP > 0, then

LP (f) = L. Since
∑
P fP =

∑
P f̃P = 1, it follows that∑

P

fPLP (f) = L and
∑
P

f̃PLP (f) ≥ L. (8.6)

We combine these using (8.4) and (8.3) to get∑
e

F̃e`e(Fe) ≥
∑
e

Fe`e(Fe). �
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8.1. SELFISH ROUTING 153

8.1.2. Affine latency functions.

Theorem 8.1.8. Let G be a network where one unit of traffic is routed from
a source s to a destination t. Suppose that the latency function on each edge e is
affine; that is, `e(x) = aex + be, for constants ae, be ≥ 0. Let f be an equilibrium
flow in this network and let f∗ be an optimal flow; that is,

L(f∗) = min{L(f̃) : f̃ ∈ ∆(Pst)}.

Then the price of anarchy is at most 4/3; i.e.,

L(f) ≤ 4

3
L(f∗).

Remark 8.1.9. When the latency functions are linear (i.e., when be = 0 for all
links e), the price of anarchy is 1. See Exercise 8.3.

Proof. Let {F ∗e }e∈E be the set of edge flows corresponding to the optimal
(overall latency minimizing) path flow f∗. By Lemma 8.1.7,

L(f) =
∑
e

Fe(aeFe + be) ≤
∑
e

F ∗e (aeFe + be) . (8.7)

Thus,

L(f)− L(f∗) ≤
∑
e

F ∗e ae(Fe − F ∗e ).

Using the inequality x(y−x) ≤ y2/4 (which follows from (x−y/2)2 ≥ 0), we deduce
that

L(f)− L(f∗) ≤ 1

4

∑
e

aeF
2
e ≤

1

4
L(f) . �

A corollary of this theorem is that the Braess Paradox example we saw earlier
is extremal.

Corollary 8.1.10. If additional roads are added to a road network with affine
latency functions, the latency at Nash equilibrium can increase by at most a factor
of 4/3.

Proof. Let G be a road network and H an augmented version of G. Let fG
denote an equilibrium flow in G and f∗G an optimal flow in G. Similarly for H.
Clearly L(f∗H) ≤ L(f∗G). It follows that

L(fH) ≤ 4

3
L(f∗H) ≤ 4

3
L(f∗G) ≤ 4

3
L(fG). �

8.1.3. Existence of equilibrium flows.

Lemma 8.1.11. Consider an s-t road network, where the latency function on
edge e is `e(·). If all latency functions are nonnegative, weakly increasing and
continuous, then a Nash equilibrium exists.

Remark 8.1.12. This game is a continuous analogue of the congestion games
discussed in §4.4.

Proof. The set of possible path flows is the simplex ∆(Pst) of distributions
over paths. The mapping (8.1) from path flows to edge flows is continuous and
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154 8. THE PRICE OF ANARCHY

linear, so the set K of all possible edge flows is compact and convex. Define a
potential function over edge flows:

Φ(F) :=
∑
e

∫ Fe

0

`e(x)dx.

Note that Φ is a convex function since the latency functions `e(·) are weakly in-
creasing.

We will show that an edge flow F that minimizes Φ is a Nash equilibrium flow.
To see this, let f be any path flow corresponding to edge flow F. (Note that this
path flow is not necessarily unique.) Let P ∗ be any path of minimum latency under
F, and let L∗ be the latency on this path. If P is a path of latency L > L∗, we
claim that fP = 0. If not, then the flow obtained by moving δ units of flow from P
to P ∗ has a lower value of Φ: Doing this changes Φ by

∆Φ =
∑

e∈P∗\P

∫ Fe+δ

Fe

`e(x)dx−
∑

e∈P\P∗

∫ Fe

Fe−δ
`e(x)dx

= δ
∑

e∈P∗\P

`e(Fe)− δ
∑

e∈P\P∗
`e(Fe) + o(δ)

= δ(L∗ − L) + o(δ),

which is negative for δ sufficiently small. �

8.1.4. Beyond affine latency functions. Let L be a class of latency func-
tions. In §8.1.2 we showed that if

L = {ax+ b|a, b ≥ 0},
then the price of anarchy is 4/3, which is achieved in the Pigou network shown in
Figure 8.4. When the set of latency functions is expanded, e.g.,

L′ = {ax2 + bx+ c|a, b, c ≥ 0},
the price of anarchy is worse, as shown in Figure 8.6. However, as we shall see
next, the price of anarchy for any class of latency functions and any network is
maximized in a Pigou network (Figure 8.7)!

1 unit of flow in 1 unit of flow out

latency withx units of flow

constant latency(independent of flow)

1
s t

Figure 8.6. With the given latency functions, the optimal flow routes x units
of flow on the upper link (and thus 1− x on the lower link) so as to minimize
the average latency, which is x ·xd+(1−x). The Nash equilibrium flow routes
all the flow on the upper link. The resulting price of anarchy is approximately
1.6 for d = 2, approximately 1.9 for d = 3, and is asymptotic to d/ ln d as d
tends to infinity.
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8.1. SELFISH ROUTING 155

Suppose that there are r units of flow from s to t. If `(x) is the latency function
on the upper link with x units of flow and if it is strictly increasing, then `(r) is the
smallest constant latency that can be assigned to the bottom edge that induces an
equilibrium flow using only the top edge.

    units of flow in     units of flow out

latency withx units of flow

constant latency(independent of flow)

ts

Figure 8.7. Here we are assuming that there are r units of flow from s to
t. The Pigou price of anarchy αr(`) is the price of anarchy in this network.
Since latency functions are weakly increasing, `(r) ≥ `(x) for any 0 ≤ x ≤ r
and thus in the worst Nash equilibrium, all flow is on the top edge. (There
may be other Nash equilibria as well.)

Definition 8.1.13. Let αr(`) be the Pigou price of anarchy for latency
function `(·) in the network shown in Figure 8.7 when the total flow from s to t is
r; i.e.,

αr(`) =
r`(r)

min0≤x≤r[x · `(x) + (r − x) · `(r)]
. (8.8)

Remark 8.1.14. It will be useful below to note that the minimum in the
denominator is unchanged if you take it over x ≥ 0 since x(`(x) − `(r)) ≥ 0 for
x ≥ r.

Theorem 8.1.15. Let L be a class of latency functions, and define

Ar(L) := max
0≤r̃≤r

sup
`∈L

αr̃(`).

Let G be a network with latency functions in L and total flow r from s to t. Then
the price of anarchy in G is at most Ar(L).

Proof. Let f and f∗ be an equilibrium flow and an optimal flow in G, with
corresponding edge flows F and F∗. Fix an edge e in G and consider a Pigou
network (as in Figure 8.7) with `(x) := `e(x) and total flow r := Fe. Then, by
(8.8),

αFe(`e) =
Fe · `e(Fe)

min0≤x≤Fe [x · `e(x) + (Fe − x) · `e(Fe)]

≥ Fe · `e(Fe)
F ∗e · `e(F ∗e ) + (Fe − F ∗e ) · `e(Fe)

,

where the final inequality follows from Remark 8.1.14. Rearranging, we obtain

F ∗e `e(F
∗
e ) ≥ 1

αFe(`e)
Fe · `e(Fe) + (F ∗e − Fe) · `e(Fe),
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156 8. THE PRICE OF ANARCHY

and summing over e yields

L(f∗) ≥ 1

Ar(L)
L(f) +

∑
e

(F ∗e − Fe) · `e(Fe).

Observe that Lemma 8.1.7 also applies to the case where the total flow is r. (In
(8.6), replace L by rL.) Thus, applying (8.5) to the second sum yields

L(f∗) ≥ 1

Ar(L)
L(f). �

8.1.5. A traffic-anarchy tradeoff. The next result shows that the effect of
anarchy cannot be worse than doubling the total amount of traffic.

Theorem 8.1.16. Let G be a road network with a specified source s and sink t
where r units of traffic are routed from s to t, and let f be a corresponding equilib-
rium flow with total latency L(f). Let f∗ be an optimal flow when 2r units of traffic
are routed in the same network, resulting in total latency L(f∗). Then

L(f) ≤ L(f∗).

Proof. Suppose that all the paths in use in the equilibrium flow f have latency
L. As in the proof of Lemma 8.1.7, we have that

L(f) =
∑
P

fPLP (f) = rL and
∑
P

f∗PLP (f) ≥ 2rL. (8.9)

We will show that ∑
P

f∗PLP (f) ≤ L(f) + L(f∗) (8.10)

which together with (8.9) completes the proof.
We first rewrite (8.10) in terms of edges using (8.4):∑

e

F ∗e `e(Fe) ≤
∑
e

F ∗e `e(F
∗
e ) +

∑
e

Fe`e(Fe). (8.11)

We claim that this inequality holds for each edge; i.e.,

F ∗e
(
`e(Fe)− `e(F ∗e )

)
≤ Fe`e(Fe). (8.12)

To verify this, consider separately the case where F ∗e > Fe and F ∗e ≤ Fe, and use
the fact that `e(·) is increasing. �

Remark 8.1.17. An alternative interpretation of this result is that doubling
the capacity of every link can compensate for the lack of central control. See
Exercise 8.6.

8.2. Network formation games

Consider a set of companies jointly constructing a communication network.
Each company needs to connect a source to a sink. The cost of a link used by
several companies is shared equally between them. How does this cost sharing rule
affect their choices?

We model this via the following fair network formation game: There is a
directed graph G whose edges E represent links that can be constructed. Associated
with each link e is a cost ce. There are k players; player i chooses a path Pi in
G from node si to node ti and pays his fair share of the cost of each link in path
Pi. Thus, if link e is on the paths selected by r players, then each of them must
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S

t

cost = 1 + 

cost = k
Figure 8.8. In this example, there are two Nash equilbria. It is a Nash
equilibrium for all players to choose the upper path, resulting in a cost of
(1 + ε)/k to each player. However, there is also a bad Nash equilibrium: If all
players choose the lower path, then no player has an incentive to deviate. In
this case, each player’s cost is 1, whereas if he switched to the upper path, his
cost would be 1 + ε.

pay ce/r to construct that link. The goal of each player is to minimize his total
payment.

Remark 8.2.1. A fair network formation game is a potential game via the
potential function

φ(s) =
∑

e∈E(s)

ne(s)∑
j=1

ce
j
.

(See Section 4.4.)

In the example shown in Figure 8.8, there are k players, each requiring the use
of a path from a source s to a destination t. There is a bad Nash equilibrium in
which the cost of constructing the network is approximately k times as large as
the minimum possible cost, yielding a price of anarchy of about k. However, this
equilibrium is extremely unstable: After a single player switches to the top path,
all the others will follow.

The example of Figure 8.8 inspires us to ask if there always exists a Nash
equilibrium which is close to optimal. The network in Figure 8.9 shows that the
ratio can be as high as Hk ∼ ln k.

Theorem 8.2.2. In every fair network formation game with k players, there is
a Nash equilibrium with cost at most Hk = 1 + 1

2 + 1
3 + · · ·+ 1

k = ln k+O(1) times
the optimal cost.

Proof. Given a pure strategy profile s for the players, let ne(s) be the number
of players that use link e. Let E(s) be the set of links with ne(s) ≥ 1. Since this
game is a potential game, we know that best-response dynamics will lead to a pure
Nash equilibrium. Observe that all strategy profiles s satisfy

cost(s) :=
∑

e∈E(s)

ce ≤ φ(s) =
∑

e∈E(s)

ne(s)∑
j=1

ce
j
.
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v
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S2

S3
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t

0

0

0

0

0

cost = 1 + 

cost =

cost =

cost =

cost =

cost = 1

12
13

1k-1
1k

Figure 8.9. In this example, each of the k players needs to choose a path from
si to t. The optimal cost network here is for all players i to choose the path
from si to v to t, resulting in a network of total cost 1+ε. However, this is not
a Nash equilibrium. Indeed, for player k, it is a dominant strategy to use the
path sk → t since his alternative cost is at least (1 + ε)/k. Given this choice
of player k, it is dominant for player k− 1 to choose path sk−1 → t. Iterating
yields an equilibrium where player i chooses the path si → t. This equilibrium
is unique since it arises by iterated removal of dominated strategies. (In fact,
this is the only correlated equilibrium for this example.) The cost of the
resulting network is approximately Hk = 1 + 1

2
+ 1

3
+ · · ·+ 1

k
times that of the

cheapest network.

Let sopt be a strategy profile that minimizes cost(s). Best-response dynamics
starting from sopt reduce the value of the potential function and terminate in a
Nash equilibrium, say sf . It follows that

cost(sf ) ≤ φ(sf ) ≤ φ(sopt) ≤ cost(sopt)Hk,

which completes the proof. �

8.3. A market sharing game

There are k NBA teams, and each of them must decide in which city to locate.1

Let vj be the profit potential, i.e., the number of basketball fans, of city j. If `
teams select city j, they each obtain a utility of vj/`. See Figure 8.10.

Proposition 8.3.1. The market sharing game is a potential game and hence
has a pure Nash equilibrium. (See Exercise 4.18.)

1In 2014, Steve Ballmer, based in Seattle, bought the Clippers, an NBA team based in Los

Angeles. He chose to keep the team in Los Angeles, even though there was already another NBA
team there, but none in Seattle. Moving the team would increase the total number of fans with

a hometown basketball team but would reduce the profit potential of the Clippers.
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Population
1 million

Population
1 million

Population
1 million

Population
3.3 million

TEAMPINK TEAMBLUE TEAMGREEN

Figure 8.10. Three basketball teams are deciding which city to locate in
when four choices are available. It is a Nash equilibrium for all of them to
locate in the largest city where they will each have a utility of 1.1 million. If
one of the teams were to switch to one of the smaller cities, that team’s utility
would drop to 1 million.

For any set S of cities, define the total value

V (S) :=
∑
j∈S

vj .

Assume that vj ≥ vj+1 for all j. Clearly S∗ = {1, . . . , k} maximizes V (S) over all
sets of size k.

We use c = (c1, . . . , ck) to denote a strategy profile in the market sharing game,
where ci represents the city chosen by team i. Let S := {c1, . . . , ck} be the set of
cities selected.

Lemma 8.3.2. Let c and c̃ be any two strategy profiles in the market shar-
ing game, where the corresponding sets of cities selected are S and S̃. Denote by
ui(ci, c−i) the utility obtained by team i if it chooses city ci and the other teams
choose cities c−i. Then ∑

i

ui(c̃i, c−i) ≥ V (S̃)− V (S).

Proof. Let c̃i ∈ S̃ \ S. Then ui(c̃i, c−i) = vc̃i . Thus∑
i

ui(c̃i, c−i) ≥ V (S̃ \ S) ≥ V (S̃)− V (S). (8.13)
�

Remark 8.3.3. Lemma 8.3.2 is a typical step in many price of anarchy proofs.
It disentangles the sum of utilities of the players when each separately deviates
from ci to c̃i in terms of the quantities V (S) and V (S̃). This is sufficient to prove
that the price of anarchy of this game is at most 2.

Theorem 8.3.4. Suppose that c = (c1, . . . , ck) is a Nash equilibrium in the
market sharing game and S := S(c) is the corresponding set of cities selected.
Then the price of anarchy is at most 2; i.e., V (S∗) ≤ 2V (S).
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Proof. We claim that

V (S) =
∑
i

ui(ci, c−i) ≥
∑
i

ui(c
∗
i , c−i) ≥ V (S∗)− V (S), (8.14)

which proves the theorem. The first equality in (8.14) is by definition. The inequal-
ity ui(ci, c−i) ≥ ui(c∗i , c−i) follows from the fact that c is a Nash equilibrium. The
final inequality follows from Lemma 8.3.2. �

Remark 8.3.5. In Exercise 8.7, we’ll see that the price of anarchy bound of 2
can be replaced by 2− 1/k.

8.4. Atomic selfish routing

In §8.1.2, we considered a selfish routing game in which each driver was infini-
tesimal. We revisit selfish routing, but in a setting where there are few drivers and
each one contributes significantly to the total travel time.

Example 8.4.1. Consider a road network G = (V,E) and a set of k drivers,
with each driver i traveling from a starting node si ∈ V to a destination ti ∈ V .
Associated with each edge e ∈ E is a latency function `e(n) = ae ·n+be representing
the cost of traversing edge e if n drivers use it. Driver i’s strategic decision is which
path Pi to choose from si to ti, and her objective is to choose a path with minimum
latency.

a b

c

a b

c

0

ncb
nbc

nab

nac

1
111

0

0
22

1122

a b

c
0

Figure 8.11. In the left graph, each directed edge is labeled with the travel
time as a function of the number of drivers using it. Here the purple driver
is traveling from a to b, the green driver is traveling from a to c, the blue
driver is traveling from b to c, and the yellow driver is traveling from c to b.
The figure in the middle shows the socially optimal routes (all single-hop),
that is, the routes that minimize the average driver travel time. Each edge is
labeled with the latency that driver experiences. This set of routes is also a
Nash equilibrium. On the other hand, there is also a bad Nash equilibrium,
in which each driver takes a 2-hop path, shown in the figure on the right. In
the middle and right figures, the label on each colored path is the latency that
particular driver experiences on that link. In this case, the price of anarchy is

5/2.

In the example shown in Figure 8.11, the socially optimal outcome is also a
Nash equilibrium with a total latency of 4, but there is another Nash equilibrium
with a total latency of 10. Next, we show that in any network with affine latency
functions, the price of anarchy (the ratio between travel time in the worst Nash
equilibrium and that in the socially optimal outcome) is at most 5/2.
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8.4. ATOMIC SELFISH ROUTING 161

Denote by Li(Pi,P−i) the latency along the path Pi selected by driver i, given
the paths P−i selected by the other drivers, and let

L(P) :=
∑
i

Li(Pi,P−i)

be the sum of these latencies.
We will need the following claim:

Claim 8.4.2. Let n and m be any nonnegative integers. Then

n(m+ 1) ≤ 5

3
n2 +

1

3
m2.

Proof. We have to show that f(m,n) := 5n2 + m2 − 3n(m + 1) ≥ 0 for
nonnegative integers m,n. The cases where m = 0 or n = 0 or m = n = 1 are clear.
In all other cases n+m ≥ 3, so f(m,n) = (2n−m)2 + n(n+m− 3) ≥ 0. �

The next lemma is the key to our price of anarchy bounds.

Lemma 8.4.3. Let P = (P1, . . . , Pk) be any strategy profile (a path Pi from si
to ti for each i) in the atomic selfish routing game G. Let P∗ = (P ∗1 , . . . , P

∗
k ) be

the paths that minimize the total travel time L(P∗). Then∑
i

Li(P
∗
i ,P−i) ≤

5

3
L(P∗) +

1

3
L(P). (8.15)

Proof. Let ne be the number of paths in P that use edge e. Then the total
travel time experienced by the drivers in this equilibrium is

L(P) =
∑
i

Li(Pi,P−i) =
∑
i

∑
e∈Pi

(ae · ne + be) =
∑
e

ne(ae · ne + be).

Let n∗e be the number of paths among P ∗1 , . . . , P
∗
k that use edge e. Observe that∑

i

Li(P
∗
i ,P−i) ≤

∑
i

∑
e∈P∗i

(ae · (ne + 1) + be),

since switching from Pi to P ∗i can increase the number of drivers that use e by at
most 1. Thus ∑

i

Li(P
∗
i ,P−i) ≤

∑
e

n∗e(ae · (ne + 1) + be),

since the (upper bound on the) travel time on each edge is counted a number of
times equal to the number of paths in P∗ that use it. Finally, using Claim 8.4.2,
we have n∗e(ne + 1) ≤ 5

3 (n∗e)
2 + 1

3 (ne)
2, so∑

i

Li(P
∗
i ,P−i) ≤

∑
e

(
ae

(
5

3
(n∗e)

2 +
1

3
n2
e

)
+ ben

∗
e

)
=

5

3

∑
e

n∗e(aen
∗
e + be) +

1

3

∑
e

aen
2
e

≤ 5

3
L(P∗) +

1

3
L(P). �

Theorem 8.4.4. The price of anarchy of the atomic selfish routing game is
5/2.
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Proof. The example in Figure 8.11 shows that the price of anarchy is at least
5/2. To see that it is at most 5/2, let P = (P1, . . . , Pk) be a Nash equilibrium
profile in the atomic selfish routing game. Then

L(P) =
∑
i

Li(Pi,P−i) ≤
∑
i

Li(P
∗
i ,P−i),

where the second inequality follows from the fact that P is a Nash equilibrium.
Thus, by (8.15),

L(P) ≤ 5

3
L(P∗) +

1

3
L(P).

Finally, rearranging, we get

L(P) ≤ 5

2
L(P∗). �

8.4.1. Extension theorems. The crucial step in the price of anarchy bound
we just obtained was Lemma 8.4.3, which enabled us to disentangle the term∑
i Li(P

∗
i ,P−i) into a linear combination of L(P∗) and L(P), the latencies as-

sociated with the two “parent” strategy profiles. Such a disentanglement enables
us to prove a price of anarchy bound for a pure Nash equilibrium that extends
automatically to certain scenarios in which players are not in Nash equilibrium. In
this section, we prove this fact for a general cost minimization game.

Let G be a game in which players are trying to minimize their costs. For a
strategy profile s ∈ S1×S2× · · · ×Sk, let Ci(s) be the cost incurred by player i on
strategy profile s. As usual, strategy profile s = (s1, . . . , sk) is a Nash equilibrium
if for each player i and s′i ∈ Si,

Ci(si, s−i) ≤ Ci(s′i, s−i).

Define the overall cost in profile s to be

cost(s) :=
∑
i

Ci(s).

Definition 8.4.5. Let s = (s1, . . . , sn) be a strategy profile in cost-minimization
game G. Let s∗ be the strategy profile that minimizes cost(s). Then G is (λ, µ)-
smooth if ∑

i

Ci(s
∗
i , s−i) ≤ λ · cost(s∗) + µ · cost(s). (8.16)

Remark 8.4.6. Lemma 8.4.3 proves that the atomic selfish routing game is
(5/3, 1/3)-smooth.

The following theorem shows that (λ, µ)-smooth cost minimization games have
price of anarchy at most λ/(1 − µ) and enables extension theorems that yield the
same bound with respect to other solution concepts.

Theorem 8.4.7. Let G be a cost-minimization game as discussed above. Let
s∗ = (s∗1, . . . , s

∗
k) be a strategy profile which minimizes cost(s∗) and suppose that G

is (λ, µ)-smooth. Then the following price of anarchy bounds hold:

(1) If s is a pure Nash equilibrium, then

cost(s) ≤ λ

1− µ
cost(s∗).
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(2) Mixed Nash equilibria and (coarse) correlated equilibria: If p is a distri-
bution over strategy profiles such that for all i and s̃i∑

s

psCi(s) ≤
∑
s

psCi(s̃i, s−i), (8.17)

then2 ∑
s

pscost(s) ≤ λ

1− µ
cost(s∗). (8.18)

(3) Sublinear regret: If the game G is played T times, and each player uses
a sublinear regret algorithm to minimize their cost 3, with player i using
strategy sti in the tth round and st = (st1, . . . , s

t
k), then

1

T

∑
i

Ci(s
t) ≤ λ

1− µ
cost(s∗) + o(1). (8.19)

Proof. The proof of part (1) is essentially the same as that of Theorem 8.4.4
and it is a special case of part (2).

Proof of (2):∑
s

pscost(s) =
∑
s

ps
∑
i

Ci(si, s−i)

≤
∑
s

ps
∑
i

Ci(s
∗
i , s−i) by (8.17)

≤
∑
s

ps(λ · cost(s∗) + µ · cost(s)) by (8.16)

= λ · cost(s∗) + µ ·
∑
s

ps cost(s).

Rearranging yields (8.18).

Proof of (3): We have

1

T

T∑
t=1

cost(st) =
1

T

T∑
t=1

∑
i

Ci(s
t
i, s

t
−i)

≤ 1

T

T∑
t=1

∑
i

Ci(s
∗
i , s

t
−i) + o(1)

where the second inequality is the guarantee from the sublinear regret learning
algorithm. Next we use the smoothness inequality (8.16) to upper bound the right
hand side yields:

1

T

T∑
t=1

cost(st) ≤ 1

T

T∑
t=1

(
λ · cost(s∗) + µ · cost(st)

)
+ o(1).

2 The condition for p to be a correlated equilibrium is that for all i, si, and s′i, we have∑
s−i

p(si,s−i)Ci(si, s−i) ≤
∑

s−i
p(si,s−i)Ci(s

′
i, s−i). See §7.2. This condition implies (8.17)

by taking s′i := s∗i and summing over si. Note though that (8.17) is a weaker requirement, also

known as a coarse correlated equilibrium.
3 See Chapter 18.
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Finally, rearranging, we get

1

T

T∑
t=1

cost(st) ≤ λ

1− µ
· cost(s∗) + o(1)

Rearranging yields (8.19). �

8.4.2. Application to atomic selfish routing. Using the fact that the
atomic selfish routing game is (5/3, 1/3)-smooth (by Lemma 8.4.3), we can apply
Theorem 8.4.7, Part (3) and obtain the following corollary.

Corollary 8.4.8. Let G be a road network with affine latency functions. Sup-
pose that every day driver i travels from si to ti, choosing his route P ti on day t
using a sublinear regret algorithm (such as the Multiplicative Weights Algorithm
from §18.3.2). Then

1

T

T∑
t=1

L(Pt) ≤ 5

2
L(P∗) + o(1).

Remark 8.4.9. Since drivers are unlikely to know each other’s strategies, this
corollary seems more applicable than Theorem 8.4.4.

For other applications of Theorem 8.4.7, see the exercises.

Notes

In 2012, Elias Koutsoupias, Christos Papadimitriou, Noam Nisan, Amir Ronen, Tim

Roughgarden, and Éva Tardos won the Gödel Prize4 for “laying the foundations of al-
gorithmic game theory.” Two of the three papers [KP09, RT02] cited for the prize are
concerned with the price of anarchy.

Elias Koutsoupias Christos Papadimitriou

The “price of anarchy” concept was introduced by Koutsoupias and Papadimitriou
in 1999 [KP99, KP09], though in the original paper the relevant terminology was “coor-
dination ratio”. The term “price of anarchy” is due to Papadimitriou [Pap01]. The first
use of this style of analysis in congestion games was in 2000 [RT02].

An extensive discussion of the material on selfish routing discussed in §8.1, includ-
ing numerous references, can be found in the book by Roughgarden [Rou05]. See also
Chapters 17 and 18 of [Nis07]. Pigou’s example is discussed in his 1920 book [Pig20].

4 The Gödel Prize is an annual prize for outstanding papers in theoretical computer science.
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Tim Roughgarden Èva Tardos

The traffic model and definition of Nash flows are due to Wardrop [War52] and the proof
that Nash flows exist is due to Beckmann, McGuire, and Winsten [BMW56]. The Braess
Paradox is from [Bra68]. Theorem 8.1.8 and Theorem 8.1.16 are due to Roughgarden and
Tardos [RT02]. A version of Theorem 8.1.15 under a convexity assumption was proved
by Roughgarden [Rou03]; this assumption was removed by Correa, Schulz, and Stier-
Moses [CSSM04]. The proofs of Theorem 8.1.8 and Theorem 8.1.15 presented here are
due to Correa et al. [CSSM04]. With suitable tolling, the inefficiency of Nash equilibria
in selfish routing can be eliminated. See, e.g., [FJM04]).

The network formation results of §8.2 are due to Anshelevich et al. [ADK+08]. In
their paper, they introduce the notion of the price of stability of a game, in which the
ratio between the optimal value of a global objective and the value of this objective in
Nash equilibrium is compared. The difference between the price of stability and the price
of anarchy is that the latter is concerned with the worst Nash equilibrium, whereas the
former is concerned with the best Nash equilbrium. In fact, Theorem 8.2.2 is a price of
stability result. See also the survey of network formation games by Jackson [Jac05] and
Chapter 19 of [Nis07].

The market sharing game of §8.3 is a special case of a class of games called utility
games introduced by Vetta [Vet02]. In these games, players must choose among a set of
locations and the social surplus is a function of the locations selected. For example, he
considers a facility location game in which service providers choose locations at which they
can locate their facilities, in response to customer demand that depends on the distribution
of customer locations. All of the games in Vetta’s class have price of anarchy 2.

The results on nonatomic selfish routing in §8.4 are due to Christodoulou and Kout-
soupias [CK05b] and Awerbuch, Azar, and Epstein [AAE13]. The smoothness framework
and extension theorems described in §8.4.1 are due to Roughgarden [Rou09]. These results
synthesize a host of prior price of anarchy proofs and extensions that allow for weaker as-
sumptions on player rationality (e.g. [BHLR08, BEDL10, CK05a, GMV05, MV04, Vet02]).

The price of anarchy and smoothness notions have been extended to settings of incom-
plete information and to more complex mechanisms. For a taste of this topic, see §14.7,
and for a detailed treatment, see, e.g., [ST13, Rou12, Syr14, HHT14, Rou14, Har12].

For more on the price of anarchy and related topics, see Chapters 17–21 of [Nis07]
and the lecture notes by Roughgarden [Rou13, Rou14].

Exercise 8.6 is due to [RT02]. Exercises 8.11, 8.12, and 8.13 are due to [Rou09].

Exercise 8.14 is from [KP09] and Exercise 8.15 is from [FLM+03].

Exercises

8.1. Show that Theorem 8.1.8 holds in the presence of multiple traffic flows.
Specifically, let G be a network where ri > 0 units of traffic are routed
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from source si to destination ti, for each i = 1, . . . , k. Suppose that the
latency function on each edge e is affine; that is, `e(x) = aex + be, for
constants ae, be ≥ 0. Show that the price of anarchy is at most 4/3; that
is, the total latency in equilibrium is at most 4/3 that of the optimal flow.

8.2. Suppose that L is the set of all nonnegative, weakly increasing, concave
functions. Show that for this class of functions

Ar(L) ≤ 4

3
.

8.3. Let G be a network where one unit of traffic is routed from a source s to a
destination t. Suppose that the latency function on each edge e is linear;
that is, `e(x) = aex, for constants ae ≥ 0. Show that the price of anarchy
in such a network is 1. Hint: In (8.7), use the inequality xy ≤ (x2 + y2)/2.

8.4. Extend Theorem 8.1.15 to the case where there are multiple flows: Let G
be a network with latency functions in L and total flow ri from si to ti,
for i = 1, . . . , k. Then the price of anarchy in G is at most Ar(L), where

r =
∑k
i=1 ri.

8.5. Let c > 0 and suppose that fc is the function

fc(x) :=

{
1
c−x , 0 ≤ x < c,

∞, x ≥ c.

Consider a selfish routing network where all latency functions are in L
where

L = {fc(·)|c > 0}.
Suppose that in equilibrium, for every edge e, the flow Fe ≤ (1 − β)ce,
where the latency function on edge e is fce(x). Show that the price of
anarchy is upper bounded by

1

2

(
1−

√
1

β

)
.

8.6. Let G be a selfish routing network in which r units of traffic are routed
from source s to destination t. Suppose that `e(·) is the latency function
associated with edge e ∈ E. Consider another network G′ with exactly the
same network topology and the same amount of traffic being routed, but
where the latency function `′e(·) on edge e satisfies

`′e(x) :=
`e(x/2)

2
∀e ∈ E.

This corresponds to doubling the capacity of the link. Suppose that f∗ is an
optimal flow in G and f ′ is an equilibrium flow in G′. Use Theorem 8.1.16
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to prove that

LG′(f
′) ≤ LG(f∗).

8.7.S Show that the price of anarchy bound for the market sharing game from
§8.3 can be improved to 2 − 1/k when there are k teams. Show that this
bound is tight.

8.8.S * Consider an auctioneer selling a single item via a first-price auction5

Each of the n bidders submits a bid, say bi for the ith bidder, and, given
the bid vector b = (b1, . . . , bn), the auctioneer allocates the item to the
highest bidder at a price equal to her bid. (The auctioneer employs some
deterministic tie-breaking rule.) Each bidder has a value vi for the item.
A bidder’s utility from the auction when the bid vector is b and her value
is vi is

ui[b|vi] :=

{
vi − bi i wins the auction,

0 otherwise.

Each bidder will bid in the auction so as to maximize her (expected) util-
ity. The expectation here is over any randomness in the bidder strategies.
The social surplus V (b) of the auction is the sum of the utilities of the
bidders and the auctioneer revenue. Since the auctioneer revenue equals
the winning bid, we have

V (b) := value of winning bidder.

Show that the price of anarchy is at most 1 − 1/e; that is, for b a Nash
equilibrium,

E [V (b)] ≥
(

1− 1

e

)
max
i
vi.

Hint: Consider instead what happens when bidder i deviates from bi to the
distribution with density f(x) = 1/(vi − x), with support [0, (1− 1/e)vi].

8.9. Consider a two-bidder, two-item auction, where the values of the bidders
are shown in Table 1.

What is the optimal (i.e., social surplus maximizing) allocation of items
to bidders? Suppose that the seller sells the items by asking the bidders
to submit one bid for each item and then running separate second-price
auctions for each item. (In a second-price auction, the item is allocated to
the bidder that bid the highest at a price equal to the second highest bid.)
Show that there is a pure Nash equilibrium in which the social surplus is
maximized. Consider the following alternative set of bids b1 = (0, 1) and
b2 = (1, 0). Show that these bids are a Nash equilibrium and that the price
of anarchy in this example is 2.

5 See Chapter 14 for a detailed introduction to auctions, and Theorem 14.7.1 for a general-
ization of this result.
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168 8. THE PRICE OF ANARCHY

Table 1. The valuations of the bidders for each combination of items.

Bidder: 1 2
Items received:
No items 0 0
Item 1 2 1
Item 2 1 2
Both items 2 2

8.10. Consider atomic selfish routing in a Pigou network with latency x on the
top edge and latency 2 on the bottom edge shown in Figure 8.12. What is
the total latency for the optimal routing? Show that there are two equilib-
ria and that they have different costs.

2 unit of flow in 2 unit of flow out

latency with   units of flow(    integer)

constant latency(independent of flow)

2
s t

Figure 8.12. Figure for Exercise 8.10.

8.11. Prove the analogue of Theorem 8.4.7, Part (1), for games in which we are
interested in maximizing a global objective function such as social surplus:
Consider a k-player game G. Let V (s) be a global objective function such
that

V (s) ≥
∑
i

ui(s). (8.1)

We say the game is (λ, µ)-smooth for strategy profile s′ = (s′1, . . . , s
′
k) if for

all strategy profiles s = (s1, . . . , sk)∑
i

ui(s
′
i, s−i) ≥ λV (s′)− µV (s). (8.2)

Let s∗ = (s∗1, . . . , s
∗
k) be a strategy profile which maximizes global objective

function V (s), and let s be a Nash equilibrium. Show that if G is (λ, µ)-
smooth for s∗, then

V (s) ≥ λ

1 + µ
V (s∗).

For example, Lemma 8.3.2 shows that the market sharing game is (1, 1)-
smooth for all strategy profiles s′. From this, we derived Theorem 8.3.4.
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8.12. Prove the analogue of Theorem 8.4.7, Part (2), for games in which we are
interested in maximizing a global objective function such as social surplus:
Suppose that V (·) is a global objective function that satisfies (8.1) and let
G be a game that is (λ, µ)-smooth for s∗, where s∗ maximizes V (·). (See
(8.2).) Also, let p be a distribution over strategy profiles that corresponds
to a correlated equilibrium so that∑

s

psui(s) ≥
∑
s

psui(s
∗
i , s−i). (8.3)

Show that

Es∼p [V (s)] ≥ λ

1 + µ
V (s∗).

8.13. Prove the analogue of Theorem 8.4.7, Part (3), for games in which we are
interested in maximizing a global objective function such as social surplus:
Suppose that V (·) is a global objective function that satisfies (8.1) and let
G be a game that is (λ, µ)-smooth for s∗, where s∗ maximizes V (·). (See
(8.2).) Suppose the game is played T times and each player uses a sublinear
regret algorithm to determine his strategy in round t. Recall that if we let
st = (st1, s

t
2, . . . , s

t
k) be the strategy profile employed by the k players in

round t, then the guarantee of the algorithm is that, for any st−i, with
1 ≤ t ≤ T ,

T∑
t=1

ui(s
t
i, s

t
−i) ≥ max

s∈Si

T∑
t=1

ui(s, s
t
−i)− o(T ). (8.4)

Show that

1

T

T∑
t=1

V (st) ≥
(

λ

1 + µ
− o(1)

)
V (s∗).

8.14. Suppose that there are n jobs, each job owned by a different player, and
n machines. Each player chooses a machine to run its job on, and the
cost that player incurs is the load on the machine, i.e., the number of jobs
that selected that machine, since that determines the latency that player
experiences. Suppose that it is desirable to minimize the maximum load
(number of jobs) assigned to any machine. This is called the makespan
of the allocation. Clearly it is a Nash equilibrium for each job to select a
different machine, an allocation which achieves the optimal makespan of 1.
• Show that it is a mixed-strategy Nash equilibrium for each player to

select a random machine.
• Show that the price of anarchy for this mixed Nash equilibrium (i.e.,

the expected makespan it achieves divided by the optimal makespan)
is Θ(log n/ log logn).

8.15. Consider the following network formation game: There are n vertices each
representing a player. The pure strategy of a player consists of choosing
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170 8. THE PRICE OF ANARCHY

which other vertices to create a link to. A strategy profile induces a graph,
where each edge is associated with the vertex that “created” it. Given a
strategy profile s. the cost incurred by player i is

costi(s) := α · ni(si) +
∑
j 6=i

ds(i, j),

where ni(si) is the number of links i created (each link costs α to create)
and ds(i, j) is the distance from i to j in the graph resulting from strategy
profile s.
• Show that if α ≥ 2, then the graph which minimizes

∑
i costi is a star,

whereas if α < 2, then it is a complete graph.
• Show that for α ≤ 1 or α > 2, there is a Nash equilibrium with total

cost equal to that of the optimum graph.
• Show that for 1 < α < 2, there is a Nash equilibrium with total cost

at most 4/3 times that of the optimum graph.
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CHAPTER 9

Random-turn games

In Chapter 1 we considered combinatorial games, in which the right to move
alternates between players; and in Chapter 2 and Chapter 4 we considered matrix-
based games, in which both players (usually) declare their moves simultaneously
and possible randomness decides what happens next. In this chapter, we consider
some games which are combinatorial in nature, but the right to make the next move
is determined by a random coin toss.

Let S be an n-element set, which will sometimes be called the board, and let
f be a function from the 2n subsets of S to R. A selection game is played as
follows: The first player selects an element of S, the second player selects one of
the remaining n − 1 elements, the first player selects one of the remaining n − 2
elements, and so forth, until all elements have been chosen. Let S1 and S2 signify
the sets chosen by the first and second players, respectively. Then player I receives
a payoff of f(S1) and player II receives a payoff of −f(S1). Thus, selection games
are zero-sum.

9.1. Examples

Example 9.1.1 (Random-turn Hex). Let S be the set of hexagons on a
rhombus-shaped L×L hexagonal grid. Define f(S1) to be 1 if S1 contains a crossing
connecting the two yellow sides, −1 otherwise. In this case, once S1 contains a
yellow crossing or S2 contains blue crossing (which precludes the possibility of
S1 having a yellow crossing), the outcome is determined and there is no need to
continue the game.

12
3
4 5

67
8 9

10 1112
13 14 15

16
17

18
1920

212223
2425

26272829

3031
32 33 34 35 36

3738

Figure 9.1. Random-turn Hex played on a 15× 15 board.
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172 9. RANDOM-TURN GAMES

Example 9.1.2 (Team captains). Two team captains are choosing baseball
teams from a finite set S of n players for the purpose of playing a single game against
each other. The payoff f(S1) for the first captain is the probability that the players
in S1 (together with the first captain) will win against the players in S2 (together
with the second captain). The payoff function may be very complicated (depending
on which players know which positions, which players have played together before,
which players get along well with which captain, etc.). Because we have not specified
the payoff function, this game is as general as the class of selection games.

Example 9.1.3 (Recursive Majority). Suppose we are given a complete
ternary tree of depth h. Let S be the set of leaves. In each step, a fair coin toss de-
termines which player selects a leaf to label. Leaves selected by player I are marked
with a + and leaves selected by player II are marked with a −. A parent node in
the tree acquires the same sign as the majority of its children. The player whose
mark is assigned to the root wins. Example 1.2.15 discusses the alternating-turn
version of this game.

3

1

2 3
1 2 3 1 2

5

1
2

3

1

42 3 6

Figure 9.2. Here player II wins; the circled numbers give the order of the moves.

As we discussed in Chapter 1, determining optimal strategies in alternating
move selection games, e.g., Hex, can be hard. Surprisingly, the situation is different
in random-turn selection games.

9.2. Optimal strategy for random-turn selection games

A (pure) strategy for a given player in a random-turn selection game is a func-
tion M which maps each pair of disjoint subsets (T1, T2) of S to an element of
T3 := S\(T1 ∪ T2), provided T3 6= ∅. Thus, M(T1, T2) indicates the element that
the player will pick if given a turn at a time in the game when player I has thus far
picked the elements of T1 and player II has picked the elements of T2.

Denote by E(T1, T2) the expected payoff for player I at this stage in the game,
assuming that both players play optimally with the goal of maximizing expected
payoff. As is true for all finite perfect-information, two-player games, E is well
defined, and one can compute1 E and the set of possible optimal strategies by
induction on the size of T3. First, if T3 = ∅, then E(T1, T2) = f(T1). Next, suppose
that we have computed E(T1, T2) whenever |T3| ≤ k. Then if |T3| = k + 1 and
player I has the chance to move, player I will play optimally if and only if she

1 This method is called dynamic programming.
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9.2. OPTIMAL STRATEGY FOR RANDOM-TURN SELECTION GAMES 173

chooses an s from T3 for which E(T1 ∪ {s}, T2) is maximal. Similarly, player II
plays optimally if and only if he minimizes E(T1, T2 ∪ {t}) at each stage. Hence

E(T1, T2) =
1

2

(
max
s∈T3

E(T1 ∪ {s}, T2) + min
t∈T3

E(T1, T2 ∪ {t})
)
. (9.1)

We will see that the maximizing and the minimizing moves are actually the same.
The foregoing analysis also demonstrates a well-known fundamental fact about

finite, turn-based, perfect-information games: Both players have optimal pure
strategies.2 (This contrasts with the situation in which the players play “simul-
taneously” as they do in Rock-Paper-Scissors.)

Theorem 9.2.1. The value of a random-turn selection game is the expectation
of f(T ) when a set T is selected randomly and uniformly among all subsets of S.
Moreover, any optimal strategy for one of the players is also an optimal strategy
for the other player.

Proof. For any player II strategy, player I can achieve the expected payoff
E[f(T )] by playing exactly the same strategy (since, when both players play the
same strategy, each element will belong to S1 with probability 1/2, independently).
Thus, the value of the game is at least E[f(T )]. However, a symmetric argument
applied with the roles of the players interchanged implies that the value is no more
than E[f(T )].

Since the remaining game in any intermediate configuration (T1, T2) is itself a
random-turn selection game, it follows that for every T1 and T2

E(T1, T2) = E(f(T1 ∪ T )),

where T is a uniform random subset of T3. Thus, for every s ∈ T3,

E(T1, T2) =
1

2

(
E(T1 ∪ {s}, T2) + E(T1, T2 ∪ {s})

)
.

Therefore, if s ∈ T3 is chosen to maximize E(T1 ∪ {s}, T2), then it also minimizes
E(T1, T2 ∪ {s}). We conclude that every optimal move for one of the players is an
optimal move for the other. �

If both players break ties the same way, then the final S1 is equally likely to be
any one of the 2n subsets of S.

Theorem 9.2.1 is quite surprising. In the baseball team selection, for example,
one has to think very hard in order to play the game optimally, knowing that at
each stage the opponent can capitalize on any miscalculation. Yet, despite all of
that mental effort by the team captains, the final teams look no different than they
would look if at each step both captains chose players uniformly at random.

For example, suppose that there are only two players who know how to pitch
and that a team without a pitcher always loses. In the alternating-turn game, a
captain can always wait to select a pitcher until just after the other captain selects
a pitcher. In the random-turn game, the captains must try to select the pitchers
in the opening moves, and there is an even chance the pitchers will end up on the
same team.

Theorem 9.2.1 generalizes to random-turn selection games in which the player
to get the next turn is chosen using a biased coin. If player I gets each turn with
probability p, independently, then the value of the game is E[f(T )], where T is

2 See also Theorem 6.1.7.
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174 9. RANDOM-TURN GAMES

a random subset of S for which each element of S is in T with probability p,
independently. The proof is essentially the same.

9.3. Win-or-lose selection games

We say that a game is a win-or-lose game if f(T ) takes on precisely two values,
which we assume to be −1 and 1. If S1 ⊂ S and s ∈ S, we say that s is pivotal for
S1 if f(S1∪{s}) 6= f(S1\{s}). A selection game is monotone if f is monotone; that
is, f(S1) ≥ f(S2) whenever S1 ⊃ S2. Hex is an example of a monotone, win-or-lose
game. For such games, the optimal moves have the following simple description.

Lemma 9.3.1. In a monotone, win-or-lose, random-turn selection game, a first
move s is optimal if and only if s is an element of S that is most likely to be pivotal
for a random-uniform subset T of S. When the position is (S1, S2), the move s in
S \ (S1 ∪ S2) is optimal if and only if s is an element of S \ (S1 ∪ S2) that is most
likely to be pivotal for S1 ∪T , where T is a random-uniform subset of S \ (S1 ∪S2).

Proof. This follows from monotonicity and the discussion of optimal strate-
gies preceding (9.1). �

For win-or-lose games, such as Hex, the players may stop making moves af-
ter the winner has been determined, and it is interesting to calculate how long a
random-turn, win-or-lose, selection game will last when both players play optimally.
Suppose that the game is a monotone game and that, when there is more than one
optimal move, the players break ties in the same way. Then we may take the point
of view that the playing of the game is a (possibly randomized) decision procedure
for evaluating the payoff function f when the items in S are randomly allocated.
Let ~x denote the allocation of the items, where xi = ±1 according to whether the
ith item goes to the first or second player. We may think of the xi as input vari-
ables, and the playing of the game is one way to compute f(~x). The number of
turns played is the number of variables of ~x examined before f(~x) is computed. We
use some inequalities from the theory of Boolean functions to bound the average
length of play.

Definition 9.3.2. Let f(x) be a Boolean function on n variables taking val-
ues in {−1, 1}. The influence Ii(f) of the variable xi on f(x) is the probability
that flipping xi will change the value of f(x), where x is uniformly distributed on
{−1, 1}n. Thus, recalling the notation f(xi,x−i) := f(x),

Ii(f) :=
1

2n

∑
x−i

∣∣∣f(1,x−i)− f(−1,x−i)
∣∣∣.

For monotone functions, which have f(1,x−i) ≥ f(−1,x−i) for all x−i, it follows
that

Ii(f) :=
1

2n

∑
x−i

(
f(1,x−i)− f(−1,x−i)

)
= E [f(~x)xi] . (9.2)

Definition 9.3.3. Given an unknown vector x = (x1, . . . , xn), a decision tree
for calculating f(x) is a procedure for deciding, given the values of the variables
already examined, which variable to examine next. The procedure ends when the
value of f(x) is determined. For example, if n = 3 and f(x) is the majority function,
then such a procedure might first examine x1 and x2. The third variable x3 only
needs to be examined if x1 6= x2.
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9.3. WIN-OR-LOSE SELECTION GAMES 175

Lemma 9.3.4. Let f(x) : {−1, 1}n → {−1, 1} be a monotone function. Con-
sider any decision tree for calculating f(x), when x is selected uniformly at random
from {−1, 1}n. Then

E[# variables examined ] ≥

[∑
i

Ii(f)

]2

.

Proof. Using (9.2) and Cauchy-Schwarz, we have∑
i

Ii(f) = E

[∑
i

f(~x)xi

]
= E

[
f(~x)

∑
i

xi1xi examined

]

≤

√√√√√E[f(~x)2]E

( ∑
i: xi examined

xi

)2


=

√√√√√E
( ∑

i: xi examined

xi

)2
 =

√
E[# bits examined].

The last equality is justified by noting that E[xi xj 1xi and xj both examined] = 0 when
i 6= j, which holds since conditioned on xi being examined before xj , conditioned
on the value of xi, and conditioned on xj being examined, the expected value of xj
is zero. �

Lemma 9.3.4 implies that in a win-or-lose random-turn selection game,

E[# turns] ≥

[∑
i

Ii(f)

]2

.

9.3.1. Length of play for random-turn Recursive Majority. To apply
Lemma 9.3.4 to Example 9.1.3, we need to compute the probability that flipping
the sign of a given leaf changes the overall recursive majority. For any given node,
the probability that flipping its sign will change the sign of its parent is just the
probability that the signs of the other two siblings are distinct, which is 1/2.

2

2
1 3 2

1 3 2
1 3 2

1 3

?

?

?

?

?

1 3

Figure 9.3

This holds all along the path to the root, so the probability that flipping the

sign of leaf i will flip the sign of the root is just Ii(f) =
(

1
2

)h
, where h is the height
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176 9. RANDOM-TURN GAMES

of the tree. Thus, since there are 3h leaves,

E[# turns] ≥

[∑
i

Ii(f)

]2

=

(
3

2

)2h

.

Notes

This chapter presents the work in [PSSW07]. Indeed, as we could not improve on the
exposition there (mostly due to Oded Schramm, Scott Sheffield and David Wilson), we
follow it almost verbatim. As noted in that paper, the game of Random-turn Hex was
proposed by Wendelin Werner on a hike. Lemma 9.3.4 is from O’Donnell and Servedio
[OS04]. Figure 9.1 and Figure 9.4 are due to David Wilson.

Figure 9.4 shows two optimally played games of Random-turn Hex. It is not known
what is the expected length of such a game on an L× L board. [PSSW07] shows that it

is at least L3/2+o(1), but the only upper bound known is the obvious one of L2.

1 2
3 45 6
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89 1011
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32 3334
35 36 37
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3940
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Figure 9.4. Random-turn Hex on boards of size 11 × 11 and 63 × 63 under
(nearly) optimal play. (The caveat “nearly” is there because the probability
that a hexagon is pivotal was estimated by Monte Carlo simulation.)

Exercises

9.1. Generalize the proof of Theorem 9.2.1 further so as to include the following
two games:

(a) Restaurant selection:
Two people (with opposite food preferences) want to select a dinner
location. They begin with a map containing 2n distinct points in R2,
indicating restaurant locations. At each step, the person who wins a
coin toss may draw a straight line that divides the set of remaining
restaurants exactly in half and eliminate all the restaurants on one
side of that line. Play continues until one restaurant z remains, at
which time player I receives payoff f(z) and player II receives −f(z).

(b) Balanced team captains:
Suppose that the captains wish to have the final teams equal in size
(i.e., there are 2n players and we want a guarantee that each team
will have exactly n players in the end). Then instead of tossing coins,
the captains may shuffle a deck of 2n cards (say, with n red cards and
n black cards). At each step, a card is turned over and the captain
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whose color is shown on the card gets to choose the next player.

9.2. Recursive Majority on b-ary trees: Let b = 2r + 1, r ∈ N. Consider Re-
cursive Majority on a b-ary tree of depth h. For each leaf, determine the
probability that flipping the sign of that leaf would change the overall re-
sult (i.e., the influence of that leaf).
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Part II: Designing games and mechanisms
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CHAPTER 10

Stable matching and allocation

In 1962, David Gale and Lloyd Shapley published a seminal paper entitled
“College Admissions and the Stability of Marriage” [GS62]. This led to a rich
theory with numerous applications exploring the fundamental question of how to
find stable matchings, whether they are of men with women, students with schools,
or organ donors with recipients needing a transplant. In 2012, the Nobel Prize
in Economics was awarded to Alvin Roth and Lloyd Shapley for their research on
“the theory of stable allocations and the practice of market design’.” In this chapter,
we describe and analyze stable allocation algorithms, including the Gale-Shapley
algorithm for stable matching.

10.1. Introduction

Suppose there are n men and m women. Every man has a preference order
over the m women, while every woman also has a preference order over the n men.
A matching is a one-to-one mapping from a subset of the men to a subset of the
women. A matching M is unstable if there exists a man and a woman who are
not matched to each other in M but prefer each other to their partners in M . We
assume every individual prefers being matched to being unmatched.1 Otherwise,
the matching is called stable. Clearly, in any stable matching, the number of
matched pairs is min(n,m).

Figure 10.1. An unstable pair.

1 Thus, there are four kinds of instability: (1) Alice and Bob are both matched in M but
prefer each other to their current matches, (2) Alice prefers Bob to her match in M and Bob is

unmatched in M , (3) similarly, with roles reversed, (4) both Alice and Bob are unmatched by M .

180
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10.2. ALGORITHMS FOR FINDING STABLE MATCHINGS 181

Consider the example shown in Figure 10.2 with three men x, y, and z, and
three women a, b, and c. Their preference lists are:

x : a > b > c, y : b > c > a, z : a > c > b,

a : y > z > x, b : y > z > x, c : x > y > z.

Then, x↔ a, y ↔ b, z ↔ c is an unstable matching since z and a prefer each other
to their partners.

c

c

c

c

b

b

b

b

a

a

a

a

z

z

z

z

y

y

y

y

x

x

x

x

Figure 10.2. The figure shows three men and three women and their prefer-
ence lists. For example, the green man y prefers b to c to a.

In the next section, we show that stable matchings exist for any preference
profile and present an efficient algorithm for finding such a matching.

10.2. Algorithms for finding stable matchings

The following algorithm, called the men-proposing algorithm, was intro-
duced by Gale and Shapley. At any point in time, there is some number of tenta-
tively matched pairs.

(1) Initially all men and women are unmatched.
(2) Each man proposes to his most preferred woman who has not rejected

him yet (or gives up if he’s been rejected by all women).
(3) Each woman is tentatively matched to her favorite among her proposers

and rejects the rest.
(4) Repeat steps (2) and (3) until a round in which there are no rejections.

At that point the tentative matches become final.

Remark 10.2.1. Note that if a man is tentatively matched to a woman in
round k and the algorithm doesn’t terminate, then he necessarily proposes to her
again in round k + 1.

Observation 10.2.2. From the first time a woman is proposed to, she remains
tentatively matched (and is permanently matched at the end). Moreover, each ten-
tative match is at least as good as the previous one from her perspective.

Theorem 10.2.3. The men-proposing algorithm yields a stable matching.
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c

b

a

z

y

x

Figure 10.3. Arrows in-
dicate proposals; cross in-
dicates rejection.

c

b

a

z

y

x

Figure 10.4. Stable
matching is achieved in
the second stage.

Proof. The algorithm terminates because in every nonfinal round there is a
rejection, and there are at most nm rejections possible. When it terminates, it
clearly yields a matching, which we denote by M . To see that M is stable, consider
a man, Bob, and a woman, Alice, not matched to each other, such that Bob prefers
Alice to his match in M or Bob is single. This means that he was rejected by Alice
at some point before the algorithm terminated. But then, by Observation 10.2.2,
Alice is matched in M and prefers her match in M to Bob. �

Corollary 10.2.4. In the case n = m, the stable matching is perfect; that
is, all men and women are matched.

Remark 10.2.5. We could similarly define a women-proposing algorithm.

10.3. Properties of stable matchings

We say a woman j is attainable for a man i if there exists a stable matching
M with M(i) = j.

Theorem 10.3.1. Let M be the stable matching produced by the men-proposing
algorithm. Then

(a) Every man is matched in M to his most preferred attainable woman.
(b) Every woman is matched in M to her least preferred attainable man.

Proof. We prove (a) by contradiction. Suppose that M does not match each
man with his most preferred attainable woman. Consider the first time during the
execution of the algorithm that a man, say Bob, is rejected by his most preferred
attainable woman, Alice, and suppose that Alice rejects Bob at that moment for
David. Since this is the first time a man is rejected by his most preferred attainable
woman,

David likes Alice at least as much as his most preferred attainable woman.
(10.1)

Also, since Alice is Bob’s most preferred attainable women, there is another
stable matchingM ′ in which they are matched. InM ′, David is matched to someone
other than Alice. But now we have derived a contradiction: By (10.1), David likes
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Bob Alice

David Claire

Bob Alice

David

During execution of men-proposing algorithm
first rejection by favorite attainable

Alice rejects Bob & becomes tentatively matched with David

Figure 10.5. This figure shows the contradiction that results from assuming
that some man, in this case, Bob, is the first to be rejected by his favorite
attainable woman, Alice, when running the men-proposing algorithm. M ′ is
the stable matching in which Bob and Alice are matched.

Bob Alice

Dan

Alice is Bob’s mostpreferred attainable

Dan is Alice’sleast preferredAttainable

Bob Alice

Carol

Dan

(result of men-proposing algorithm)

Figure 10.6. This figure shows the contradiction that results from assuming
that in the men-proposing algorithm some woman, Alice, does not end up
with her least preferred attainable, in this case Dan. M̃ is the matching in
which Alice is matched to Dan.

Alice more than his match in M ′, and Alice prefers David to Bob. Thus M ′ is
unstable. (See Figure 10.5.)

We also prove part (b) by contradiction. Suppose that in M , Alice ends up
matched to Bob, whom she prefers over her least preferred attainable man, Dan.
Then, there is another stable matching M̃ in which Dan and Alice are matched,
and Bob is matched to a different woman, Carol. Then in M̃ , Alice and Bob are an
unstable pair: By part (a), in M , Bob is matched to his most preferred attainable
woman. Thus, Bob prefers Alice to Carol, and by assumption Alice prefers Bob to
Dan. (See Figure 10.6.) �

Corollary 10.3.2. If Alice is assigned to the same man in both the men-
proposing and the women-proposing version of the algorithm, then this is the only
attainable man for her.

Corollary 10.3.3. The set of women (and men) who get matched is the same
in all stable matchings.
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184 10. STABLE MATCHING AND ALLOCATION

Proof. Consider the set of women matched by M , the matching resulting
from the men-proposing algorithm. Suppose that one of these women, say Alice,
is unmatched in some stable matching M̃ . Then Bob, whom she was matched to
in M , prefers her to whomever he is matched to in M̃ , a contradiction. Since the
number of matched women in both matchings is the same, namely min(n,m), this
concludes the proof. �

10.3.1. Preferences by compatibility. Suppose we seek stable matchings
for n men and n women with preference order determined by a matrix A = (ai,j)n×n
where all entries in each row are distinct and all entries in each column are distinct.
If in the ith row of the matrix we have

ai,j1 > ai,j2 > · · · > ai,jn ,

then the preference order of man i is j1 > j2 > · · · > jn. Similarly, if in the jth

column we have
ai1j > ai2j > · · · > ainj ,

then the preference order of woman j is i1 > i2 > · · · > in. (Imagine that the
number aij represents the compatibility of man i and woman j.)

Figure 10.7. The left-hand figure shows a stable matching between red points
(xi)

n
1 and blue points (yj)

n
1 randomly placed on a torus. Preferences are

according to distance; the shorter the better. Thus, aij = M − dist(xi, yj).
The right-hand figure shows the minimum weight matching between the red
points and the blue points.

Lemma 10.3.4. In this case, there exists a unique stable matching.

Proof. By Theorem 10.3.1, we know that the men-proposing algorithm pro-
duces a stable matching M in which each man obtains his most preferred attainable
partner. In all other stable matchings, each man obtains at most the same value
and at least one man obtains a lower value. Therefore, M is the unique maximizer
of
∑
i ai,M(i) among all stable matchings. Similarly, the women-proposing algo-

rithm produces a stable matching which maximizes
∑
j aM−1(j),j among all stable

matchings. Thus, the stable matchings produced by the two algorithms are the
same. By Corollary 10.3.2, there exists a unique stable matching. �
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10.3.2. Truthfulness. Exercise 10.3 shows that if the men-proposing algo-
rithm is implemented, a woman might benefit by misrepresenting her preferences.
Our next goal is to show that in this setting, no man is incentivized to do so.

Lemma 10.3.5. Let µ be the men-optimal stable matching2 and let ν be another
matching. Denote by S the set of men who prefer their match in ν to their match
in µ, i.e.,

S := {m | ν(m) >m µ(m)}. (10.2)

Then there is a pair (m,w) which is unstable for ν, where m 6∈ S.

Proof. We consider the execution of the men-proposing algorithm that gen-
erates µ.

Case 1: µ(S) 6= ν(S) (i.e., the set of women matched to men in S is not the
same in µ and ν): Let w ∈ ν(S) \ µ(S) and let m = µ(w). Then (m,w) is unstable
for ν: First, m 6∈ S, so m prefers w to ν(m). Second, w rejected ν(w) during the
execution of the algorithm, so w prefers m to ν(w).

Case 2: µ(S) = ν(S) = W0: Every woman in W0 receives and rejects a proposal
from her match in ν. Let w be the last woman in W0 to receive a proposal from a
man in S. Then w was tentatively matched to a man, say m, when she received this
last proposal. Observe that m 6∈ S; otherwise, at some point after being rejected
by w, he would have proposed to µ(m) ∈ W0, resulting in a later proposal in W0.
We claim (m,w) is unstable for ν: First, w >m µ(m) ≥m ν(m). Second, ν(w)
proposed to w and was rejected earlier than m, so w prefers m to ν(w). �

Men

Case 1 Case 2

Women Men Women

W0

unstable for 
unstable for

 

Figure 10.8. Red edges are in the male-optimal matching µ and blue edges
are in the matching ν.

Corollary 10.3.6. Let µ denote the men-optimal stable matching. Suppose
that a set S0 of men misrepresent their preferences. Then there is no stable match-
ing for the resulting preference profile where all men in S0 obtain strictly better
matches than in µ (according to their original preference order).

2 that arises from the men-proposing algorithm
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186 10. STABLE MATCHING AND ALLOCATION

Proof. Suppose that ν was such a matching. Then S as defined in (10.2) con-
tains S0. The pair (m,w) produced in Lemma 10.3.5 is unstable for both preference
profiles because m 6∈ S. �

10.4. Trading agents

The theory of stable matching concerns two-sided markets where decisions are
made by both sides. Matching and allocation problems also arise in one-sided mar-
kets, for instance, workers trading shifts or teams trading players. For concreteness,
we’ll use the example of first-year graduate students being assigned offices.

Consider a set of n grad students, each initially assigned a distinct office when
they arrive at graduate school. Each student has a total order over the offices.
Two people who prefer each other’s office would naturally swap. More generally,
any permutation π : [n] → [n] defines an allocation where person i receives office
π(i) (i.e., the office originally assigned to person π(i)). Such an allocation is called
unstable if there is a nonempty subset A ⊂ [n] and a permutation σ : A → A
(that is not identical to π on A) such that for each i ∈ A where σ(i) 6= π(i), person
i prefers σ(i) to π(i). Otherwise, π is stable.

Is there always a stable allocation and, if so, how do we find it? The following
top trading cycle algorithm finds such a stable allocation:

Define Sk inductively as follows:
Let S1 = [n]. For each k ≥ 1, as long as Sk 6= ∅:
• Let each person i ∈ Sk point to her most preferred office in Sk, denoted
fk(i).
• The resulting directed graph (with a vertex for each person and an edge

from vertex i to vertex j if j’s office is i’s favorite in Sk) has one outgoing
edge (it could be a self-loop) from each vertex, so it must contain directed
cycles. Call their union Ck. Allocate according to these cycles; i.e., for
each i ∈ Ck, set π(i) = fk(i).
• Set Sk+1 = Sk \ Ck.

Lemma 10.4.1.
(1) The top trading cycle algorithm produces a stable allocation π.
(2) No person has an incentive to misreport her preferences.

Proof. (1): Fix a subset A of students and a permutation σ : A → A that
defines an instability. Let A1 = {i ∈ A : σ(i) 6= π(i)}, and let k be minimal such
that there is a j ∈ Ck ∩A1. Then σ(j) ∈ Sk, so j prefers π(j) to σ(j).

(2): Fix the reports of all people except person `, and suppose that ` is in Ci.
For any j < i all people in Cj prefer their assigned office to office `. Thus, person `
cannot obtain an office in ∪j<iCj by misreporting her preferences. Since ` prefers
her assigned office π(`) to all the remaining offices Si, this concludes the proof. �

Remark 10.4.2. There is a unique stable allocation. See Exercise 10.13.

Notes

The stable matching problem was introduced and solved in a seminal paper by David
Gale and Lloyd Shapley [GS62], though stable matching algorithms were developed and
used as early as 1951 to match interns to hospitals [Sta53]. The shortest proof of the
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Round III

Figure 10.9. The figure shows the first few rounds of the algorithm.

existence of stable marriages is due to Marilda Sotomayor [Sot96]. See Exercise 10.6. The
results on truthfulness in §10.3.2 were discovered by [DF81] and independently by [Rot82].
The proof we present is due to [GS85]. Roth [Rot82] gives an example showing that there is
no mechanism to select a stable matching which incentivizes all participants to be truthful.
Dubins and Freedman [DF81] present an example due to Gale where two men can falsify
their preferences so that in the men-proposing algorithm, one will end up better off and
the other’s match will not change.

David Gale Lloyd Shapley

See the books by Roth and Sotomayor [RS92], Gusfield and Irving [GI89], and
Knuth [Knu97] for more information on the topic. For many examples of stable matching
in the real world, see [Rot15].

The trading agents problem was introduced by Shapley and Scarf [SS74]. They at-
tribute the top trading cycle algorithm to David Gale.
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188 10. STABLE MATCHING AND ALLOCATION

For a broader survey of these topics, see [Nis07, Chapter 10] by Schummer and Vohra.

Alvin Roth Marilda Sotomayor

We learned about Exercise 10.9 from Alexander Holroyd. Exercise 10.11 is due to
Al Roth [Rot86]. Exercise 10.12 is from [RRVV93]. The idea of using hearts in pictorial
depictions of stable matching algorithms (as we have done in Figure 10.5 and Figure 10.6)
is due to Stephen Rudich.

Figure 10.7 is from [HPPS09], where the distribution of distances for stable matchings
on the torus is studied. An extension to stable allocation (see Figure 10.10) was analyzed
in [HHP06].

Figure 10.10. Given n random points on the torus, there is a unique sta-
ble allocation that assigns each point the same area where preferences are
according to distance.

Exercises

10.1. There are three men, called a, b, c, and three women, called x, y, z, with the
following preference lists (most preferred on left):

for a : x > y > z, for x : c > b > a,

for b : y > x > z, for y : a > b > c,

for c : y > x > z, for z : c > a > b.
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Find the stable matchings that will be produced by the men-[roposing and
by the women-proposing algorithm.

10.2. Consider an instance of the stable matching problem, and suppose that M
and M ′ are two distinct stable matchings. Show that the men who prefer
their match in M to their match in M ′ are matched in M to women who
prefer their match in M ′ to their match in M .

10.3. Give an instance of the stable matching problem in which, by lying about
her preferences during the execution of the men-proposing algorithm, a
woman can end up with a man that she prefers over the man she would
have ended up with had she told the truth.

10.4. Consider a stable matching instance with n men and n women. Show that
there is no matching (stable or not) that all men prefer to the male-optimal
stable matching. Hint: In the men-proposing algorithm, consider the last
woman to receive an offer.

10.5. Consider the setting of §10.3.1, where the preferences are determined by
a matrix. The Greedy Algorithm for finding a matching chooses the (i, j)
for which aij is maximum, matches woman i to man j, removes row i and
column j from the matrix, and repeats inductively on the resulting matrix.
Show that the Greedy Algorithm finds the unique stable matching in this
setting. Show also that the resulting stable matching is not necessarily a
maximum weight matching.

10.6. Consider an instance of the stable matching problem with n men and m
women. Define a (partial) matching to be simple if the only unstable pairs
involve an unmatched man. There exist simple matchings (e.g., the empty
matching). Given a matching M , let rj be the number of men that woman
j prefers to her match in M (with r(j) = n if she is unmatched). Let M∗

be a simple matching with minimum
∑m
j=1 r(j). Show that M∗ is stable.

10.7. Show that there is not necessarily a solution to the stable roommates
problem: In this problem, there is a set of 2n people, each with a total
preference order over all the remaining people. A matching of the people
(each matched pair will become roommates) is stable if there is no pair of
people that are not matched that prefer to be roommates with each other
over their assigned roommate in the matching.

10.8. Show that the Greedy Algorithm (defined in Exercise 10.5) gives a solution
to the stable roommates problem when preferences are given by a matrix.

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



190 10. STABLE MATCHING AND ALLOCATION

10.9. Consider 2n points in the plane, n red and n blue. Alice and Bob play the
following game, in which they alternate moves starting with Alice. Alice
picks a point a1 of either color, say red. Then Bob picks a point b1 of the
other color, in this case, blue. Then Alice picks a red point a2, but this
point must be closer to b1 than a1 is. They continue like this, alternating,
with the requirement that the ith point that Alice picks is closer to bi−1

than ai−1 was, and the ith point bi that Bob picks is closer to ai than
bi−1 was. The first person who can no longer pick a point that is closer to
the other one’s point loses. Show that the following strategy is a winning
strategy for Bob: At each step pick the point bi that is matched to ai
in the unique stable matching for the instance, where each point prefers
points of the other color that are closer to it.

10.10. Consider using stable matching in the National Resident Matching
Program, for the problem of assigning medical students (as residents) to
hospitals. In this setting, there are n hospitals and m students. Each
hospital has a certain number of positions for residents, say ki for hospital
i. Each hospital has a ranking of all the students, and each student has a
ranking of all the hospitals. Given an assignment of students to hospitals,
a pair (H, s) is unstable if hospital H prefers student s to one of its
assigned students (or has an unfilled slot), and s prefers hospital H to his
current assignment. Describe an algorithm for finding a stable assignment
(e.g., by reducing it to the stable matching problem).

10.11. In the setting of the previous problem, show that if hospital H has at least
one unfilled slot, then the set of students assigned to H is the same in all
stable assignments.

10.12. Consider the following integer programming3 formulation of the stable
matching problem. To describe the program, we use the following notation.
Let m be a particular man and w a particular women. Then j >m w repre-
sents the set of all women j that m prefers over w, and i >w m represents
the set of all men i that w prefers over m. In the following program the
variable xij will be selected to be 1 if man i and woman j are matched in
the matching selected:

3 Integer programming is linear programming in which the variables are required to take
integer values. See Appendix A for an introduction to linear programming.
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maximize
∑
i,j

xij

subject to
∑
j

xm,j ≤ 1 for all men m, (10.1)

∑
i

xi,w ≤ 1 for all women w,∑
j>mw

xm,j +
∑
i>wm

xi,w + xm,w ≥ 1 for all pairs (m,w),

xm,w ∈ {0, 1} for all pairs (m,w).

• Prove that this integer program is a correct formulation of the stable
matching problem.
• Consider the relaxation of the integer program that allows fractional

stable matchings. It is identical to the above program, except that
instead of each xm,w being either 0 or 1, xm,w is allowed to take
any real value in [0, 1]. Show that the following program is the dual
program to the relaxation of (10.1).

minimize
∑
i

αi +
∑
j

βj −
∑
i,j

γij

subject to αm + βw −
∑
j<mw

γm,j −
∑
i<wm

γi,w − γm,w ≥ 1

for all pairs (m,w)

αi, βj , γi,j ≥ 0 for all i and j.

• Use complementary slackness to show that every feasible fractional
solution to the relaxation of (10.1) is optimal and that setting

αm =
∑
j

xm,j for all m,

βw =
∑
i

xi,w for all w,

and

γij = xij for all i, j

is optimal for the dual program.

10.13. Show that there is a unique stable allocation in the sense discussed in
Section 10.4. Hint: Use a proof by contradiction, considering the first Ck
in the top trading cycle algorithm where the allocations differ.
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192 10. STABLE MATCHING AND ALLOCATION

10.14. Consider a set of n teams, each with 10 players, where each team owner
has a ranking of all 10n players. Define a notion of stable allocation in this
setting (as in Section 10.4) and show how to adapt the top trading cycle
algorithm to find a stable allocation. We assume that players’ preferences
play no role.

10.15. A weaker notion of instability than the one discussed in Section 10.4 re-
quires that no set of graduate students can obtain better offices than they
are assigned in π by reallocating among themselves the offices allocated to
them in π. Show that this follows from stability as defined in Section 10.4.
Note that the converse does not hold. For example, if there are two people
who both prefer the same office, the only stable allocation is to give that
office to its owner, but the alternative is also weakly stable.
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CHAPTER 11

Fair division

A Jewish town had a shortage of men for wedding purposes, so
they had to import men from other towns. One day a groom-to-
be arrived on a train. As he disembarked, one lady proclaimed,
“He’s a perfect fit for my daughter!” Another lady disagreed,
“No, he’s a much better fit for my daughter!”

A rabbi was called to decide the matter. After hearing both
ladies, he said, “Each of you has good arguments for why your
daughter should be the one to marry this man. Let’s cut him
in two and give each of your daughters half of him.” One of
the ladies replied, “That sounds fair.” The rabbi immediately
declared, “That’s the real mother-in-law!”

Suppose that several people need to divide an asset, such as a plot of land,
between them. One person may assign a higher value to a portion of the asset than
another. This is often illustrated with the example of dividing a cake.

11.1. Cake cutting

Figure 11.1. Two bears sharing a cake. One cuts; the other chooses.
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194 11. FAIR DIVISION

The classical method for dividing a cake fairly between two people is to have
one cut and the other choose. This method ensures that each player can get at
least half the cake according to his preferences; e.g., a player who loves icing most
will take care to divide the icing equally between the two pieces.

Figure 11.2. This figure shows a possible way to cut a cake into five pieces.
The ith piece is Bi = [

∑i−1
k=1 xk,

∑i
k=1 xk). If the ith piece goes to player j

(i.e., Aj := Bi), then his value for this piece is µj(Bi).

To divide a cake between more than two players, we first model the cake as
the unit interval and assume that for each i ∈ {1, . . . , n}, there is a distribution
function Fi(x) representing player i’s value for the interval [0, x]. (See Figure 11.2
for a possible partition of the cake.) We assume these functions are continuous. Let
µi(A) be the value player i assigns to the set A ⊂ [0, 1]; in particular, µi([a, b]) =
Fi(b)− Fi(a). We assume that µi is a probability measure.

Definition 11.1.1. A partition A1, . . . , An of the unit interval is called a fair
division1 if µi(Ai) ≥ 1/n. A crucial issue is which sets are allowed in the partition.
For now, we assume that each Ai is an interval.

Remark 11.1.2. The assumption that Fi is continuous is key since a disconti-
nuity would represent an atom in the cake, and might preclude fair division.

Moving-knife Algorithm for fair division of a cake among n people

• Move a knife continuously over the cake from left to right
until some player yells “Stop!”
• Give that player the piece of cake to the left of the knife.
• Iterate with the other n−1 players and the remaining cake.

Definition 11.1.3. The safe strategy for a player i is defined inductively as
follows. If n = 1, take the whole cake. Otherwise, in the first round, i should yell
“Stop” as soon as a 1/n portion of the cake is reached according to his measure.
If someone else yells first, player i employs the safe strategy in the (n − 1)-person
game on the remaining cake.

Lemma 11.1.4. Any player who plays the safe strategy is guaranteed to get a
piece of cake that is worth at least 1/n of his value for the entire cake.

Proof. Any player i who plays the safe strategy either receives a piece of cake
worth 1/n of his value in the first round or has value at least (n − 1)/n for the
remaining cake. In the latter case, by induction, i receives at least 1/(n − 1) of
his value for the remaining cake and hence at least 1/n of his value for the whole
cake. �

1 This is also known as proportional.
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value to player III

The Cake:

Figure 11.3. This figure shows an example of how the Moving-knife Algo-
rithm might evolve with three players. The knife moves from left to right.
Player I takes the first piece, then II, then III. In the end, player I is envious
of player III.

While this cake-cutting algorithm guarantees a fair division if all participants
play the safe strategy, it is not envy-free. It could be, when all is said and done,
that some player would prefer the piece someone else received. See Figure 11.3 for
an example.

11.1.1. Cake cutting via Sperner’s Lemma. Let µ1, . . . , µn and F1, . . . , Fn
be as above. In this section, we will show that there is a partition of the cake [0, 1]
into n intervals that is envy-free, and hence fair, under the following assumption.

Assumption 11.1.5. Each of the n people prefers any piece of cake to no piece;
i.e., µi(A) > 0 for all i and any interval A 6= ∅.

We start by presenting an algorithm that constructs an ε-envy-free partition.

Definition 11.1.6. A partition A1, . . . , An is ε-envy-free if for all i, j we have
µi(Aj) ≤ µi(Ai) + ε.

This means that player i, who was assigned interval Ai, does not prefer any
other piece by more than ε.

11.1.1.1. The construction. Let ei denote the ith standard basis vector and let
∆(e1, e2, . . . , en) be the convex hull of e1, . . . , en. Each point (x1, . . . , xn) in the
simplex ∆(e1, e2, . . . , en) describes a partition of the cake (see Figure 11.2) where
Ai is the piece of cake allocated to player i.

By Lemma 5.4.5, for any η > 0, there is a subdivision Γ of ∆(e1, e2, . . . , en)
for which all simplices in Γ have diameter less than η. By Corollary 5.4.6, there is
a proper-coloring 2 with colors {c1, . . . , cn} of the vertices of Γ. If a vertex v has
color ci, we will say that player i owns that vertex. See Figure 11.4.

Next, construct a Sperner labeling `(·) of the vertices in the subdivision as fol-

lows: Given a vertex x = (x1, . . . , xn) in Γ, defineBi = Bi(x) = [
∑i−1
k=1 xk,

∑i
k=1 xk].

(Again, see Figure 11.2.) If x is owned by player j and µj(Bk) is maximal among
µj(B1), . . . , µj(Bn), then `(x) = k. In other words, `(x) = k if Bk is player j’s
favorite piece among the pieces defined by x. The fact that `(·) is a valid Sperner
labeling follows from Assumption 11.1.5. See Figure 11.5.

2 A coloring is proper if any two vertices in the same simplex ∆1 ∈ Γ are assigned different
colors.
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Figure 11.4. This picture shows the coloring of a subdivision Γ for three
players. Each simplex in Γ has one black vertex (owned by player I), one
purple vertex (owned by player II), and one green vertex (owned by player

III).

label 1

label 2label 3

labels1 or 2

labels 2 or 3

labels1 or 3

(1, 0, 0)

(0, 1, 0)(0, 0, 1)

vertices onthis sidehave                         

Figure 11.5. The coordinates x = (x1, x2, x3) of a vertex represent a possible
partition of the cake. The Sperner label of a vertex owned by a particular
player is the index of the piece that player would choose given that partition
of the cake. Notice that by Assumption 11.1.5, if, say, xi = 0, then the label
of vertex x is not i.

Finally, we apply Sperner’s Lemma, from which we conclude that there is a
fully labeled simplex in Γ.

Theorem 11.1.7. Let ε > 0. There exists η such that if the maximal diameter
of all simplices in Γ is less than η, then any vertex x of a fully labeled simplex in Γ
determines an ε-envy-free partition.

Proof. Let ∆∗ = ∆(v1, . . . ,vn) be a fully labeled simplex in Γ, with vi owned
by player i. Let x := v1 determine the partition B1, . . . , Bn. Write π(k) := `(vk).
The fact that ∆∗ is fully labeled means that π is a permutation. For every k, assign
player k the piece Ak := Bπ(k). This will be the ε-envy-free partition (provided η
is sufficiently small).

Clearly Ai is the piece preferred by player i. Given another player j, use vj to
construct a partition B′1, . . . , B

′
n. Observe that, for all k, the endpoints of B′k are

within nη of the endpoints of Bk. By uniform continuity of Fr, there is δ > 0 such
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11.1. CAKE CUTTING 197

that

|t− t′| < δ ⇒ |Fr(t)− Fr(t′)| <
ε

4
.

Thus, we will choose η = δ/n, from which we can conclude

|µj(B′k)− µj(Bk)| < ε

2

for all k. Since

µj(B
′
π(j)) ≥ µj(B

′
π(k)),

by the triangle inequality,

µj(Bπ(j)) ≥ µj(Bπ(k))− ε.

The last part of the proof is illustrated in Figure 11.6. �

owned by green player, player 3

owned by black player, player 2

owned by purple player, player 1

partition definedby      

partition definedby      

*

v
v

v
v

v
v

v

v

x

Figure 11.6. This figure illustrates the last part of the proof of Theo-
rem 11.1.7. The big simplex at the top is a blown up version of ∆∗, the
fully labeled simplex that is used to show that there is an ε-envy-free parti-
tion. In this figure, the distances between the vertices v1,v2 and v3 are at
most η. The partition is determined by v1 = (x1, x2, x3).

Corollary 11.1.8. If for each i the distribution function Fi defining player i’s
values is strictly increasing and continuous, then there exists an envy-free partition
into intervals.

Proof. By the continuity of the Fi’s, for every permutation π the set

Λπ(ε) = {x ∈ ∆ : (Bπ(1)(x), . . . , Bπ(n)(x)) is ε-envy-free}
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198 11. FAIR DIVISION

is closed. The theorem shows that

Λ(ε) =
⋃
π∈Sn

Λπ(ε)

is closed, nonempty, and monotone decreasing as ε ↓ 0. Thus,

∃ x∗ ∈
⋂
k

Λ (1/k) so ∀k ∃ πk s.t. x∗ ∈ Λπk (1/k) .

Finally, since some π ∈ Sn repeats infinitely often in {πk}k≥1, the partition Ai :=
Bπ(i)(x

∗) is envy-free. �

11.2. Bankruptcy

A debtor goes bankrupt. His total assets are less than his total debts. How
should his assets be divided among his creditors?

Definition 11.2.1. A bankruptcy problem is defined by the total available
assets A and the claims c1, . . . , cn of the creditors, where ci is the claim of the
ith creditor, with C :=

∑
i ci > A. A solution to the bankruptcy problem is an

allocation ai to each creditor, where ai ≤ ci and
∑
i ai = A.

One natural solution is proportional division, where each creditor receives
the same fraction A/C of their claim; i.e., ai = ciA/C.

However, consider a problem of partitioning a garment3 between two people,
one claiming half the garment and the other claiming the entire garment. Since
only half of the garment is contested, it’s reasonable to partition that half between
the two claimants, and assign the uncontested half to the second claimant. For
A = 1, c1 = 0.5, and c2 = 1, this yields a1 = 0.25 and a2 = 0.75. This solution was
proposed in the Talmud, an ancient Jewish text.

Figure 11.7. The question of how to split a talit is discussed in Tractate
Baba Metzia, Chapter 1, Mishnah 1.

3 or a plot of land.
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11.2. BANKRUPTCY 199

Figure 11.8. This picture shows the partitioning proposed by the Talmud.

Figure 11.9. Three widows in dispute over how the estate of their husband
should be divided among them.

Formally, this is the principle of equal division of contested amounts,
which we will refer to as the garment rule for n = 2: Since (A − c1)+ is not
contested by 1 and (A − c2)+ is not contested by 2, each claimant receives his
“uncontested portion” and half of the contested portion. See Figure 11.8.

The Talmud also presents solutions, without explanation, to the 3-claimant
scenario shown in Table 1.

An explanation for the numbers in this table remained a conundrum for over
1,500 years. To address this, let’s explore other fairness principles.

(1) Constrained equal allocations (CEA): Allocate the same amount to
each creditor up to his claim; i.e., ai = a ∧ ci, where a is chosen so that∑
i ai = A. (Recall that a ∧ b = min(a, b).)

(2) Constrained equal losses (CEL): Assign to each creditor the same loss
`i := ci − ai up to his claim; i.e., `i = ` ∧ ci where

∑
i `i = C −A.

Neither of these principles yields the Talmud allocations (see Table 2), but they
both share a consistency property, which will be the key to solving the puzzle.
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200 11. FAIR DIVISION

Table 1. This table presents the solution proposed in the Talmud for parti-
tioning the estate of a man who has died among his three wives.

Creditors’ claims: 100 200 300

Estate Size:

100 33 1
3 33 1

3 33 1
3

200 50 75 75

300 50 100 150

a1

c 1

c 2

c 3

a4

c 4

a5

c 5 a2 a3

CEA CEL

a3

a2

a4

a1

1 2 3 4 5

Figure 11.10. An example illustrating constrained equal allocations (CEA)
and constrained equal losses (CEL). The shaded area is the total assets A.

Definition 11.2.2. An allocation rule4 is a function F mapping bankruptcy
problems (c1, . . . , cn;A), for arbitrary n, to solutions (a1, . . . , an). Such a rule is
called pairwise consistent if

F (c1, . . . , cn;A) = (a1, . . . , an) implies that ∀i 6= j, F (ci, cj ; ai + aj) = (ai, aj).

More generally, an allocation rule is consistent if for any subset S ⊂ [1, n], the
total allocation

∑
i∈S ai is split by F exactly to (ai)i∈S .

Exercise 11.a. Verify that proportional division, constrained equal alloca-
tions, and constrained equal losses are all consistent. Also, show that these alloca-
tion rules are monotone: For a fixed set of claims (c1, . . . , cn), the allocation ai to
each claimant is monotone in the available assets A.

Theorem 11.2.3. There is a unique pairwise consistent rule T (c1, . . . , cn;A)
(the Talmud rule) which reduces to the garment rule for two creditors. This rule
is:

• If A ≤ C/2, then ai = a ∧ ci
2 with a chosen so that

∑
i ai = A. I.e.,

T (c1, . . . , cn;A) := CEA
(c1

2
, . . . ,

cn
2

;A
)
.

4 This is for bankruptcy problems.
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Table 2. The allocations of Proportional Division, Constrained Equal Allo-
cations (CEA), and Constrained Equal Losses (CEL) for the scenario shown
in Table 1.

Creditors’ claims: 100 200 300

Estate Size:

100

Proportional 16 2
3 33 1

3 50

CEA 33 1
3 33 1

3 33 1
3

CEL 0 0 100

200

Proportional 33 1
3 66 2

3 100

CEA 66 2
3 66 2

3 66 2
3

CEL 0 50 150

300

Proportional 50 100 150

CEA 100 100 100

CEL 0 100 200

• If A > C/2, let `i = ` ∧ ci
2 , with ` chosen so that

∑
i `i = C −A, and set

ai = ci − `i. I.e.,

T (c1, . . . , cn;A) := CEL
(c1

2
, . . . ,

cn
2

;A
)
.

Moreover, the Talmud rule is consistent.

Proof of Theorem 11.2.3. It follows from Exercise 11.1 that the Talmud
rule is the garment rule for n = 2.

Consistency follows from the fact that if A ≤ C/2, then
∑
i∈S ai ≤

∑
i∈S

ci
2 for

every S, so the Talmud rule applied to S is CEA with claims ( ci2 )i∈S . Consistency
of the CEA rule (Exercise 11.a) completes the argument. A similar argument works
for the case of A > C/2 using consistency of CEL.

For uniqueness, suppose there are two different pairwise consistent rules that re-
duce to the garment rule for n = 2. Then on some bankruptcy problem (c1, . . . , cn;A)
they produce different allocations, say (a1, . . . , an) and (b1, . . . , bn). Since

∑
i ai =∑

i bi, there is a pair i, j with ai < bi and aj > bj . Without loss of generality
suppose that ai + aj ≥ bi + bj . Then the fact that ai < bi is a contradiction to the
monotonicity in assets of the garment rule. �

Remark 11.2.4. The proof of Theorem 11.2.3 shows that any monotone rule
is uniquely determined by its restriction to pairs.
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a1 a2

2

a3 a4 a5

a3

a2

a4

a5

a1

1 2 3
4 5

c 1

c 2

c 1

c 2

c 3

c 4

c 5

Figure 11.11. A depiction of the Talmud rule in the two cases.

Remark 11.2.5. In this section, we have assumed that the claims are verifiable
and not subject to manipulation by participants.

Notes

The divide and choose algorithm for cake cutting goes back to the Old Testament
(Genesis 13):

So Abraham said to Lot, Let us not have any quarreling between you
and me, or between your herders and mine, for we are brothers. Is
not the whole land before you? Let us part company. If you go to the
left, I will go to the right; if you go to the right, I will go to the left.

Lot looked and saw that the whole plain of the Jordan toward
Zoar was well watered, like the garden of the Lord.. . . So Lot chose
for himself the whole plain of the Jordan and set out toward the east.

The Moving-knife Algorithm for cake cutting is due to Dubins and Spanier [DS61].
A discrete version of the Moving-knife Algorithm was discovered earlier by Banach and
Knaster [Ste48]: The first player cuts a slice, and each of the other players, in turn, is
given the opportunity to diminish it. The last diminisher gets the slice, and then the
procedure is applied to the remaining n− 1 players.

The use of Sperner’s Lemma to solve the envy-free cake cutting problem is due to
Su [Su99].

In the setting of n nonatomic measures5, Lyapunov showed [Lya40] that there always
is a partition of the cake into n measurable slices A1, A2, . . . , An, such that µi(Aj) = 1/n
for all i and j. In particular, there is an envy-free partition of the cake. Note though that
even if the cake is [0, 1], the resulting slices can be complicated measurable sets, and no
algorithm is given to find them. An elegant proof of Lyapunov’s theorem was given by
Lindenstrauss [Lin66].

Alon [Alo87] proved a theorem about “splitting necklaces”, which implies that if the
cake is [0, 1], then a perfect partition as in Lyapunov’s Theorem can be obtained by cutting
the cake into (n − 1)n + 1 intervals and assigning each participant a suitable subset of
these intervals.

5 A measure µ(·) is nonatomic if µ(A) > 0 implies that there is B ⊂ A with 0 < µ(B) < µ(A).
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Lyapunov, Alon and Su’s theorems are non-constructive. Selfridge and Conway (see
e.g., [BT96]) presented a constructive procedure for finding an envy-free partition when
n = 3. In 1995, Brams and Taylor [BT95] described a procedure that produces an envy-
free partition for any n, but the number of steps it takes is finite but unbounded. Only in
2016, Aziz and Mackenzie [AM16] discovered a procedure whose complexity is bounded
as a function of n.

The resolution of the conundrum regarding bankruptcy is due to Aumann and Maschler
[AM85]. Another rule, proposed by O’Neill [O’N82], is the random arrival rule: Consider
an arrival order for the claimants, and allocate to each one the minimum of his claim
and what is left of the estate. To make this fair, the final allocation is the average of
these allocations over all n! orderings. For an extensive discussion of fair division, see the
books by Brams and Taylor [BT96] and Robertson and Webb [RW98] and the survey by
Procaccia [Pro13].

Exercise 11.2 is from [BT96].

Exercises

11.1.S Show that the Talmud rule is monotone in A for all n and coincides with
the garment rule for n = 2.

11.2. Consider the following procedure to partition a round cake among three
players: Alice, Barbara and Carol. We assume that each player has a
continuous measure on the cake that allocates zero measure to every line
segment (radius) that starts at the center of the cake. (Alternatively, these
could be continuous measures on a circle.)
• Alice positions three knives on the cake (like the hands of a clock).

She then rotates them clockwise, with the requirement that if some
knife reaches the initial position of the next knife, then the same must
hold for the other two knives. (At all times the tips of the knives meet
at the center of the cake).
• Alice continues rotating the knives until either Barbara yells stop, or

each knife has reached the initial position of the next knife.
• When Alice stops rotating the knives, Carol chooses one of the three

slices determined by the knives, and then Barbara selects one of the
two remaining slices, leaving the last slice to Alice.

.
Show that each player has a strategy ensuring that (no matter how

the others play), the slice she obtains is at least as large as any other
slice according to her measure. Thus if all three players adhere to these
strategies, an envy-free partition will result.

Hint: Alice should rotate the knives so that, at all times, the three
slices they determine are of equal size according to her measure. Barbara
should yell stop when the two largest slices (according to her measure) are
tied.
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CHAPTER 12

Cooperative games

In this chapter, we consider multiplayer games where players can form coali-
tions. These come in two flavors: transferable utility (TU) games where side pay-
ments are allowed, and nontransferable utility games (NTU). The latter includes
settings where payments are not allowed (e.g., between voters and candidates in
an election) or where players have different utility for money. In this chapter, we
mostly focus on the former.

12.1. Transferable utility games

We review the example discussed in the preface. Suppose that three people
are selling their wares in a market. One of them is selling a single, left-handed
glove, while the other two are each selling a right-handed glove. A wealthy tourist
arrives at the market in dire need of a pair of gloves, willing to pay one Bitcoin1

for a pair of gloves. She refuses to deal with the glove-bearers individually, and
thus, these sellers have to come to some agreement as to how to make a sale of a
left- and right-handed glove to her and how to then split the one Bitcoin among
themselves. Clearly, the first player has an advantage because his commodity is in
scarcer supply. This means that he should be able to obtain a higher fraction of
the payment than either of the other players. However, if he holds out for too high
a fraction of the earnings, the other players may act as a coalition and require him
to share more of the revenue.

The question then is, in their negotiations prior to the purchase, how much can
each player realistically demand out of the total payment made by the customer?

To resolve this question, we introduce a characteristic function v, defined on
subsets of the player set. In the glove market, v(S), where S is a subset of the three
players, is 1 if, just among themselves, the players in S have both a left glove and
a right glove. Thus,

v(123) = v(12) = v(13) = 1,

and the value is 0 on every other subset of {1, 2, 3}. (We abuse notation in this
chapter and sometimes write v(12) instead of v({1, 2}), etc.)

More generally, a cooperative game with transferable utilities is defined
by a characteristic function v on subsets of the n players, where v : 2S → R is
the value, or payoff, that subset S of players can achieve on their own regardless
of what the remaining players do. This value can then be split among the players
in any way that they agree on. The characteristic function satisfies the following
properties:

• v(∅) = 0.
• Monotonicity: If S ⊆ T , then v(S) ≤ v(T ).

1 A Bitcoin is a unit of digital currency that was worth $100 at the time of the transaction.

204
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12.2. THE CORE 205

Figure 12.1

Given a characteristic function v, each possible outcome of the game is an
allocation vector ψ(v) ∈ Rn, where ψi(v) is the share of the payoff allocated to
player i.

What is a plausible outcome of the game? We will see several different solution
concepts.

12.2. The core

An allocation vector ψ = ψ(v) is in the core if it satisfies the following two
properties:

• Efficiency:
∑n
i=1 ψi = v({1, . . . , n}). This means, by monotonicity, that,

between them, the players extract the maximum possible total value.
• Stability: Each coalition is allocated at least the payoff it can obtain on

its own; i.e., for every set S,∑
i∈S

ψi ≥ v(S).

For the glove market, an allocation vector in the core must satisfy

ψ1 + ψ2 ≥ 1,

ψ1 + ψ3 ≥ 1,

ψ1 + ψ2 + ψ3 = 1.

This system has only one solution: ψ1 = 1 and ψ2 = ψ3 = 0. g

Example 12.2.1 (Miners and Gold:). Consider a set of miners who have
discovered large bars of gold. The value of the loot to the group is the number of
bars that they can carry home. It takes two miners to carry one bar, and thus the
value of the loot to any subset of k miners is bk/2c.

If the total number of miners is even, then the vector ψ = (1/2, . . . , 1/2) is in
the core. On the other hand, if n is odd, say 3, then the core conditions require
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206 12. COOPERATIVE GAMES

that

ψ1 + ψ2 ≥ 1,

ψ1 + ψ3 ≥ 1,

ψ2 + ψ3 ≥ 1,

ψ1 + ψ2 + ψ3 = 1.

This system has no solution.

Example 12.2.2 (Splitting a dollar:). A parent offers his two children $100
if they can agree on how to split it. If they can’t agree, they will each get $10. In
this case v(12) = 100, whereas v(1) = v(2) = 10. The core conditions require that

ψ1 ≥ 10 ψ2 ≥ 10 and ψ1 + ψ2 = 100,

which clearly has multiple solutions.

The drawback of the core, as we saw in these examples, is that it may be
empty or it might contain multiple allocation vectors. This motivates us to consider
alternative solution concepts.

12.3. The Shapley value

Another way to choose the allocation ψ(v) is to adopt an axiomatic approach,
wherein a set of desirable properties for the solution is enumerated.

12.3.1. Shapley’s axioms.

(1) Symmetry: If v
(
S ∪ {i}

)
= v

(
S ∪ {j}

)
for all S with i, j /∈ S, then

ψi(v) = ψj(v).
(2) Dummy: A player that doesn’t add value gets nothing; i.e., if v

(
S∪{i}

)
=

v(S) for all S, then ψi(v) = 0.
(3) Efficiency:

∑n
i=1 ψi(v) = v

(
{1, . . . , n}

)
.

(4) Additivity: ψi(v + u) = ψi(v) + ψi(u).

The first three axioms are self-explanatory. To motivate the additivity axiom,
imagine the same players engage in two consecutive games, with characteristic
functions v and u, respectively. This axiom states that the outcome in one game
should not affect the other, and thus, in the combined game, the allocation to a
player is the sum of his allocations in the component games.

We shall see that there is a unique choice for the allocation vector, given these
axioms. This unique choice for each ψi(v) is called the Shapley value of player i
in the game defined by characteristic function v.

Example 12.3.1 (The S-veto game). Consider a coalitional game with n
players, in which a fixed subset S of the players holds all the power. We will denote
the characteristic function here by wS , defined as follows: wS(T ) is 1 if T contains
S and it is 0 otherwise. Suppose ψ(v) satisfies Shapley’s axioms. By the dummy
axiom,

ψi
(
wS
)

= 0 if i /∈ S.
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Then, for i, j ∈ S, the symmetry axiom gives ψi(wS) = ψj(wS). Finally, the
efficiency axiom implies that

ψi
(
wS
)

=
1

|S|
if i ∈ S.

Similarly, we can derive that ψi(cwS) = c ψi(wS) for any c ∈ [0,∞). Note that to
derive this, we did not use the additivity axiom.

Glove Market, again: We can now use our understanding of the S-veto game
to solve for the Shapley values ψ(v), where v is the characteristic function of the
Glove Market game.

Observe that for bits and for {0, 1}-valued functions

u ∨ w = max(u,w) = u+ w − u · w.
With w12, etc, defined as in Example 12.3.1, we have that for every S,

v(S) = w12(S) ∨ w13(S) = w12(S) + w13(S)− w123(S).

Thus, the additivity axiom gives

ψi(v) = ψi(w12) + ψi(w13)− ψi(w123).

We conclude from this that ψ1(v) = 1/2 + 1/2 − 1/3 = 2/3, whereas ψ2(v) =
ψ3(v) = 0 + 1/2 − 1/3 = 1/6. Thus, under Shapley’s axioms, player 1 obtains a
two-thirds share of the payoff, while players 2 and 3 equally share one-third between
them.

The calculation of ψi(v) we just did for the glove game relied on the represen-
tation of v as a linear combination of S-veto functions wS . Such a representation
always exists.

Lemma 12.3.2. For any characteristic function v : 2[n] → R, there is a unique
choice of coefficients cS such that

v =
∑
S 6=∅

cSwS .

Proof. The system of 2n − 1 equations in the 2n − 1 unknowns cS , that is,
for all nonempty T ⊆ [n]

v(T ) =
∑

∅6=S⊆[n]

cSwS(T ), (12.1)

has a unique solution. To see this, observe that if the subsets of [n] are ordered in
increasing cardinality, then the matrix wS(T ) is upper triangular, with 1’s along
the diagonal. For example, with n = 2, rows indexed by S and columns indexed by
T , the matrix wS(T ) is



{1} {2} {12}

{1} 1 0 1

{2} 0 1 1

{12} 0 0 1

.
�
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Example 12.3.3 (Four Stockholders). Four people own stock in ACME.
Player i holds i units of stock, for each i ∈ {1, 2, 3, 4}. Six shares are needed to
pass a resolution at the board meeting. Here v(S) is 1 if subset S of players have
enough shares of stock among them to pass a resolution. Thus,

1 = v(1234) = v(24) = v(34),

while v = 1 on any 3-tuple and v = 0 in each other case. In this setting, the
Shapley value ψi(v) for player i represents the power of player i and is known as
the Shapley-Shubik power index. By Lemma 12.3.2, we know that the system
of equations

v =
∑
S 6=∅

cSwS

has a solution. Solving this system, we find that

v = w24 + w34 + w123 − w234 − w1234,

from which
ψ1(v) = 1/3− 1/4 = 1/12

and
ψ2(v) = 1/2 + 1/3− 1/3− 1/4 = 1/4,

while ψ3(v) = 1/4, by symmetry with player 2. Finally, ψ4(v) = 5/12. It is
interesting to note that the person with two shares and the person with three
shares have equal power.

Exercise 12.a. Show that Four Stockholders has no solution in the core.

12.3.2. Shapley’s Theorem. Consider a fixed ordering of the players, de-
fined by a permutation π of [n] = {1, . . . , n}. Imagine the players arriving one by
one according to this permutation π, and define φi(v, π) to be the marginal contri-
bution of player i at the time of his arrival assuming players arrive in this order.
That is,

φi(v, π) = v
(
π{1, . . . , k}

)
− v
(
π{1, . . . , k − 1}

)
where π(k) = i. (12.2)

Notice that if we were to set ψi(v) = φi(v, π) for any fixed π, the dummy, efficiency,
and additivity axioms would be satisfied.

To satisfy the symmetry axiom as well, we will instead imagine that the players
arrive in a random order and define ψi(v) to be the expected value of φi(v, π) when
π is chosen uniformly at random.

Remark 12.3.4. If v(·) is {0, 1}-valued, then ψi(v) is the probability that player
i’s arrival converts a losing coalition to a winning coalition.

Theorem 12.3.5. Shapley’s four axioms uniquely determine the functions ψi.
They are given by the random arrival formula:

ψi(v) =
1

n!

∑
π∈Sn

φi(v, π). (12.3)

Remark 12.3.6. φi(v, π) depends on π only via the set S = {j : π−1(j) <
π−1(i)} of players that precede i in S. Therefore

ψi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)).
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12.3. THE SHAPLEY VALUE 209

Proof. First, we prove that the functions ψi(v) are uniquely determined by
v and the four axioms. By Lemma 12.3.2, we know that any characteristic func-
tion v can be uniquely represented as a linear combination of S-veto characteristic
functions wS .

Recalling that ψi(wS) = 1/|S| if i ∈ S and ψi(wS) = 0 otherwise, we apply the
additivity axiom and conclude that ψi(v) is uniquely determined:

ψi(v) = ψi

( ∑
∅6=S⊆[n]

cSwS

)
=

∑
∅6=S⊆[n]

ψi
(
cSwS

)
=

∑
S⊆[n],i∈S

cS
|S|

.

We complete the proof by showing that the specific values given in the statement
of the theorem satisfy all of the axioms. Recall the definition of φi(v, π) from (12.2).
By averaging over all permutations π and then defining ψi(v) as in (12.3), we claim
that all four axioms are satisfied. Since averaging preserves the dummy, efficiency,
and additivity axioms, we only need to prove the intuitive fact that by averaging
over all permutations, we obtain symmetry.

To this end, suppose that i and j are such that

v
(
S ∪ {i}

)
= v
(
S ∪ {j}

)
for all S ⊆ [n] with S ∩ {i, j} = ∅. For every permutation π, define π∗ to be the
same as π except that the positions of i and j are switched. Then

φi(v, π) = φj(v, π
∗).

Using the fact that the map π 7→ π∗ is a one-to-one map from Sn to itself for
which π∗∗ = π, we obtain

ψi(v) =
1

n!

∑
π∈Sn

φi(v, π) =
1

n!

∑
π∈Sn

φj(v, π
∗)

=
1

n!

∑
π∗∈Sn

φj(v, π
∗) = ψj(v).

Therefore, ψ(v) = (ψ1(v), . . . , ψn(v)) are indeed the unique Shapley values. �

12.3.3. Additional examples.

Example 12.3.7 (A fish with little intrinsic value). A seller s has a fish
having little intrinsic value to him; i.e., he values it at $2. A buyer b values the
fish at $10. Thus, v(s) = 2 and v(b) = 0. Denote by x the sale price. Then
v(s, b) = x+ (10− x) = 10 for x ≥ 2.

In this game, any allocation of the form ψs(v) = x and ψb(v) = 10 − x (for
2 ≤ x ≤ 10) is in the core. On the other hand, the Shapley values are ψs(v) = 6
and ψb(v) = 4.

Note, however, that the value of the fish to b and s is private information, and
if the price is determined by the formula above, they would have an incentive to
misreport their values.

Example 12.3.8 (Many right gloves). Consider the following variant of the
glove game. There are n = r + 2 players. Players 1 and 2 have left gloves. The
remaining players each have a right glove. Thus, the characteristic function v(S) is
the maximum number of proper and disjoint pairs of gloves owned by players in S.
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210 12. COOPERATIVE GAMES

We compute the Shapley value. Note that ψ1(v) = ψ2(v) and that ψr(v) = ψ3(v)
for each r ≥ 3. By the efficiency axiom, we have

2ψ1(v) + rψ3(v) = 2

provided that r ≥ 2. To determine the Shapley value of the third player, we consider
all permutations π with the property that the third player adds value to the group
of players that precede him in π. These are the following orders:

13, 23, {1, 2}3, {1, 2, j}3,

where j is any value in {4, . . . , n} and the curly brackets mean that each permu-
tation of the elements in curly brackets is included. The number of permutations
corresponding to each of these possibilities is r!, r!, 2(r− 1)!, and 6(r− 1) · (r− 2)!.
Thus,

ψ3(v) =
2r! + 8(r − 1)!

(r + 2)!
=

2r + 8

(r + 2)(r + 1)r
.

12.4. Nash bargaining

Example 12.4.1. The owner of a house and a potential buyer are negotiating
over the price. The house is worth one (million) dollars to the seller, but it is worth
1 + s (million) dollars to the buyer. Thus, any price p they could agree on must be
in [1, 1 + s]. However, the seller already has an offer of 1 + d1, and the buyer has
an alternative house that she could buy (also worth 1 + s to her) for 1 + s − d2.
(Assume that d1 +d2 < s.) If they come to agreement on a price p, then the utility
to the buyer will be p − 1 and the utility to the seller will be 1 + s − p. If the
negotiation breaks down, they can each accept their alternative offers, resulting in
a utility of d1 for the seller and d2 for the buyer. At what price might we expect
their bargaining to terminate?

Definition 12.4.2. A two-person bargaining problem is defined by a closed,
bounded convex set S ⊂ R2 and a point d = (d1, d2). The set S represents the
possible payoffs that the two players could potentially come to an agreement on, and
d represents the payoffs that will result if they are unable to come to an agreement,
sometimes called the disagreement point. We assume there is a point (x1, x2) ∈ S
such that x1 > d1 and x2 > d2 and that x ≥ d for all x ∈ S (since no player will
accept an outcome below his disagreement value).

In Example 12.4.1, S = {(x1, x2) | x1 +x2 ≤ s, x1 ≥ d1, x2 ≥ d2} and d = (d1, d2).

Definition 12.4.3. A solution to a bargaining problem is a mapping F
that takes each instance (S,d) and outputs an agreement point

F (S,d) = a ∈ S.

For a = (a1, a2), the final payoff for player I is a1 and the final payoff for player II
is a2.

What constitutes a fair/reasonable solution? The approach taken by John Nash
was to formulate a set of axioms that a fair solution should satisfy. These are known
as the Nash bargaining axioms:

• Affine covariance: Let

Ψ(x1, x2) = (α1x1 + β1, α2x2 + β2). (12.4)
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12.4. NASH BARGAINING 211

We say that F (·) is affine covariant if for any real α1, α2, β1, β2 with
α1, α2 > 0 and bargaining problem (S,d),

F (Ψ(S),Ψ(d)) = Ψ(F (S,d)).

• Pareto optimality: If F (S,d) = a, and if a′ = (a′1, a
′
2) ∈ S satisfies a′1 ≥ a1

and a′2 ≥ a2, then a = a′.
• Symmetry: For any bargaining problem (S,d) such that d1 = d2 and

(x, y) ∈ S → (y, x) ∈ S, we have F (S,d) = (a, a) for some (a, a) ∈ S.
• Independence of Irrelevant Alternatives (IIA): If (S,d) and (S′,d) are

two bargaining problems such that S ⊆ S′ and if F (S′,d) ∈ S, then
F (S,d) = F (S′,d).

Definition 12.4.4. The Nash bargaining solution FN (S,d) = a = (a1, a2)
is the solution to the following maximization problem:

maximize
2∏
i=1

(xi − di)

subject to x1 ≥ d1, x2 ≥ d2,

(x1, x2) ∈ S. (12.5)

Remark 12.4.5. The Nash bargaining solution FN (·) always exists since S is
closed and bounded and contains a point with x1 > d1 and x2 > d2. Moreover, the
solution is unique. To see this, without loss of generality, assume that d1 = d2 = 0,
and suppose there are two optimal solutions (x, y) and (w, z) to (12.5) with

x · y = w · z = α. (12.6)

Observe that the function f(t) = α
t is strictly convex and therefore

f

(
x+ w

2

)
<
f(x) + f(w)

2
.

Using (12.6), this is equivalent to

α
x+w

2

<
y + z

2
.

This contradicts the assumption that (x, y) and (w, z) are optimal solutions to the
maximization problem (12.5) because (x+w

2 , y+z
2 ) (also feasible due to the convexity

of S) yields a larger product.

Exercise 12.b. Check that in Example 12.4.1, where

S = {(x1, x2) | x1 + x2 ≤ s, x1 ≥ d1, x2 ≥ d2} and d = (d1, d2),

the Nash bargaining solution and the Shapley values are both ( s+d1−d22 , s+d2−d12 ).

Theorem 12.4.6. The solution FN (·) is the unique function satisfying the Nash
bargaining axioms.

Proof. We first observe that FN (·) satisfies the axioms.

• Affine covariance follows from the identity∏
i

[(αixi + βi)− (αidi + βi)] =
∏
i

αi
∏
i

(xi − di).
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212 12. COOPERATIVE GAMES

• To check Pareto optimality, observe that2 if y ≥ x ≥ d and y 6= x, then∏
i(yi − di) >

∏
i(xi − di).

• Symmetry: Let a = (a1, a2) = FN (S,d) be the solution to (12.5), where
(S,d) is symmetric. Then (a2, a1) is also an optimal solution to (12.5),
so, by the uniqueness of the solution, we must have a1 = a2.

• IIA: Consider any S ⊆ S′. If FN (S′,d) ∈ S, then it must be a solution
to (12.5) in S. By uniqueness, it must coincide with FN (S,d).

Next we show that any F (·) that satisfies the axioms is equal to the Nash
bargaining solution. We first prove this assuming that the bargaining problem that
we are considering has disagreement point d = (0, 0) and FN (S,d) = (1, 1). We
will argue that this assumption, together with the symmetry axiom and IIA, imply
that F (S,d) = (1, 1).

To this end, let S′ be the convex hull of S ∪ {xT |x ∈ S}. For every x ∈ S,
convexity implies that (1−λ)(1, 1)+λx ∈ S, so ϕ(λ) := (1−λ+λx1)(1−λ+λx2) ≤ 1.
Since ϕ(0) = 1, we infer that 0 ≥ ϕ′(0) = x1 + x2 − 2. (See also Figure 12.2 for an
alternative argument.)

Thus, S ∪ {xT |x ∈ S} ⊂ {x ≥ 0 | x1 + x2 ≤ 2}; the set on the right is
convex, so it must contain S′ as well. Therefore (1, 1) is Pareto optimal in S′ so
the symmetry axiom yields F (S′, (0, 0)) = (1, 1). Since (1, 1) ∈ S, the IIA axiom
gives F (S, (0, 0)) = (1, 1).

x1+x2=2

x1x2=1

x1

(a,b)

(1,1)

x2

Figure 12.2. The line x1 + x2 = 2 is tangent to the hyperbola x1 · x2 = 1 at
(1, 1). Therefore, any line segment from a point (a, b) with a + b > 2 to the
point (1, 1) must intersect the region x1 · x2 > 1.

Finally, we argue that F (S,d) = FN (S,d) for an arbitrary bargaining problem
(S,d) with FN (S,d) = a. To this end, find an affine function Ψ as in (12.4) such
that Ψ(d) = 0 and Ψ(a) = (1, 1).

By the affine covariance axiom,

Ψ(F (S,d)) = F (Ψ(S),0) = FN (Ψ(S),0) = Ψ(FN (S,d)),

2 The vector notation y ≥ x means that yi ≥ xi for all i.
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which means that
F (S,d) = FN (S,d).

�

Suppose that player i has strictly increasing utility Ui(xi) for an allocation xi.
Often it is assumed that these utility functions are concave3, since the same gain is
often worth less to a player when he is rich than when he is poor.

When some players have non-linear utility functions, it is not reasonable to
require the affine covariance axiom for monetary allocations. Rather we require
affine covariance of the vector of utilities obtained by the players. The same con-
siderations apply to the symmetry axiom. The other axioms (Pareto and IIA) are
not affected by applying a monotone bijection to each allocation.

Thus, we will seek the Nash bargaining solution in utility space. That is, we
will apply Nash bargaining to the set SU = {(U1(x1), U2(x2)) | (x1, x2) ∈ S} with
disagreement point (U1(d1), U2(d2)).

Example 12.4.7. Consider two players that need to split a dollar between
them. Suppose that player I is risk-neutral (U1(x1) = x1) and the other has a
strictly increasing, concave utility function; his utility for a payoff of x2 is U2(x2),
where U2(0) = 0, U2(1) = 1.

The Nash bargaining solution is the maximum of U1(x1)U2(x2) = x1U2(x2)
over {x ≥ 0 : x1 +x2 ≤ 1}. Since U := U2 is increasing, this reduces to maximizing
f(x) := xU(1− x) over x ∈ [0, 1]. Observe that for all x ≤ 1/2,

f ′(x) = U(1− x)− xU ′(1− x) > 0,

and therefore f(x) is maximized at x > 1/2. In other words, at the Nash bargaining
solution, the risk-neutral player gets more than half of the dollar, and the risk-averse
player loses out.

For example, with U2(x2) =
√
x2, the Nash bargaining solution is obtained by

maximizing f(x) = x
√

1− x over [0, 1]. The optimal choice is x = 2/3, which yields
a Nash bargaining solution of (2/3, 1/3).

Notes

The notion of a cooperative game is due to von Neumann and Morgenstern [vNM53].
Many different approaches to defining allocation rules, i.e., the shares ψ(v), have been
proposed, based on either stability (subgroups should not have an incentive to abandon
the grand coalition) or fairness. The notion of core is due to Gilles [Gil59]. The definition
and axiomatic characterization of the Shapley value is due to Shapley [Sha53b]. See
also [Rot88]. Another index of the power of a player in a cooperative game where v(·) ∈
{0, 1} is due to Banzhaf [BI64]. Recalling Definition 9.3.2, the Banzhaf index of player i
is defined as Ii(2v − 1)/

∑
j Ij(2v − 1). See Owen [Owe95] for more details.

An important solution concept omitted from this chapter is the nucleolus, due to
Schmeidler [Sch69]. For a possible allocation vector ψ(v) = (ψ1, . . . , ψn) with

∑
i ψi =

v([n]), define the excess of coalition S with respect to ψ to be e(S,ψ) := v(S)−
∑
i∈S ψi,

i.e., how unhappy coalition S is with the allocation ψ. Among all allocation vectors,
consider the ones that minimize the largest excess. Of these, consider those that minimize
the second largest excess, and so on. The resulting allocation is called the nucleolus. (Note
that when core allocations exist, the nucleolus and core allocations coincide.)

3 A player with a concave utility function is called risk-averse because he prefers an allocation
of (x+ y)/2 to a lottery where he would receive x or y with probability 1/2 each.
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214 12. COOPERATIVE GAMES

Recall the setup of bankruptcy problems from §11.2. There is an associated coopera-
tive game defined as follows: Given any set of creditors S, let v(S) := max(A−

∑
i/∈S ci, 0).

The corresponding Shapley values coincide with O’Neill’s solution of the bankruptcy prob-
lem [O’N82], and the nucleolus coincides with the Talmud rule [AM85]. For more on this
topic and on cooperative games in general, see [MSZ13].

Lloyd Shapley John Nash

The Nash bargaining solution is from [NJ50]. The IIA axiom is controversial. For
instance in Figure 12.3, player II might reasonably feel he is entitled to a higher allocation
than player I in S′ than in S.

Player I

Player
II

II’s utopia
value a2

I’s utopia
value a1

I’s utopia
value a1

(1, 1)

S
(1, 1)

S
(1, 1)

(a1, a2) = (1, 2)

(d1, d2) = (0, 0)

KS
solution

S
1

2

1

2

1 2 1 2 1 2

Figure 12.3. In the leftmost figure, each player gets half his utopia value, the
largest value he could obtain at any point in S. By IIA, in the middle figure,the
Nash bargaining solution gives player I her utopia value but gives player II
only half his utopia value. The rightmost figure shows the Kalai-Smorodinsky
solution for this example.

Kalai and Smorodinsky [KS75] addressed this by proposing another solution. If ai :=
maxx∈S xi is the utopia value for player i, then the Kalai-Smorodinsky (KS) bargaining
solution FKS(S,d) is the point in S closest to a = (a1, a2) on the line connecting d with a.
The KS solution satisfies the affine covariance, Pareto optimality, and symmetry axioms.
While it doesn’t satisfy IIA, it does satisfy a monotonicity assumption: If S ⊂ T and
a(S,d) = a(T,d), then FKS(S,d) ≤ FKS(T,d). See Figure 12.3.

Another criticism of the axiomatic approach to bargaining is that it doesn’t describe
how the players will arrive at the solution. This was addressed by Rubinstein [Rub82],
who described the process of bargaining as an extensive form game in which players take
turns making offers and delays are costly. In the first round, player I makes an offer in S.
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If it is accepted, the game ends. If not, then all outcomes (both S and d) are scaled by a
factor of 1− δ, and it is player II’s turn to make an offer. This continues until an offer is
accepted. See Exercise 12.2.

In his book [Leo10], R. Leonard recounts the following story4 about Shapley: John
von Neumann, the preeminent mathematician of his day, was standing at the blackboard
in the Rand Corporation offices explaining a complicated proof that a certain game had
no solution. “No! No!” interjected a young voice from the back of the room, “That can
be done much more simply!”

You could have heard a pin drop. Even years later, Hans Speier remembered the
moment:

Now my heart stood still, because I wasn’t used to this sort of thing.
Johnny von Neumann said, “Come up here, young man. Show me.”
He goes up, takes the piece of chalk, and writes down another deriva-
tion, and Johnny von Neumann interrupts and says, “Not so fast,
young man. I can’t follow.”

Now he was right; the young man was right. Johnny von Neu-
mann, after this meeting, went to John Williams and said, “Who is
this boy?”

Exercises

12.1. The glove market revisited. A proper pair of gloves consists of a left
glove and a right glove. There are n players. Player 1 has two left gloves,
while each of the other n− 1 players has one right glove. The payoff v(S)
for a coalition S is the number of proper pairs that can be formed from the
gloves owned by the members of S.

(a) For n = 3, determine v(S) for each of the seven nonempty sets
S ⊂ {1, 2, 3}. Then find the Shapley value ψi(v) for each of the players
i = 1, 2, 3.

(b) For a general n, find the Shapley value ψi(v) for each of the n
players i = 1, 2, . . . , n.

12.2. Rubinstein bargaining: Consider two players deciding how to split a
cake of size 1. The players alternate making offers for how to split the cake
until one of the players accepts the offer made by the other. Suppose also
that there is a cost to delaying: If a player rejects the current offer by the
other, the value of the cake goes down by a factor of 1 − δ. Consider a
strategy profile where each player offers a fraction x of the cake (in his turn)
and accepts no offer in which he receives a fraction less than x. Determine
which values of x yield an equilibrium and which of these are subgame
perfect.

4 This story is adapted from page 294 in Leonard’s book.
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CHAPTER 13

Social choice and voting

Suppose that the individuals in a society are presented with a list of alternatives
(e.g., which movie to watch, or who to elect as president) and have to choose one
of them. Can a selection be made so as to truly reflect the preferences of the
individuals? What does it mean for a social choice to be fair?

When there are only two options to choose from, majority rule can be ap-
plied to yield an outcome that more than half of the individuals find satisfactory.
When the number of options is three or more, pairwise contests may fail to yield
a consistent ordering. This paradox, shown in Figure 13.1, was first discovered by
the Marquis de Condorcet in the late eighteenth century.

ScoringPairwise Contests
B

A

C

C

A

B

A C

A

C

C

B

40% 35% 25%

B

A

40%

B

35%

25%

Social Preference

C

A

75%

C

B

65%

60%

B

A

{A,B,C}

Figure 13.1. In pairwise contests A defeats C and C defeats B, yet B defeats A.

13.1. Voting and ranking mechanisms

We begin with two examples of voting systems.

Example 13.1.1 (Plurality voting). In plurality voting, each voter chooses
his or her favorite candidate, and the candidate who receives the most votes wins
(with some tie-breaking rule). The winner need not obtain a majority of the votes.
In the U.S., congressional elections are conducted using plurality voting.

To compare this to other voting methods, it’s useful to consider extended plu-
rality voting, where each voter submits a rank-ordering of the candidates and the
candidate with the most first-place votes wins the election (with some tie-breaking
rule).

This voting system is attractively simple but, as shown in Figure 13.2, it has
the disturbing property that the candidate that is elected can be the least favorite
for a majority of the population. This occurred in the 1998 election for governor of
Minnesota when former professional wrestler Jesse Ventura won the election with
37% of the vote. Exit polls showed that he would have lost (with a wide margin)
one-on-one contests with each of the other two candidates.

Comparing Figure 13.2 and Figure 13.3 indicates that plurality is strategically
vulnerable. The voters who prefer C to B to A can change the outcome from A to
B without changing the relative ordering of A and B in the rankings they submit.

216
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Social Preference

A

25%

A

B

C

B

C

A

45% 30%

C

B A

{B,C}

Figure 13.2. Option A is preferred by 45% of the population, option B by
30%, and option C by 25%, and thus A wins a plurality vote. However, A is
the least favorite for 55% of the population.

Social Preference

A

25%

C

B

B

{A,C}

A

B

C

B

C

A

45% 30%

Figure 13.3. When 25% strategically switch their votes from C to B, the
relative ranking of A and B in the outcome changes.

Example 13.1.2 (Runoff elections). A modification of plurality that avoids
the Minnesota scenario mentioned above is runoff elections. If in the first round
no candidate has a majority, then the two leading candidates compete in a second
round. This system is used in many countries including India, Brazil, and France.

C is eliminated

A
A

B

B

A

Winner
B

C

A

C

B

A

25%

A

B

C

30% 45%
55% 45%

Figure 13.4. In the first round C is eliminated. When votes are redistributed,
B gets the majority.

This method is also strategically vulnerable. If voters in the second group from
Figure 13.4 knew the distribution of preferences, they could ensure a victory for
B by having some of them conceal their true preference and move C to the top of
their rankings, as shown in Figure 13.5.

A is eliminated
65% 35%

C

A

B
B

BC

C

10%

B

C

A

C

B

A

25%

A

B

C

30% 35%

B

Winner

Figure 13.5. Some of the voters from the second group in Figure 13.4 mis-
represent their true preferences, ensuring that A is eliminated. As a result, B
wins the election.
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218 13. SOCIAL CHOICE AND VOTING

13.2. Definitions

We consider settings in which there is a set of candidates Γ, a set of n voters, and
a rule that describes how the voters’ preferences are used to determine an outcome.
We consider two different kinds of rules. A voting rule produces a single winner,
and a ranking rule produces a social ranking over the candidates. Voting rules
are obviously used for elections, or, more generally, when a group needs to select one
of several alternatives. A ranking rule might be used when a university department
is ranking faculty candidates based on the preferences of current faculty members.

In both cases, we assume that the ranking of each voter is represented by a
preference relation � on the set of candidates Γ which is complete (∀A,B, either
A � B or B � A) and transitive (A � B and B � C implies A � C). This
definition does not allow for ties; we discuss rankings with ties in the notes.

We use �i to denote voter i’s preference relation: A �i B if voter i strictly
prefers candidate A to candidate B. A preference profile (�1, . . . ,�n) describes
the preference relations of all n voters.

Definition 13.2.1. A voting rule f maps each preference profile π =
(�1, . . . ,�n) to an element of Γ, the winner of the election.

Definition 13.2.2. A ranking rule R associates to each preference profile,
π = (�1, . . . ,�n), a social ranking, another complete and transitive preference
relation B = R(π). (A B B means that A is strictly preferred to B in the social
ranking.)

Remark 13.2.3. An obvious way to obtain a voting rule from a ranking rule
is to output the top ranked candidate. (For another way, see Exercise 13.3.) Con-
versely, a voting rule yields an induced ranking rule as follows. Apply the voting
rule to select the top candidate. Then apply the voting rule to the remaining can-
didates to select the next candidate and so on. However, not all ranking rules can
be obtained this way; see Exercise 13.2.

An obvious property that we would like a ranking rule R to have is unanimity:
If for every voter i we have A �i B, then A B B. In words, if every voter strictly
prefers candidate A to B, then A should be strictly preferred to B in the social
ranking.

Kenneth Arrow introduced another property called Independence of Irrel-
evant Alternatives1(IIA): For any two candidates A and B, the preference be-
tween A and B in the social ranking depends only on the voters’ preferences between
A and B. Formally, if π = {�i} and π′ = {�′i} are two profiles for which each
voter has the same preference between A and B, i.e., {i | A �i B} = {i | A �′i B},
then A B B implies A B′ B.

IIA seems appealing at first glance, but as we shall see later, it is problematic.
Indeed, almost all ranking rules violate IIA. The next lemma shows that if IIA fails,
then there exist profiles in which some voter is better off submitting a ranking that
differs from his ideal ranking.

Definition 13.2.4. A ranking rule R is strategically vulnerable at the
profile π = (�1, . . . ,�n) if there is a voter i and alternatives A and B so that

1 This is similar to the notion by the same name from §12.4.
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A �i B and B B A in R(π), yet replacing �i by �∗i yields a profile π∗ such that
A B∗ B in R(π∗).

Lemma 13.2.5. If a ranking rule R violates IIA, then it is strategically vulner-
able.

Proof. Let π = {�i} and π′ = {�′i} be two profiles that are identical with
respect to preferences between candidates A and B but differ on the social ranking
of A relative to B. That is, {j | A �j B} = {j | A �′j B}, but A B B in R(π),
whereas B B′ A in R(π′). Let σi = (�′1, . . . ,�′i,�i+1, . . . ,�n), so that σ0 = π
and σn = π′. Let i ∈ [1, n] be such that A B B in R(σi−1), but B B A in R(σi).
If B �i A, then R is strategically vulnerable at σi−1 since voter i can switch from
�i to �′i. Similarly, if A �i B, then R is vunerable at σi since voter i can switch
from �′i to �i. �

For plurality voting, as we saw in the example of Figures 13.2 and 13.3, the
induced ranking rule violates IIA. Similarly, Figure 13.8 shows that the ranking
rule induced by runoff elections also violates IIA, since it allows for the relative
ranking of A and B to be switched without changing any of the individual A-B
preferences.

There is one ranking rule that obviously does satisfy IIA:

Example 13.2.6 ( Dictatorship). A ranking rule is a dictatorship if there is a
voter v whose preferences are reproduced in the outcome. In other words, for every
pair of candidates A and B, we have A �v B if and only if A B B.

13.3. Arrow’s Impossibility Theorem

Theorem 13.3.1. Any ranking rule that satisfies unanimity and independence
of irrelevant alternatives is a dictatorship.

What does the theorem mean? If we want to avoid dictatorship, then it need
not be optimal for voters to submit their ideal ranking; the same applies to voting
by Theorem 13.4.2. Thus, strategizing is an inevitable part of ranking and voting.
See §13.7 for a proof of Arrow’s theorem.

Remark 13.3.2. Not only is IIA impossible to achieve under any reasonable
voting scheme; it is doubtful if it is desirable because it ignores key information in
the rankings, namely the strengths of preferences. See Figure 13.6.

C

A

B

50%

A

B

C

DD

50%

C

A

B

50%

A

B

C

D

D

50%

Figure 13.6. Given the profile π, it seems that society should rank A above
B since, for the second group, A is their top-ranked candidate. In profile π′,
the situation is reversed, yet IIA dictates that the relative social ranking of A
and B is the same in both profiles.
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13.4. The Gibbard-Satterthwaite Theorem

Arrow’s Impossibility Theorem applies to the setting where a social ranking is
produced. A similar phenomenon arises even when the goal is to select a single
candidate. Consider n voters in a society, each with a complete ranking of a set of
m candidates Γ and a voting rule f mapping each profile π = (�1, . . . ,�n) of n
rankings of Γ to a candidate f(π) ∈ Γ. A voting rule for which no voter can benefit
by misreporting his ranking is called strategy-proof.

Definition 13.4.1. A voting rule f from profiles to Γ is strategy-proof if for
all profiles π, candidates A and B, and voters i, the following holds: If A �i B and
f(π) = B, then all π′ that differ from π only in voter i’s ranking satisfy f(π′) 6= A.

Theorem 13.4.2. Let f be a strategy-proof voting rule onto Γ, where |Γ| ≥ 3.
Then f is a dictatorship. That is, there is a voter i such that for every profile π
voter i’s highest ranked candidate is equal to f(π).

The proof of the theorem is in §13.8.

13.5. Desirable properties for voting and ranking

Arrow’s theorem is often misconstrued to imply that all voting systems are
flawed and hence it doesn’t matter which voting system is used. In fact, there are
many dimensions on which to evaluate voting systems and some systems are better
than others.

The following are desirable properties of voting systems beyond unanimity and
IIA:

(1) Anonymity (i.e., symmetry): The identities of the voters should not
affect the results. I.e., if the preference orderings of voters are permuted,
the society ranking should not change. This is satisfied by most reasonable
voting systems, but not by the US electoral college or other regional based
systems. Indeed, switching profiles between very few voters in California
and Florida would have changed the results of the 2000 election between
Bush and Gore.

(2) Monotonicity: If a voter moves candidate A higher in his ranking with-
out changing the order of other candidates, this should not move A down
in the society ranking.

(3) Condorcet winner criterion: If a candidate beats all other candidates
in pairwise contests, then he should be the winner of the election. A
related, and seemingly2 weaker, property is the Condorcet loser crite-
rion: The system should never select a candidate that loses to all others
in pairwise contests.

(4) IIA with preference strengths: If two profiles have the same prefer-
ence strengths for A versus B in all voter rankings, then they should yield
the same preference order between A and B in the social ranking. (The
preference strength of A versus B in a ranking is the number of places
where A is ranked above B, which can be negative.)

(5) Cancellation of ranking cycles: If there is a subset of N candidates,
and N voters whose rankings are the N cyclic shifts of one another (e.g.

2 See Exercise 13.7.
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three voters each with a different ranking from Figure 13.1), then removing
these N voters shouldn’t change the outcome.

13.6. Analysis of specific voting rules

Next we examine the extent to which the properties just described are satisfied
by specific voting and ranking rules.

In instant runoff voting (IRV), also called plurality with elimination, each
voter submits a ranking, and the winner in an election with N candidates is deter-
mined as follows. If m = 2, majority vote is used. If m > 2, the candidate with
the fewest first-place votes is eliminated and removed from all the rankings. An
instant runoff election is then run on the remaining m− 1 candidates. When there
are three candidates, this method is equivalent to runoff elections. See Figure 13.7.

C is eliminated

A
A

B

B

A

Winner
B

C

A

C

B

A

25%

A

B

C

30% 45%
55% 45%

Figure 13.7. In the first round C is eliminated. When votes are redistributed,
B gets the majority.

IRV satisfies anonymity but fails monotonicity, as shown in Figure 13.8.

A is eliminated
65% 35%

C

A

B
B

BC

C

10%

B

C

A

C

B

A

25%

A

B

C

30% 35%

B

Winner

Figure 13.8. When some of the voters from the second group in Figure 13.7
switch their preferences by moving B below C, B switches from being a loser
to a winner.

IRV does not satisfy the Condorcet winner criterion, as shown in Figure 13.9,
but satisfies the Condorcet loser criterion since the Cordorcet loser would lose the
runoff if he gets there. IRV fails IIA with preference strengths and cancellation of
ranking cycles. See Exercise 13.4.

B is eliminatedC

B

A

20%

A

C

C

A

A

B

C

B

40% 40%
60% 40%

A

C

A

Winner

Figure 13.9. B is a Condorcet winner but loses the election.

The Burlington, Vermont, mayoral election of 2009 used IRV. The IRV winner
(Bob Kiss) was neither the same as the plurality winner (Kurt Wright) nor the
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Condorcet winner (Andy Montroll, who was also the Borda count winner; see defi-
nition below). As a consequence, the IRV method was repealed in Burlington by a
vote of 52% to 48% in 2010.

Borda count is a ranking rule in which each voter’s ranking is used to assign
points to the candidates. If there are m candidates, then m points are assigned to
each voter’s top-ranked candidate, m − 1 points to the second-ranked candidate,
and so on. The candidates are then ranked in decreasing order of their point totals
(with ties broken arbitrarily). Borda count is equivalent to giving each candidate
the sum of the votes he would get in pairwise contests with all other candidates.

The Borda count satisfies anonymity, IIA with preference strengths, monotonic-
ity, the Condorcet loser criterion, and cancellation of ranking cycles. It does not
satisfy the Condorcet winner criterion, e.g., if 60% of the population has prefer-
ences A�B�C and the remaining 40% have preferences B�C �A. This example
illustrates a weakness of the Condorcet winner criterion: It ignores the strength of
preferences.

By Arrow’s Theorem, the Borda count violates IIA and is strategically vulner-
able. In the example shown in Figure 13.10, A has an unambiguous majority of
votes and is also the winner.

In an election with 100 voters 
     the Borda scores are:

206 190 204

A

C

B

B:3

C:2

A:1

A:3

45%51% 4%

A:2

C:3

C:2

B:1 B:1

B:

Social Preference

A: C:

Figure 13.10. Alternative A has the overall majority and is the winner under
Borda count.

However, if supporters of C (the third group) were to strategically rank B
above A, they could ensure a victory for C. This is also a violation of IIA since
none of the individual A-C preferences had been changed.

     the Borda scores are:

In an election with 100 voters 

B:3

C:2

A:1

A:3

45%51% 4%

C:3

C:2

B:1

Social Preference

B:2

A:1

B:A: C:

B
202 194 204

C

A

Figure 13.11. Supporters of C can ensure his win by moving B up in their rankings.

A positional voting method is determined by a fixed vector a = a1 ≥ a2 ≥
· · · ≥ aN as follows: Each voter assigns a1 points to his top candidate, a2 to
the second, etc; the social ranking is determined by the point totals. Plurality and
Borda count are positional voting methods. Every positional voting method satisfies
anonymity, monotonicity, and cancellation of ranking cycles. See Figure 13.12 for
a relevant example. No positional method satisfies the Condorcet winner criterion
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(see Figure 13.12), and the only one that satisfies IIA with preference strengths is
the Borda count.

30 1 29 10 10 1

A A B B C C

B C A C A B

C B C A B A

10 10 10

A B C

B C A

C A B

1 1 1

A C B

C B A

B A C

20 28

A B

B A

C C

Figure 13.12. The table on top shows the rankings for a set of voters. (The
top line gives the number of voters with each ranking.) One can readily
verify that A wins all pairwise contests. However, for this voter profile, the
Borda count winner is B. The three tables below provide a different rationale
for B winning the election by dividing the voters into groups. The left and
middle groups are ranking cycles. After cancellation of ranking cycles, the
only voters remaining are in the bottom rightmost table. In this group, B is
the clear winner. It follows that, in the original ranking, B is the winner for
any positional method.

Approval voting is a voting scheme used by various professional societies,
such as the American Mathematical Society and the American Statistical Associa-
tion. In this procedure, the voters can approve as many candidates as they wish.
Candidates are then ranked in the order of the number of approvals they received.

Vote for all acceptable candidates.
Candidate A
Candidate B

Figure 13.13. Candidates A and C will each receive one vote.
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Given the ranking of the candidates by a voter, we may assume the voter
selects some k and approves his top k choices. Approval voting satisfies anonymity,
monotonicity, and a version of IIA: If voter i approved candidate A and disapproved
of B, yet B was ranked above A by society, then there is no modification of voter i’s
input that can reverse this. There is no contradiction to Arrow’s theorem because
voters are not submitting a ranking. However, given a voter’s preference ranking,
he must choose how many candidates to approve, and the optimal choice depends
on other voters’ approvals. So strategizing is important here as well.

In close elections, approval voting often reduces to plurality, as each voter only
approves his top choice.

13.7. Proof of Arrow’s Impossibility Theorem∗

Recall Theorem 13.3.1 which says that any ranking rule that satisfies unanimity
and independence of irrelevant alternatives is a dictatorship.

Fix a ranking rule R that satisfies unanimity and IIA. The proof we present
requires that we consider extremal candidates, those that are either most preferred
or least preferred by each voter. The proof is written so that it applies verbatim
to rankings with ties, as discussed in the notes; therefore, we occasionally refer to
“strict” preferences.

Lemma 13.7.1 (Extremal Lemma). Consider an arbitrary candidate B. For
any profile π in which B has an extremal rank for each voter (i.e., B is strictly
preferred to all other candidates or all other candidates are strictly preferred to B),
B has an extremal rank in the social ranking R(π).

Proof. Suppose not. Then for such a profile π, with B = R(π), there are
two candidates A and C such that A B B and B B C. Consider a new profile
π′ = (�′1, . . . ,�′n) obtained from π by having every voter move C just above A in
his ranking (if C is not already above A). See Figure 13.14. None of the AB or
BC preferences change since B started out and stays in the same extremal rank.
Hence, by IIA, in the outcome B′ = R(π′), we have A B′ B and B B′ C, and
hence A B′ C. But this violates unanimity since for all voters i in π′, we have
C �′i A. �

Definition 13.7.2. Let B be a candidate. Voter i is said to be B-pivotal for
a ranking rule R(·) if there exist profiles π1 and π2 such that

• B is extremal for all voters in both profiles;
• the only difference between π1 and π2 is that B is strictly lowest ranked

by i in π1 and B is strictly highest ranked by i in π2;
• B is ranked strictly lowest in R(π1) and strictly highest in R(π2).

Such a voter has the “power” to move candidate B from the very bottom of
the social ranking to the very top.

Lemma 13.7.3. For every candidate B, there is a B-pivotal voter v(B).

Proof. Consider an arbitrary profile in which candidate B is ranked strictly
lowest by every voter. By unanimity, all other candidates are strictly preferred to
B in the social ranking. Now consider a sequence of profiles obtained by letting
the voters, one at a time, move B from the bottom to the top of their rankings.
By the extremal lemma, for each one of these profiles, B is either at the top or at
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C
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Figure 13.14. Illustration of the proof of Lemma 13.7.1. The bottom figure
shows what happens when every voter whose preference in π has C below A
moves C just above A.

the bottom of the social ranking. Also, by unanimity, as soon as all the voters put
B at the top of their rankings, so must the social ranking. Hence, there is a first
voter v whose change in preference precipitates the change in the social ranking of
candidate B. This change is illustrated in Figure 13.15, where π1 is the profile just
before v has switched B to the top with B1 = R(π1) and π2 the profile immediately
after the switch with B2 = R(π2). This voter v is B-pivotal. �
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Figure 13.15. When, in π1, voter v moves B to the top of his ranking,
resulting in π2, B moves to the top of the social ranking.

Lemma 13.7.4. If voter v is B-pivotal, then v is a dictator on Γ\{B}; i.e., for
any profile π, if A, B, and C are distinct and A �v C in π, then A B C in R(π).
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Proof. Since v is B-pivotal, there are profiles π1 and π2 such that B is ex-
tremal for all voters, B is ranked lowest by v in π1 and in R(π1), and B is ranked
highest by v in π2 and in R(π2).

.....

.....

arbitrary B

n

B
v

C

C

A
AB

1

B

2

3 3 3

B

B

Figure 13.16. In π3, voter B is in the same extremal position as π2, except
that A is just above B for voter v. Otherwise, the preferences in π3 are

arbitrary.

Suppose that A, B, and C are distinct and let π be a profile in which A �v C.
Construct profile π3 from π as follows:

• For each voter i 6= v, move B to the extremal position he has in π2.
• Let v rank A first and B second.

Let B3 = R(π3). Then the preferences between A and B in π3 are the same as in
π1 and thus, by IIA, we have A B3 B. Also, the preferences between B and C in
π3 are the same as in π2 and thus, by IIA, we have B B3 C. Hence, by transitivity,
we have A B3 C. See Figure 13.16. Since the A-C preferences of all voters in π
are the same as in π3, we must have A B C. �

Proof of Theorem 13.3.1. By Lemmas 13.7.3 and 13.7.4, there is a B-
pivotal voter v = v(B) that is a dictator on Γ \ {B}. Let π1 and π2 be the profiles
from the definition of v being B-pivotal. We claim that for any other candidate,
say C, the C-pivotal voter v′ = v(C) is actually the same voter; i.e., v = v′.

To see this, consider A distinct from both B and C. We know that in B1, we
have A B B, and in B2, we have B B A. Moreover, by Lemma 13.7.4, v′ dictates
the strict preference between A and B in both of these outcomes. But in both
profiles, the strict preference between A and B is the same for all voters other than
v. Hence v′ = v, and thus v is a dictator (over all of Γ). �

13.8. Proof of the Gibbard-Satterthwaite Theorem∗

Recall Theorem 13.4.2 which says that if f is a strategy-proof voting rule onto
Γ, where |Γ| ≥ 3, then f is a dictatorship. That is, there is a voter i such that
for every profile π, voter i’s highest ranked candidate is equal to f(π).

We deduce this theorem from Arrow’s theorem, by showing that if f is strategy-
proof and is not a dictatorship, then it can be extended to a ranking rule that
satisfies unanimity, IIA, and that is not a dictatorship, a contradiction.

The following notation will also be useful.
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Definition 13.8.1. Let π = (�1, . . . ,�n) and π′ = (�′1, . . . ,�′n) be two pro-
files and let ri(π,π

′) denote the profile (�′1, . . . ,�′i,�i+1, . . . ,�n). Thus r0(π,π′) =
π and rn(π,π′) = π′.

We will repeatedly use the following lemma.

Lemma 13.8.2. Suppose that f is strategy-proof. Consider two profiles π =
(�1, . . . ,�n) and π′ = (�′1, . . . ,�′n) and two candidates X and Y such that

• all preferences between X and Y in π and π′ are the same
(i.e., X �i Y iff X �′i Y for all i);
• in π′ all voters prefer X to all candidates other than Y

(i.e., X �′i Z for all Z 6∈ {X,Y });
• f(π) = X.

Then f(π′) = X.

.....
X

X

X

X

X

X

Y

Y

Y
Y

Y

.....

Y

Y

Y Y

Y
X

X X
X X

X

Figure 13.17. An illustration of the statement of Lemma 13.8.2.

Proof. Let ri := ri(π,π
′). We have f(r0) = X by assumption. We prove by

induction on i that f(ri) = X or else f is not strategy-proof. To this end, suppose
that f(ri−1) = X. Observe that ri−1 and ri differ only in voter i’s ranking: In ri−1

it is �i and in ri it is �′i.
There are two cases to rule out: If f(ri) = Z 6∈ {X,Y }, then in profile ri, voter

i has an incentive to lie and report �i instead of �′i.
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On the other hand, suppose f(ri) = Y . If X �i Y , then in profile ri, voter i
has an incentive to lie and report �i instead of �′i. On the other hand, if Y �i X,
then in profile ri−1, voter i has an incentive to lie and report �′i instead of �i. �

We also need the following definition.

Definition 13.8.3. Let S be a subset of the candidates Γ, and let π be a
ranking of the candidates Γ. Define a new ranking πS by moving all candidates in
S to the top of the ranking, maintaining the same relative ranking between them,
as well as the same relative ranking between all candidates not in S.

Claim 13.8.4. Let f be strategy-proof and onto Γ. Then for any profile π and
every subset S of the candidates Γ, it must be that f(πS) ∈ S.

Proof. Take any A ∈ S. Since f is onto, there is a profile π̃ such that
f(π̃) = A. Consider the sequence of profiles ri = ri(π̃,π

S), with 0 ≤ i ≤ n. We
claim that f(ri−1) ∈ S implies that f(ri) ∈ S. Otherwise, on profile ri, voter i has
an incentive to lie and report �̃i instead of �Si . Thus, since f(r0) = f(π̃) ∈ S, we
conclude that f(rn) = f(πS) ∈ S as well. �

Proof of Theorem 13.4.2. Let f be strategy-proof, onto, and a nondicta-
torship. Define a ranking rule R(π) as follows. For each pair of candidates A and
B, let A B B if f(π{A,B}) = A and B B A if f(π{A,B}) = B. (Claim 13.8.4
guarantees that these are the only two possibilities.)

To see that this is a bona fide ranking rule, we observe that these pairwise
rankings are transitive. If not, there is a triple of candidates such that A B B,
B B C, and C B A. Let S = {A,B,C}. We know that f(πS) ∈ S; without loss
of generality f(πS) = A. Applying Lemma 13.8.2, with π = πS and π′ = π{A,C},
X = A and Y = C, we conclude that f(π{A,C}) = A and A B C, a contradiction.

Next, we verify that the ranking rule R satisfies unanimity, IIA, and is not a
dictatorship.

Unanimity follows from the fact that if in π all voters have A �i B, then
(π{A,B})A = π{A,B}, and thus by Claim 13.8.4, f(π{A,B}) = A.

To see that IIA holds, let π1 and π2 be two profiles that agree on all of their

AB preferences. Then by Lemma 13.8.2, with π = π
{A,B}
1 and π′ = π

{A,B}
2 and

Claim 13.8.4, we conclude that f(π
{A,B}
1 ) = f(π

{A,B}
2 ), and hence IIA holds.

Finally, the ranking rule R is not a dictatorship because f is not a dictatorship:
For every voter v, there is a candidate A and a profile π in which A is v’s highest
ranked candidate, but f(π) = B 6= A. Then, applying Lemma 13.8.2 to the pair of
profiles π and π{A,B}, with X = B and Y = A, we conclude that f(π{A,B}) = B,
and thus B B A in the outcome of the election. Hence voter v is not a dictator
relative to the ranking rule R. �

Notes

The history of social choice and voting is fascinating [ASS02, ASS11, AH94, Pro11];
we mention only a few highlights here: Chevalier de Borda proposed the Borda count in
1770 when he discovered that the Plurality method then used by the French Academy of
Sciences was vulnerable to strategic manipulation. The Borda count was then used by the
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Academy for the next two decades. The method of pairwise contests referred to in the
beginning of this chapter was proposed by the Marquis de Condorcet after he demonstrated
that the Borda count was also vulnerable to strategic manipulation. Apparently, Borda’s
response was that his scheme is “intended only for honest men.” Condorcet proceeded to
show a vulnerability in his own method—a tie in the presence of a preference cycle [dC85].

Besides the properties of voting systems discussed in the text, other important prop-
erties include:

• Consistency: If separate elections are run with two groups of voters and yield
the same social ranking, then combining the groups should yield the same rank-
ing. See Exercise 13.5.

• Participation: The addition of a voter who strictly prefers candidate A to
B should not change the winner from candidate A to candidate B. See Exer-
cise 13.6.

Moulin showed that every method that elects the Condorcet winner, when
there is one, must violate the participation property, assuming four or more
candidates [Mou88b].

• Reversal symmetry: If all the rankings are reversed, then the social ranking
should also be reversed.

• Invariance to candidates dropping out: If a candidate who loses an election
on a given profile drops out, the winner of the election should not change.

This property sounds reasonable, but none of the voting methods we discuss
satisfy it. (It is satisfied by approval voting only if the candidate dropping out
does not affect the other approvals.) Moreover, like IIA, it is not clear that this
property is desirable: When a candidate drops out, some information is lost on
the strength of preferences between other candidates.

The example in Figure 13.12 is from [dC85]; the analysis is due to [Saa95].
Since there need not be a Condorcet winner, various methods known as Condorcet

completions have been proposed. For instance, a voting system known as Black’s method
elects the Condorcet winner if there is one and otherwise applies Borda count. A method
known as Copeland’s rule elects the candidate who wins the most pairwise comparisons.
Charles Dodgson (also known as Lewis Carroll) proposed the following Condorcet comple-
tion. For each candidate, count how many adjacent swaps in voters’ rankings are needed
to make him a Condorcet winner. The Dodgson winner is the candidate that minimizes
this count. However, it is NP-hard to determine the Dodgson winner [BTT89].

Kenneth Arrow Donald Saari

Among known voting methods, Borda count and approval voting stand out for satis-
fying key desirable properties. Borda count has the advantage of allowing voters to submit
a full ranking. Donald Saari [Saa95] showed that when the number of strategic voters is
small, the Borda count is the least susceptible to strategic manipulation among positional
methods; i.e., the number of profiles susceptible to manipulation is smallest.
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230 13. SOCIAL CHOICE AND VOTING

Approval voting does not allow voters to submit a full ranking. At the other extreme,
in some voting methods, voters provide information beyond a ranking. For example,
in cumulative voting, each voter is given ` votes, which he can distribute among the
candidates at will. Candidates are then ranked by vote totals.

Cumulative voting satisfies anonymity and monotonicity. It also satisfies IIA with
preference strengths, if preference strengths are interpreted as the difference in the number
of votes.

Finally, cumulative voting enables minority representation: Given k, a coordi-
nated minority comprising a proportion p of the voters is able to determine the selection
of bkpc among the top k in the society ranking. See Exercise 13.8.

In 1949, Kenneth Arrow proved his famous Impossibility Theorem [Arr51]. The proof
presented here is adapted from Geanakoplos [Gea04]. The Gibbard-Satterthwaite Theorem
is from [Gib73] and [Sat75].

In 1972, Arrow was awarded the Nobel Prize in Economics (jointly with John Hicks),
for “their pioneering contributions to general economic equilibrium theory and welfare
theory.”

For more on voting and social choice, see [Pac15, Saa01b, Saa01a, ASS02, ASS11,
AH94]. Recent work in the computer science community has focused on the use of ap-
proximation to bypass some impossibility results and on connections of social choice with
computational complexity, noise sensitivity, and sharp thresholds. See, e.g., [KM15, Kal10,
Pro11, MBC+16].

For more on the 2009 Burlington, Vermont, mayoral election, see [GHS09].

Arrow’s Impossibility Theorem

We have presented here a simplified proof of Arrow’s theorem that is due to Geanako-
plos [Gea04]. The version in the text assumes that each voter has a complete ranking of
all the candidates. However, in many cases voters are indifferent between certain subsets
of candidates. To accommodate this possibility, one can generalize the setting as follows.

Assume that the preferences of each voter are described by a relation � on the set of
candidates Γ which is reflexive (∀A, A � A), complete (∀A,B, A � B or B � A or
both), and transitive (A � B and B � C implies A � C).

As in the chapter, we use �i to denote the preference relation of voter i: A �i B
if voter i weakly prefers candidate A to candidate B. However, we can now distinguish
between strict preferences and indifference. As before, we use the notation A �i B to
denote a strict preference; i.e., A �i B but B �i A. (If A �i B and B �i A, then voter
i is indifferent between the two candidates.)

A reflexive, complete, and transitive relation � can be described in two other equiv-
alent ways:

• It is a set of equivalence classes (each equivalence class is a set of candidates that
the voter is indifferent between), with a total order on the equivalence classes.
In other words, it is a ranking that allows for ties.

• It is the ranking induced by a function g : Γ → R from the candidates to the
reals, such that A � B if and only if g(A) ≥ g(B). Obviously, many functions
induce the same preference relation.

A ranking rule R associates to each preference profile, π = (�1, . . . ,�n), another
reflexive, complete, and transitive preference D = R(π).

In this more general setting, the definitions of unanimity and IIA are essentially
unchanged. (Formally, IIA states that if π = {�i} and π′ = {�′i} are two profiles such
that {i | A �i B} = {i | A �′i B} and {i | B �i A} = {i | B �′i A}, then A D B implies
A D′ B.)

Arrow’s Impossibility Theorem in this setting is virtually identical to the version given
in the text: Any ranking rule that satisfies unanimity and IIA is a dictatorship. The only
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difference is that, in the presence of ties, voters other than the dictator can influence the
outcome with respect to candidates that the dictator is indifferent between. Formally,
in this more general setting, a dictator is a voter v all of whose strict preferences are
reproduced in the outcome.

It is straightforward to check that the proof presented in Section 13.3 goes through
unchanged.

Exercises

13.1. Give an example where one of the losing candidates in a runoff election
would have a greater support than the winner in a one-on-one contest.

13.2. Describe a ranking rule that is not the induced ranking rule of any voting
rule.

13.3. Another way to go from a ranking rule to a voting rule is the following:
Use the ranking rule. Eliminate the lowest ranked candidate. Repeat until
one candidate remains. Apply this procedure and the one in the text to
vote counting. What voting rule do you get in the two cases?

13.4.S Show that Instant Runoff violates the Condorcet winner criterion, IIA with
preference strengths and cancellation of ranking cycles.

13.5. The consistency property of a voting rule says: If separate elections are run
with two groups of voters and yield the same social ranking, then combin-
ing the groups should yield the same ranking. Show that plurality, Borda
count, and approval voting satisfy consistency but IRV does not.

13.6. The participation criterion requires that the addition of a voter who strictly
prefers candidate A to B should not change the winner from candidate A
to candidate B. Show that plurality, approval voting, and Borda count
satisfy the participation criterion, whereas instant runoff voting doesn’t.

13.7. Consider the following voting method: If there is a Condorcet winner, he is
selected. Otherwise, plurality is used. Clearly this satisfies the Condorcet
winner condition. Give an example with four candidates where it doesn’t
satisfy the Condorcet loser criterion.

13.8. Show that cumulative voting enables minority representation: Given k, a
coordinated minority comprising a proportion p of the voters can determine
the selection of bkpc among the top k in the society ranking.

13.9. Determine which of the voting methods in the text satisfy reversal symme-
try; that is, if all the rankings are reversed, then the social ranking should
also be reversed.
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232 13. SOCIAL CHOICE AND VOTING

13.10. Show that the assumption in Theorem 13.4.2 that f is onto Γ, where
|Γ| ≥ 3, can be weakened to the assumption that the image of f has size
at least 3. Show that 3 cannot be replaced by 2.
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CHAPTER 14

Auctions

Auctions are an ancient mechanism for buying and selling goods. Indeed, the
entire Roman Empire was sold by auction in 193 A.D. The winner was Didius
Julianus. He became the next emperor but was in power only two months before
he was overthrown and executed by Septimius Severus.

In modern times, many economic transactions are conducted through auctions:
The US government runs auctions to sell treasury bills, spectrum licenses, and
timber and oil leases, among other things. Christie’s and Sotheby’s run auctions
to sell art. In the age of the Internet, we can buy and sell goods and services via
auction, using the services of companies like eBay. The advertisement auctions
that companies like Google and Microsoft run in order to sell advertisement slots
on their webpages bring in significant revenue.

Why might a seller use an auction as opposed to simply fixing a price? Primarily
because sellers often don’t know how much buyers value their goods and don’t want
to risk setting prices that are either too low, thereby leaving money on the table,
or so high that nobody will want to buy the item. An auction is a technique for
dynamically setting prices. Auctions are particularly important these days because
of their prevalence in Internet settings where the participants in the auction are
computer programs or individuals who do not know each other.

14.1. Single item auctions

We are all familiar with the famous English or ascending, auction for selling
a single item: The auctioneer starts by calling out a low price p. As long as there
are at least two people willing to pay the price p, he increases p by a small amount.
This continues until there is only one player left willing to pay the current price, at
which point that player “wins” the auction, i.e., receives the item at that price.

When multiple rounds of communication are inconvenient, the English auction
is sometimes replaced by other formats. For example, in a sealed-bid first-price
auction, the participants submit sealed bids to the auctioneer. The auctioneer
allocates the item to the highest bidder who pays the amount she bid.

We’ll begin by examining auctions from two perspectives: What are equilibrium
bidding strategies and what is the resulting revenue of the auctioneer?

To answer these questions, we need to know what value each bidder places on
the item and what bidders know about each other. For example, in an art auction,
the value a bidder places on a painting is likely to depend on other people’s values
for that painting, whereas in an auction for fish among restaurant owners, each
bidder’s value is known to him before the auction and is roughly independent of
other bidder’s valuations.

233
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234 14. AUCTIONS

Figure 14.1. The Tsukiji Fish Market in Tokyo is one of the largest and
busiest fish markets in the world. Each day before 5 a.m. a tuna auction is
conducted there. The right-hand figure depicts the 2012 auction at Sotheby’s
for “The Scream” by Edvard Munch. The painting sold for 120 million dollars,
about 40 million dollars more than the preauction estimates.

14.1.1. Bidder model. For most of this chapter, we will assume that each
player has a private value v for the item being auctioned. This means that he
would not want to pay more than v for the item: If he gets the item at a price p,
his utility1 is v− p, and if doesn’t get the item (and pays nothing), his utility is 0.
Given the rules of the auction and any knowledge he has about other players’ bids,
he will bid so as to maximize his utility.

In the ascending auction, it is a dominant strategy for a bidder to increase
his bid as long as the current price is below his value; i.e., doing this maximizes
his utility no matter what the other bidders do. But how should a player bid in
a sealed-bid first-price auction? Clearly, bidding one’s value makes no sense since
even upon winning, this would result in a utility of 0. So a bidder will want to bid
lower than his true value. But how much lower? Low bidding has the potential
to increase a player’s gain, but at the same time it increases the risk of losing the
auction. In fact, the optimal bid in such an auction depends on how the other
players are bidding, which, in general, a bidder will not know.

Definition 14.1.1. A (direct) single-item auction A with n bidders is a
mapping that assigns to any vector of bids b = (b1, . . . , bn) a winner and a set of
prices. The allocation rule2 of auction A is denoted by αA[b] = (α1[b], . . . , αn[b]),
where αi[b] is 1 if the item is allocated to bidder i and 0 otherwise.3 The payment
rule of A is denoted by PA[b] = (P1[b], . . . ,Pn[b]) where Pi[b] is the payment
of bidder i when the bid vector is b.

A bidding strategy for agent4 i is a mapping βi : [0,∞) → [0,∞) which
specifies agent i’s bid βi(vi) for each possible value vi she may have.

Definition 14.1.2 (Private Values). Suppose that n bidders are competing
in a (direct) single-item auction. The bidders’ values V1, V2, . . . , Vn are independent

1 This is called a quasilinear utility model.
2 Later we will also consider randomized allocation rules.
3 When the auction is clear from the context, we will drop the superscripts and write α[·]

and P[·] for the allocation rule and payment rule.
4 We use the terms “agent”, “bidder”, and “player” interchangeably.
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14.1. SINGLE ITEM AUCTIONS 235

and for each i the distribution Fi of Vi is common knowledge.5 Each bidder i also
knows the realization vi of his own value Vi. Fix a bidding strategy βi : [0,∞) →
[0,∞) for each agent i. Note that we may restrict βi to the support of Vi.

6

My value is     , but I will bid      

Auction

~
~

~

, ,

, ,

Bidder 1 utility:

Figure 14.2. Illustration of basic definitions from the perspective of bidder
1. In this figure, bidder 1 knows that each bidder i, for 2 ≤ i ≤ n, has a value
drawn independently from F and is bidding according to the bidding strategy
β1(·). The allocation probability, expected payment, and expected utility of
bidder 1 are expressed in terms of bidder 1’s bid.

The allocation probabilities are

ai[b] := P [bidder i wins bidding b when other bids are βj(Vj), ∀j 6= i]

= E [αi[bi,β−i(V−i)]].

The expected payments are:

pi[b] := E [payment of bidder i bidding b when other bids are βj(Vj), ∀j 6= i]

= E [Pi[bi,β−i(V−i)]].

The expected utility of bidder i with value vi bidding b is

ui[b|vi] = viai[b]− pi[b].

The bidding strategy profile (β1, . . . , βn) is in Bayes-Nash equilibrium if for
all i,

ui[βi(vi)|vi] ≥ ui[b|vi] for all vi and b.

In words, for each bidder i, the bidding strategy βi maximizes i’s expected utility,
given that for all j 6= i, bidder j is bidding βj(Vj).

5 I.e., all participants know the bidder distributions and know that each other knows and so

on.
6 The support of a random variable V with distribution function F is “the set of values it

takes”; formally it is defined as supp(V) = supp(F) := ∩ε>0{x|F(x + ε)− F(x− ε) > 0}.
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14.2. Independent private values

Consider a first-price auction in which each player’s value Vi is drawn indepen-
dently from a distribution Fi. If each other bidder j bids βj(Vj) and bidder i bids
b, his expected utility is

ui[b|vi] = (vi − b) · ai[b] = (vi − b) · P
[
b > max

j 6=i
βj(Vj)

]
. (14.1)

Example 14.2.1 (Two-bidder first-price auction with uniformly dis-
tributed values). Consider a two-bidder first-price auction where the Vi are in-
dependent and uniform on [0, 1]. Suppose that β1 = β2 = β is an equilibrium, with
β : [0, 1] → [0, β(1)] differentiable and strictly increasing. Bidder 1 with value v1,
knowing that bidder 2 is bidding β(V2), compares the utility of alternative bids b
to β(v1). (We may assume that b ∈ [0, β(1)] since higher bids are dominated by
bidding β(1).) With this bid, the expected utility for bidder 1 is

u1[b|v1] = (v1 − b) · P [b > β(V2)]. (14.2)

We can write b = β(w) for some w 6= v1 and then P [b > β(V2)] = w. Using the
notation7

u1(w|v1) := u1[β(w)|v1], (14.3)

equation (14.2) becomes

u1(w|v1) =
(
v1 − β(w)

)
· w. (14.4)

For β to be an equilibrium, the utility u1(w|v1) must be maximized when
w = v1, and consequently,

∀v1
∂u1(w|v1)

∂w

∣∣∣
w=v1

= v1 − β′(w)w − β(w)
∣∣∣
w=v1

= 0.

Thus, for all v1,

v1 = β′(v1)v1 + β(v1) = (v1β(v1))′.

Integrating both sides, we obtain

v2
1

2
= v1β(v1) and so β(v1) =

v1

2
.

(We have dropped the constant term, as we assume that β(0) = 0.)
We now verify that β1 = β2 = β is an equilibrium with β(v) = v/2. Bidder 1’s

utility when her value is v1, she bids b, and bidder 2 bids β(V2) = V2/2 is

u1[b|v1] = P
[
V2

2
≤ b
]
(v1 − b) = 2b(v1 − b).

The choice of b that maximizes this utility is b = v1/2. Since the bidders are
symmetric, β(v) = v/2 is indeed an equilibrium.

Thus, in this Bayes-Nash equilibrium, the auctioneer’s expected revenue is

E
[
max

(
V1

2
,
V2

2

)]
. (14.5)

7 It is worth emphasizing this notational convention: We use square brackets to denote
functions of bids and regular parentheses to denote functions of alternative valuations.
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14.3. REVENUE IN SINGLE-ITEM AUCTIONS 237

In the example above of an equilibrium for the first-price auction, bidders must
bid below their values, taking the distribution of competitors’ values into account.
This contrasts with the English auction, where no such strategizing is needed. Is
strategic bidding (that is, considering competitors’ values and potential bids) a nec-
essary consequence of the convenience of sealed-bid auctions? No. In 1960, William
Vickrey discovered that one can combine the low communication cost8 of sealed-bid
auctions with the simplicity of the optimal bidding rule in ascending auctions. We
can get a hint on how to construct this combination by determining the revenue of
the auctioneer in the ascending auction when all bidders act rationally: The item
is sold to the highest bidder when the current price exceeds what other bidders are
willing to offer; this threshold price is approximately the value of the item to the
second highest bidder.

Definition 14.2.2. In a (sealed-bid) second-price auction (also known as
a Vickrey auction), the highest bidder wins the auction at a price equal to the
second highest bid.

Theorem 14.2.3. The second-price auction is truthful.9 In other words, for
each bidder i and for any fixed set of bids of all other bidders, bidder i’s utility is
maximized by bidding her true value vi.

Proof. Suppose the maximum of the bids submitted by bidders other than i
is m. Then bidder i’s utility in the auction is at most max(vi −m, 0), where the
first term is the utility for winning and the second term is the utility for losing. For
each possible value vi, this maximum is achieved by bidding truthfully. �

Remark 14.2.4. We emphasize that the theorem statement is not merely saying
that truthful bidding is a Nash equilibrium, but rather the much stronger statement
that bidding truthfully is a dominant strategy; i.e., it maximizes each bidder’s
utility no matter what the other bids are.

In Chapter 15 and Chapter 16, we show that a variant of this auction applies
much more broadly. For example, when an auctioneer has k identical items to sell
and each bidder wants only one, the following auction is also truthful.

Definition 14.2.5. In a (sealed-bid) k-unit Vickrey auction the top k
bidders win the auction at a price equal to the (k + 1)st highest bid.

Exercise 14.a. Prove that the k-unit Vickrey auction is truthful.

14.3. Revenue in single-item auctions

From the perspective of the bidders in an auction, a second-price auction is
appealing. They don’t need to perform any complex strategic calculations. The
appeal is less clear, however, from the perspective of the auctioneer. Wouldn’t the
auctioneer make more money running a first-price auction?

Example 14.3.1. We return to our earlier example of two bidders, each with a
value drawn independently from a U[0,1] distribution. From that analysis, we know

8 Each bidder submits just one bid to the auctioneer.
9 An alternative term often used is incentive-compatible.
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that if the auctioneer runs a first-price auction, then in equilibrium his expected
revenue will be

E
[
max

(
V1

2
,
V2

2

)]
=

1

3
.

On the other hand, suppose that in the exact same setting, the auctioneer runs a
second-price auction. Since we can assume that the bidders will bid truthfully, the
auctioneer’s revenue will be the expected value of the second-highest bid, which is

E [min(V1, V2)] =
1

3
,

exactly the same as in the 1st price auctions!
In fact, in both cases, bidder i with value vi has probability vi of winning the

auction, and the conditional expectation of his payment given winning is vi/2: in
the case of the first-price auction, this is because he bids vi/2 and in the case of the
second-price auction, this is because the expected bid of the other player is vi/2.
Thus, overall, in both cases, his expected payment is v2

i /2.

Coincidence? No. As we shall see next, the amazing Revenue Equivalence
Theorem shows that any two auction formats that have the same allocation rule in
equilibrium yield the same auctioneer revenue! (This applies even to funky auctions
like the all-pay auction; see below.)

14.4. Toward revenue equivalence

To test whether a strategy profile β = (β1, β2, . . . , βn) is an equilibrium, it will
be important to determine the utility for bidder i when he bids as if his value is w 6=
vi; we need to show that he does not benefit from this deviation (in expectation).
We adapt the notation10 of Definition 14.1.2 as follows:

~
~

~

1

111 1

1

1 1

, ,
Auction

My value is     , but I will bid as if it is    

Bidder 1 utility:

Figure 14.3. Illustration of Definition 14.4.1 from the perspective of bidder 1.
Here, in contrast to Figure 14.2, the allocation probability, expected payment,
and expected utility of bidder 1 are expressed in terms of the value bidder 1
is “pretending” to have, as opposed to being expressed in terms of his bid.

10 As in Example 14.2.1, we use square brackets to denote functions of bids and regular
parentheses to denote functions of alternative valuations.
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14.4. TOWARD REVENUE EQUIVALENCE 239

Definition 14.4.1. Let (βi)
n
i=1 be a strategy profile for n bidders with indepen-

dent values V1, V2, . . . , Vn. We assume that the distribution of each Vi, i = 1, . . . , n,
is common knowledge among all the bidders. Suppose bidder i, knowing his own
value vi and knowing that the other bidders j 6= i are bidding βj(Vj), bids βi(w).
Recalling Definition 14.1.1, we define the following:

• The allocation probability to bidder i is ai(w) := ai[βi(w)].
• His expected payment11 is pi(w) := pi[βi(w)].
• His expected utility is ui(w|vi) := ui[βi(w)|vi] = viai(w)− pi(w).

In this notation, (βi)
n
i=1 is in Bayes-Nash equilibrium (BNE) only if 12

ui(vi|vi) ≥ ui(w|vi) for all i, vi, and w. (14.6)

14.4.1. I.I.D. bidders. Consider the setting of n bidders, with i.i.d. values
drawn from a distribution with strictly increasing distribution function F . Since
the bidders are all symmetric, it’s natural to look for symmetric equilibria; i.e.,
βi = β for all i. As above (dropping the subscript in ai(·) due to symmetry), let

a(v) = P [item allocated to i with bid β(v) when other bidders bid β(Vj)].

Consider any auction in which the item goes to the highest bidder (as in a first-price
or second-price auction). If β(·) is strictly increasing, then

a(w) = P
[
β(w) > max

j 6=i
β(Vj)

]
= P

[
w > max

j 6=i
Vj

]
= Fn−1(w).

If bidder i bids β(w), his expected utility is

u(w|vi) = via(w)− p(w). (14.7)

Assume p(w) and a(w) are differentiable. For β to be an equilibrium, it must be
that for all vi, the derivative via

′(w)− p′(w) vanishes at w = vi, so

p′(vi) = via
′(vi) for all vi.

Hence, if p(0) = 0, we get

p(vi) =

∫ vi

0

va′(v)dv,

which yields, via integration by parts, that

p(vi) = via(vi)−
∫ vi

0

a(w)dw. (14.8)

In other words, the expected payment of a bidder with value v is the same in any
auction that allocates to the highest bidder. Hence, all such auctions yield the same
expected revenue to the auctioneer.

11 We will usually assume that pi(0) = 0, as this holds in most auctions.
12 Conversely, if (14.6) holds and ui(vi|vi) ≥ ui[b|vi] for all i, b 6∈ Image(βi), and vi, then

(βi)
n
i=1 is a BNE.
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14.4.2. Payment and revenue equivalence. The following theorem for-
malizes the discussion in the previous section.

Theorem 14.4.2 (Revenue Equivalence). Suppose that each agent’s value
Vi is drawn independently from the same strictly increasing distribution F ∈ [0, h].
Consider any n-bidder single-item auction in which the item is allocated to the
highest bidder, and ui(0) = 0 for all i. Assume that the bidders employ a symmetric
strategy profile βi := β for all i, where β is strictly increasing in [0, h].

(i) If (β, . . . , β) is a Bayes-Nash equilibrium, then for a bidder with value v,

a(v) = F (v)n−1 and p(v) = va(v)−
∫ v

0

a(w)dw. (14.9)

(ii) If (14.9) holds for the strategy profile (β, . . . , β), then for any bidder i
with utility u(·|·) and all v, w ∈ [0, h],

u(v|v) ≥ u(w|v). (14.10)

Remark 14.4.3. Part (ii) of the theorem implies that if (14.9) holds for a
symmetric strategy profile, then these bidding strategies are an equilibrium relative
to alternatives in the image of β(·). In fact, showing that (14.9) holds can be an
efficient way to prove that (β, . . . , β) is a Bayes-Nash equilibrium since strategies
that are outside the range of β can often be ruled out directly. We will see this in
the examples below.

Proof of Theorem 14.4.2. In the previous section, we proved (i) under the
assumption that a(·) and p(·) are differentiable; a proof of (i) without these as-
sumptions is given in §14.6. For (ii), it follows from (14.9) that

u(v|v) = va(v)− p(v) =

∫ v

0

a(z)dz,

whereas

u(w|v) = va(w)− p(w) = (v − w)a(w) + wa(w)− p(w)

= (v − w)a(w) +

∫ w

0

a(z)dz.

If v > w, then

u(v|v)− u(w|v) =

∫ v

w

[
a(z)− a(w)

]
dz > 0

since a(v) = F (v)n−1 is an increasing function. The case v < w is similar. Thus,
for all v, w ∈ [0, h], u(v|v) ≥ u(w|v). �

Corollary 14.4.4. Under the assumptions of Theorem 14.4.2,

p(v) = F (v)n−1E
[

max
i≤n−1

Vi

∣∣∣ max
i≤n−1

Vi ≤ v
]
. (14.11)

Proof. Since the truthful second-price auction allocates to the highest bidder,
we can use it to calculate p(v): The probability that a bidder wins is a(v) =
F (v)n−1, and if he wins, his payment has the distribution of max i≤n−1 Vi given
that this maximum is at most v. �
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14.4.3. Applications. We now use this corollary to derive equilibrium strate-
gies in a number of auctions.

First-price auction: (a) Suppose that β is strictly increasing on [0, h] and defines a
symmetric equilibrium. Then a(v) and p(v) are given by (14.9). Since the expected
payment p(v) in a first-price auction is F (v)n−1β(v), it follows that

β(v) = E
[

max
i≤n−1

Vi

∣∣∣ max
i≤n−1

Vi ≤ v
]

=

∫ v

0

1−
(
F (w)

F (v)

)n−1

dw. (14.12)

The rightmost expression in (14.12) follows from the general formula

E [Z] =

∫ ∞
0

P [Z ≥ w]dw

for nonnegative random variables, applied to Z = maxi Vi conditioned on Z ≤ v.
(b) Suppose that β is defined by the preceding equation. We verify that this

formula actually defines an equilibrium. Since F is strictly increasing, by the pre-
ceding equation, β is also strictly increasing. Therefore a(v) = F (v)n−1 and (14.9)
holds. Hence (14.10) holds. Finally, bidding more than β(h) is dominated by
bidding β(h). Hence this bidding strategy is in fact an equilibrium.

Examples:

With n bidders, each with a value that is U [0, 1], we obtain that β(v) = n−1
n v.

With 2 bidders, each with a value that is exponential with parameter 1 (that
is, F (v) = 1− e−v), we obtain

β(v) =

∫ v

0

1−
(

1− e−w

1− e−v

)
dw = 1− ve−v

1− e−v
.

This function is always below 1. Thus, even a bidder with a value of 100 will bid
below 1 in equilibrium!

All-pay auction: This auction allocates to the player that bids the highest but
charges every player their bid. For example, architects competing for a construction
project submit design proposals. While only one architect wins the contest, all
competitors expend the effort to prepare their proposals. Thus, participants need
to make the strategic decision as to how much effort to put in.

In an all-pay auction, β(v) = p(v), and therefore by Corollary 14.4.4, we find
that the only symmetric increasing equilibrium is given by

β(v) = F (v)n−1E
[

max
i≤n−1

Vi

∣∣∣ max
i≤n−1

Vi ≤ v
]
.

For example, if F is uniform on [0, 1], then β(v) = n−1
n vn.

War of attrition auction: This auction allocates to the highest bidder, charges
him the second-highest bid, and charges all other bidders their bid. For example,
animals fighting over territory expend energy. A winner emerges when the fighting
ends, and each animal has expended energy up to the point at which he dropped
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out or, in the case of the winner, until he was the last one left. See the third remark
after Example 4.2.3 for another example of a war of attrition and Exercise 14.5 for
the analysis of this auction.

Figure 14.4. A war of attrition auction.

Exercise 14.b. In the India Premier League (IPL), cricket franchises can ac-
quire a player by participating in the annual auction. The rules of the auction are
as follows. An English auction is run until either only one bidder remains or the
price reaches $m (for example $m could be $750,000). In the latter case, a sealed-
bid first-price auction is run with the remaining bidders. (Each of these bidders
knows how many other bidders remain).

Use the Revenue Equivalence Theorem to determine equilibrium bidding strate-
gies in an IPL cricket auction for a player with n competing franchises. Assume
that the value each franchise has for this player is uniform from 0 to 1 million.

14.5. Auctions with a reserve price

We have seen that in equilibrium, with players whose values for the item being
sold are drawn independently from the same distribution, the expected seller rev-
enue is the same for any auction that always allocates to the highest bidder. How
should the seller choose which auction to run? As we have discussed, an appealing
feature of the second-price auction is that it induces truthful bidding. On the other
hand, the auctioneer’s revenue might be lower than his own value for the item. A
notorious example was the 1990 New Zealand sale of spectrum licenses in which a
second-price auction was used; the winning bidder bid $100,000 but paid only $6!
A natural remedy for situations like this is for the auctioneer to impose a reserve
price.

Definition 14.5.1. The Vickrey auction (or second-price auction) with
a reserve price r is a sealed-bid auction in which the item is not allocated if all
bids are below r. Otherwise, the item is allocated to the highest bidder, who pays
the maximum of the second-highest bid and r.
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14.5. AUCTIONS WITH A RESERVE PRICE 243

A virtually identical argument to that of Theorem 14.2.3 shows that the Vickrey
auction with a reserve price is truthful. Alternatively, the truthfulness follows by
imagining that there is an extra bidder whose value/bid is the reserve price.

Perhaps surprisingly, an auctioneer may want to impose a reserve price even if
his own value for the item is zero. For example, we have seen that for two bidders
with values independent and drawn from U [0, 1], all auctions that allocate to the
highest bidder have an expected auctioneer revenue of 1/3.

Now consider the expected revenue if, instead, the auctioneer uses the Vickrey
auction with a reserve of r. Relative to the case of no reserve price, the auctioneer
loses an expected revenue of r/3 if both bidders have values below r, for a total
expected loss of r3/3. On the other hand, he gains if one bidder is above r and one
below. This occurs with probability 2r(1− r), and the gain is r minus the expected
value of the bidder below r; i.e., r − r/2. Altogether, the expected revenue is

1

3
− r3

3
+ 2r(1− r)r

2
=

1

3
+ r2 − 4

3
r3.

Differentiating shows that this is maximized at r = 1/2, yielding an expected
auctioneer revenue of 5/12. (This is not a violation of the Revenue Equivalence
Theorem because imposition of a reserve price changes the allocation rule.)

Remarkably, this simple auction optimizes the auctioneer’s expected revenue
over all possible auctions. It is a special case of Myerson’s optimal auction, a broadly
applicable technique for maximizing auctioneer revenue when agents’ values are
drawn from known prior distributions. We develop the theory of optimal auctions
in §14.9.

14.5.1. Revenue equivalence with reserve prices. Theorem 14.4.2 gen-
eralizes readily to the case of single-item auctions in which the item is allocated
to the highest bidder, as long as the bid is above the reserve price r. (See also
Theorem 14.6.1). The only change in the theorem statement is that the allocation
probability becomes

a(v) = F (v)n−1
1{v≥r}.

As in §14.4.3, this enables us to solve for equilibrium bidding strategies in auctions
with a reserve price. See Exercise 14.3.

14.5.2. Entry fee versus reserve price. Consider a second-price auction
with an entry fee of δ. That is, to enter the auction, a bidder must pay δ, and then
a standard second-price auction (no reserve) is run. Fix a bidder i and suppose
that all bidders j 6= i employ the following threshold strategy: Bidder j with value
vj enters the auction if and only if vj ≥ r := r(δ) and then bids truthfully.

Then it is a best response for bidder i to employ the same strategy if

rF (r)n−1 = δ.

To see this, let uE(v) be the overall utility to bidder i with value v if he pays the
entry fee and bids truthfully13. If v > r, then uE(v) ≥ −δ + vF (r)n−1 ≥ 0, since
the probability that none of the other bidders enter the auction is F (r)n−1. On the
other hand, if v < r, then uE(v) = −δ + vF (r)n−1 < 0.

13 Given that he enters, he is participating in a second-price auction and it is a dominant
strategy to bid truthfully.
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Now, let us compare the second-price auction with entry fee of δ = rF (r)n−1

to a second-price auction with a reserve price of r. Clearly, in both cases,

a(v) = F (v)n−1
1{v≥r}.

Moreover, the expected payment for a bidder in both cases is the same: If v < r,
the expected payment is 0 for both. For v ≥ r and the auction with entry fee,

p(v) = δ +
(
F (v)n−1 − F (r)n−1

)
E
[

max
i≤n−1

Vi

∣∣∣r ≤ max
i≤n−1

Vi ≤ v
]
,

whereas with the reserve price,

p(v) = rF (r)n−1 +
(
F (v)n−1 − F (r)n−1

)
E
[

max
i≤n−1

Vi

∣∣∣r ≤ max
i≤n−1

Vi ≤ v
]
.

This means that u(w|v) = va(w)− p(w) is the same in both auctions. (This gives
another proof that the threshold strategy is a Bayes-Nash equilibrium in the entry-
fee auction.)

Notice, however, that the payment of a bidder with value v can differ in the
two auctions. For example, if bidder 1 has value v > r and all other bidders have
value less than r, then in the entry-fee auction, bidder 1’s payment is δ = rF (r)n−1,
whereas in the reserve-price auction it is r. Moreover, if bidder 1 has value v > r,
but there is another bidder with a higher value, then in the entry-fee auction, bidder
1 loses the auction but still pays δ, whereas in the reserve-price auction he pays
nothing. Thus, when the entry-fee auction is over, a bidder may regret having
participated. This means that this auction is ex-interim individually rational, but
not ex-post individually rational. See the definitions in §14.5.4.

14.5.3. Evaluation fee.

Example 14.5.2. The queen is running a second-price auction to sell her crown
jewels. However, she plans to charge an evaluation fee: A bidder must pay φ in order
to examine the jewels and determine how much he values them prior to bidding in
the auction.

Assume that bidder i’s value Vi for the jewels is a random variable and that
the Vi’s are i.i.d. Prior to the evaluation, he only knows the distribution of Vi. He
will learn the realization of Vi only if he pays the evaluation fee. In this situation,
as long as the fee is below the bidder’s expected utility in the second-price auction,
i.e.,

φ < E [u(Vi|Vi)],
the bidder has an incentive to pay the evaluation fee. Thus, the seller can charge
an evaluation fee equal to the bidder’s expected utility minus some ε > 0. The
expected auctioneer revenue from bidder i’s evaluation fee and his payment in the
ensuing second-price auction is

E [u(Vi|Vi)]− ε+ E [p(Vi)] = E [ai(Vi) · Vi]− ε.

Since, in a second-price auction, the allocation is to the bidder with the highest
value, the seller’s expected revenue is

E
[
max
i

(V1, . . . , Vn)
]
− εn,

which is essentially best possible.
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Figure 14.5. The queen has fallen on hard times and must sell her crown jewels.

14.5.4. Ex-ante versus ex-interim versus ex-post. An auction, with an
associated equilibrium β, is called individually rational (IR) if each bidder’s ex-
pected utility is nonnegative. The examples given above illustrate three different
notions of individual rationality: ex-ante, when bidders know only the value distri-
butions; ex-interim, when each bidder also knows his own value; and ex-post, after
the auction concludes.

To formalize this, recall that u(wi|vi) denotes the expectation (over V−i) of
the utility of bidder i when he bids βi(wi), his value is vi, and each other bidder j
bids βj(Vj).

• An auction, with an associated equilibrium β, is ex-ante individually
rational if, knowing only the distribution of his value and of the other
bidder’s values, each bidder i’s expected utility is nonnegative. I.e.,

E [u(Vi|Vi)] ≥ 0. (14.13)

The outside expectation here is over Vi. The evaluation fee auction of
§14.5.3 is ex-ante IR.
• An auction, with an associated equilibrium, is ex-interim individually

rational if for each bidder i,

u(vi|vi) ≥ 0.

The entry-fee auction of §14.5.2 is ex-interim IR.
• An auction, with an associated equilibrium β, is ex-post individually

rational if for each bidder i,

u[βi(vi),b−i|vi] ≥ 0,

where u[bi,b−i|vi] is the utility of player i when his value is vi, he bids bi
and the other players bid b−i. The standard first-price and second-price
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auctions are ex-post IR since in these auctions a bidder never pays more
than his bid, and in the equilibrium bidding strategy, a bidder never bids
above his value.

14.6. Characterization of Bayes-Nash equilibrium

In §14.4.2, we saw that, with i.i.d. bidders, all auctions that allocate to the
highest bidder result in the same auctioneer revenue in equilibrium. Revenue equiv-
alence holds for other allocation rules, e.g., with reserve prices and randomization14

if bidders are assumed to be i.i.d.
The next theorem generalizes Theorem 14.4.2 and will allow us to design

revenue-maximizing auctions in §14.9.

Theorem 14.6.1. Let A be a (possibly randomized) auction for selling a single
item, where bidder i’s value Vi is drawn independently from Fi. Suppose that Fi is
strictly increasing and continuous on [0, hi], with F (0) = 0 and F (hi) = 1. (hi can
be ∞.)

(a) If (β1, . . . , βn) is a Bayes-Nash equilibrium, then for each agent i:

(1) The probability of allocation ai(v) is weakly increasing in v.
(2) The utility ui(v) is a convex function of v, with

ui(v) =

∫ v

0

ai(z)dz + ui(0).

(3) The expected payment is determined by the allocation probabilities up to a
constant pi(0):

pi(v) = vai(v)−
∫ v

0

ai(z)dz − pi(0)

(b) Conversely, if (β1, . . . , βn) is a set of bidder strategies for which (1) and
(3) hold, or (1) and (2), then for all bidders i and values v and w

ui(v|v) ≥ ui(w|v). (14.14)

Remark 14.6.2. See Figure 14.6 for an illustration of the theorem statement
and a “proof by picture”.

Remark 14.6.3. This theorem implies that two auctions with the same alloca-
tion rule yield the same expected payments and auctioneer revenue in equilibrium
(assuming pi(0) = 0 for all i), without making any smoothness assumptions. How-
ever, if bidders valuations are not i.i.d., the equilibrium will not be symmetric (i.e.
βi(·) 6= βj(·) for i 6= j), so the first-price auction need not allocate to the highest
bidder. Thus, the first and second-price auction are not revenue equivalent for
asymmetric bidders.

14 A randomized auction is defined as in Definition 14.1.1, but αi[b] represents the allocation
probability to bidder i and takes values in [0, 1]. In a randomized auction, Pi[b] is the expected

payment of bidder i on bid vector b. Definition 14.1.2 and Definition 14.4.1 remain unchanged.
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Proof. (a): Suppose that (β1, . . . , βn) is a Bayes-Nash equilibrium. In what
follows, all quantities refer to bidder i, so for notational simplicity we usually drop
the subscript i. Also, we use the shorthand notation u(v) := u(v|v).

Consider two possible values that bidder i might have. If he has value v, then
he has higher utility bidding βi(v) than βi(w); i.e.,

u(w|v) = va(w)− p(w) ≤ u(v) = va(v)− p(v). (14.15)

Similarly, if he has value w,

wa(w)− p(w) = u(w) ≥ wa(v)− p(v) = u(v|w). (14.16)

Subtracting (14.16) from (14.15), we get

(v − w)a(w) ≤ u(v)− u(w) ≤ (v − w)a(v).

Comparing the right and left sides of this inequality shows that a(·) is (weakly)
increasing. Moreover, the left-hand inequality means that a(w) is a subgradient
of u(·) at w, as defined in (8) of Appendix C. It then follows from (9)–(11) of
Appendix C that u(·) is convex and satisfies

u(v) =

∫ v

0

a(z)dz + u(0).

Finally, since u(v) = va(v)− p(v), (3) follows.

(b): For the converse, from condition (3) (or (2)) it follows that

u(v) =

∫ v

0

a(z)dz,

whereas

u(w|v) = va(w)− p(w) = (v − w)a(w) +

∫ w

0

a(z)dz,

whence, by condition (1)

u(v) ≥ u(w|v). �

Remark 14.6.4. Another way to see that u(·) is convex is to observe that

u(v) := u(v|v) = sup
w
u(w|v) = sup

w
{va(w)− p(w)},

and thus u(v) is the supremum of affine functions. (See Appendix C for more on
convex functions.)

Exercise 14.c. Extend Theorem 14.6.1 to the case of an auction for selling k
identical items, where each bidder wants only one item. (Other than the fact that
k items are being sold, as opposed to one, the theorem statement is unchanged.)

Example 14.6.5. Uniform price auction: The industry which sells tickets
to concerts and athletic events does not necessarily operate efficiently or, in some
cases, profitably due to complex and unknown demand. This can lead to tickets
being sold on secondary markets at exorbitant prices and/or seats being unfilled.
An auction format, known as a uniform price auction, has been proposed in order
to mitigate these problems. The auction works as follows: Prices start out high
and drop until the tickets sell out; however, all buyers pay the price at which the
final ticket is sold.
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probability of allocation

value

expected payment

probability of allocation

value

probability of allocation

value

expected utility

expected payment

Figure 14.6. The top figure illustrates how the expected payment pi(·) and
utility are determined by the allocation function ai(·) via equation (14.8).
The bottom figures shows how a monotone allocation function and payments
determined by (14.8) ensures that no bidder has an incentive to bid as if he
had a value other than his true value. Consider a bidder with value vi. On
the left side, we see what happens to the bidder’s utility if he bids as if his
value is w < vi. In this case, ui(w|vi) = viai(w) − pi(w) ≤ ui(vi|vi). On the
right side we see what happens to the bidder’s expected utility if he bids as
if his value is w′ > vi. In this case, ui(w

′|vi) = viai(w
′) − pi(w′) is less than

the expected utility ui(vi|vi) he would have obtained by bidding β(v) by an
amount equal to the small blue striped area.

* Exercise 14.d. Use the result of Exercise 14.c, the Revenue Equivalence The-
orem (Corollary 14.4.2) and the equilibrium of the k-unit Vickrey auction to show
that in a uniform price auction with n bidders and k tickets, where each bidder
wants one ticket, the following bidding strategy β(v) is in Bayes-Nash equilibrium:

β(v) = E
[

max
i≤n−k

Vi

∣∣∣ max
i≤n−k

Vi ≤ v
]
.
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14.7. Price of anarchy in auctions

Consider an auctioneer selling a single item via a first-price auction. The
social surplus V (b) of the auction15, when the submitted bid vector is b, is the
sum of the utilities of the bidders and the auctioneer utility (i.e., revenue). Since
only the winning bidder has nonzero utility and the auctioneer revenue equals the
winning bid, we have

V (b) := value of winning bidder.

For bidders with i.i.d. values, we derived in (14.12) symmetric equilibrium
strategies. For such equilibria, the winning bidder is always the bidder with the
highest value; i.e., social surplus is maximized.

It is more difficult to solve for equilibria when bidders’ values are not i.i.d.: In
general, this is an open problem. Moreover, equilibria are no longer symmetric.
When there are two bidders, say bidder 1 with V1 ∼ U [0, 1] and bidder 2 with
V2 ∼ U [0, 2], the bidder with the higher value may not win in equilibrium. The
intuition is that from the perspective of bidder 1, the weaker bidder, the competition
is more fierce than it was when he faced a bidder whose value was drawn from the
same distribution as his. Thus, bidder 1 will have to bid a bit more aggressively.
On the other hand, bidder 2 faces weaker competition than he would in an i.i.d.
environment and so can afford to bid less aggressively. This suggests that there will
be valuations v1 < v2 for which β1(v1) > β2(v2), and in such a scenario the bidder
with the higher value will lose the auction. See Exercise 14.10.

In this section, without actually deriving equilibrium strategies, we will show
that the expected social surplus in any Bayes-Nash equilibrium is still within a
constant factor of optimal.

Theorem 14.7.1. Let A be a first-price auction (with an arbitrary tie-breaking
rule) for selling a single item. Suppose the bidder values (V1, . . . , Vn) are drawn from
the joint distribution F . (The values could be correlated.) Let (β1(·), . . . , βn(·)) be
a Bayes-Nash equilibrium and let V ∗ be the value of the winning bidder. Then

E [V ∗] ≥ E [maxi Vi]

2
.

That is, the price of anarchy16 (with respect to social surplus) in BNE is at most 2.

Proof. For any bid vector b, let ui[b|vi] denote bidder i’s utility when the
bids are b = (b1, . . . , bn) and her value is vi. If bidder i bids vi/2 instead of bi, her
utility will be vi/2 if she wins and 0 otherwise. Thus,

ui

[vi
2
,b−i

∣∣∣vi] ≥ vi
2
1{ vi2 >maxk 6=i bk}. (14.17)

(14.17) is an inequality only because of the possibility that vi/2 = maxk 6=i bk and i
wins the auction; i.e., the auctioneer breaks ties in favor of i. It follows that∑

i

ui

[vi
2
,b−i

∣∣∣vi] ≥∑
i

vi
2
1{ vi2 >maxk 6=i bk} ≥ max

i

vi
2
−max

j
bj . (14.18)

This latter inequality clearly holds if the right-hand side is negative or 0. If it is
positive, the inequality follows by considering the summand for which vi is maxi-
mized.

15 Social surplus is also called “social welfare” or “efficiency”.
16 See Chapter 8 for an introduction to this concept.
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Setting bi = βi(Vi) in (14.18) and taking expectations, we obtain∑
i

E
[
ui

(Vi
2

∣∣∣Vi)] ≥ E [maxi Vi
2

−max
j
βj(Vj)

]
. (14.19)

Thus, under Bayes-Nash equilibrium bidding, the social surplus satisfies

E [V ∗] =
∑
i

E [ui(Vi|Vi)] + E
[
max
j
βj(Vj)

]
since the revenue is max

j
βj(Vj)

≥
∑
i

E
[
ui

(Vi
2

∣∣∣Vi)]+ E
[
max
j
βj(Vj)

]
since β is a BNE

≥ E
[

maxi Vi
2

]
by (14.19).

�

Remark 14.7.2. This bound of 1/2 on the price of anarchy can be improved
to 1− 1/e. See Exercise 14.11 for the derivation of this improved bound.

14.8. The Revelation Principle

In some auctions, the communication between the bidders and the auctioneer
is involved; e.g., the English auction, the IPL auction, and the entry-fee auction
all involve multiple rounds. In most auction formats we’ve seen, however, the
communication between the bidders and the auctioneer is simple: Each bidder
submits a single bid. But even when the communication is restricted to a single bid,
as in a first-price sealed-bid auction, determining the equilibrium bid requires each
bidder to know the distributions of other bidders’ values and might be complicated
to compute.

An extremely useful insight, known as the Revelation Principle, shows that,
for every auction with a Bayes-Nash equilibrium, there is another “equivalent”
direct17 auction in which bidding truthfully is a Bayes-Nash equilibrium.

Definition 14.8.1. If bidding truthfully (i.e., βi(v) = v for all v and i) is a
Bayes-Nash equilibrium for auctionA, thenA is said to be Bayes-Nash incentive-
compatible (BIC).

Consider a first-price auction A in which each bidder’s value is drawn from a
known prior distribution F . A bidder that is not adept at computing his equilibrium
bid might hire a third party to do this for him and submit bids on his behalf.

The Revelation Principle changes this perspective and considers the bidding
agents and auction together as a new, more complex, auction Ã, for which bidding
truthfully is an equilibrium.

Theorem 14.8.2 (The Revelation Principle). Let A be a direct auction
where {βi}ni=1 is a Bayes-Nash equilibrium. Recall Definition 14.1.1. Then there is

another direct auction Ã, which is BIC and has the same winners and payments as
A in equilibrium; i.e., for all v = (v1, . . . , vn), if bi = βi(vi) and b = (b1, . . . , bn),
then

αA[b] = αÃ[v] and PA[b] = PÃ[v].

17 A direct auction is one in which each bidder submits a single bid to the auctioneer.
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Figure 14.7. The figure illustrates the proof of the Revelation Principle. In
the auction Ã, bidders are asked to report their true values. The auction then
submits their equilibrium bids for them to the auction A and then outputs
whatever A would have output on those bids. The auction Ã is BIC–it is a
Bayes-Nash equilibrium for the bidders to report their values truthfully.

Proof. The auction Ã operates as follows: On each input v, Ã computes
β(v) = (β1(v1), . . . , βn(vn)) and then runs A on β(v) to compute the output and
payments. (See Figure 14.7.) It is straightforward to check that if β is a Bayes-

Nash equilibrium in A, then bidding truthfully is a Bayes-Nash equilibrium for Ã;
i.e., Ã is BIC. �

Example 14.8.3. Recall Example 14.2.1, a first-price auction with two bidders
with U[0, 1] values. An application of the Revelation Principle to this auction yields
the following BIC auction: Allocate to the highest bidder and charge him half of
his bid.

Remark 14.8.4. As discussed at the beginning of this section, for some auction
formats, the actions of the bidder often go beyond submitting a single bid. The
Revelation Principle can be extended to these more general settings. Given any
auction format A (that might involve complex interaction of bidders and auction-

eer), an auction Ã is constructed as follows: Each bidder truthfully reveals his value
to a trusted third party who will calculate and implement his equilibrium strategy
for him. If Ã includes this third party, then as far as each bidder is concerned, Ã
is a direct auction which is BIC.

For example, an application of the Revelation Principle to the English auction
yields the Vickrey second-price auction. In some online English auctions, the bidder
submits to an intermediary (e.g., eBay) a number v which is the maximum price he
is willing to pay. The intermediary then bids on his behalf in the actual auction,
only increasing his bid when necessary but never bidding more than v.

The primary use of the Revelation Principle is in auction design: To determine
which mappings from values to allocations can arise in Bayes-Nash equilibrium, it
suffices to consider direct, BIC auctions.
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14.9. Myerson’s optimal auction

We now consider the design of the optimal single-item auction, that is, the auc-
tion that maximizes the auctioneer’s expected revenue over all auctions, in Bayes-
Nash equilibrium. A key assumption here is that the auction designer knows the
prior distributions from which the bidders’ values are drawn.

14.9.1. The optimal auction for a single bidder. Consider a seller with
a single item to sell where there is only one potential buyer. Suppose also that the
seller knows that the buyer’s value V is drawn from a distribution F with support
[0,∞). If the seller offers the item to the buyer at a price of p, the buyer will
purchase it if and only if his value V is at least p, which occurs with probability
1− F (p). Thus, the auctioneer’s expected revenue will be

R(p) := p(1− F (p)).

Definition 14.9.1. The monopoly reserve price for the distribution F ,
denoted by p∗ := p∗(F ), is defined as the price that maximizes auctioneer revenue;
i.e.,

p∗ = argmaxpR(p). (14.20)

Example 14.9.2. When the buyer’s value is U[0, 1], the expected seller revenue
for price p is R(p) = p(1− p), and the monopoly reserve price is p∗ = 1/2.

Theorem 14.9.3. Consider a single buyer with value distribution F in a single-
item setting. Suppose that the buyer maximizes his expected utility given his value
and the auction format. Then the maximum expected revenue that can be achieved
by any auction format is R(p∗). This revenue is attained by setting a reserve price
of p∗, the monopoly reserve price (which yields a truthful auction).

Proof. By the Revelation Principle (Theorem 14.8.2), we only need to con-
sider optimizing over direct BIC auctions. Such an auction is defined by a mapping
α[v] that gives the probability of allocation when the reported value is v. Recall
that α[v] = a(v) must be increasing and that the expected payment is determined
by the allocation probability via part (3) of Theorem 14.6.1. (We will fix p(0) = 0.)

Any allocation rule a(v) can be implemented by picking U ∼ U[0, 1] and allo-
cating the item if a(v) ≥ U , i.e., by offering the (random) price Ψ = min{w | a(w) ≥
U}. This auction is truthful, hence BIC. The resulting allocation probability is a(v)
and the expected revenue is

E [R(Ψ)] ≤ R(p∗)

by (14.20). �

Remark 14.9.4. As a consistency check, observe that with the notation of the
above proof, the expected payment of a bidder with value v (who buys only if the
price Ψ is below his value) is

E [Ψ1Ψ≤v] =

∫ v

0

P(w < Ψ ≤ v) dw =

∫ v

0

[a(v)− a(w)] dw ,

in agreement with part (3) of Theorem 14.6.1.

Example 14.9.5. Suppose that the value V of the bidder is drawn from the
distribution F (x) = 1− 1/x, for x ≥ 1. Then E [V ] =∞. However, any price p > 1
is accepted with probability 1/p, resulting in an expected revenue of 1. Thus the
maximum expected revenue can be arbitrarily smaller than the expected value.
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A digression. We can use the result of Theorem 14.9.3 to bound the expected
revenue of a seller in the following extensive-form game.

Example 14.9.6 (The fishmonger’s problem). There is a seller of fish and
a buyer who enjoys consuming a fresh fish every day. The buyer has a private value
V for each day’s fish, drawn from a publicly known distribution F .

However, this value is drawn only once; i.e., the buyer has the same unknown
value on all days. Each day, for n days, the seller sets a price for that day’s fish,
which of course can depend on what happened on previous days. The buyer can
then decide whether to buy a fish at that price or to reject it. The goal of the buyer
is to maximize his total utility (his value minus the price on each day he buys and 0
on other days), and the goal of the seller is to maximize revenue. How much money
can the seller make in n days?

One possible seller strategy is to commit to a daily price equal to the monopoly
reserve price p∗, for a total expected revenue of np∗ after n days. However, the
seller has the freedom to adapt the price each day based on the interaction in prior
days and potentially obtain a higher revenue. For example, if the buyer were to
buy on day 1 at price ρ, it might make sense for the seller to set a price higher than
ρ on day 2, whereas if the buyer rejects this price, it might make sense to lower the
price the next day.

More generally, a seller strategy SI is a binary tree of prices. For instance,
if n = 2, the seller has to set a single price for day 1 and two prices for day 2,
depending on the action of the buyer on day 1. The buyer strategy SII is the best
response to the seller strategy and his own value v. Thus, SII(SI, v) specifies a
binary decision (buy or don’t buy) at each node in the seller tree SI; these decisions
are chosen to maximize the buyer’s utility given v.

Claim 14.9.7. Let Rn(SI, v) denote the n-day revenue of the seller when she
uses pure strategy SI, the buyer’s value is v, and he uses his best response SII(SI, v).
Then for any SI,

E [Rn(SI, V )] ≤ nR(p∗).

Proof. The pair of strategies used by the buyer and the seller determine for
each possible value v of the buyer a sequence (ρi(v), ai(v)), for 1 ≤ i ≤ n, where
ρi(v) is the asking price on day i and ai(v) ∈ {0, 1} indicates the response of the
buyer. Thus,

E [Rn(SI, V )] = E

 ∑
1≤i≤n

ai(V )ρi(V )

.
Now use SI to construct a single-item, single-round direct auction with 1/n of

this expected revenue as follows: Ask the buyer to submit his value v. Compute
SII(SI, v) to find (ρi(v), ai(v))ni=1. Finally, pick a uniformly random day i between
1 and n, and sell the item to the buyer (at price ρi(v)) if and only if ai(v) = 1.
The resulting mechanism is BIC since the outcome for the buyer is the result of
simulating his best response to SI given his value. The resulting expected seller
revenue is E [Rn(SI, V )]/n which, by Theorem 14.9.3, is at most R(p∗). �

14.9.2. A two-bidder special case. Suppose there are two bidders, where
bidder 1’s value V1 is known to be exponential with parameter λ1 and bidder 2’s
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value V2 is known to be exponential with parameter λ2. How should an auctioneer
facing these two bidders design a BIC auction to maximize his revenue?

Let A be an auction where truthful bidding (βi(v) = v for all i) is a Bayes-
Nash equilibrium, and suppose that its allocation rule is α : R2 7→ R2. Recall that
α[b] := (α1[b], α2[b]), where αi[b] is the probability18 that the item is allocated to
bidder i on bid vector b = (b1, b2) and ai(vi) = E [αi(vi, V−i)].

The goal of the auctioneer is to choose α[·] to maximize

E [p1(V1) + p2(V2)].

To understand this expression, fix one of the bidders, say i, and let ai(v), ui(v),
and pi(v) denote his allocation probability, expected utility and expected payment,
respectively, given that Vi = vi and both bidders are bidding their values. Using
condition (3) from Theorem 14.6.119, we have

E [ui(Vi)] =

∫ ∞
0

∫ v

0

ai(w) dw λie
−λiv dv.

Reversing the order of integration, we get

E [ui(Vi)] =

∫ ∞
0

ai(w)

∫ ∞
w

λie
−λiv dv dw =

∫ ∞
0

ai(w)e−λiw dw. (14.21)

Since ui(v) = vai(v)− pi(v), we obtain

E [pi(Vi)] =

∫ ∞
0

vai(v)λie
−λiv dv −

∫ ∞
0

ai(w)e−λiw dw

=

∫ ∞
0

ai(v)

[
v − 1

λi

]
λie
−λiv dv. (14.22)

Letting mi := 1/λi (the mean of the exponential distribution), we conclude that

E [p1(V1) + p2(V2)] = E [a1(V1) (V1 −m1) + a2(V2) (V2 −m2)]

=

∫ ∞
0

∫ ∞
0

[
α1(v) (v1 −m1) + α2(v) (v2 −m2)

]
λ1λ2e

−λ1v1−λ2v2 dv1 dv2. (14.23)

Thus, to maximize his expected revenue, the auctioneer should maximize this quan-
tity subject to two constraints: (1) For each v, the item is allocated to at most one
bidder, i.e., α1(v) + α2(v) ≤ 1, and (2) the auction is BIC.

With only the first constraint in mind, on bid vector v, the auctioneer should
never allocate if v1 < m1 and v2 < m2, but otherwise, he should allocate to the
bidder with the higher value of vi −mi. (We can ignore ties since they have zero
probability.)

It turns out that following this prescription (setting the payment of the winner
to be the threshold bid20 for winning), we obtain a truthful auction, which is there-
fore BIC. To see this, consider first the case where λ1 = λ2. The auction is then a

18 The randomness here is in the auction itself.
19 Throughout this section, we assume individual rationality; that is, pi(0) = 0 and hence

ui(0) = 0.
20 The threshold bid is the infimum of the bids a bidder could submit and still win the

auction.
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Vickrey auction with a reserve price of m1. If λ1 6= λ2, then the allocation rule is

αi(b1, b2) =

{
1, if bi −mi > max(0, b−i −m−i);
0, otherwise.

(14.24)

If bidder 1 wins, he pays m1 + max(0, b2−m2), with a similar formula for bidder 2.

Exercise 14.e. Show that this auction is truthful; i.e., it is a dominant strategy
for each bidder to bid truthfully.

Remark 14.9.8. Perhaps surprisingly, when λ1 6= λ2, the item might be allo-
cated to the lower bidder. See also Exercise 14.14.

14.9.3. A formula for the expected payment. Fix an allocation rule α[·]
and a specific bidder with value V that is drawn from the density f(·). As usual, let
a(v), u(v), and p(v) denote his allocation probability, expected utility, and expected
payment, respectively, given that V = v and all bidders are bidding truthfully.
Using condition (3) from Theorem 14.6.1, we have

E [u(V )] =

∫ ∞
0

∫ v

0

a(w) dwf(v) dv.

Reversing the order of integration, we get

E [u(V )] =

∫ ∞
0

a(w)

∫ ∞
w

f(v) dv dw

=

∫ ∞
0

a(w)(1− F (w)) dw. (14.25)

Thus, since u(v) = va(v)− p(v), we obtain

E [p(V )] =

∫ ∞
0

va(v)f(v) dv −
∫ ∞

0

a(w)(1− F (w)) dw

=

∫ ∞
0

a(v)

[
v − 1− F (v)

f(v)

]
f(v) dv. (14.26)

Remark 14.9.9. The quantity in the square brackets in (14.26) is called the
bidder’s virtual value. Contrast the expected payment in (14.26) with the expecta-
tion of the value allocated to the bidder using a(·), that is,∫ ∞

0

a(v) v f(v) dv.

The latter would be the revenue of an auctioneer using allocation rule a(·) in a
scenario where the buyer could be charged his full value.

The difference between the value and the virtual value captures the auctioneer’s
loss of revenue that can be ascribed to a buyer with value v, due to the buyer’s
value being private.

14.9.4. The multibidder case. We now consider the general case of n bid-
ders. The auctioneer knows that bidder i’s value Vi is drawn independently from
a strictly increasing distribution Fi on [0, h] with density fi. Let A be an auction
where truthful bidding (βi(v) = v for all i) is a Bayes-Nash equilibrium, and sup-
pose that its allocation rule is α : Rn 7→ Rn. Recall that α[v] := (α1[v], . . . , αn[v]),
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where αi[v] is the probability21 that the item is allocated to bidder i on bid22 vector
v = (v1, . . . , vn) and ai(vi) = E [αi(vi, V−i)].

The goal of the auctioneer is to choose α[·] to maximize

E

[∑
i

pi(Vi)

]
.

Definition 14.9.10. For agent i with value vi drawn from distribution Fi, the
virtual value of agent i is

ψi(vi) := vi −
1− Fi(vi)
fi(vi)

.

In the example of §14.9.2, ψi(vi) = vi − 1/λi.
In §14.9.3, we proved the following proposition:

Lemma 14.9.11. The expected payment of agent i in an auction with allocation
rule α(·) is

E [pi(Vi)] = E [ai(Vi)ψi(Vi)].

Summing over all bidders, this means that in any auction, the expected
auctioneer revenue is the expected virtual value of the winning bidder.
Note, however, that the auctioneer directly controls α(v) rather than ai(vi) =
E [α(vi,V−i)]. Expressing the expected revenue in terms of α(·), we obtain

E

[∑
i

pi(Vi)

]
= E

[∑
i

ai(Vi)ψi(Vi)

]

=

∫ ∞
0

· · ·
∫ ∞

0

[∑
i

αi(v)ψi(vi)

]
f1(v1) · · · fn(vn) dv1 · · · dvn.

(14.27)

Clearly, if there is a BIC auction with allocation rule α[·] that maximizes∑
i

αi(v)ψi(vi) (14.28)

for every v, then it maximizes expected revenue (14.27). A key constraint on
α[·] is that

∑
i αi(v) ≤ 1. To maximize (14.28), if maxi ψi(vi) < 0, then we

should set αi(v) = 0 for all i. Otherwise, we should allocate to the bidder with the
highest virtual value (breaking ties by reported value, for instance). This discussion
suggests the following auction:

Definition 14.9.12. The Myerson auction for distributions with strictly in-
creasing virtual value functions is defined by the following steps:

(i) Solicit a bid vector b from the agents.
(ii) Allocate the item to the bidder with the largest virtual value ψi(bi) if

positive, and otherwise, do not allocate. That is23,

21 The randomness here is in the auction itself.
22 Note that since we are restricting attention to auctions for which truthful bidding is a

Bayes-Nash equilibrium, we are assuming that b = (b1, . . . , bn) = v.
23 Break ties uniformly at random. Ties have 0 probability.
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αi(bi,b−i) =

{
1, if ψ(bi) > maxj 6=i ψ(bj) and ψ(bi) ≥ 0;

0, otherwise,
(14.29)

(iii) If the item is allocated to bidder i, then she is charged her threshold bid
t∗(b−i), the minimum value she could bid and still win, i.e.,

t∗(b−i) := min{b : ψi(b) ≥ max(0, {ψj(bj)}j 6=i)}. (14.30)

Theorem 14.9.13. Suppose that the bidders’ values are independent with strictly
increasing virtual value functions. Then the Myerson auction is optimal; i.e., it
maximizes the expected auctioneer revenue in Bayes-Nash equilibrium. Moreover,
bidding truthfully is a dominant strategy.

Proof. The truthfulness of the Myerson auction is similar to the truthfulness
of the Vickrey auction. Bidder i’s utility in the auction is bounded above by
max(vi − t∗(b−i), 0), where the first term is the utility for winning and the second
term is the utility for losing. This maximum is achieved by bidding truthfully
as long as ψi(·) is strictly increasing, since vi > t∗(b−i) if and only if ψi(vi) >
max(0, {ψj(bj)}j 6=i).

Since the auction is truthful, it is also BIC. Optimality follows from the dis-
cussion after (14.27). �

Corollary 14.9.14. The Myerson optimal auction for i.i.d. bidders with strictly
increasing virtual value functions is the Vickrey auction with a reserve price of
ψ−1(0).

Exercise 14.f. Show that the virtual value function for a uniform distribution
is strictly increasing. Use this to conclude that for bidders with i.i.d. U[0, 1] values,
the Myerson auction is a Vickrey auction with a reserve price of 1/2.

Remark 14.9.15. The fact that truthfulness in the Myerson auction is a dom-
inant strategy means that the bidders do not need to know the prior distributions
of other bidders’ values. Other BIC auctions with the same allocation rule will also
be optimal, but truthfulness need not be a dominant strategy. See Exercise 14.9
for an example.

Remark 14.9.16. The Myerson auction of Definition 14.9.12 can be general-
ized to the case where virtual valuations are weakly increasing. Step (i) remains
unchanged. In step (ii), a tie-breaking rule is needed. To keep the auction BIC, it
is crucial to use a tie-breaking rule that retains the monotonicity of the allocation
probabilities ai(·). Three natural tie-breaking rules are

• break ties by bid (and at random if there is also a tie in the bids);
• break ties according to a predetermined fixed ordering of the bidders, and
• break ties uniformly at random (equivalently, assign a random ranking to

the bidders).

The resulting payment in step (iii) is still the threshold bid, the lowest bid the
winner could have made without changing the allocation. See Exercise 14.13.

Corollary 14.9.17. Consider n bidders with independent values and strictly
increasing virtual value functions. In the class of BIC auctions that always allocate
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the item, i.e., have
∑
i αi(b) = 1 for all b, the optimal (revenue-maximizing) auc-

tion allocates to the bidder with the highest virtual value. If this is bidder i, he is
charged ψ−1

i [maxj 6=i ψj(bj)].

Proof. This follows from Lemma 14.9.11 and the proof of truthfulness of the
Myerson auction. �

14.10. Approximately optimal auctions

14.10.1. The advantage of just one more bidder. One of the downsides
of implementing the optimal auction is that it requires that the auctioneer know the
distributions from which agents’ values are drawn (in order to compute the virtual
values). The following result shows that in lieu of knowing the distribution from
which n i.i.d. bidders are drawn, it suffices to recruit just one more bidder into the
auction24.

Theorem 14.10.1. Let F be a distribution for which virtual valuations are
increasing. The expected revenue in the optimal auction with n i.i.d. bidders with
values drawn from F is upper bounded by the expected revenue in a Vickrey auction
with n+ 1 i.i.d. bidders with values drawn from F .

Proof. By Corollary 14.9.17, in the i.i.d. setting, the Vickrey auction maxi-
mizes expected revenue among BIC auctions that always allocate.

Next, observe that one possible (n+1)-bidder auction that always allocates the
item consists of, first, running the optimal auction with n bidders and then, if the
item is unsold, giving the item to bidder n+ 1 for free. �

14.10.2. When only the highest bidder can win. Consider the scenario
in which an item is being sold by auction to one of n possible buyers whose values
are drawn from some joint distribution, known to the auctioneer. We saw that for
independent values, the optimal auction might reject the highest bid and allocate
to another bidder. In some settings, this is prohibited, and the auctioneer can only
allocate the item to the highest bidder (or not at all); e.g., he can run a Vickrey
auction with a reserve price. The following auction called the Lookahead auction
maximizes expected revenue in this class of auctions.

(i) Solicit bids from the agents. Suppose that agent i submits the highest bid
bi. (If there are ties, pick one of the highest bidders arbitrarily.)

(ii) Compute the conditional distribution F̃i of Vi given the bids b−i and the
event Vi ≥ maxj 6=i bj . Let pi = pi(b−i) be the price p that maximizes

p(1− F̃i(p)).
(iii) Run the optimal single-bidder auction with agent i, using his previous bid

bi and the distribution F̃i for his value: This auction sells the item to
agent i at price pi if and only if bi ≥ pi.

Remark 14.10.2. The Lookahead auction can be implemented even when bid-
ders’ values are not independent. The only difference is in the update stage–
computing F̃i is more involved. See Example 14.10.6.

24 . . .under the questionable assumption that this bidder has the same value distribution as
the others.
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Proposition 14.10.3. The Lookahead auction is optimal among truthful auc-
tions that allocate to the highest bidder (if at all).

Proof. Any truthful auction A, after conditioning on bi being the highest bid
and the values b−i, becomes a truthful single bidder auction. Optimizing expected
revenue in that auction, by Theorem 14.9.3, yields the Lookahead auction. �

14.10.3. The Lookahead auction is approximately optimal. As we know,
the Lookahead auction is not the optimal truthful auction. However, the next the-
orem shows that it is a factor two approximation.

Theorem 14.10.4. The Lookahead (LA) auction yields an expected auctioneer
revenue that is at least half that of the optimal truthful and ex-post individually
rational auction even when bidders have dependent values.

Proof. The expected revenue of an individually rational, truthful auction is
the sum of its expected revenue from bidders that are not the highest, say L, plus
its expected revenue from the highest bidder, say H.

Assuming truthful bidding, it is immediate that the expected revenue of the
LA auction is at least H since it is the optimal auction for this bidder conditioned
on being highest and conditioned on the other bids. As for the other bidders, since
the auction is ex-post individually rational, no bidder can be charged a price higher
than her value. Thus, the optimal revenue achievable from these lower bidders is at
most the maximum value of bidders in this set, say v∗ (since only one item is being
sold). But the expected revenue from the highest bidder is at least v∗ since one
of the possible auctions is to just offer him a price of v∗. Therefore the expected
revenue of the LA auction is also at least L. �

Remark 14.10.5. Note that Theorem 14.10.4 holds for independent values even
if virtual valuations are not increasing!

Example 14.10.6. Two gas fields are being sold as a bundle via a Lookahead
auction. X and Y are the profits that bidder 1 can extract from fields 1 and 2.
Bidder 2 is more efficient than bidder 1, so he can extract 2X from the first but
can’t reach the second. Thus

V1 = X + Y and V2 = 2X.

It is known to the auctioneer that X and Y are independent and distributed expo-
nentially with parameter 1.

There are two cases to consider since P(X = Y ) = 0.

• V2 < V1 or equivalently Y > X: Given this event and V2 = b2, the
conditional distribution of Y is that of X +Z, where Z is an independent
exponential with parameter 1. Thus, F̃1 is the distribution of b2 +Z. The
price p1 ≥ b2 that maximizes

p · P(b2 + Z > p) = p · eb2−p

is max(b2, 1). Thus, if b1 > max(b2, 1), then in step (iii) the item will be
sold to bidder 1 at the price max(b2, 1) Notice that if 1 > b1 > b2, then
the item will not be sold.
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• V2 > V1 or equivalently Y < X: Given this event and V1 = b1, the
conditional distribution of X is uniform25 on [b1/2, b1]. Therefore, F̃2 is
uniform on [b1, 2b1]. Thus, if b2 > b1, then the item will be sold to bidder

2 at price b1, since p(1− F̃2(p)) is decreasing on [b1, 2b1].

14.11. The plot thickens...

We now briefly consider other settings, where the optimal auctions are surpris-
ing or weird.

Example 14.11.1. (Single bidder, two items:) Suppose the seller has two
items and there is a buyer whose private values (V1, V2) for the two items are known
to be independent samples from distribution F . Suppose further that the buyer’s
value for getting both items is V1 + V2. Since the values for the two items are
independent, one might think that the seller should sell each of them separately
in the optimal way, resulting in twice the expected revenue from a single item.
Surprisingly, this is not necessarily the case. Consider the following examples:

(1) Suppose that each Vi is equally likely to be 1 or 2. Then the optimal
revenue the seller can get separately from each item is 1: If he sells an
item at price 1, the buyer will buy it. If he sells at price 2, the buyer will
buy with probability 1/2. Thus, selling separately yields a total expected
seller revenue of 2. However, if the seller offers the buyer the bundle of
both items at a price of 3, the probability the buyer has V1 + V2 ≥ 3 is
3/4, and so the expected revenue is 3 · 3/4 = 2.25, more than the optimal
revenue from selling the items separately.

(2) On the other hand, suppose that Vi is equally likely to be 0 or 1. Then if
each item is sold separately, the optimal price is 1 and the overall expected
revenue is 2 · 1/2 = 1. On the other hand, the optimal bundle price is 1,
and the expected revenue is only 3/4.

(3) When Vi is equally likely to be 0, 1, or 2, then selling the items sepa-
rately yields expected revenue 4/3. That is also the expected revenue
from bundling. However, the auction which offers the buyer the choice
between any single item at price 2 or the bundle of both items at price 3
obtains an expected revenue of 13/9.

Example 14.11.2. Revenue when values are correlated: Earlier, we con-
sidered the optimal auction when there are two bidders whose values are uniform
on [0, 1]. In this case, the expected value of the highest bidder is 2/3, and yet the
auction which maximizes the seller’s revenue obtains an expected revenue of only
5/12. This loss is the “price” the auctioneer has to pay because the values of the
bidders are private.26 However, when bidders’ values are correlated, the auctioneer
can take advantage of the correlation to extract more revenue, in some cases, the
full expected maximum value!

25 Given the sum X + Y of two i.i.d. exponentials, the conditional distribution of each one

is uniform on [0, X + Y ].
26 This is sometimes called the “information rent” of the bidder.
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14.11. THE PLOT THICKENS... 261

For example, suppose that there are two agents and they each have value either
10 or 100, with the following joint distribution. (The entries in the table are the
probabilities of each of the corresponding pairs of values.)

V2 = 10 V2 = 100

V1 = 10 1/3 1/6

V1 = 100 1/6 1/3

We consider the following (symmetric) auction, from the perspective of bidder 1:
The initial allocation and pricing is determined by a second-price auction yielding

u1(10) = 0, (14.31)

u1(100) = P [V2 = 10|V1 = 100] · (100− 10) =
1

3
· 90 = 30, (14.32)

since whenever both bidders are truthful and submit the same bid, they obtain a
utility of 0. However, the buyers must commit up-front to the following additional
rules:

• If V2 = 10, then bidder 1 will receive $30+ε.
• If V2 = 100, then bidder 1 will be charged $60−ε.

(The symmetric rule is applied to bidder 2.) The impact of these rules is to reduce
bidder 1’s expected utility to 0: If her value is $10, then the payoff from the extra
rules is

P [V2 = 10|V1 = 10] · (30 + ε)− P [V2 = 100|V1 = 10] · (60− ε)

=
2

3
· (30 + ε)− 1

3
· (60− ε) = ε, (14.33)

whereas if her value is $100, the payoff from the extra rules is

P [V2 = 10|V1 = 100] · (30 + ε)− P [V2 = 100|V1 = 100] · (60− ε)

=
1

3
· (30 + ε)− 2

3
· (60− ε) = ε− 30. (14.34)

Combining (14.31) and (14.33) for the case V1 = 10 and combining (14.32) and
(14.34) for the case V1 = 100 shows that her combined expected utility from the
second-price auction and the extra rules is always ε. Since the setting is symmetric,
bidder 2’s expected utility is also ε.

Finally, since

2ε = u(V1) + u(V2) = E [(V1a(V1)− p1(V1)) + (V2a(V2)− p2(V2))]

and the allocation is always to the bidder with the highest value, the auctioneer’s
expected revenue is

E [p1(V1) + p2(V2)] = E [max(V1, V2)]− 2ε,

essentially the maximum possible (in expectation).
In addition, truth-telling is a Bayes-Nash equilibrium. However, a bidder may

be very unhappy with this auction after the fact. For example, if both agents have
value 100, they both end up with negative utility (−60 + ε)!
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262 14. AUCTIONS

Remark 14.11.3. In this example, the buyer’s ex-interim expected utility (that
is, his expected utility after seeing his value, but before seeing other bidders’ val-
ues) is positive. However, after the auction concludes, the buyer’s utility may be
negative. In other words, this auction is not ex-post individually rational. Most
commonly used auctions are ex-post individually rational.

Notes

There are several excellent texts on auction theory, including the books by Kr-
ishna [Kri09], Menezes and Monteiro [MM05], and Milgrom [Mil04]. Other sources that
take a more computational perspective are the forthcoming book by Hartline [Har12], the
lectures notes by Roughgarden [Rou14] (Lectures 2-6), and Chapters 9 and 13 in [Nis07].

The first game-theoretic treatment of auctions is due to William Vickrey [Vic61],
who analyzed the second-price auction and developed several special cases of the Revenue
Equivalence Theorem. These results played an important role in Vickrey’s winning the
1996 Nobel Prize, which he shared with James Mirrlees “for their fundamental contribu-
tions to the economic theory of incentives under asymmetric information.”

William Vickrey Roger Myerson

The Revenue Equivalence Theorem was proved by Myerson [Mye81] and Riley and
Samuelson [RS81]. Myerson’s treatment was the most general: He developed the Rev-
elation Principle27 from §14.8 and optimal (revenue-maximizing) auctions for a number
of different settings. For this and “for having laid the foundations of mechanism design
theory,” Roger Myerson, Leonid Hurwicz, and Eric Maskin won the 2007 Nobel Prize in
Economics.

The Revelation Principle also applies to equilibrium concepts other than Bayes-Nash
equilibrium. For example, the Revelation Principle for dominant strategies says that if A
is an auction with dominant strategies {βi}ni=1, then there is another auction Ã for which
truth-telling is a dominant strategy and which has the same winner and payments as A.
The proof is essentially the same.

In §14.9, we developed Myerson’s optimal auction for the case where virtual valua-
tions are (weakly) increasing. Myerson’s paper [Mye81] solves the general case. These
results were further developed and clarified by Bulow and Roberts [BR89] and Bulow and
Klemperer [BK94]. The approximately optimal auction from §14.10.1 is from [BK94]; the
proof given here is due to Kirkegaard [Kir06]. The Lookahead auction in §14.10.2 is due

27According to Myerson [Mye12], the Revelation Principle was independently discovered by
others including Dasgupta, Hammond, Maskin, Townsend, Holmstrom, and Rosenthal, building

on earlier ideas of Gibbard and Aumann.
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to Ronen [Ron01]. The examples in §14.11 are taken from Hart and Nisan [HN12] and
Daskalakis et al. [DDT12]. Surprisingly, there are situations where the optimal mecha-
nism may not even be deterministic [HN12, DDT12]. However, Babaioff et al. [BILW14]
show that in the setting of a single additive buyer, with a seller with multiple items for
sale, if the bidders’ valuations for the different items are independent, then the better of
selling separately and selling the grand bundle achieves expected revenue within a con-
stant factor of optimal. For other recent developments related to optimal auctions, see
e.g., [CS14, Das15, Yao15, RW15, CDW16].

The war of attrition and generalizations thereof have been studied extensively. See,
e.g., [Smi74, BK99]. A different type of war of attrition is shown in Figure 14.8.

Figure 14.8. Dawkins [Daw06] describes the behavior of emperor penguins
in the Antarctic. They have been observed standing on an ice ledge hesitating
before diving in to catch their dinner because of the danger of a predator
lurking below. Eventually, one of them, the loser of this game, jumps in and
(if he’s not eaten), the others follow.

Example 14.11.2 is adapted from [Mye81] and [CM88]. Cremer and McLean [CM88]
showed that full surplus extraction is possible in a broad range of correlated settings.
Uniform price auctions (Example 14.6.5) have been applied to the sale of sports tickets by
Baliga and Ely [Tra14]. The generalization to the case where individual bidders demand
multiple units is discussed in [Kri09].

Example 14.9.6 and other variants of the fishmonger problem are studied in Hart and
Tirole [HT88], as well as [Sch93, DPS15]. These papers focus on the case where the seller
cannot commit to future prices.

Exercise 14.18 is from [Kle98]. Theorem 14.7.1 follows [LPL11] and Exercise 14.11 is
from [Syr12]. As discussed in the notes of Chapter 8, the price of anarchy in games of
incomplete information and auctions has been extensively studied in recent years. For a
detailed treatment, see, e.g., [ST13, Rou12, Syr14, HHT14, Rou14, Har12].

Many of the results developed in this chapter, e.g., Myerson’s optimal auction apply
to settings much more general than single-item auctions, e.g., to the win/lose settings
discussed in §15.2. We refer the reader to Klemperer’s excellent guide to the literature on
auction theory [Kle99a] for further details and additional references.
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264 14. AUCTIONS

Exercises

14.1. Show that the three-bidder, single-item auction in which the item is allo-
cated to the highest bidder at a price equal to the third highest bid is not
truthful.

14.2. Consider a Vickrey second-price auction with two bidders. Show that for
each choice of bidder 1’s value v1 and any possible bid b1 6= v1 he might
submit, there is a bid by the other bidder that yields bidder 1 strictly less
utility than he would have gotten had he bid truthfully.

14.3. Suppose that each agent’s value Vi is drawn independently from the same
strictly increasing distribution F ∈ [0, h]. Find the symmetric Bayes-Nash
equilibrium bidding strategy in
• a second-price auction with a reserve price of r,
• a first-price auction with a reserve price of r,
• an all-pay auction with a reserve price of r.

14.4. Consider a descending auction for a single item. The auctioneer starts at
a very high price and then lowers the price continuously. The first bidder
who indicates that he will accept the current price wins the auction at that
price. Show that this auction is equivalent to a first-price auction; i.e., any
equilibrium bidding strategy in the first-price auction can be mapped to
an equilibrium bidding strategy in this auction and will result in the same
allocation and payments.

14.5.S Find a symmetric equilibrium in the war of attrition auction discussed in
§14.4.3, under the assumption that bids are committed to up-front, rather
than in the more natural setting where a player’s bid (the decision as to
how long to stay in) can be adjusted over the course of the auction.

14.6. Consider Example 14.5.2 again. Suppose that the bidder’s values are inde-
pendent, but not identically distributed, with Vi ∼ Fi. Find the revenue-
maximizing evaluation fee for the seller (assuming that a second-price auc-
tion will be run). The same evaluation fee must be used for all bidders.

14.7. Prove that the single-item, single-bidder auction described in §14.9.1 is a
special case of Myerson’s optimal auction.

14.8. (a) Show that the Gaussian and the equal-revenue (F (x) = 1 − 1/x for
x ≥ 1) distributions have increasing virtual value functions.
(b) Show that the following distribution does not have an increasing virtual
value function: Draw a random variable that is U[0, 1/2] with probability
2/3 and a random variable that is U[1/2, 1] with probability 1/3.
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14.9. Consider the following two-bidder, single-item auction: Allocate to the
highest bidder if his bid b is at least 1/2, and if so, charge him (b/2)+(1/8b).
Otherwise, don’t allocate the item. Show that for two bidders with i.i.d.
U[0, 1] values, this auction is BIC.

14.10. Show that the Bayes-Nash price of anarchy for a first-price auction is
strictly larger than 1 for two bidders, where bidder 1 has value V1 ∼ U [0, 1]
and V2 ∼ U [0, 2]. See §14.7. Hint: Suppose that the higher bidder always
wins and then apply the revenue equivalence.

14.11. Under the conditions of Theorem 14.7.1, show that

E [V ∗] ≥
(

1− 1

e

)
E
[
max
i
Vi

]
.

See Exercise 8.8 for a hint.

14.12. Show that if the auctioneer has a value of C for the item, i.e., his profit in
a single-item auction is the payment he receives minus C (or 0 if he doesn’t
sell), then with n i.i.d. bidders (with strictly increasing virtual valuation
functions), the auction which maximizes his expected profit is Vickrey with
a reserve price of ψ−1(C).

14.13.S Determine the explicit payment rule for the three tie-breaking rules dis-
cussed in Remark 14.9.16.

14.14.S Consider two bidders where bidder 1’s value is drawn from an exponential
distribution with parameter 1 and bidder 2’s value is drawn independently
from U[0, 1]. What is the Myerson optimal auction in this case? Show that
if (v1, v2) = (1.5, 0.8), then bidder 2 wins.

14.15. Consider n bidders, where Vi ∼ Fi, where the Vi’s are independent and
virtual values are increasing. Let r∗i be the monopoly reserve price for Fi
(recall (14.20)). Show that the following auction obtains at least half the
revenue obtained by the optimal truthful and ex-post individually rational
auction.
• Ask the bidders to report their values.
• If the highest bidder, say bidder 1, reports b1 ≥ r∗1 , then he wins the

auction at a price equal to max(b2, r
∗
1), where b2 is the report of the

second-highest bidder. Otherwise, there is no winner.

14.16. Show how to generalize Theorem 14.10.4 to a scenario in which k identical
items are being sold.

14.17. Show that if bidders values are i.i.d. from a regular distribution F, then
the expected revenue of the first-price auction with reserve price ψ−1(0) is
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266 14. AUCTIONS

the same as that of the Myerson optimal auction.

14.18. Consider the following game known as the Wallet Game: Each of two
bidders privately checks how much money she has in her wallet, say si for
bidder i (i = 1, 2). Suppose an English auction is run where the prize is
the combined contents of the two wallets. That is, the price goes up con-
tinuously until one of the bidders quits, say at price p. At that point, the
remaining bidder pays p and receives s1 + s2. Find an equilibrium in this
game. Can you find an asymmetric equilibrium?

14.19. Show that the lookahead auction does not obtain a better than 2 approxi-
mation to the optimal auction.

14.20. Consider an auctioneer selling an item by auction to buyers whose valua-
tions V1, V2, . . . , Vn are drawn from a correlated joint distribution F (not
a product distribution). In this case, the characterization of Bayes-Nash
equilibrium (Theorem 14.6.1) does not hold. Explain where the proof given
there breaks down.

14.21. Prove that Theorem 14.6.1 holds if A is an auction for selling k items. In
fact, prove that it holds in any win/lose setting when each agent’s value Vi
is drawn independently from Fi. For a definition of win/lose settings, see
§15.2.

14.22. Consider an auction in which k identical items are being sold. Each of n
bidders is interested in only one of these items. Each bidder’s value for the
item is drawn independently from the same prior distribution F . Use the
result of the previous exercise to derive the optimal auction (i.e., general-

ize Theorem 14.9.13) for this setting, assuming that ψ(v) = v − 1−F (v)
f(v) is

strictly increasing.
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CHAPTER 15

Truthful auctions in win/lose settings

In a truthful auction, bidders do not need to know anything about their com-
petitors or perform complex calculations to determine their strategy in the auction.
In this chapter, we focus exclusively on auctions with this property.

15.1. The second-price auction and beyond

Example 15.1.1 (Spectrum auctions). The government is running an auc-
tion to sell the license for the use of a certain band of electromagnetic spectrum.
Its goal is to allocate the spectrum to the company that values it most (rather than
maximizing revenue). This value is indicative of how efficiently the company can
utilize the bandwidth. One possibility is to run an English auction - we have seen
that it is a dominant strategy for bidders to stay in the auction as long as the price
is below their value. This ensures that the license is sold to the bidder with the
highest value. A key difference between the English auction and the second-price
auction is that in the latter, the highest bidder reveals his value. This could be
damaging later; e.g., it could lead to a higher reserve price in a subsequent auc-
tion. Thus an auction that is truthful in isolation might not be truthful if the same
players are likely to participate in a future auction.

Figure 15.1. Competing rocket companies.

267
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268 15. TRUTHFUL AUCTIONS IN WIN/LOSE SETTINGS

Example 15.1.2 (Hiring a contractor). Several rocket companies are com-
peting for a NASA contract to bring an astronaut to the space station. One pos-
sibility is for NASA to run a second-price procurement auction (where the
auctioneer is a buyer instead of a seller): Ask each company to submit a bid, and
award the contract to the lowest bidder, but pay him the second-lowest bid. The
utility of the winning bidder is the price he is paid minus his cost1. Again, it is
a dominant strategy for each company to bid its actual cost. Alternatively, to re-
duce the amount of information the winning company reveals, NASA can run a
descending auction: Start from the maximum price NASA is willing to pay and
keep reducing the price until exactly one company remains, which is then awarded
the contract at that price. It is a dominant strategy for each company to stay in
until the price reaches its cost.

Example 15.1.3 (A shared communication channel). Several users in a
large company have data streams to transmit over a shared communication channel.
The data stream of each user has a publicly known bandwidth requirement, say wi,
and that user has a private value vi for getting his data through. If the total
capacity of the channel is C, then the set of data streams selected must have a
total bandwidth which does not exceed the channel capacity. I.e., only sets of data
streams S with

∑
i∈S wi ≤ C are feasible. Suppose that the company decides to

use an auction to ensure that the subset of streams selected has the largest total
value. To do so requires incentivizing the users to report their values truthfully.

15.2. Win/lose allocation settings

We now formalize a setting which captures all of these examples.

Definition 15.2.1. a win/lose allocation problem2 is defined by:

• A set U of participants/bidders, where each has a private value vi for
“winning” (being selected) and obtains no value from losing;
• a set of feasible allocations (i.e., possible choices for the set of winning

bidders) L ⊂ 2U . In a single-item auction, L contains all subsets of
size at most 1 and in the communication channel example, L = {S ⊂
U |

∑
i∈S wi ≤ C}.

A sealed-bid auction, or mechanism, A in such a setting asks each bidder to
submit a bid bi. The mechanism then selects (possibly randomly) a single winning
set L in L and a payment vector (pi)i∈U , where pi is the payment3 required from
bidder i. The mapping from bid vectors to winning sets is called the allocation
rule and is denoted by α[b] = (α1[b], . . . , αn[b]), where αi[b] is the probability
that bidder i wins when the bid vector is b = (b1, . . . , bn). (If the auction is
deterministic then αi[b] ∈ {0, 1}.) We denote the payment rule of the auction
by p[b] = (p1[b], . . . , pn[b]), where pi[b] is the expected payment4 of bidder i when
the bid vector is b. (This expectation is taken over the randomness in the auction.)

1 This cost incorporates the bidders’ time and effort.
2 This setting commonly goes under the name “single-parameter problem”.
3 Unless otherwise specified, the payment of each losing bidder is 0.
4 The quantity p[b] = (p1[b], . . . , pn[b]) was denoted by P[b] = (P1[b], . . . ,Pn[b]) in Def-

inition 14.1.1 of the previous chapter.
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15.3. SOCIAL SURPLUS AND THE VCG MECHANISM 269

Suppose that bidder i has private value vi for winning. Then his utility on bid
vector b is

ui[b|vi] = viαi[b]− pi[b].

The utility of the auctioneer is his income:∑
i∈U

pi[b].

Definition 15.2.2. We say that a mechanismM is truthful if for every agent,
it is a dominant strategy to bid his value. Formally, for all b−i, all i, vi, and bi

ui[vi,b−i|vi] ≥ ui[bi,b−i|vi],
where ui[bi,b−i|vi] = viαi[b]− pi[b].

15.3. Social surplus and the VCG mechanism

Definition 15.3.1. Consider an auction with n bidders where the private value
of bidder i is vi. Suppose that the set of winning bidders is L∗ and the payment
of bidder i is pi for each i. The social surplus of this outcome is the sum of the
utilities of all the bidders and the auctioneer; that is,∑

i∈U

(
vi1{i winner} − pi

)
+
∑
i∈U

pi =
∑
i∈L∗

vi.

(Since the payments are “losses” to the bidders and “gains” to the auctioneer,
they cancel out.)

The VCG mechanism for maximizing social surplus in win/lose settings

• Ask each bidder to report his private value vi (which he may or may not
report truthfully). Assume that bidder i reports bi.

• Choose as the winning set a feasible L ∈ L that maximizes b(L), where
b(L) =

∑
j∈L bj . Call this winning set L∗.

• To compute payments, let L+
i = {S|S ∪ {i} ∈ L}. Then i only wins if his

bid bi satisfies

bi + max
L∈L+

i

b(L) ≥ max
L∈L−

b(L), (15.1)

where L− is the collection of sets in L that do not contain i. His payment
is his threshold bid, the minimum bi for which (15.1) holds; i.e.,

pi = max
L∈L−

b(L)− max
L∈L+

i

b(L). (15.2)

The payment given by (15.2) precisely captures the externality imposed by
bidder i, i.e., the reduction in total (reported) values obtained by the other bidders
due to i’s presence in the auction.

Theorem 15.3.2. The VCG mechanism is truthful. Moreover, with truthful
bidding, 0 ≤ pi ≤ vi for all i and therefore the auction is individually rational.

Proof. Fix any set of bids b−i of all bidders but i and note that pi is deter-
mined by b−i. Whatever bi is, player i’s utility is at most vi − pi if vi > pi and at
most 0 if vi ≤ pi. Bidding truthfully guarantees a bidder i this maximum utility of
max(0, vi − pi) ≥ 0. �
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270 15. TRUTHFUL AUCTIONS IN WIN/LOSE SETTINGS

Remark 15.3.3. Note that if payments were instead equal to p′i = pi+hi(b−i),
for any function hi(·), the mechanism would still be truthful. However, it would no
longer be true that each bidder would be guaranteed nonnegative utility.

Exercise 15.a. Check that the Vickrey second-price auction and the Vickrey
k-unit auction are both special cases of the VCG mechanism.

Remark 15.3.4. Since the VCG auction incentivizes truth-telling in dominant
strategies, henceforth we assume that bidders bid truthfully. Therefore, we will
not refer to the bids using the notation b = (b1, . . . , bn), but rather will assume
they are v = (v1, . . . , vn).

15.4. Applications

15.4.1. Shared communication channel, revisited. See Figure 15.2 for an
example of the application of VCG to choosing a feasible winning set of maximum
total value.

Bidder#
1
2
3

0.4 1 2.1 - 2 = 0.1
2 2.1 - 1 = 1.10.5

0.8

1
2

2.1

Bandwithrequirement w(public)

Input to VCG auction Output of VCG auctioncapacity 1
communicationchannel

Value v(private) PaymentsWinners

Figure 15.2. This figure illustrates the execution of the VCG algorithm on
Example 15.1.3 (a shared communication channel) when C = 1 and there
are three bidders with the given values and weights. In this example, L =
{{1, 2}, {1}, {2}, {3}, ∅}. With the given values, the winning set selected is
{1, 2}. To compute, for example, bidder 1’s payment, we observe that without
bidder 1, the winning set is {3} for a value of 2.1. Therefore the loss of value
to other bidders due to bidder 1’s presence is 2.1− 2.

15.4.2. Spanning tree auctions. Netflix wishes to set up a distribution net-
work for its streaming video. The links that can be used for streaming form a graph,
and each link is owned by a different service provider. Netflix must purchase the
use of a set of links that will enable it to reach all nodes in the graph. For each
link `, the owner incurs a private cost c` ∈ [0, C] for transmitting the Netflix data.
Netflix runs an auction to select the spanning tree of minimum cost in the graph
(owners of the selected links will be the “winners”). In this setting, the feasible
sets L are the spanning trees of the graph.

This is a social surplus maximization problem, with ve := −ce. The VCG
mechanism for buying a minimum spanning tree (MST) is the following:

• Ask each bidder (link owner) ` to report his (private) cost c`.
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2 1
0.1

0.30.2
0.4
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0.6

0.3

1

Figure 15.3. This figure shows the outcome and payments in a spanning
tree auction. The blue labels on edges in the left figure are the costs of the
edges. The minimum spanning tree consists of the gray highlighted edges.
The payments are shown in pink on the right side of the figure.

• Choose the MST T ∗ with respect to the reported costs.
• Pay each winning link owner ` his threshold bid, which is C if removing

it disconnects the graph, and otherwise

(cost of MST with ` deleted)− (cost of MST with ` contracted),

which is always at most C. (This is the minimum cost the owner of ` can
report and still be part of the MST.) Contracting an edge (i, j) consists
of identifying its endpoints, thereby creating a new merged node ij, and
replacing all edges (i, k) and (j, k), k 6= i, j, with an edge (ij, k).

See Figure 15.3 for an example.

In fact, the VCG auction for this example can be implemented as a “descending
auction”. It works as follows: Initialize the asking price for each link to C.

• Reduce the asking price on each link uniformly (e.g., at time t, the asking
price is C − t) until some link owner declares the price unacceptable and
withdraws from the auction.
• If at this point, there is a link ` whose removal would disconnect the graph,

buy it at the current price and contract `.

See Figure 15.4 for a sample execution of the descending auction.

15.4.3. Public project. Suppose that the government is trying to decide
whether or not to build a new library which will cost C dollars. Each person in
society has his own value vi for this library, that is, how much it is worth to that
person to have the library built. A possible goal for the government is to make sure
that the library is built if the population’s total value for it is at least C dollars,
and not otherwise. How can the government incentivize the members of society to
truthfully report their values?
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Figure 15.4. This figure shows the evolution of the descending auction for
purchasing a spanning tree on the example shown in Figure 15.3. In this
example C > 2. When the price reaches 2 (upper left), edge (a, b) is ready to
drop out. The consecutive figures (top to bottom, and within each row, left
to right) show the points at which edges are selected and the corresponding

payments.

The social surplus in this setting is 0 if the library isn’t built and
∑
i vi − C if

the library is built. We apply VCG to maximize social surplus:

• Ask each person i to report his value vi for the library.
• Build the library if and only if

∑
i vi ≥ C.

• If the library is built, person i pays his threshold bid: If
∑
j 6=i vj ≥ C, he

pays nothing. Otherwise, he pays

pi = C −
∑
j 6=i

vj .

In practice, this scheme is not implemented as it suffers from several problems.

• The government might not recover its cost. For example, if there are n
people and each has value C/(n − 1), then all payments will be 0, but
the library will be built. Unfortunately, this is inevitable; no truthful
mechanism can simultaneously balance the budget and maximize social
surplus. See the chapter notes.
• It is deeply susceptible to collusion. If two people report that their values

are C, then the library will be built and nobody will pay anything.
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• Our technical definition of “value” is the amount a person is willing to
pay for an item. It is not appropriate in this example. Indeed, the library
may be more valuable to someone who cannot pay for it than to someone
who can (e.g., has the resources to buy books). In this case, there is
discord between the intuitive meaning of social surplus and the technical
definition.

15.4.3.1. VCG might not be envy-free.

Definition 15.4.1. We say that a truthful mechanism in a win/lose setting is
envy-free if, when bidding truthfully, each bidder prefers his own allocation and
payment to that of any other bidder. That is, for every v and i, we have

αi[v]vi − pi[v] ≥ αj [v]vi − pj [v].

Example 15.4.2. Suppose that the government is trying to decide whether or
not to build a bridge from the mainland to a big island A or to a small island B.
The cost of building a bridge is $90 million. Island A has a million people, and each
one values the bridge at $100. Island B has five billionaires, and each one values
the bridge at $30 million. Running VCG will result in a bridge to island B and
payments of 0. In this case, the people on island A will envy the outcome for the
people on island B.

Figure 15.5. A typical page of search results: some organic and some spon-
sored. If you click on a sponsored search result, the associated entity pays the
search engine some amount of money. Some of the most expensive keywords
relate to lawyers, insurance, and mortgages, and have a cost per click upwards
of $40. Clicks on sponsored search slots for other keywords can go for as low
as a penny.
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Taylor Swift
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b3 = $0.7Bidder 3

b2 = $1.1Bidder 2
p1 = $0.7

p2 = $0.5
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v1 = $0.2
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v4 = $1.2

b4 = $0.5Bidder 4

Slot 1

Bidder 2
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Figure 15.6. Behind the scenes when you do a query for a keyword, like
“Taylor Swift”, in a search engine: At that moment, some of the advertisers
who have previously bid on this keyword participate in an instantaneous auc-
tion that determines which sponsored search slot, if any, they are allocated to
and how much they will have to pay the search engine in the event of a user
click. Notice that they may or may not bid truthfully. In this example, the
highest bidder’s ad (in this case, bidder 2) is allocated to the top slot, and the
price p1 he is charged per click is the bid of the second-highest bidder (bidder

3).

15.5. Sponsored search auctions, GSP, and VCG

What most people don’t realize is that all that money comes in pennies at a
time.5 Hal Varian, Google chief economist

Example 15.5.1. Sponsored search auctions: An individual performing a
search, say for the term “Hawaii timeshare”, in a search engine receives a page of
results containing the links the search engine has deemed relevant to the search,
together with sponsored links, i.e., advertisements. These links might lead to the
webpages of hotels and companies selling timeshares in Hawaii. To have their ads
shown in these slots, these companies participate in an instantaneous auction.

In this auction, each interested advertiser reports6 a bid bi representing the
maximum he is willing to pay when a searcher clicks on his ad. The search engine,
based on these bids, decides which ad to place in each slot and what price to charge
the associated advertiser in the event of a user click.

5 Google’s revenue in 2015 was approximately $74,500,000,000.
6 Usually this bid is submitted in advance.
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Suppose there are k ad slots7, with publicly known clickthrough rates c1 ≥
c2 ≥ · · · ≥ ck ≥ 0. The clickthrough rate of a slot is the probability that a user
viewing the webpage will click on an ad in that slot. If bidder i has value vi per
click, then the expected value he obtains from having his ad assigned to slot j is
vicj . In this setting, the social surplus of the allocation which assigns slot j to

bidder πj is
∑k
j=1 vπjcj .

This is not formally a win/lose auction (because of the clickthrough rates), but
the VCG mechanism readily extends to this case: The social surplus maximizing
allocation is selected, and the price a bidder pays is the externality his presence
imposes on others. Specifically:

• Each bidder is asked to submit a bid bi representing the maximum he is
willing to pay per click.
• The bidders are reordered so that their bids satisfy b1 ≥ b2 ≥ . . ., and slot
i is allocated to bidder i for 1 ≤ i ≤ k.
• The participation of bidder i pushes each bidder j > i from slot j − 1 to

slot j (with the convention that ck+1 = 0). Thus, i’s participation imposes
an expected cost of bj(cj−1− cj) on bidder j in one search (assuming that
bj is j’s value for a click). The auctioneer then charges bidder i a price of
pi(b) per click, chosen so that his expected payment in one search equals
the total externality he imposes on other bidders; i.e.,

cipi(b) =

k+1∑
j=i+1

bj(cj−1 − cj). (15.3)

In other words, bidder i’s payment per click is then

pi(b) :=

k+1∑
j=i+1

bj
cj−1 − cj

ci
. (15.4)

Figure 15.6 shows the timing of events in a sponsored search auction. Fig-
ure 15.7 shows the allocation, payments, and advertiser utilities that result from
maximizing social surplus for a two-slot example, and Figure 15.8 shows the allo-
cation and payments as a function of a particular bidder’s bid.

15.5.1. Another view of the VCG auction for sponsored search. First
suppose that all clickthrough rates are equal; e.g., ci = 1, for 1 ≤ i ≤ k. Then we
have a simple k-item Vickrey auction (the items are slots) where bidder i’s value
for winning slot i is vi and the threshold bid for each bidder is the kth highest of
the other bids. Thus, the payment of each winning bidder is the (k + 1)st highest
bid bk+1 and the utility of winning bidder i is vi − bk+1. Since the payment of a
winner doesn’t depend on his bid, the auction is also truthful. Also, with truthful
bidding the auction is envy-free: A winner would not want to lose, and vice versa.

In the general case, the VCG auction A can be thought of as a “sum” of k
different auctions, where the `th auction A`, for 1 ≤ ` ≤ k, is an `-unit auction
and the values and payments are scaled by (c` − c`+1). Thus, in A`, the value to
bidder i of winning is (c` − c`+1)vi, his payment is (c` − c`+1)b`+1, and his utility
is (c` − c`+1)(vi − b`+1).

7 The model we consider here greatly simplifies reality.
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Advertisers
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CTR
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CTR
c2 = 0.5

Slot 2Bidder 2

Bidder 3

Truthful 
bidding

VCG
v3 = 1

v1 = 7 expected paymentc1p1 = 6 • 1 + 1 • 0.5 - 6 • 0.5

expected utility = c1(v1 - p1) = 1 • (7 - 3.5)

PPC p1 = 3.5
Bidder 1v2 = 6

b3 = 1

b1 = 7

b2 = 6

Bidder 2

expected paymentc2p2 = 7 • 1 + 1 • 0.5 - 7 • 1

expected utility = c2(v2 - p2) = 0.5 • (6 - 1)

PPC p2 = 1

Figure 15.7. VCG on sponsored search example: An advertiser’s expected
value for a slot is her value per click times the clickthrough rate of the slot.
For example, bidder 2’s expected value for slot 1 is 6, and her expected value
for slot 2 is 6 ·0.5 = 3. Her expected payment is the value other players obtain
if she wasn’t there (7 · 1 + 1 · 0.5) (since bidder 3 would get the second slot in
her absence) minus the value the other players get when she is present (7 · 1).
Her expected payment is the price-per-click (PPC) times the clickthrough rate.

b1(c1-c2)

b2(c2-c3)

b3c3

b1(c1-c2)

b2(c2-c3)

b3c3
expected utility

b1(c1-c2) + b2(c2-c3) + b3c3

expected payment= 
clickthrough rate in allocated slot

b3 b2 b1 b

c1
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Figure 15.8. Suppose that in an ad auction there are 4 bidders, and 3 slots,
with clickthrough rates c1 > c2 > c3. The first three have submitted bids
b1 > b2 > b3. The figure shows the allocation and payment for the fourth
bidder as a function of his bid b. The piecewise linear black curve shows the
probability that the fourth bidder gets a click as a function of his bid. The
blue area is his expected VCG payment when he bids b > b1. The payment
per click for this bidder is the blue area divided by the click through rate of
the slot he is assigned to, in this case c1. His expected utility for this outcome
is the pink area. As indicated below the graph, if he bids between bi+1 and
bi, he gets slot i+ 1. If he bids below b3, he gets no slot.

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



15.5. SPONSORED SEARCH AUCTIONS, GSP, AND VCG 277

If bidder i submits the jth highest bid bj to the VCG auction A and wins slot
j, the expected value he will obtain is

cjvi =
k∑
`=j

(c` − c`+1)vi,

where ck+1 = 0. The right-hand side is also the sum of the values he obtains from
bidding bj in each of the auctions A1, . . . ,Ak, assuming that the other bidders bid
as they did in A; in this case, he will win in Aj , . . . ,Ak.

Similarly, his expected payment in A is the sum of the corresponding payments
in these auctions; that is,

cjpj(b) =
k∑
`=j

(c` − c`+1)b`+1,

where b` is the `th largest bid.

Lemma 15.5.2. The VCG auction for sponsored search auctions is truthful.
Moreover, if bidder i bids truthfully, then he does not envy any other bidder j; i.e.,

ci(vi − pi) ≥ cj(vi − pj).

(We take cj = pj = 0 if j > k.)

Proof. The utility of a bidder i in the sponsored search auction A is the sum
of his utilities in the k auctions A1, . . . ,Ak. Since bidding truthfully maximizes
his utility in each auction separately, it also maximizes his utility in the combined
auction. Similarly, since he is not envious of any other bidder j in any of the
auctions A1, . . . ,Ak, he is not envious in the combined auction. �

15.5.2. Generalized second-price mechanism. Search engines and other
Internet companies run millions of auctions every second. Some companies use
VCG, e.g., Facebook, but there is another format that is more popular, known as
generalized second-price (GSP) mechanism, so named because it generalizes
the Vickrey second-price auction.

A simplified version of the GSP auction works as follows:

• Each advertiser interested in bidding on keyword K submits a bid bi,
indicating the price he is willing to pay per click.
• Each ad is ranked according to its bid bi and ads allocated to slots in this

order.
• Each winning advertiser pays the minimum bid needed to win the allo-

cated slot. For example, if the advertisers are indexed according to the
slot they are assigned to, with advertiser 1 assigned to the highest slot
(slot 1), then advertiser i’s payment pi is

pi = bi+1.

(Without loss of generality, there are more advertisers than slots. If not,
add dummy advertisers with bids of value 0.)

When there is only one slot, GSP is the same as a second-price auction. How-
ever, when there is more than one slot, GSP is no longer truthful, as Figure 15.9
shows.
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Figure 15.9. The top of the figure shows an execution of GSP when adver-
tisers bid truthfully. Bidding truthfully is not an equilibrium though. For
example, if bidder 1 reduces his bid to 5, as shown in the bottom figure, then
he gets allocated to the second slot instead of the first, but his utility is higher.

Although GSP is not truthful, one of its Nash equilibria precisely corresponds
to the outcome of VCG in the following sense.

Lemma 15.5.3. Consider n competing advertisers with values vi sorted so that
v1 ≥ v2 ≥ · · · ≥ vn. Assuming truthful bidding in the VCG auction, from (15.4) we
have that bidder i’s price-per-click is

pVCG
i =

k+1∑
j=i+1

vj
cj−1 − cj

ci
. (15.5)

Then, in GSP, it is a Nash equilibrium for these advertisers to bid (b1, . . . , bn)
where b1 > pVCG

1 and bi = pVCG
i−1 for i ≥ 2.

Remark 15.5.4. For an example of this bidding strategy, see Figure 15.10.
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Figure 15.10. The top figure illustrates the allocation and payments using
VCG. The bottom figure illustrates the allocation and payments in GSP when
bidders bid so as to obtain the same allocation and payments. Bidding this
way is a Nash equilibrium for GSP.

Proof. If the advertisers bid (b1, . . . , bn), then the allocation and payments in
GSP are exactly those of VCG. Moreover, if each bidder ` 6= i bids b`, then bidding
bi is a best response for bidder i: If he bids b′i ∈ (bi−1, bi+1), then his utility will
not change. Otherwise, if he bids b′i and that yields him a different slot j, then it
will be at a price pVCG

j , which cannot increase his utility by the envy-free property
of VCG (Lemma 15.5.2). �

15.5.2.1. Advertisers differ. In sponsored search auctions carried out by search
engines, they take into account the fact that users prefer certain advertisers to
others. To model this, let fi be an appeal factor for advertiser i that affects the
probability that a user will click on an ad from that advertiser. Specifically, we
assume that the clickthrough rate of advertiser i in slot j has the form fi · cj . In
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GSP, bidders are first reordered so that b1f1 ≥ b2f2 ≥ · · · ≥ bnfn. Bidder i is then
assigned to slot i, and he is charged a price-per-click which is the minimum bid
required to retain his slot:

pi =
bi+1fi+1

fi
.

See the exercises for further details.

15.6. Back to revenue maximization

Example 15.6.1. Trips to the moon: A billionaire is considering selling
tours to the moon. The cost of building a rocket is T . There are n0 people that
have declared an interest in the trip. The billionaire wishes to set prices that will
recover his cost but does not have good information about the distribution of values
the people (bidders) have. Therefore he runs the following auction: Let n1 be the
number of bidders willing to pay T/n0. If n1 = n0, the auction ends with the sale
of a ticket to each of the n0 bidders at price T/n0. If n1 < n0, let n2 be the number
of bidders willing to pay T/n1. Iterating, if nj+1 = nj for some j, then the auction
terminates with a sale to each of these nj bidders at a price of T/nj . Otherwise,
some nj is 0 and the auction terminates with no sale.

Exercise 15.b. Show that it is a dominant strategy to be truthful in the
auction of Example 15.6.1. Also, show that if the bidders are truthful, the auction
finds the largest set of bidders that can share the target cost T equally, if there is
one.

15.6.1. Revenue maximization without priors. In the previous chapter,
we assumed that the auctioneer knew the prior distributions from which bidders’
values are drawn. In this section, we present an auction that is guaranteed to
achieve high revenue without any prior information about the bidders. We do this
in the context of a digital goods auction. These are auctions8 to sell digital goods
such as mp3s, digital video, pay-per view TV, etc. A characteristic feature of
digital goods is that the cost of reproducing the items is negligible and therefore
the auctioneer effectively has an unlimited supply of the items.

For digital goods auctions, the VCG mechanism allocates to all of the bidders
and charges them all nothing! Thus, while VCG perfectly maximizes social surplus,
it can be disastrous when the goal is to maximize revenue. We present a truthful
auction that does much better.

Definition 15.6.2. The optimal fixed-price revenue that can be obtained
from bidders with bid vector b = (b1, b2, . . . , bn) is

R∗(b) = max
p

p · |{i : bi ≥ p}|. (15.6)

Let p∗(b) denote the (smallest) optimal fixed price, i.e., the smallest p where
the maximum in (15.6) is attained.

Equivalently, R∗(b) can be defined as follows: Reorder the bidders so that
b1 ≥ b2 ≥ · · · ≥ bn. Then

R∗(b) = max
k≥1

k · bk. (15.7)

8 Economists call this the “monopoly pricing problem with constant marginal cost”.
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If the auctioneer knew the true values v = (v1, . . . , vn) of the agents, he could easily
obtain a revenue of R∗(v) by setting the price to p∗(v). But the auction which
asks the agents to submit bids and then sets the price to p∗(b) is not truthful. In
fact, no auction can approximate R∗(v) for all v.

Claim 15.6.3. Fix δ > 0. No (randomized) auction can guarantee expected
revenue which is at least δ · R∗(v) for all v.

Proof. Let n = 1, and suppose that V1 is drawn from the distribution F (x) =
1 − 1/x, for x > 1. Then by Theorem 14.9.3, no auction can obtain revenue more
than 1. On the other hand, E [R∗(V1)] =∞. �

The difficulty in the claim arose from a single high bidder. This motivates the
goal of designing an auction that achieves a constant fraction of the revenue

R∗2(b) := max
k≥2

k · bk.

Since there are no value distributions assumed, we seek to maximize revenue in
mechanisms that admit dominant strategies. By a version of the Revelation Prin-
ciple (see Notes of Chapter 14), it suffices to consider truthful mechanisms. To
obtain this, we can ensure that each agent is offered a price which does not depend
on her own bid. The following auction is a natural candidate.

The deterministic optimal price auction (DOP):
For each bidder i, compute ti = p∗(b−i), the optimal fixed

price for the remaining bidders, and use that as the threshold
bid for bidder i.

Unfortunately, this auction does not work well, as the following example shows.

Example 15.6.4. Consider a group of bidders of which 11 bidders have value
100 and 1,001 bidders have value 1. The best fixed price is 100 - at that price 11
items can be sold for a total revenue of $1,100. (The only plausible alternative is
to sell to all 1,012 bidders at price $1, which would result in a lower revenue.)

However, if we run the DOP auction on this bid vector, then for each bidder
of value 100, the threshold price that will be used is $1, whereas for each bidder of
value 1, the threshold price is $100, for a total revenue of only $11!

In fact, the DOP auction can obtain arbitrarily poor revenue compared to
R∗2(v). The key to overcoming this problem is to use randomization.

15.6.2. Revenue extraction. A key ingredient in the auction we will develop
is the notion of a revenue extractor (discussed in the context of trips to the moon,
Example 15.6.1).

Definition 15.6.5 (A revenue extractor). The revenue extractor peT(b)
with target revenue T sells to the largest set of k bidders that can equally share
the cost T and charges each T/k. If there is no such set, the revenue is $0.

Using the ascending auction procedure discussed in Example 15.6.1, we obtain
the following:

Lemma 15.6.6. The revenue extractor peT is truthful and guarantees a revenue
of T on any b such that R∗(b) ≥ T .

See Exercise 15.8 for an alternative implementation and proof.
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15.6.3. An approximately optimal auction.

Definition 15.6.7 (RSRE). The random sampling revenue extraction
auction (RSRE) works as follows:

(1) Randomly partition the bids b into two groups by flipping a fair coin for
each bidder and assigning her bid to b′ or b′′.

(2) Compute the optimal fixed-price revenue T ′ := R∗(b′) and T ′′ := R∗(b′′).
(3) Run the revenue extractors: peT ′ on b′′ and peT ′′ on b′. Thus, the target

revenue for b′′ is determined by b′ and vice versa.

Figure 15.11. This figure illustrates a possible execution of the RSRE auc-
tion when the entire set of bids is (20, 10, 10, 8, 5, 5, 5, 5, 5, 3, 1). Running the
revenue extractor pe30(b′) will not sell to anyone. Running the revenue ex-
tractor pe16(b′′) will sell to the top six bidders at a price of 16/6.

Remark 15.6.8. It seems more natural to compute the price p∗(b′) and use
that as a threshold bid for the bidders corresponding to b′′ and vice versa. The
analysis of this auction, known as the Random Sampling Optimal Price (RSOP)
auction, is more delicate. See the notes.

Theorem 15.6.9. The random sampling revenue extraction (RSRE) auction is
truthful and for all bid vectors b, the expected revenue of RSRE is at least R∗2(b)/4.
Thus, if bidders are truthful, this auction extracts at least R∗2(v)/4 in expectation.

Proof. The RSRE auction is truthful since it is simply randomizing over
truthful auctions, one for each possible partition of the bids. (Note that any target
revenue used in step (3) of the auction is independent of the bids to which it
is applied.) So we only have to lower bound the revenue obtained by RSRE on
each input b. The crucial observation is that for any particular partition of the
bids, the revenue of RSRE is at least min(T ′, T ′′). Indeed, if, say, T ′ ≤ T ′′, then
R∗2(b′′) = T ′′ is large enough to ensure that peT ′(b

′′) will extract a revenue of T ′.
Thus, we just need to analyze E(min(T ′, T ′′)). Assume that R∗2(b) = kp∗ has

k ≥ 2 winners at price p∗. Of these k winners, suppose that k′ are in b′ and k′′ are

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



NOTES 283

in b′′. Thus, T ′ ≥ k′p∗ and T ′′ ≥ k′′p∗. Therefore,

E [min(T ′, T ′′)]

kp∗
≥ E [min(k′p∗, k′′p∗)]

kp∗
=
E [min(k′, k′′)]

k
≥ 1

4

by Claim 15.6.10. �

Claim 15.6.10. If k ≥ 2 and X ∼ Bin(k, 1
2 ), then E [min(X, k −X)] ≥ k/4.

Proof. For k = 2, 3, it is easy to check that the claim holds with equality.
Suppose k ≥ 4. Then min(X, k−X) = k

2 −|X−
k
2 | and, e.g., by Appendix C, (12),

E[|X − k/2|] ≤
√

VarX =

√
k

4
≤ 1

4
. �

Remark 15.6.11. Notice that if the bidders actually had values i.i.d. from a
distribution F , then the optimal auction would be to offer each bidder the price p
that maximizes p(1−F (p)). Thus, the optimal auction would in fact be a fixed-price
auction.

Notes

The VCG mechanism is named for Vickrey [Vic61], Clarke [Cla71], and Groves [Gro79].
The most general version of VCG we present in this book is in Chapter 16. See the chapter
notes there for more on VCG, the related theory, and its applications. In this chapter, we
have focused on truthful single-parameter mechanism design, wherein each bidder’s value
for an allocation depends on only a single private real parameter vi; e.g., the bidder has
value vi for winning and value 0 for losing.

The descending auction for buying a minimum spanning tree is due to Bikhchandani
et al. [BdVSV11]. In §15.4.3, we observed that for public projects, the VCG mechanism
does not achieve budget balance. That is, the mechanism designer (the government) did
not necessarily recover the cost of building the library. Green and Laffont [GL77] showed
that no truthful mechanism can simultaneously balance the budget and maximize social
surplus.

Figure 15.12. Envy

Note that Definition 15.4.1 doesn’t capture all types of envy; e.g., the possibility of
one agent envying another agent’s value function is not addressed. For instance, consider
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284 15. TRUTHFUL AUCTIONS IN WIN/LOSE SETTINGS

two diners in a restaurant. One orders the $100 lobster. The second cannot afford that
and orders rice and beans for $10. By our formal definition, this situation is envy-free,
but clearly it is not.

The model and results on sponsored search auctions are due to Edelman, Ostrovsky,
and Schwarz [EOS07], and Varian [Var07]. Sponsored search auctions date back to the
early 1990s: The idea of allowing advertisers to bid for keywords and charging them
per click was introduced by Overture (then GoTo) in 1994. In this early incarnation,
the mechanism was “first-price”: An advertiser whose ad was clicked on paid the search
engine his bid. In the late 1990s, Yahoo! and MSN implemented the Overture scheme as
well. However, the use of first-price auctions was observed to be unstable, with advertisers
needing to constantly update their bids to avoid paying more than their value. In 2002,
Google adopted the generalized second price mechanism. Yahoo!, MSN, and Microsoft
followed suit. For a brief history of sponsored search as well as results and research
directions related to sponsored search, see [JM08] and Chapter 28 in [Nis07].

Facebook is one of the only companies selling ads online via auctions that uses the
VCG mechanism [Met15]. Possible reasons that VCG isn’t widely used are (a) it is
relatively complicated for the advertisers to understand and (b) optimizing social surplus
may not be the objective. The obvious goal for the search engines is to maximize long-
term profit. However, it is not clear what function of the current auction is the best proxy
for that. Besides profit and social surplus, other key parameters are user and advertiser
satisfaction.

In the previous chapter, we assumed the auctioneer knew the prior distributions from
which agents’ values are drawn. An attractive alternative is to design an auction whose
performance does not depend on knowledge of priors. Indeed, where do priors come from?
Typically, they come from previous similar interactions. This is problematic when markets
are small, when interactions are novel or when priors change over time. Another difficulty
is that agents may alter their actions to bias the auctioneer’s beliefs about future priors
in their favor. This is the motivation for the material in §15.6.

The first prior-free digital goods auctions and the notion of prior-free analysis of
auctions were introduced by Goldberg, Hartline, and Wright [GHW01]. Their paper shows
that any deterministic truthful auction that treats the bidders symmetrically will fail to
consistently obtain a constant fraction of the optimal fixed-price revenue, thus motivating
the need for randomization. (Aggarwal et al. [AFG+11] showed that this barrier can be
circumvented using an auction that treats the bidders asymmetrically.)

The RSOP auction (see Remark 15.6.8) proposed by [GHW01] was first analyzed
in [GHK+06]; its analysis was improved in a series of papers culminating in [AMS09].
The random sampling revenue extraction auction presented here is due to Fiat, Goldberg,
Hartline, and Karlin [FGHK02]. The key building block, revenue extraction, is due to
Moulin and Shenker [MS01].

Stronger positive results and further applications of the prior-free framework for rev-
enue maximization and cost minimization are surveyed in Chapter 13 of [Nis07] and in
Chapter 7 of [Har12]. The strongest positive results known for prior-free digital goods
auctions are due to Chen, Gravin, and Lu [CGL14]. They showed that the lower bound of
2.42 on the competitive ratio of any digital goods auction, proved in [GHKS04], is tight.

The problem considered in Exercise 15.1 was studied in [MS83]. Exercise 15.3 is

from [Nis99], Exercise 15.2 is from [NR01], and Exercise 15.10 is the analogue of Theo-

rem 14.6.1, which is due to [Mye81]. See also [GL77].

Exercises

15.1. A seller has an item that he values at vs ∈ [0, 1] and a buyer has a value
vb ∈ [0, 1] for this same item. Consider designing a mechanism for deter-
mining whether or not the seller should transfer the item to the buyer.
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Social surplus is maximized by transferring the item if vb ≥ vs and not
transferring it otherwise. How do the VCG payments depend on the values
vs and vb?

15.2. Consider a communication network, where each link is owned by a different
company (henceforth, bidder). Each bidder’s private information is the cost
of routing data along that link. A procurement auction to buy the use of
a path between two specific nodes s and t is run: Each company submits
a bid representing the minimum price that company is willing to be paid
for the use of its link. The auction consists of choosing the minimum cost
path between s and t and then paying each bidder (link owner) along that
path the maximum amount he could have bid while still being part of the
minimum cost path.
• Show that this auction is truthful.
• Construct an example in which the amount paid by the auctioneer is

Ω(n) times as large as the actual cost of the shortest path. Here n is
the number of links in the network.

15.3. There are n computers connected in a line (with computer i, with 1 < i < n,
connected to computers i− 1 and i+ 1). Each computer has private value
vi for executing a job; however, a computer can only successfully execute
the job with access to both of its neighboring links. Thus, no two adjacent
computers can execute jobs. Consider the following protocol:
• In the first, left-to-right, phase, each computer places a bid ri for

the link on its right, where r1 = v1 and ri = max(vi − ri−1, 0) for
1 < i < n.
• In the next, right-to-left, phase, each computer places a bid `i for the

link on its left, where `n = vn and `i = max(vi − `i+1, 0).
Computer i can execute its task if and only if `i > ri−1 and ri ≥ `i+1. In
this case, it “wins” both links, and its payment is ri−1 + `i+1.
(a) Show that this mechanism maximizes social surplus; that is, the set

of computers selected has the maximum total value among all subsets
that do not contain any adjacent pairs.

(b) Show that, under the assumption that any misreports by the comput-
ers are consistent with having a single value v′i, it is in each computer’s
best interest to report truthfully.

(c) Show that if the computer can misreport arbitrarily in the two phases,
then it is no longer always a dominant strategy to report truthfully;
however, reporting truthfully is a Nash equilibrium.

15.4. Consider the descending price auction described in §15.4.2. Prove that the
outcome and payments are the same as those of the VCG auction and that
it is a dominant strategy for each edge (bidder) to stay in the auction as
long as the current price is above his cost.

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms
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15.5. Consider a search engine selling advertising slots on one of its pages. There
are three advertising slots with publicly known clickthrough rates (proba-
bility that an individual viewing the webpage will click on the ad) of 0.08,
0.03, and 0.01, respectively, and four advertisers whose values per click
are 10, 8, 2, and 1, respectively. Assume that the expected value for an
advertiser to have his ad shown in a particular slot is his value times the
clickthrough rate. What is the allocation and what are the payments if the
search engine runs VCG? How about GSP?

15.6. Consider the following model for a keyword auction, slightly more general
than the version considered in the text. There are k slots and n bidders.
Each bidder has a private value vi per click and a publicly known quality
qi. The quality measures the ad-bidder (ad) dependent probability of being
clicked on. Assume that the slots have clickthrough rates c1 ≥ c2 ≥ · · · ≥ ck
and that the expected value to bidder i to be shown in slot j is qicjvi. De-
termine the VCG allocation and per click payments for this setting. (Note
that the expected utility of bidder i if allocated slot j at price-per-click of
pij is qicj(vi − pij).)

15.7. Consider the GSP auction in the setting of the previous exercise, where
bidders are assigned to slots in decreasing order of biqi, where bi is the ad-
vertiser i’s bid, with a bidder’s payment being the minimum bid he could
make to retain his slot. Prove an analogue of Lemma 15.5.3 for this setting.

15.8. Consider the following implementation of the profit extractor peT from
§15.6.2: Given the reported bids, for each bidder i separately, the auction-
eer pretends that bidder’s bid is ∞ and then, using bid vector (∞,b−i),
determines the largest k such that k bidders can pay T/k. This price is
then offered to bidder i who accepts if bi ≥ T/k and rejects otherwise.
With this formulation it is clear that the auction is truthful. However, it
is less obvious that this implements the same outcome. Show that it does.

15.9. Prove the exact formula for RSRE

E(min(k′, k′′)) =
∑

0≤i≤k

min(i, k − i)
(
k

i

)
2−k

= k

(
1

2
−
(
k − 1

bk2 c

)
2−k

)
≥ k

4
.

15.10. Let A be an auction for a win/lose setting defined by U and L, and suppose
that αi[b] is the probability that bidder i wins when the bids are b =
(b1, . . . , bn). (This expectation is taken solely over the randomness in the
auction.) Assume that, for each bidder, vi ∈ [0,∞). Prove that it is a
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dominant strategy in A for bidder i to bid truthfully if and only if, for any
bids b−i of the other bidders, the following holds:
(a) The expected allocation αi[vi,b−i] is (weakly) increasing in vi.
(b) The expected payment of bidder i is determined by the expected al-

location up to an additive constant:

pi[vi,b−i] = vi · αi[vi,b−i]−
∫ vi

0

αi[z,b−i]dz + pi[0,b−i].

Hint: The proof is analogous to that of Theorem 14.6.1.

15.11. Show that the allocation and payment rule of the VCG mechanism for
maximizing social surplus in win/lose settings satisfies conditions (a) and
(b) of the previous exercise.

15.12. Generalize the result of Exercise 15.10 to the following setting:
• Each bidder has a private value vi ≥ 0.
• Each outcome is a vector q = (q1, . . . , qn), where qi is the “quantity”

allocated to bidder i. (In a win/lose setting, each qi is either 0 or
1.) Denote by Q the set of feasible outcomes (generalizing L from
win/lose settings).
• A bidder with value vi who receives an allocation of qi and is charged
pi obtains a utility of viqi − pi.

Now let A be an auction for an allocation problem defined by U and Q,
and suppose that αi[b] is the expected quantity allocated to bidder i when
the bids are b = (b1, . . . , bn). (This expectation is taken solely over the
randomness in the auction.) Assume that, for each bidder, vi ∈ [0,∞).
Show that it is a dominant strategy in A for bidder i to bid truthfully if
and only if, for any bids b−i of the other bidders, the following holds:
(a) The expected allocation αi[vi,b−i] is (weakly) increasing in vi.
(b) The expected payment of bidder i is determined by the expected al-

location up to an additive constant:

pi[vi,b−i] = vi · αi[vi,b−i]−
∫ vi

0

αi[z,b−i]dz + pi[0,b−i].

15.13. Consider a single-item auction, but with the following alternative bidder
model. Suppose that each of n bidders has a signal, say si for bidder i,
and suppose that agent i’s value vi := vi(s1, . . . , sn) is a function of all the
signals. This captures scenarios where each bidder has different information
about the item being auctioned and weighs all of these signals, each in his
or her own way.

Suppose that there are two bidders, where v1(s1, s2) = s1 and v2(s1, s2) =
s2

1. Assume that s1 ∈ [0,∞). Show that there is no truthful social surplus
maximizing auction for this example. (A social surplus maximizing auction
must allocate the item to the bidder with the higher value, so to bidder 2
when s1 ≥ 1 and to bidder 1 when s1 < 1.)
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CHAPTER 16

VCG and scoring rules

In the previous chapter we studied the design of truthful auctions in a setting
where each bidder was either a winner or a loser in the auction. In this chapter,
we explore the more general setting of mechanism design. Mechanisms allow
for the space of outcomes to be richer than, say, simply allocating items to bidders.
The goal of the mechanism designer is to design the game (i.e., the mechanism) so
that, in equilibrium, desirable outcomes are achieved.

16.1. Examples

Example 16.1.1 (Spectrum auctions). In a spectrum auction, the govern-
ment allocates licenses for the use of some band of electromagnetic spectrum in a
certain geographic area. The participants in the auction are cell phone companies
who need such licenses to operate. Each company has a value for each combination
of licenses. The government wishes to design a procedure for allocating and pricing
the licenses that maximizes the cumulative value of the outcome to all participants.
What procedure should be used?

Figure 16.1. A spectrum auction.

Example 16.1.2 (Building roads). The state is trying to determine which
roads to build to connect a new city C to cities A and B (which already have a
road between them). The options are to build a road from A to C or a road from
B to C, both roads, or neither. Each road will cost the state $10 million to build.
Each city obtains a certain economic/social benefit for each outcome. For example,
city A might obtain a $5 million benefit from the creation of a road to city C,
but no real benefit from the creation of a road between B and C. City C, on the
other hand, currently disconnected from the others, obtains a significant benefit
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($9 million) from the creation of each road, but the marginal benefit of adding a
second connection is not as great as the benefit of creating a first connection. The
following table summarizes these values (in millions of dollars), and the cost to the
state for each option. The final row is the social surplus, the sum of the values to
the three cities plus the value to the state.

road A-C road B-C both none

city A 5 0 5 0

city B 0 5 5 0

city C 9 9 15 0

state -10 -10 -20 0

social surplus 4 4 5 0

The state’s goal might be to choose the option that maximizes social surplus,
which, for these numbers, is the creation of both roads. However, these numbers
are reported to the state by the cities themselves, who may have an incentive to
exaggerate their values, so that their preferred option will be selected. Thus, the
state would like to employ a mechanism that incentivizes truth-telling.

16.2. Social surplus maximization and the general VCG mechanism

A mechanism M selects an outcome from a set of possible outcomes A, based
on inputs from a set of agents. Each agent i has a valuation function vi : A → R
that maps the possible outcomes A to nonnegative real numbers. The quantity
vi(a) represents the value1 that i assigns to outcome a ∈ A, measured in a common
currency, such as dollars. We denote by V (a) the value the (mechanism) designer
has for outcome a. Given the reported valuation functions, the mechanism selects
an outcome and a set of payments, one per agent. We have seen the following
definition several times; we repeat it in the context of this more general setting.

Definition 16.2.1. We say that a mechanismM is truthful if, for each agent
i, each valuation function vi(·), and each possible report b−i of the other agents, it
is a dominant strategy for agent i to report his valuation truthfully. Formally, for
all b−i, all i, vi(·), and bi(·),

ui[vi,b−i|vi] ≥ ui[bi,b−i|vi],
where i’s utility2 ui[bi,b−i|vi] = vi(a(b))− pi(b). Here b = (b1(·), b2(·), . . . , bn(·)),
a(b) ∈ A is the outcome selected by M on input b, and pi(b) is the payment of
agent i.

Definition 16.2.2. The social surplus of an outcome a is
∑
i vi(a) + V (a).

The reported social surplus of an outcome a is
∑
i bi(a) + V (a).

1 See discussion in §15.4.3.
2 This is called quasilinear utility and is applicable when the value is measured in the same

units as the payments.
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VCG
Mechanism

Figure 16.2. A depiction of the VCG mechanism for the setting where
V (a) = 0 for all a ∈ A. The outcome selected is a∗(b), and the payment
of agent i is pi(b). Note that Theorem 16.2.6 holds for any choice of functions
hi(b−i) as long as it is independent of bi(·). In Definition 16.2.3, we take
hi(b−i) = maxa

∑
j 6=i bj(a). This choice guarantees that ui[vi,b−i|vi] ≥ 0 for

all vi, so long as all vi(a) ≥ 0 for all a and i.

Definition 16.2.3. The Vickrey-Clarke-Groves (VCG) mechanism, il-
lustrated in Figure 16.2, works as follows: Each agent is asked to report his valua-
tion function vi(·) and submits a function bi(·) (which may or may not equal vi(·)).
Write b = (b1(·), . . . , bn(·)). The outcome selected is

a∗ := a∗(b) = argmaxa

∑
j

bj(a) + V (a)

 ,

breaking ties arbitrarily. The payment pi(b) agent i makes is the loss his presence
causes others (with respect to the reported bids); formally,

pi(b) = max
a

∑
j 6=i

bj(a) + V (a)

−
∑
j 6=i

bj(a
∗) + V (a∗)

 . (16.1)

The first term is the total reported value the other agents would obtain if i was
absent, and the term being subtracted is the total reported value the others obtain
when i is present.

Example 16.2.4. Consider the outcome and payments for the VCG mechanism
on Example 16.1.2, assuming that the cities report truthfully.
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road A-C road B-C both none

City A 5 0 5 0

City B 0 5 5 0

City C 9 9 15 0

state −10 −10 −20 0

social surplus 4 4 5 0

surplus without A −1 4 0 0

surplus without C −5 −5 −10 0

As we saw before, the social surplus maximizing outcome would be to build
both roads, yielding a surplus of 5. What about the payments using VCG? For
city A, the surplus attained by others in A’s absence is 4 (road B-C only would be
built), whereas with city A, the surplus attained by others is 0, and therefore city
A’s payment, the harm its presence causes others, is 4. By symmetry, B’s payment
is the same. For city C, the surplus attained by others in C’s absence is 0, whereas
the surplus attained by others in C’s presence is −10, and therefore C’s payment is
10. Notice that the total payment is 18, whereas the state spends 20.

Example 16.2.5 (Employee housing). A university owns a number of homes
and plans to lease them to employees. They choose the allocation and pricing by
running a VCG auction. A set of n employees, each interested in leasing at most
one house, participates in the auction. The ith employee has value vij for a yearly
lease of the jth house. Figure 16.3 shows an example.

b

a

c
With a,b,c

house 1

house 2

house 3

2

2

3

5

1

1

2

house 1

house 2

house 3Without a

b

c
5

1

1

house 1

house 2

house 3Without b

a

c

2
3

1

Figure 16.3. The label on the edge from i on the left to j on the right is the
value vij that employee i has for a yearly lease of house j (say in thousands
of dollars). The VCG mechanism allocates according to purple shaded edges.
The payment of bidder a is 0 since in his absence house 3 is still allocated
to bidder b. The payment of bidder b is 1 since in his absence the allocation
is as follows: house 2 to bidder a and house 3 to bidder c, and therefore the
externality he imposes is 1.
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Theorem 16.2.6. VCG is a truthful mechanism for maximizing social surplus.

Proof. We prove the theorem assuming that the designer’s value V (a) for all
outcomes a is 0. See Exercise 16.1 for the general case. Fix the reports b−i of all
agents except agent i. Suppose that agent i’s true valuation function is vi(·), but
he reports bi(·) instead. Then the outcome is

a∗ = argmaxa
∑
j

bj(a)

and his payment is

pi(b) = max
a

∑
j 6=i

bj(a)−
∑
j 6=i

bj(a
∗) = C −

∑
j 6=i

bj(a
∗).

where C := maxa
∑
j 6=i bj(a) is a constant that agent i’s report has no influence

on. Thus, agent i’s utility is

ui(b|vi) = vi(a
∗)− pi(b) = vi(a

∗) +
∑
j 6=i

bj(a
∗)− C. (16.2)

On the other hand, if he were to report his true valuation function vi(·), the outcome
would be

a′ = argmaxa

vi(a) +
∑
j 6=i

bj(a)

 ,

and thus, by (16.2), his utility would be

ui[vi,b−i|vi] = vi(a
′) +

∑
j 6=i

bj(a
′)− C ≥ vi(a∗) +

∑
j 6=i

bj(a
∗)− C.

In other words, ui[b|vi] ≤ ui[vi,b−i|vi] for every b, vi(·), and i. �

Remark 16.2.7. It follows from the proof of Theorem 16.2.6 that, if all the
bids are truthful, then bidder i’s utility is ui[v|vi] = maxa∈A

∑
i vi(a) + hi(v−i),

which is the same, up to a constant, as the objective function optimized by the
mechanism designer.

The following example illustrates a few of the deficiencies of the VCG mecha-
nism.

Example 16.2.8 (Spectrum auctions, revisited). Company A has recently
entered the market and needs two licenses in order to operate efficiently enough to
compete with the established companies. Thus, A has no value for a single license
but values a pair of licenses at $1 billion. Companies B and C are already well
established and only seek to expand capacity. Thus, each one needs just one license
and values that license at $1 billion.

Suppose the government runs a VCG auction to sell two licenses. If only
companies A and B compete in the auction, the government revenue is $1 billion
(either A or B can win). However, if A, B, and C all compete, then companies
B and C will each receive a license but pay nothing. Thus, VCG revenue is not
necessarily monotonic in participation or bidder values.

A variant on this same setting illustrates another problem with the VCG mech-
anism that we saw earlier: susceptibility to collusion. Suppose that company A’s
preferences are as above and companies B and C still only need one license each,
but now they only value a license at $25 million. In this case, if companies B and
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C bid honestly, they lose the auction. However, if they collude and each bid $1
billion, they both win at a price of $0.

16.3. Scoring rules

16.3.1. Keeping the meteorologist honest. On the morning of each day
t = 1, 2, . . ., a meteorologist M reports an estimate qt of the probability that it will
rain that day. With some effort, he can determine the true probability pt that it
will rain that day, given the current atmospheric conditions, and set qt = pt. Or,
with no effort, he could just guess this probability. How can his employer motivate
him to put in the effort and report pt?

A first idea is to pay M , at the end of the tth day, the amount qt (or some
dollar multiple of that amount) if it rains and 1− qt if it shines. If pt = p > 1

2 and

M reports truthfully, then his expected payoff is p2 + (1− p)2, while if he were to
report qt = 1, then his expected payoff would be p = p2 + p(1− p), which is higher.

Another idea is to pay M an amount that depends on how calibrated his
forecast is. Suppose that M reports qt values on a scale of 1

10 , so that he has nine

choices3, namely
{
k/10 : k ∈ {1, . . . , 9}

}
. When a year has gone by, the days of that

year may be divided into nine types according to the qt value that the weatherman
declared. Suppose there are nk days that the predicted value qt is k

10 , while in fact
it rained on rk of these nk days. Then, the forecast is calibrated if rk/nk is close
to k/10 for all k. Thus, we might want to penalize the weatherman according to
the squared error of his predictions; i.e.,

9∑
k=1

(
rk
nk
− k

10

)2

.

Unfortunately, it is easy to be calibrated without being accurate: If the true prob-
ability of rain is 90% for half of the days each year and 10% the rest and M reports
50% every day, then he is calibrated for the year.

16.3.2. A solution. Suppose that the employer pays s1(qt) to M if it rains
and s2(1−qt) if it shines on day t. If pt = p and qt = q, then the expected payment
made to M on day t is

gp(q) := ps1(q) + (1− p)s2(1− q).
The employer’s goal is to choose the functions s1, s2 : [0, 1]→ R so that

gp(p) ≥ gp(q) for all q ∈ [0, 1] \ {p}. (16.3)

In this case, the pair s1(·), s2(·) is called a proper scoring rule. Suppose these
functions are differentiable. Then we must have

g′p(p) = ps′1(p)− (1− p)s′2(1− p) = 0

for all p. Define

h(p) := ps′1(p) = (1− p)s′2(1− p). (16.4)

Thus

g′p(q) = ps′1(q)− (1− p)s′2(1− q) = h(q)

(
p

q
− 1− p

1− q

)
. (16.5)

3 M ’s instruments are not precise enough to yield complete certainty.
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294 16. VCG AND SCORING RULES

Proposition 16.3.1. A pair of smooth4 functions s1, s2 define a proper scoring
rule if and only if there is a continuous h : (0, 1)→ [0,∞) such that for all p

s′1(p) =
h(p)

p
and s′2(p) =

h(1− p)
p

. (16.6)

Proof. If s1, s2 satisfy (16.6) and h(·) is nonnegative, then gp(q) is indeed
maximized at p by (16.5), since p/q − (1 − p)/(1 − q) is positive for q < p and
negative for q > p.

Conversely, if the smooth functions s1, s2 define a proper scoring rule, then h
defined by (16.4) is continuous. If there is some p for which h(p) < 0, then g′p(q) > 0
for q ↓ p, and the scoring rule is not proper at p. �

Remark 16.3.2. If h(p) > 0 for all p, then the inequality in (16.3) is strict and
the scoring rule is called strictly proper.

For example, we can apply Proposition 16.3.1 to obtain the following two well
known scoring rules:

• Letting h(p) = 1, we get the logarithmic scoring rule:

si(p) = log p.

• Letting h(p) = 2p(1− p), we get the quadratic scoring rule:

si(p) =

∫ p

0

2(1− x) dx = 2p− p2.

16.3.3. A characterization of scoring rules∗. We extend the previous dis-
cussion to the case where the prediction is not binary.

Definition 16.3.3. Consider a forecaster whose job is to assign probabilities to
n possible outcomes. Denote by ∆◦n the open simplex consisting of strictly positive
probability vectors. A scoring rule s : ∆◦n → Rn specifies the score/reward the
forecaster will receive as a function of his prediction5 and the outcome. That is, if
s(q) = (s1(q), . . . , sn(q)), then si(q) is the reward for report q = (q1, . . . , qn) if the
ith outcome occurs. The scoring rule is proper if for all p the function

gp(q) =
∑
i

pisi(q)

is maximized at q = p. Thus, a scoring rule is proper if a forecaster who believes
the probability distribution over outcomes is p maximizes his expected reward by
reporting this distribution truthfully. (If the maximum is attained only at p, then
s is called a strictly proper scoring rule.)

In order to characterize proper scoring rules, we recall the following definition6.

4 A function is smooth if it has a continuous derivative.
5 We’ve restricted predictions to the interior of the simplex because one of the most important

scoring rules, the logarithmic scoring rule, becomes −∞ at the boundary of the simplex.
6 See Appendix C for a review of basic properties of convex functions.
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16.3. SCORING RULES 295

Definition 16.3.4. Let K ⊂ Rn be a convex set. A vector v ∈ Rn is a
subgradient of a convex function f : K → R at y ∈ K if for all x ∈ K

f(x) ≥ f(y) + v · (x− y).

If f extends to a differentiable, convex function on an open neighborhood of K ⊂
Rn, then ∇f(y) is a subgradient at y for every y ∈ K.

Theorem 16.3.5. Let s : ∆◦n → Rn. Then s(·) is a proper scoring rule if and
only if there is a convex function f : ∆◦n → R such that for all q ∈ ∆◦n there is a
subgradient vq of f at q satisfying

si(q) = f(q) + (ei − q) · vq ∀i. (16.7)

Proof. Suppose that S is a proper scoring rule. Let

f(p) := p · s(p) = sup
q∈∆◦n

p · s(q).

Since f(·) is the supremum of linear functions, it is convex. Next, we fix q. Then
for all p

f(p) ≥ p · s(q) = f(q) + (p− q) · s(q).

Thus, s(q) is a subgradient at q and (16.7) holds for vq = s(q).
For the converse, suppose that s(·) is of the form (16.7) for some convex function

f . We observe that

p · s(q) =
∑
i

pi [f(q) + (ei − q) · vq] = f(q) + (p− q) · vq

= f(p)− [f(p)− f(q)− (p− q) · vq] .

In particular, p · s(p) = f(p). Since vq is a subgradient, the quantity inside the
square braces is nonnegative for all q, so p · s(q) ≤ f(p) = p · s(p). �

Remark 16.3.6. The proof implies that s(·) is a strictly proper scoring rule if
and only if there is a strictly convex function f(·) for which (16.7) holds.

Corollary 16.3.7. Using the recipe of the previous theorem, we obtain proper
scoring rules as follows:

• The quadratic scoring rule is

si(q) = 2qi −
∑
j

q2
j .

This is a scoring rule obtained using

f(q) =
∑
i

q2
i .

• The logarithmic scoring rule is

si(q) = log(qi).

This is the scoring rule obtained using

fL(q) =
∑
i

qi log qi.

Exercise 16.a. Prove Corollary 16.3.7.
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296 16. VCG AND SCORING RULES

Notes

The VCG mechanism is named for Vickrey [Vic61], Clarke [Cla71], and Groves [Gro79].
Vickrey’s work focused on single-item auctions and multiunit auction with down-sloping
valuations, Clarke studied the public project problem, and Groves presented the gen-
eral formulation of VCG. Clarke proposed the “Clarke pivot rule” - the specific constant
added to payments that guarantees individually rational mechanisms. This rule enables
the interpretation of the payments as the externalities imposed on other bidders.

“The lovely but lonely Vickrey auction” by Ausubel and Milgrom [AM06] describes
the features and deficiencies of VCG and discusses why it is used infrequently in practice.
For more on VCG, the related theory, and its many applications, see [MCWJ95, Kri09,
Mil04, Nis07, Har12, Rou13, Rou14].

In some settings, e.g., combinatorial auctions, computing the social surplus maxi-
mizing outcome is intractable. Unfortunately, the VCG payment scheme does not re-
main truthful when an approximate social surplus maximizing outcome is selected (see,
e.g., [LOS02, NR01, NR07]).

Consider the setting of §16.2 and let f be a function from valuation functions to
outcomes A. We say that the function f can be truthfully implemented if there is a
payment rule from reported valuation functions to outcomes such that for every i, vi(·),
bi(·), and b−i(·),

vi(f(vi,b−i))− p(vi,b−i) ≥ vi(f(bi,b−i))− p(bi,b−i).

In other words, the payment rule incentivizes truth-telling. We’ve already seen that the
social surplus function, f = argmaxa∈A vi(a), can be truthfully implemented. Affine
maximization, i.e., f = argmaxa∈A′

∑
i(civi(a)+γa), where A′ ⊆ A, can also be truthfully

implemented. (See Exercise 16.3.) In single-parameter domains (such as the win/lose
settings discussed in Chapter 15), where the bidder’s private information is captured by a
single number, any monotone function can be truthfully implemented. (See, e.g., [Nis07].)
In contrast, when valuation functions vi : A → R can be arbitrary, Roberts [Rob79] has
shown that the only functions that can be implemented by a truthful mechanism are affine
maximizers. For other results on this and related topics, see, e.g., [DHM79, GL77, Mye81,
GMV04, SY05, AK08].

As we have discussed, mechanism design is concerned with the design of protocols (and
auctions) so that rational participants, motivated solely by their self-interest, will end up
achieving the designer’s goal. Traditional applications of mechanism design include writing
insurance contracts, regulating public utilities and constructing the tax code. Modern
applications include scheduling tasks in the cloud, routing traffic in a network, allocating
resources in a distributed system, buying and selling goods in online marketplaces, etc.
Moreover, some of these problems are being solved on a grand scale, with mechanisms
that are implemented in software (and sometimes hardware). Even the bidding is often
done by software agents. For this reason, efficient computability has become important.

The objective of understanding to what extent appropriate incentives and computa-
tional efficiency can be achieved simultaneously was brought to the fore in a paper by
Noam Nisan and Amir Ronen, who shared the 2012 Gödel Prize7 for “laying the founda-
tions of algorithmic game theory.”

For further background on algorithmic game theory, with emphasis on its computa-
tional aspects, see [Pap01, Nis07, Har12, Rou13, Rou14] and the survey chapter by Nisan
in [YZ15].

The first scoring rule is due to Brier [Bri50], who discussed, in an equivalent form,
the quadratic scoring rule. Selten [Sel98] provides an axiomatic characterization. The

7 The Gödel Prize is an annual prize for outstanding papers in theoretical computer science.
As discussed in Chapter 8, Nisan and Ronen shared the prize with Koutsoupias, Papadimitriou,

Roughgarden, and Tardos.
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Noam Nisan

logarithmic scoring rule was first introduced by Toda [Tod63] and further developed by
Winkler and Murphy [WM68b, Win69a]. Theorem 16.3.5 is adapted from Gneiting and
Raftery [GR07].

In the text, we argued that the weather forecaster M can achieve calibration just by
knowing the overall percentage of rainy days. In fact, M can be well–calibrated without
any information about the weather, as was first shown by Foster and Vohra [FV99]. See
also [HMC00a].

Another interesting application of scoring rules is in prediction markets. See, e.g.,

[Han12, Han03, CP10].

Exercises

16.1. Generalize the VCG mechanism to handle the case where the designer has
a value V (a) for each outcome a ∈ A. Specifically, suppose the outcome
selected maximizes social surplus (see Definition 16.2.2). Show that the
payment scheme proposed in (16.1) incentivizes truthful reporting.

16.2. Consider two bidders A and B and two items a and b. Bidder A’s value for
item a is 3, for item b is 2, and for both is 5. Bidder B’s value for item a is
2, and for item b is 2, and for both is 4. Suppose that two English auctions
are run simultaneously for the two items. Show that truthful bidding is
not a dominant strategy in this auction.

16.3. Consider the setting discussed in §16.2. Fix a subset A′ of the outcomes A,
a set of numbers {γa|a ∈ A′}, and ci for each 1 ≤ i ≤ n. Design a truthful
mechanism that takes as input the agents’ reported valuation functions,
and chooses as output an outcome a ∈ A′ that maximizes γa +

∑
i civi(a).

In other words, come up with a payment scheme that incentivizes truthful
reporting.

16.4. Let f be a mapping from reported valuation functions v = (v1(·), . . . , vn(·))
to outcomes in some set A. Suppose that M is a direct revelation mech-
anism that on input v chooses outcome f(v) and sets payments pi(v) for
each agent. Show that M is truthful if and only if the following conditions
hold for each i and v−i:
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298 16. VCG AND SCORING RULES

• The payment doesn’t depend on vi, but only on the alternative se-
lected. That is, for fixed v−i and for all vi(·) such that f(vi,v−i) = a,
the payment pi is the same. Thus, for all vi with f(vi,v−i) = a, it
holds that p(vi,v−i) = pa.
• For each v−i, let A(v−i) be the range of f(·,v−i). Then f(vi,v−i) ∈

argmaxa∈A(v−i)(vi(a)− pa).

16.5. (a) Show that the scoring rule sαi (p) = αpα−1
i − (α− 1)

∑n
j=1 p

α
j is proper

for any α > 1.
(b) Show that these scoring rules interpolate between the logarithmic and
the quadratic scoring rules, by showing that

lim
α→1

sαi (p)− 1

α− 1
= log pi.

16.6. Show that the scoring rule

si(p) =
pi
||p||

is proper.
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CHAPTER 17

Matching markets

17.1. Maximum weighted matching

Consider a seller with n different items for sale and n buyers, each interested
in buying at most one of these items. Suppose that the seller prices item j at pj , so
the price vector is p = (p1, . . . , pn). Buyer i’s value for item j is vij ≥ 0; i.e., buyer
i would only be willing to buy item j if pj ≤ vij , and, in this case, his utility for
item j is vij − pj . Given these prices, each buyer i has a set of preferred items:

Di(p) = {j | ∀k vij − pj ≥ vik − pk and vij ≥ pj}. (17.1)

If each buyer with nonempty Di(p) selects one of his preferred items, a conflict
could arise between buyers who select the same item.

We will show that there is a price vector p∗ and a corresponding perfect match-
ing M between buyers and items in which each buyer is matched to one of his
preferred items (so there is no conflict). Moreover, this matching M maximizes the
social surplus: ∑

i

(viM(i) − p∗M(i)) +
∑
j

p∗j =
∑
i

viM(i).

This will follow from a generalization of König’s Lemma (Lemma 3.2.5).

Theorem 17.1.1. Given a nonnegative matrix V = (vij)n×n, let

K :=
{

(u,p) ∈ Rn × Rn : ui, pj ≥ 0 and ui + pj ≥ vij ∀i, j
}
.

Then

min
(u,p)∈K

{∑
i

ui +
∑
j

pj

}
= max

matchings M

{∑
i

vi,M(i)

}
. (17.2)

Remarks 17.1.2.

(1) The permutation maximizing the right-hand side is called a maximum
weight matching, and the pair (u,p) minimizing the left-hand side is
called a minimum (fractional) cover. The special case when the entries
of V,u, and p are all 0/1 reduces to Lemma 3.2.5.

(2) Let v = max vij . If (u,p) ∈ K, then replacing every ui > v and pj > v by
v yields a pair (ũ, p̃) ∈ K with a smaller sum. Therefore, the minimization
in (17.2) can be restricted to the set K ′ := K ∩ {(u,p) : ui, pj ≤ v ∀i, j}.
This means that a minimum cover exists because the continuous map

F (u,p) :=
n∑
i=1

(
ui + pi

)
,

defined on the closed and bounded set K ′ does indeed attain its infimum.

299

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



300 17. MATCHING MARKETS

Proof of Theorem 17.1.1. Suppose the left-hand side of (17.2) is mini-
mized at some (u∗,p∗) ∈ K. By the definition of K, the following holds for all i
and j:

u∗i + p∗j ≥ vij and therefore F (u∗,p∗) ≥
∑
i

vi,M(i) ∀ matchings M.

To prove the equality in (17.2), consider the bipartite graph G between the rows
and the columns, in which

(i, j) is an edge iff u∗i + p∗j = vij .

(In the context of the example at the beginning of this section, an edge (i, j) means
that at the prices p∗, item j is one of buyer i’s preferred items.)

If there is a perfect matching M∗ in G, we are done. If not, then by Hall’s
Theorem (3.2.2), there is a subset S of rows such that |N(S)| < |S|, where N(S)
is the set of neighbors of S in G; we will show this contradicts the definition of
(u∗,p∗). Let

ui := u∗i − δ · 1{i∈S} and pj := p∗j + δ · 1{j∈N(S)} ∀i, j,
where

δ = min
i∈S,j 6∈N(S)

u∗i + p∗j − vij > 0.

(See Figure 17.1.)

Buyers Items

decrease       by    increase     by

Figure 17.1. The figure illustrates the first part of the argument used to
show that there must be a perfect matching.

Then ui+pj ≥ vij holds for all (i, j) and, since |N(S)| < |S|, we have F (u,p) <
F (u∗,p∗). However, some ui might be negative. To rectify this, let ε = minj pj ,
and define

ũi := ui + ε ∀i and p̃j := pj − ε ∀j.
Then ũi+ p̃j ≥ vij holds for all (i, j). Since p̃j = 0 for some j and vij ≥ 0, it follows
that ũi ≥ 0 for all i. Thus, (ũ, p̃) ∈ K. Clearly, F (ũ, p̃) = F (u,p) < F (u∗,p∗),
contradicting the minimality of F (u∗,p∗). � �

Remark 17.1.3. The assumption that V is a square matrix can easily be re-
laxed. If V has fewer rows than columns, then adding rows of zeros reduces to the
square case, similarly for columns.
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17.2. Envy-free prices

Consider again n buyers and a seller with n items for sale, where vij is buyer
i’s value for item j.

Definition 17.2.1. Given the values V = (vij), 1 ≤ i, j ≤ n, and a set of
prices p = (p1, . . . , pn), the demand graph D(p) is the bipartite graph with an
edge between a buyer i and an item j if, at the prices p, item j is one of i’s most
preferred items; that is,

∀k vij − pj ≥ vik − pk and vij ≥ pj .

We say that a price vector p is envy-free if there exists a perfect matching in the
demand graph D(p).

Lemma 17.2.2. Let V = (vij)n×n, u,p ∈ Rn, all nonnegative, and let M be a
perfect matching from [n] to [n]. The following are equivalent:

(i) (u,p) is a minimum cover of V and M is a maximum weight matching
for V .

(ii) The prices p are envy-free prices, M is contained in the demand graph
D(p), and ui = viM(i) − pM(i).

Proof. (i)→(ii): In a minimum cover (u,p)

ui = max
`
vi` − p`. (17.3)

Given a minimum cover (u,p), define, as we did earlier, a graph G where (i, j) is
an edge if and only if ui + pj = vij . By (17.3), G is the demand graph for p. By
Theorem 17.1.1, the weight of a maximum weight matching in V is

∑
i ui +

∑
j pj .

Therefore ∑
i

viM(i) =
∑
i

ui +
∑
j

pj =
∑
i

(ui + pMi).

Since viM(i) ≤ ui + pM(i) for each i and since we have equality on the sum, these
must be equalities for each i, so M is contained in G = D(p).

(ii)→(i): To verify that (u,p) is a cover, observe that for all i, k, we have
ui = viM(i) − pM(i) ≥ vik − pk since M is contained in the demand graph. The
equality

∑
i ui+pM(i) =

∑
i viM(i) together with Theorem 17.1.1 implies that (u,p)

is a minimum cover and M is a maximum weight matching. �

Corollary 17.2.3. Let p be an envy-free pricing for V and let M be a perfect
matching of buyers to items. Then M is a maximum weight matching for V if and
only if it is contained in D(p).

17.2.1. Highest and lowest envy-free prices.

Lemma 17.2.4. The envy-free price vectors for V = (vij)n×n form a lattice:
Let p and q be two vectors of envy-free prices. Then, defining

a ∧ b := min(a, b) and a ∨ b := max(a, b),

the two price vectors

p ∧ q = (p1 ∧ q1, . . . , pn ∧ qn) and p ∨ q = (p1 ∨ q1, . . . , pn ∨ qn)

are also envy-free.
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Proof. It follows from Lemma 17.2.2 that p is envy-free iff there is a nonneg-
ative vector u such that (u,p) is a minimum cover of V . That is, ui + pj ≥ vij
for all (i, j) with equality along every edge (i, j) that is in some maximum weight
matching. Thus, it suffices to prove the following:

If (u,p) and (ũ, p̃) are minimum covers, then so is (u ∨ ũ,p ∧ p̃). (17.4)

Fix an edge (i, j). Without loss of generality pj = pj ∧ p̃j , so

(ui ∨ ũi) + (pj ∧ p̃j) ≥ ui + pj ≥ vij .
Moreover, if (i, j) is in a maximum weight matching, then since ui+ pj = ũi+ p̃j =
vij , the assumption pj ≤ p̃j implies that ui ≥ ũi, and hence

(ui ∨ ũi) + (pj ∧ p̃j) = ui + pj = vij .

Switching the roles of u and p in (17.4) shows that if (u,p) and (ũ, p̃) are minimum
covers, then so is (u ∧ ũ,p ∨ p̃). �

Corollary 17.2.5. Let p minimize
∑
j pj among all envy-free price vectors

for V . Then:

(i) Every envy-free price vector q satisfies pi ≤ qi for all i.
(ii) minj pj = 0.

Proof. (i) If not, then p ∧ q has lower sum than p, a contradiction.
(ii) Let (u,p) be a minimum cover. If ε = minj pj > 0, then subtracting ε from

each pj and adding ε to each ui yields a minimum cover with lower prices. �

We refer to the vector p in this corollary as the lowest envy-free price
vector. The next theorem gives a formula for these prices and the corresponding
utilities.

Theorem 17.2.6. Given an n× n nonnegative valuation matrix V , let MV

be a maximum weight matching and let ‖MV ‖ be its weight; that is, ‖MV ‖ =∑
i viMV (i). Write V−i for the matrix obtained by replacing row i of V by 0. Then

the lowest envy-free price vector p for V and the corresponding utility vector u are
given by

MV (i) = j =⇒ pj = ‖MV−i‖ − (‖MV‖ − vij), (17.5)

ui = ‖MV‖ − ‖MV−i‖ ∀i. (17.6)

Remark 17.2.7. To interpret (17.5), observe that ‖MV−i‖ is the maximum
weight matching of all agents besides i and ‖MV‖ − vij is the total value received
by these agents in the maximum matching that includes i. The difference in (17.5) is
the externality i’s presence imposes on the other agents, which is the price charged
to i by the VCG mechanism (as discussed in §16.2).

Proof. Let p := p be the lowest envy-free price vector for V , and let u := u
be the corresponding utility vector. We know that∑

k

(uk + pk) = ‖MV‖. (17.7)

If we could find another matrix for which p is still envy-free, buyer i has utility 0
and all other utilities are unchanged, then applying (17.7) to that matrix in place
of V would yield a formula for ui. A natural way to reduce buyer i’s utility is to
zero out his valuations. Below, we will prove the following:
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Claim 17.2.8. ((0,u−i),p) is a minimum cover for V−i (though p may no
longer be the lowest envy-free price vector for V−i).

With this claim in hand, we obtain∑
k

(uk + pk)− ui = ‖MV−i‖. (17.8)

Subtracting (17.8) from (17.7) yields (17.6):

ui = ‖MV‖ − ‖MV−i‖.

Thus, if MV (i) = j, then

pj = vij − ui = ‖MV−i‖ − (‖MV‖ − vij). �

Proof of Claim 17.2.8. Clearly ((0,u−i),p) is a cover for V−i. To prove
that it is a minimum cover, by Lemma 17.2.2 it suffices to show that there is a
perfect matching in the demand graph D′(p) for V−i. Observe that the only edges
that are changed relative to the demand graph D(p) for V are those incident to i.
Furthermore, edge (i, j) is in D′(p) if and only if pj = 0.

Suppose that there is no perfect matching in D′(p). By Hall’s Theorem (3.2.2),
there is a subset S of items such that its set of neighbors T in D′(p) has |T | < |S|.
Since there is a perfect matching in D(p) and the only buyer whose edges changed
is i, it must be that i 6∈ T , and therefore for all k ∈ S, we have pk > 0. But this
means that, for small enough ε, the vector (u′,p′) with

p′k := pk − ε · 1{k∈S} and u′` := u` + ε · 1{`∈T∪{i}} ∀k, `

is a minimum cover for V , a contradiction to the choice of p as the lowest envy-free
price vector. (See Figure 17.2.) �

i i

T
S

T
S

increase
   by   

decrease
   by   

increase
    by     

Buyers Items Buyers Items

Figure 17.2. The modified utility and price vector shown in the right figure
a minimum cover for V with prices that have lower sum then p, the presumed
minimum envy-free price vector. This is a contradiction.

Employing the symmetry between u and p, we obtain
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Corollary 17.2.9. Under the hypotheses of Theorem 17.2.6, the highest envy-
free price vector p for V and the corresponding utility vector u are given by

MV (i) = j =⇒ ui = ‖MV −j‖ − (‖MV‖ − vij), (17.9)

pj = ‖MV‖ − ‖MV −j‖ ∀j, (17.10)

where V −j is the matrix obtained by replacing column j of V by 0.

17.2.2. Seller valuations and unbalanced markets. In the previous sec-
tions, we implicitly assumed that the seller had value 0 for the item being sold since
the minimal acceptable price for an item was 0. The general case where the seller
has value sj for item j, i.e., would not accept a price below sj , can be reduced
to this special case by replacing each buyer valuation vij by max(vij − sj , 0). (If
buyer i is matched to item j with sj > vij , it must be at a price of 0, and no actual
transaction takes place.)

Also, we assumed that the number of buyers and items was equal. If there are
n buyers but k < n items for sale, we can add n− k dummy items of value 0 to all
buyers. Similarly, if there are j < n buyers but n items, we can add n− j dummy
buyers with value 0 for all items. In the latter case, any item that is matched to a
dummy buyer (i.e., is unsold) must have price 0.

17.3. Envy-free division of rent

Consider a group of n people that would like to find an n-room house to rent.
Suppose that person i assigns value vij to the jth room. Is there an envy-free way1

to partition the rent R, accounting for the different valuations V = (vij)?

Figure 17.3. Three roommates need to decide who will get each room and
how much of the rent each person will pay.

Clearly, if the rent is higher than the weight of every matching in V , then it
does not admit fair division. However, even if the rent is too low, there may be a
problem. For example, suppose vi1 > vi2 +R for i = 1, 2. Then whichever of renter
1 and 2 is not assigned to room 1 will envy the occupant of that room.

1 That is, a vector p1, . . . , pn of envy-free prices such that
∑
j pj = R.
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Theorem 17.2.6 and Corollary 17.2.9 provide an approach for computing the
minimum and maximum envy-free rent: Use (17.5) and (17.10) to determine the
lowest envy-free rent R =

∑
j pj and the highest envy-free rent R =

∑
j pj . By

Lemma 17.2.2, the set of envy-free prices is a convex set. Thus, for any R =
αR+ (1− α)R, with 0 < α < 1, envy-free prices are obtained by setting

pj = αp
j

+ (1− α)pj .

In the next section, we present an algorithm for finding the value of a maximum
weighted matching in a graph. This can be used to compute (17.5) and (17.10).

17.4. Finding maximum matchings via ascending auctions

Consider an auction with n bidders and n items, where each bidder wants at
most one item, and the valuations of the bidders are given by a valuation matrix
V = (vij).

• Fix the minimum bid increment δ = 1/(n+ 1).
• Initialize the prices p of all items to 0 and set the matching M of bidders

to items to be empty.
• As long as M is not perfect:

– one unmatched bidder i selects an item j in his demand set

Di(p) := {j | vij − pj ≥ vik − pk ∀k and vij ≥ pj}

and bids pj + δ on it.
(We will see that the demand set Di(p) is nonempty.)

– If j is unmatched, then M(i) := j; otherwise, say M(`) = j, remove
(`, j) from the matching and add (i, j), so that M(i) := j.

– Increase pj by δ.

Theorem 17.4.1. Suppose that the elements of the valuation matrix V = (vij)
are integers. Then the above auction terminates with a maximum weight matching
M , and the final prices p satisfy

M(i) = j =⇒ vij − pj ≥ vik − pk − δ ∀k. (17.11)

Proof. From the moment an item is matched, it stays matched forever. Also,
until an item is matched, its price is 0. Therefore, as long as a bidder is unmatched,
there must be an unmatched item, so his demand set is nonempty. Moreover,
all items in Di(p) have price at most maxj vij . Since no item’s price can exceed
maxij vij+δ and some price increases by δ each round, the auction must terminate.
When it terminates, the matching is perfect.

Suppose that in the final matching, M(i) = j. After i bid on j for the last
time, pj was increased by δ, so (17.11) held. Later, prices of other items were only
increased, so the final prices also satisfy (17.11).

Finally, let M∗ be any other perfect matching. By (17.11)∑
i

(viM(i) − pM(i)) ≥
∑
i

(viM∗(i) − pM∗(i) − δ);

i.e., ∑
i

viM(i) ≥
∑
i

viM∗(i) − nδ =
∑
i

viM∗(i) −
n

n+ 1
.
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Since the weight of any perfect matching is an integer, M must be a maximum
weight matching. �

Exercise 17.a. Argue that the number of times the main loop is executed in
the above algorithm is at most 1

δ

∑
i maxj(vij + δ).

17.5. Matching buyers and sellers

The previous theorems can be interpreted in a different context known as the
assignment game: Consider n buyers and n sellers, e.g., homeowners. (The case
where the number of buyers differs from the number of sellers can be handled as in
§17.2.2.) Let vij denote the value buyer i assigns to house j. We assume that each
house has value 0 to its owner if unsold. (We consider the case where the value is
positive at the end of the section.) If seller j sells the house to buyer i at a price of
pj , then the buyer’s utility is ui = vij − pj .

Definition 17.5.1. An outcome (M,u,p) of the assignment game is a match-
ing M between buyers and sellers and a partition (ui, pj) of the value vij on every
matched edge; i.e., ui+pj = vij , where ui, pj ≥ 0 for all i, j. If buyer i is unmatched,
we set ui = 0. Similarly, pj = 0 if seller j is unmatched.

We say the outcome is stable2 if ui + pj ≥ vij for all i, j.

By Theorem 17.1.1 we have

Proposition 17.5.2. An outcome (M,u,p) is stable if and only if M is a max-
imum weight matching for V and (u,p) is a minimum cover for V . In particular,
every maximum weight matching supports a stable outcome.

Definition 17.5.3. Let (M,u,p) be an outcome of the assignment game. De-
fine the excess βi of buyer i to be the difference between his utility and his best
outside option3; i.e., (denoting x+ := max(x, 0)),

βi := ui −max
k
{(vik − pk)+ : (i, k) 6∈M}.

Similarly, the excess sj of seller j is

sj := pj −max
`
{(v`,j − u`)+ : (`, j) 6∈M}.

The outcome is balanced if it is stable and, for every matched edge (i, j), we have
βi = sj .

Remark 17.5.4. Observe that an outcome is stable if and only if all excesses are
nonnegative. In fact, it suffices for all buyer (or all seller) excesses to be nonnegative
since in an unstable pair both buyer and seller will have a negative excess. If an
outcome is balanced, then every matched pair has reached the Nash bargaining
solution between them. (See Exercise 12.b.)

Theorem 17.5.5. Every assignment game has a balanced outcome. Moreover,
the following process converges to a balanced outcome: Start with the minimum
cover (u,p) where p is the vector of lowest envy-free prices and a maximum weight

2 In other words, an outcome is unstable if there is an unmatched pair (k, `) with value

vk` > uk + p`.
3 The best outside option is the maximum utility buyer i could obtain by matching with a

different seller and paying him his current price.
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matching M . Repeatedly pick an edge in M to balance, ensuring that every edge in
M is picked infinitely often.

We will need the following lemma.

Lemma 17.5.6. Let (M,u,p) be a stable outcome with βi ≥ sj ≥ 0 for every
(i, j) ∈ M . Pick a pair (i, j) ∈ M with βi > sj and balance the pair by performing
the update

u′i := ui −
βi − sj

2
and p′j := pj +

βi − sj
2

,

leaving all other utilities and profits unchanged. Then the new outcome is stable
and has excesses β′i = s′j and β′k ≥ s′` ≥ 0 for all (k, `) ∈M .

Proof. By construction, after the update, we have β′i = s′j . Next, consider
any other matched pair (k, `). Since p′j > pj , buyer k’s best outside option is no
better than it was before, so β′k ≥ βk. Similarly, since u′i < ui, seller `’s best outside
option is at least what it was before, so s′` ≤ s`.

The updated outcome is still stable since all buyer excesses are nonnegative
(see Remark 17.5.4): The excess of buyer i is at least half of what it was before
and the excesses of other buyers have not decreased. �

Proof of Theorem 17.5.5. Let M be a maximum weight matching. Start
with the stable outcome defined by lowest envy-free prices {p0

j} and corresponding

utilities {u0
i }. The corresponding initial buyer excess is β0

i ≥ 0 for all i, and the
initial seller excess is s0

j = 0 for all j. (If s0
j = ε > 0, then decreasing pj by ε and

increasing ui by ε is still stable and has lower prices.)
Fix a sequence {(it, jt)}t≥1 of matched pairs. At time t ≥ 1, balance the edge

(it, jt). This yields a new price vector pt and a new utility vector ut. Using the
lemma and induction, we conclude that for all t, the outcome (M,ut,pt) is stable
with βti ≥ stj for all matched pairs (i, j).

Moreover, uti ≤ u
t−1
i and ptj ≥ p

t−1
j (with equality for i 6= it and j 6= jt). Thus,

{uti}t≥1 decreases to a limit ui for all i and {ptj}t≥1 increases to a limit pj for all j.
We claim that if every edge (i, j) ∈ M occurs infinitely often in {(it, jt)}t≥1,

then the limiting (u,p) is balanced. Indeed, let (i, j) ∈ M . Observe that βi
and sj are continuous functions of (u,p). Then ut → u and pt → p imply that
βti → βi and stj → sj . Since βti = stj after every rebalancing of (i, j), i.e., when
(it, jt) = (i, j), we deduce that βi = sj . �

Remark 17.5.7. In general, balanced outcomes are not unique.

17.5.1. Positive seller values. Suppose seller j has value hj ≥ 0 for his
house. We may reduce this case to the case hj = 0 for all j as follows. Let ṽij
denote the value buyer i assigns to house j. Then vij := (ṽij −hj)+ is the surplus
generated by the sale of house j to buyer i. (If ṽij < hj , then there is no sale and
vij = 0.) If seller j sells the house to buyer i at a price of hj + pj , then the seller’s
profit is pj and the buyer’s utility is ui = ṽij − (pj +hj) = vij − pj . The previous
discussion goes through with surpluses replacing values and profits replacing prices.

17.6. Application to weighted hide-and-seek games

In this section, we show how to apply Theorem 17.1.1 to solve the following
game.
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308 17. MATCHING MARKETS

Example 17.6.1 (Generalized Hide and Seek). We consider a weighted
version of the Hide and Seek game from §3.2. Let H be an n × n nonnegative
matrix. Player II, the robber, chooses a pair (i, j) with hij > 0, and player I, the
cop, chooses a row i or a column j. The value hij > 0 represents the payoff to
the cop if the robber hides at location (i, j) and the cop chooses row i or column
j. (E.g., certain safehouses might be safer than others, and hij could represent the
probability the cop actually catches the robber if she chooses either i or j when he
is hiding at (i, j).) The game is zero-sum.

Consider the following class of player II strategies: Player II first chooses a
fixed permutation M of the set {1, . . . , n} and then hides at location (i,M(i)) with
a probability qi that he chooses. If hiM(i) is 0, then qi is 0. For example, if n = 5
and the fixed permutation M is 3, 1, 4, 2, 5, then the following matrix gives the
probability of player II hiding in different locations:

0 0 q1 0 0

q2 0 0 0 0

0 0 0 q3 0

0 q4 0 0 0

0 0 0 0 q5

Given a permutation M and a robber strategy defined by the probability vector
(q1, . . . , qn), the payoff to the cop if she chooses row i is qihiM(i), and her payoff if
she chooses column j is qM−1(j)hM−1(j),j . Obviously, against this robber strategy,
the cop will never choose a row i with hiM(i) = 0 or a column j with hM−1(j),j = 0
since these would yield her a payoff of 0. Let

vij =

{
1
hi,j

if hij > 0,

0 otherwise.

To equalize the payoffs to the cop on rows with hiM(i) > 0 and columns with
hM−1(j),j > 0 (recall Proposition 2.5.3), the robber can choose

qi =
vi,M(i)

VM
where VM =

n∑
i=1

vi,M(i).

With this choice, each row or column with positive expected payoff yields an ex-
pected payoff of 1/VM .

If the robber restricts himself to this class of strategies, then to minimize his
expected payment to the cop, he should choose the permutation M∗ that minimizes
1/VM , i.e., maximizes VM . We will show that doing this is optimal for him not just
within this restricted class of strategies but in general.

To see this, observe that by Theorem 17.1.1, there is a cover (u∗,p∗), such that
u∗i + p∗j ≥ vij , for which

n∑
i=1

(
u∗i + p∗i

)
= max

M
VM = VM∗ . (17.12)
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Now suppose that the cop assigns row i probability u∗i /VM∗ and column j
probability p∗j/VM∗ for all i, j. Against this strategy, if the robber chooses some
(i, j) (necessarily with hij > 0), then the payoff will be

(u∗i + p∗j )

VM∗
hij ≥

vijhij
VM∗

=
1

VM∗
.

We deduce that the cop can guarantee herself a payoff of at least 1/VM∗ , whereas
the permutation strategy for the robber described above guarantees that the cop’s
expected payoff is at most 1/VM∗ . Consequently, this pair of strategies is optimal.

Example 17.6.2. Consider the Generalized Hide and Seek game with proba-
bilities given by the following matrix: 1 1/2

1/3 1/5

 .

This means that the matrix V is equal to 1 2

3 5

 .

For this matrix, the maximum matching M∗ is given by the identity permuta-
tion with VM∗ = 6. This matrix has a minimum cover u = (1, 4) and p = (0, 1).
Thus, an optimal strategy for the robber is to hide at location (1, 1) with proba-
bility 1/6 and location (2, 2) with probability 5/6. An optimal strategy for the cop
is to choose row 1 with probability 1/6, row 2 with probability 2/3, and column 2
with probability 1/6. The value of the game is 1/6.

Notes

The assignment problem (a.k.a. maximum weighted bipartite matching) has a long
and glorious history which is described in detail in Section 17.5 of Schrijver [Sch03]. An
important early reference not mentioned there is Jacobi [Jac90b]. Theorem 17.1.1 was
proved by Egerváry [Ege31] and led to the development of an algorithm for the assign-
ment problem by Kuhn [Kuh55]. He called it the “Hungarian method” since the ideas
were implicit in earlier papers by König [Kön31] and Egerváry. Munkres [Mun57] later
sharpened the analysis of the Hungarian method, proving that the algorithm is strongly
polynomial, i.e., the number of steps to execute the algorithm does not depend on the
weights, rather is polynomial in n×m . For more about matching theory, including more
efficient algorithms, see, e.g., Lovász and Plummer [LP09b] and Schrijver [Sch03].

John von Neumann [vN53] considered the Generalized Hide and Seek game discussed
in §17.6, and used the Minimax Theorem applied to that game to reprove Theorem 17.1.1;
see Exercise 17.4.

The assignment game as described in §17.5 was introduced by Shapley and Shu-
bik [SS71]. They considered a cooperative game, where the payoff v(S) for a set of agents
is v(S) := maxMS

∑
(i,j)∈MS

vij (the maximum is over matchings MS of agents in S). Us-

ing the natural linear programming formulation, they proved that the core of this game,
i.e., the set of stable outcomes, is nonempty, thereby proving Proposition 17.5.2. They
also showed that the core of this game coincides with the set of competitive equilibria. (A
competitive equilibrium, also known as a Walrasian equilibrium, is a vector of prices and
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310 17. MATCHING MARKETS

an allocation of items to agents such that (a) each agent gets an item in his demand set
and (b) if an item is not allocated to an agent, then its price is 0.) Furthermore, they
proved the lattice property of outcomes (Lemma 17.2.4), thereby showing that there are
two extreme points in the core, one best for buyers and one best for sellers.

Demange [Dem82] and Leonard [Leo83] proved Theorem 17.2.6 and showed that the
mechanism that elicits buyer valuations and sets prices as prescribed is truthful. This is
the VCG mechanism applied to the setting of unit-demand agents.

The auction algorithm for finding a maximum matching from §17.4 follows Demange,
Gale, and Sotomayor [DGS86], who considered a number of auction mechanisms, building
on work of Crawford and Knoer [CK81].

Gabrielle Demange David Gale Marilda Sotomayor

There are striking analogies between some of the results in this chapter and those
on stable marriage, including the lattice structure, deferred-acceptance algorithms and
resilience to manipulation by the proposers. (However, if the matrix V is used to indicate
preferences as discussed in §10.3.1, then the unique stable matching is not necessarily a
maximum weight matching. See Exercise 10.5.) See Roth and Sotomayor [RS92] for more
on this.

Balanced outcomes were first studied by Sharon Rochford [Roc84] who proved The-
orem 17.5.5 via Brouwer’s Fixed-Point Theorem (Theorem 5.1.2). The same notion in
general graphs was studied by Kleinberg and Tardos [KT08], who showed that whenever a
stable outcome exists, there is also a balanced outcome. They also presented a polynomial
time algorithm for finding a balanced outcome when one exists. Azar et al. [ABC+09]
showed that the dynamics described in Theorem 17.5.5 converge to a balanced outcome
starting from any stable outcome. Kanoria et al. [KBB+11] prove convergence to a bal-
anced outcome for a different dynamics in which the matching changes over time.

The rent-division problem discussed in §17.3 was considered by Francis Su [Su99], who
showed that there is always an envy-free partition of rent under the “Miserly Tenants”
assumption: No tenant will choose the most expensive room if there is a free room available.
This assumption is not always reasonable; e.g., consider a house with one excellent room
that costs ε and 10 free closets. Other papers on fair rent division include [ADG91, ASÜ04].
(We have been unable to verify the results in the latter paper.)

Exercises

17.1. Given the values V = (vij), 1 ≤ i, j ≤ n, let G be a bipartite graph whose
edge set is the union of all maximum weight matchings for V . Show that
every perfect matching in G is a maximum weight matching for V .

17.2. Use Brouwer’s Fixed-Point Theorem (Theorem 5.1.2) to give a shorter proof
of the existence of balanced outcomes (Theorem 17.5.5). Hint: Order the
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edges and balance them one by one.

17.3. If A = (aij)n×n is a nonnegative matrix with row and column sums at most
1, then there is a doubly stochastic matrix Sn×n with A ≤ S entrywise.
(A doubly stochastic matrix is a nonnegative matrix with row and column
sums equal to 1.)

17.4. Let V = (vij)n×n be a nonnegative matrix. Consider the Generalized Hide

and Seek game where hij = v−1
ij (or 0 if vij = 0). Prove Theorem 17.1.1 as

follows:
(a) Prove that

min
(u,p)∈K

{∑
i

ui +
∑
j

pj

}
=

1

w

where w is the value of the game by showing that (u,p) is a cop
strategy ensuring her a payoff at least γ if and only if 1

γ (u,p) is a

cover of V .
(b) Given a robber optimal strategy (qij) (where all qij ≥ 0,

∑
i,j qij = 1,

and qij = 0 if vij = 0), verify that the the n× n matrix

A = (aij) :=

(
qijhij
w

)
has row and column sums at most 1. Clearly w

∑
i,j aijvij = 1. Then

apply the previous exercise and the Birkhoff–von Neumann Theorem
(Exercise 3.4) to complete the proof.
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CHAPTER 18

Adaptive decision making

Suppose that two players are playing multiple rounds of the same game. How
would they adapt their strategies to the outcomes of previous rounds? This fits
into the broader framework of adaptive decision making which we develop next and
later apply to games. We start with a very simple setting.

18.1. Binary prediction with expert advice and a perfect expert

Example 18.1.1. [Predicting the stock market] Consider a trader trying
to predict whether the stock market will go up or down each day. Each morning, for
T days, he solicits the opinions of n experts, who each make up/down predictions.
Based on their predictions, the trader makes a choice between up and down and
buys or sells accordingly.

In this section, we assume that at least one of the experts is perfect, that is,
predicts correctly every day, but the trader doesn’t know which one it is. What
should the trader do to minimize the number of mistakes he makes in T days?

First approach—follow the majority of leaders:
On any given day, the experts who have never made a mistake are called leaders.

By following the majority opinion among the leaders, the trader is guaranteed never
to make more than log2 n mistakes: Each mistake the trader makes eliminates at
least half of leaders and, obviously, never eliminates the perfect expert.

This analysis is tight when the minority is right each time and has size nearly
equal to that of the majority.

Second approach—follow a random leader (FRL):
Perhaps surprisingly, following a random leader yields a slightly better guar-

antee: For any n, the number of mistakes made by the trader is at most Hn − 1 in
expectation.1 We verify this by induction on the number of leaders. The case of a
single leader is clear. Consider the first day on which some number of experts, say
k > 0, make a mistake. Then by the induction hypothesis, the expected number of
mistakes the trader ever makes is at most

k

n
+ Hn−k − 1 ≤ Hn − 1.

This analysis is tight for T ≥ n. Suppose that for 1 ≤ i < n, on day i, only
expert i makes a mistake. Then the probability that the trader makes a mistake
that day is 1/(n−i+1). Thus, the expected number of mistakes he makes is Hn−1.

1 Hn :=
∑n
i=1

1
i
∈ (lnn, lnn+ 1).

312
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Remark 18.1.2. We can think of this setting as an extensive-form zero-sum
game between an adversary and a trader. The adversary chooses the daily advice
of the experts and the actual outcome on each day t, and the trader chooses a
prediction each day based on the experts’ advice. In this game, the adversary seeks
to maximize his gain, the number of mistakes the trader makes.

Next we derive a lower bound on the expected number of mistakes made by
any trader algorithm, by presenting a strategy for the adversary.

Proposition 18.1.3. In the setting of Example 18.1.1 with at least one perfect
expert, there is an adversary strategy that causes any trader algorithm to incur at
least blog2 nc/2 ≥ blog4 nc mistakes in expectation.

Proof. Let 2k ≤ n < 2k+1. Let E0 denote the set consisting of the first 2k

experts, and let Et be the subset of experts in Et−1 that predicted correctly on
day t.

Now suppose that for each t ∈ {1, . . . , k}, on day t half of the experts in Et−1

predict up and half predict down, and the rest of the experts predict arbitrarily.
Suppose also that the truth is equally likely to be up or down. Then no matter how
the trader chooses up or down, with probability 1/2, he makes a mistake. Thus, in
the first k days, any trader algorithm makes k/2 mistakes in expectation. Moreover,
after k = blog2 nc days, there is still a perfect expert, and the expected number of
mistakes made by the trader is blog2 nc/2 ≥ blog4 nc. �

To prove a matching upper bound, we will take a middle road between following
the majority of the leaders (ignoring the minority) and FRL (which weights the
minority too highly).

Third approach—a function of majority size:
Given any function p : [1/2, 1] → [1/2, 1], consider the trader algorithm Ap:

When the leaders are split on their advice in proportion (x, 1 − x) with x ≥ 1/2,
follow the majority with probability p(x).

If p(x) = 1 for all x > 1/2, we get the deterministic majority vote, while if
p(x) = x, we get FRL.

What is the largest a > 1 for which we can prove an upper bound of loga n on
the expected number of mistakes? To do so, by induction, we need to verify two
inequalities for all x ∈ [1/2, 1]:

loga(nx) + 1− p(x) ≤ loga n, (18.1)

loga(n(1− x)) + p(x) ≤ loga n. (18.2)

The left-hand side of (18.1) is an upper bound on the expected mistakes of Ap
assuming the majority is right (using the induction hypothesis) and the left-hand
side of (18.2) is an upper bound on the expected mistakes of Ap assuming the
minority is right.

Adding these inequalities and setting x = 1/2 gives 2 loga(1/2) + 1 ≤ 0; that
is, a ≤ 4. We already know this since blog4 nc is a lower bound for the worst case
performance. Setting a = 4, the two required inequalities become

p(x) ≥ 1 + log4 x,

p(x) ≤ − log4(1− x).

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



314 18. ADAPTIVE DECISION MAKING

0 1

Follow random leader

Follow majority

lower bound

upper bound

0 11
4

3
4

Figure 18.1. This figure illustrates the different strategies for the function p(x).

We can easily satisfy both of these inequalities, e.g., by taking p(x) = 1 + log4 x,
since x(1− x) ≤ 1/4. Since p(1/2) = 1/2 and p(1) = 1, concavity of the logarithm
implies that p(x) > x for x ∈ (1/2, 1).

Theorem 18.1.4. In the binary prediction problem with n experts including a
perfect expert, consider the trader algorithm Ap that follows the majority of leaders
with probability p(x) = 1 + log4 x when that majority comprises a fraction x of
leaders. Then for any horizon T , the expected number of mistakes made by Ap is
at most log4 n.

Comparing this to Proposition 18.1.3 shows that when n is a power of two, we
have identified minimax optimal strategies for the trader and the adversary.

Figure 18.2. Expert advice.
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18.2. Nobody is perfect

Unfortunately, the assumption that there is a perfect expert is unrealistic. In
the setting of Example 18.1.1, let Lti be the cumulative loss (i.e., total number of
mistakes) incurred by expert i on the first t days. Denote

Lt∗ = min
i
Lti and Sj = {t | Lt∗ = j};

i.e., Sj is the time period during which the best expert has made j mistakes.
It is natural (but far from optimal) to apply the approach of the previous

section: Suppose that, for each t, on day t + 1 the trader follows the majority
opinion of the leaders, i.e., those experts with Lti = Lt∗. Then during Sj , the
trader’s loss is at most log2 n + 1 (by the discussion of the case where there is a
perfect expert). Thus, for any number T of days, the trader’s loss is bounded by
(log2 n + 1)(LT∗ + 1). Similarly, the expected loss of FRL is at most Hn(LT∗ + 1)
and the expected loss of the third approach above is at most (log4 n+ 1)(LT∗ + 1).

Remark 18.2.1. There is an adversary strategy that ensures that any trader
algorithm that only uses the advice of the leading experts will incur an expected
loss that is at least blog4(n)cLT∗ in T steps. See Exercise 18.1.

18.2.1. Weighted majority. There are strategies that guarantee the trader
an asymptotic loss that is at most twice that of the best expert. One such strategy
is based on weighted majority, where the weight assigned to an expert is decreased
by a factor of 1− ε each time he makes a mistake.

Weighted Majority Algorithm

Fix ε ∈ [0, 1]. On each day t, associate a weight wti with each
expert i.
Initially, set w0

i = 1 for all i.
Each day t, follow the weighted majority opinion: Let Ut be
the set of experts predicting up on day t, and Dt the set predict-
ing down. Predict “up” on day t if

WU (t− 1) :=
∑
i∈Ut

wt−1
i ≥WD(t− 1) :=

∑
i∈Dt

wt−1
i

and “down” otherwise.
At the end of day t, for each i such that expert i predicted

incorrectly on day t, set

wti = (1− ε)wt−1
i . (18.3)

Thus, wti = (1− ε)Lti , where Lti is the number of mistakes made
by expert i in the first t days.

For the analysis of this algorithm, we will use the following facts.

Lemma 18.2.2. Let ε ∈ [0, 1/2]. Then ε ≤ − ln(1− ε) ≤ ε+ ε2.

Proof. Taylor expansion gives

− ln(1− ε) =
∑
k≥1

εk

k
≥ ε.
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On the other hand, ∑
k≥1

εk

k
≤ ε+

ε2

2

∞∑
k=0

εk ≤ ε+ ε2

since ε ≤ 1/2. �

Theorem 18.2.3. Suppose that there are n experts. Let L(T ) be the number of
mistakes made by the Weighted Majority Algorithm in T steps with ε ≤ 1

2 , and let

LTi be the number of mistakes made by expert i in T steps. Then for any sequence
of up/down outcomes and for every expert i, we have

L(T ) ≤ 2(1 + ε)LTi +
2 lnn

ε
. (18.4)

Proof. Let W (t) =
∑
i w

t
i be the total weight on all the experts after the tth

day. If the algorithm incurs a loss on the tth day, say by predicting up instead of
correctly predicting down, then WU (t− 1) ≥ 1

2W (t− 1). But in that case

W (t) ≤WD(t− 1) + (1− ε)WU (t− 1) ≤
(

1− ε

2

)
W (t− 1).

Thus, after a total loss of L := L(T ),

W (T ) ≤
(

1− ε

2

)L
W (0) =

(
1− ε

2

)L
n.

Now consider expert i who incurs a loss of Li := LTi . His weight at the end is

wTi = (1− ε)Li ,

which is at most W (T ). Thus

(1− ε)Li ≤
(

1− ε

2

)L
n.

Taking logs and negating, we have

− Li ln(1− ε) ≥ −L ln
(

1− ε

2

)
− lnn. (18.5)

Applying Lemma 18.2.2, we obtain that for ε ∈ (0, 1/2],

Li(ε+ ε2) ≥ L ε
2
− lnn

or

L(T ) ≤ 2(1 + ε)LTi +
2 lnn

ε
. �

Remarks 18.2.4.

(1) It follows from (18.5) that for all ε ∈ (0, 1]

L(T ) ≤ | ln(1− ε)|LTi + lnn

| ln(1− ε
2 )|

. (18.6)

If we know in advance that there is an expert with LTi = 0, then letting
ε ↑ 1 recovers the result of the first approach to Example 18.1.1.

(2) There are cases where the Weighted Majority Algorithm incurs at least
twice the loss of the best expert. In fact, this holds for every deterministic
algorithm. See Exercise 18.3.
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18.3. Multiple choices and varying costs

“I hear the voices, and I read the front page, and I know the speculation. But
I’m the decider, and I decide what is best.” George W. Bush

In the previous section, the decision maker used the advice of n experts to
choose between two options, and the cost of any mistake was the same. We saw
that a simple deterministic algorithm could guarantee that the number of mistakes
was not much more than twice that of any expert. One drawback of the Weighted
Majority Algorithm is that it treats a majority of 51% with the same reverence as
a majority of 99%. With careful randomization, we can avoid this pitfall and show
that the decision maker can do almost as well as the best expert.

In this section, the decider faces multiple options, e.g., which stock to buy,
rather than just up or down, now with varying losses. We will refer to the options
of the decider as actions: This covers the task of prediction with expert advice, as
the ith action could be “follow the advice of expert i”.

Example 18.3.1 (Route-picking). Each day you choose one of a set of n
routes from your house to work. Your goal is to minimize your travel time. However,
traffic is unpredictable, and you do not know in advance how long each route will
take. Once you choose your route, you incur a loss equal to the latency on the
route you selected. This continues for T days. For 1 ≤ i ≤ n, let LTi be the total
latency you would have incurred over the T days if you had taken route i every day.
Can we find a strategy for choosing a route each day such that the total latency
incurred is close to mini L

T
i ?

The following setup captures the stock market and route-picking examples
above and many others.

Definition 18.3.2 (Sequential adaptive decision making). On day t, a
decider D chooses a probability distribution pt = (pt1, . . . , p

t
n) over a set of n actions,

e.g., stocks to own or routes to drive. (The choice of pt can depend on the history,
i.e., the prior losses of each action and prior actions taken by D.) The losses
`t = (`t1, . . . , `

t
n) ∈ [0, 1]n of each action on day t are then revealed.

Given the history, D’s expected loss on day t is pt · `t =
∑n
i=1 p

t
i`
t
i. The total

expected loss D incurs in T days is

L
T

D =
T∑
t=1

pt · `t.

(See the chapter notes for a more precise interpretation of L
T

D in the case where
losses depend on prior actions taken by D.)

Remark 18.3.3. In stock-picking examples, D could have a fraction pti of his
portfolio in stock i instead of randomizing.

Definition 18.3.4. The regret of a decider D in T steps against loss sequence
` = {`t}Tt=1 is defined as the difference between the total expected loss of the decider
and the total loss of the best single action; that is,

RT (D, `) := L
T

D −min
i
LTi ,
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where LTi =
∑T
t=1 `

t
i. We define the regret of a decider D as

RT (D) := max
`
RT (D, `). (18.7)

Perhaps surprisingly, there exist algorithms with regret that is sublinear in
T ; i.e., the average regret per day tends to 0. We will see one below.

18.3.1. Discussion. Let ` = {`t}Tt=1 be a sequence of loss vectors. A natural
goal for a decision-making algorithm D is to minimize its worst case loss, i.e.,

max` L
T

D. But this is a dubious measure of the quality of the algorithm since on
a worst-case sequence there may be nothing any decider can do. This motivates
evaluating D by its performance gap

max
`

(L
T

D − B(`)),

where B(`) is a benchmark loss for `. The most obvious choice for the bench-

mark is B∗ =
∑T
t=1 min `ti, but this is too ambitious: E.g., if n = 2, the losses

of the first expert {`t1}Tt=1 are independent unbiased bits, and `t2 = 1 − `t1, then

E
[
L
T

D − B∗
]

= T/2 since B∗ = 0. Instead, in the definition of regret, we employ

the benchmark B(`) = mini L
T
i . At first sight, this benchmark looks weak since

why should choosing the same action every day be a reasonable option? We give
two answers: (1) Often there really is a best action and the goal of the decision
algorithm is to learn its identity without losing too much in the process. (2) Alter-
native decision algorithms (e.g., use action 1 on odd days, action 2 on even days,
except if one action has more than double the cumulative loss of the other) can be
considered experts and incorporated into the model as additional actions. We show
below that the regret of any decision algorithm is at most

√
T log n/2 when there

are n actions to choose from. Note that this grows linearly in T if n is exponential
in T . To see that this is unavoidable, recall that in the binary prediction setting,
if we include 2T experts making all possible predictions, one of them will make no
mistakes, and we already know that for this case, any decision algorithm will incur
worst-case regret at least T/2.

18.3.2. The Multiplicative Weights Algorithm. We now present an al-
gorithm for adaptive decision making, with regret that is o(T ) as T → ∞. The
algorithm is a randomized variant of the Weighted Majority Algorithm; it uses
the weights in that algorithm as probabilities. The algorithm and its analysis in
Theorem 18.3.7 deal with the case where the decider incurs losses only.

Multiplicative Weights Algorithm (MW)

Fix ε < 1/2 and n possible actions.
On each day t, associate a weight wti with the ith action.
Initially, w0

i = 1 for all i.
On day t, use the mixed strategy pt, where

pti =
wt−1
i∑
k w

t−1
k

.

For each action i, with 1 ≤ i ≤ n, observe the loss `ti ∈ [0, 1] and
update the weight wti as follows:

wti = wt−1
i exp(−ε`ti). (18.8)
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In the next proof we will use the following lemma.

Lemma 18.3.5 (Hoeffding Lemma). Suppose that X is a random variable with
distribution F such that a ≤ X ≤ a + 1 for some a ≤ 0 and E [X] = 0. Then for
all λ ∈ R,

E
[
eλX

]
≤ eλ

2/8.

For a proof, see Appendix B.2.1. For the reader’s convenience, we prove here
the following slightly weaker version.

Lemma 18.3.6. Let X be a random variable with E [X] = 0 and |X| ≤ 1. Then
for all λ ∈ R,

E
[
eλX

]
≤ eλ

2/2.

Proof. By convexity of the function f(x) = eλx, we have

eλx ≤ (1 + x)eλ + (1− x)e−λ

2
= `(x)

for x ∈ [−1, 1]. See Figure 18.3.

Figure 18.3. The blue curve is eλx. The purple curve is a line between e−λ

and eλ.

Thus, since |X| ≤ 1 and E [X] = 0, we have

E
[
eλX

]
≤ E [`(X)] =

eλ + e−λ

2
=
∞∑
k=0

λ2k

(2k)!

≤
∞∑
k=0

λ2k

2kk!
= eλ

2/2. �

Theorem 18.3.7. Consider the Multiplicative Weights Algorithm with n ac-
tions. Define

L
T

MW :=

T∑
t=1

pt · `t,
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where `t ∈ [0, 1]n. Then, for every loss sequence {`t}Tt=1 and every action i, we
have

L
T

MW ≤ LTi +
Tε

8
+

log n

ε
,

where LTi =
∑T
t=1 `

t
i. In particular, taking ε =

√
8 logn
T , we obtain that for all i,

L
T

MW ≤ LTi +

√
1

2
T log n;

i.e., the regret RT (MW, `) is at most
√

1
2T log n.

Proof. Let W t =
∑

1≤i≤n w
t
i =

∑
1≤i≤n w

t−1
i exp(−ε`ti). Then

W t

W t−1
=
∑
i

wt−1
i

W t−1
exp(−ε`ti) =

∑
i

pti exp(−ε`ti) = E
[
e−εXt

]
, (18.9)

where Xt is the loss the algorithm incurs at time t; i.e.,

P
[
Xt = `ti

]
= pti.

Let

`
t

:= E [Xt] = pt · `t.
By Hoeffding’s Lemma (Lemma 18.3.5), we have

E
[
e−εXt

]
= e−ε`

t

E
[
e−ε(Xt−`

t
)
]
≤ e−ε`

t

eε
2/8,

so plugging back into (18.9), we obtain

W t ≤ e−ε`
t

eε
2/8W t−1 and thus WT ≤ e−εL

T

eTε
2/8n.

On the other hand,

WT ≥ wTi = e−εL
T
i ,

so combining these two inequalities, we obtain

e−εL
T
i ≤ e−εL

T

eTε
2/8n.

Taking logs, we obtain

L
T

MW ≤ LTi +
Tε

8
+

log n

ε
.

�

The following proposition shows that the bound of Theorem 18.3.7 is asymp-
totically optimal as T and n go to infinity.

Proposition 18.3.8. Consider a loss sequence ` in which all losses are inde-
pendent and equally likely to be 0 or 1. Then for any decision algorithm D, its
expected regret satisfies

E [RT (D, `)] =
γn
2

√
T · (1 + o(1)) as T →∞ (18.10)

where

γn = E
[

max
1≤i≤n

Yi

]
and Yi ∼ N(0, 1).

Moreover,

γn =
√

2 log n (1 + o(1)) as n→∞. (18.11)
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Proof. Clearly, for any D, the decider’s expected loss is T/2. Expert i’s loss,
LTi , is binomial with parameters T and 1/2, and thus by the Central Limit Theorem
LTi −T/2√

T/4
converges in law to a normal (0,1) random variable Yi. Let LT∗ = mini L

T
i .

Then as T →∞,

E
[
LT∗ − T/2

]√
T/4

→ E
[

min
1≤i≤n

Yi

]
= −γn,

which proves (18.10). See Exercise 18.7 for the proof of (18.11). �

18.3.3. Gains. Consider a setting with gains instead of losses, where gt =
(gt1, . . . , g

t
n) are the gains of the n experts on day t. As in the setting of losses, let

G
T

D =
T∑
t=1

pt · gt

be the expected gain of decider D, and let GTi :=
∑T
t=1 g

t
i be the total gain of

expert i over the T days.

Corollary 18.3.9. In the setup of Definition 18.3.2, suppose that for all t,
maxi g

t
i −minj g

t
j ≤ Γ. Then the Multiplicative Weights Algorithm can be adapted

to the gains setting and yields regret at most Γ
√

T logn
2 ; i.e.

G
T

MW ≥ GTj − Γ

√
T log n

2

for all j.

Proof. Let gtmax = maxk g
t
k. Run the Multiplicative Weights Algorithm using

the (relative) losses

`ti =
1

Γ
(gtmax − gti).

By Theorem 18.3.7, we have for all actions j that

1

Γ

∑
t

∑
i

pti(g
t
max − gti) ≤

√
T log n

2
+

1

Γ

∑
t

(gtmax − gtj)

and the corollary follows. �

18.4. Using adaptive decision making to play zero-sum games

Consider a two-person zero-sum game with payoff matrix A = {aij}. Suppose T
rounds of this game are played. We can apply the Multiplicative Weights Algorithm
to the decision-making process of player II. In round t, he chooses a mixed strategy
pt; i.e., column j is assigned probability ptj . Knowing pt and the history of play,

player I chooses a row it. The loss of action j in round t is `tj = aitj , and the total

loss of action j in T rounds is LTj =
∑T
t=1 aitj .

The next proposition bounds the total loss L
T

MW =
∑T
t=1(Apt)it of player II.

Proposition 18.4.1. Suppose the m × n payoff matrix A = {aij} has entries
in [0, 1] and player II is playing according to the Multiplicative Weights Algorithm.
Let xTemp ∈ ∆m be a row vector representing the empirical distribution of actions
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taken by player I in T steps; i.e., the ith coordinate of xTemp is |{t | it=i}|T . Then the
total loss of player II satisfies

L
T

MW ≤ T min
y

xTempAy +

√
T log n

2
.

Proof. By Theorem 18.3.7, player II’s loss over the T rounds satisfies

L
T

MW ≤ LTj +

√
T log n

2
.

Since

LTj = T
T∑
t=1

ait,j
T

= T (xTempA)j ,

we have

min
j
LTj = T min

j
(xTempA)j = T min

y
xTempAy,

and the proposition follows. �

Remark 18.4.2. Suppose player I uses the mixed strategy ξ (a row vector) in
all T rounds. If player II knows this, he can guarantee an expected loss of

min
y
ξAy,

which could be lower than V , the value of the game. In this case, E(xTemp) = ξ, so
even if player II has no knowledge of ξ, the proposition bounds his expected loss by

T min
y
ξAy +

√
T log n

2
.

Next, as promised, we rederive the Minimax Theorem as a corollary of Propo-
sition 18.4.1.

Theorem 18.4.3 (Minimax Theorem). Let A = {aij} be the payoff matrix of
a zero-sum game. Let

VI = max
x

min
y

xTAy = max
x

min
j

(xTA)j

and

VII = min
y

max
x

xTAy = min
y

max
i

(Ay)i

be the safety values of the players. Then vI = vII.

Proof. By adding a constant to all entries of the matrix and scaling, we may
assume that all entries of A are in [0, 1].

From Lemma 2.6.3, we have VI ≤ VII.
Suppose that in round t player II plays the mixed strategy pt given by the

Multiplicative Weights Algorithm and player I plays a best response; i.e.,

it = argmaxi(Apt)i.

Then

`
t

= max
i

(Apt)i ≥ min
y

max
i

(Ay)i = VII,

from which

L
T

MW ≥ TVII. (18.12)
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(Note that the proof of (18.12) did not rely on any property of the Multiplicative
Weights Algorithm.) On the other hand, from Proposition 18.4.1, we have

L
T

MW ≤ T min
y

xTempAy +

√
T log n

2
,

and since miny xTempAy ≤ VI, we obtain

TVII ≤ TVI +

√
T log n

2
,

and hence VII ≤ VI . �

18.5. Adaptive decision making as a zero-sum game∗

Our goal in this section is to characterize the minimax regret in the setting of
Definition 18.3.2, i.e.,

min
D[0,1]

max
{`t}
RT (D[0,1], {`t}) (18.13)

as the value of a finite zero-sum game between a decider and an adversary. In
(18.13), the sequence of loss vectors {`t}Tt=1 is in [0, 1]nT , and D[0,1] is a sequence

of functions {pt}Tt=1, where

pt : [0, 1]n(t−1) → ∆n

maps the losses from previous rounds to the decider’s current mixed strategy over
actions.

18.5.1. Minimax regret is attained in {0,1} losses. Given {`ti : 1 ≤ i ≤
n, 1 ≤ t ≤ T}, denote by {ˆ̀ti} the sequence of independent {0, 1}-valued random
variables with

E
[
ˆ̀t
i

]
= `ti.

Theorem 18.5.1 (“Replacing losses by coin tosses”). For any decision
strategy D that is defined only for {0, 1} losses, a corresponding decision strategy

D[0,1] is defined as follows: For each t, given {`j}t−1
j=1, applying D to {ˆ̀j}t−1

j=1 yields

p̂t. Use pt = E [p̂t] at time t in D[0,1]. Then

E
[
RT (D, {ˆ̀t})

]
≥ RT (D[0,1], {`t}). (18.14)

Proof. Denote by Et [·] an expectation given the history prior to time t. We
have

Et
[
p̂t · ˆ̀t

]
= p̂t · Et

[
ˆ̀t
]

= p̂t · `t

since p̂t is determined by {ˆ̀j}t−1
j=1. Taking an expectation of both sides,

E
[
p̂t · ˆ̀t

]
= pt · `t,

i.e., the randomization does not change the expected loss of the decider. However,
it may reduce the expected loss of the best expert since

E
[
min
i
L̂Ti

]
≤ min

i
E
[
L̂Ti

]
= min

i
LTi .

Thus, ∑
t

E
[
p̂t · ˆ̀t

]
− E

[
min
i
L̂Ti

]
≥
∑
t

pt · `t −min
i
LTi ,
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yielding (18.14). �

Remark 18.5.2. From an algorithmic perspective, there is no need to compute
pt = E [p̂t] in order to implement D[0,1]’s decision at time t. Rather, D[0,1] can
simply use p̂t at step t.

Corollary 18.5.3. Minimax regret is attained in {0, 1} losses; i.e.,

min
D

max
`t∈{0,1}nT

RT (D, {`t}) = min
D[0,1]

max
`t∈[0,1]nT

RT (D[0,1], {`t}). (18.15)

Proof. Given D, construct D[0,1] as in the lemma. Since

max
`t∈{0,1}nT

RT (D, {`t}) ≥ E
[
RT (D, {ˆ̀t})

]
≥ RT (D[0,1], {`t}) ∀`t ∈ [0, 1]nT ,

we have
max

`t∈{0,1}nT
RT (D, {`t}) ≥ max

`t∈[0,1]nT
RT (D[0,1], {`t}),

and (18.15) follows. �

18.5.2. Optimal adversary strategy. The adaptive decision-making prob-
lem can be seen as a finite two-player zero-sum game as follows. The pure strate-
gies2 of the adversary (player I) are the loss vectors {`t} ∈ {0, 1}nT . An adversary
strategy L is a probability distribution over loss sequences ` := {`t}Tt=1. The pure
strategies for the decider (player II) are a := {at}Tt=1, where at : {0, 1}n(t−1) → [n]
maps losses in the first t− 1 steps to an action in the tth step. A decider strategy
D is a probability distribution over pure strategies. Let

R∗T (a, `) :=
T∑
t=1

`tat −min
i

∑
t

`ti.

By the Minimax Theorem

min
D

max
`
E [R∗T (a, `)] = max

L
min
a
E [R∗T (a, `)].

Observe that when taking an expectation over a ∼ D, with ` fixed, we get

E [R∗T (a, `)] =

T∑
t=1

pt · `t −min
i

T∑
t=1

`ti = RT (D, `),

where pt = pt({`s}t−1
s=1) is the marginal distribution over actions taken by the

decider at time t and D is the sequence of functions {pt}Tt=1.

Reducing to balanced adversary strategies

We say that an adversary strategy L is balanced if, for every time t, condi-
tioned on the history of losses through time t− 1, the expected loss of each expert
is the same, i.e., for all pairs of actions i and j, we have Et [`ti] = Et

[
`tj
]
.

For fixed a and ` ∼ L, write

R∗T (a,L) := E [R∗T (a, `)].

Proposition 18.5.4. Let R∗T (L) := minaR∗T (a,L). Then maxLR∗T (L) is at-
tained in balanced strategies.

2 These are oblivious strategies, which do not depend on previous decider actions. See the
chapter notes for a discussion of adaptive, i.e., nonoblivious, adversary strategies.
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18.5. ADAPTIVE DECISION MAKING AS A ZERO-SUM GAME∗ 325

Proof. Clearly minaR∗T (a,L) is achieved by choosing, at each time step t,
the action which has the smallest expected loss in that step, given the history of
losses. We claim that for every L that is not balanced at time t for some history,
there is an alternative strategy L̃ that is balanced at t and has

R∗T (L̃) ≥ R∗T (L).

Construct such a L̃ as follows: Pick {`t} according to L. Let ˜̀s = `s for all s 6= t.
At time t, define for all i

˜̀t
i = `tiθi

where θi is independent of the loss sequence,

θi ∈ {0, 1}, and E [θi] =
minj Et

[
`tj
]

Et [`ti]
.

(Recall that Et [·] denotes the expectation given the history prior to time t.) This
change ensures that at time t, all experts have conditional expected loss equal
to minj Et

[
`tj
]
. The best-response strategy of the decider at time t remains a best

response. The same would hold at future times if the decider was given `ti as well as
˜̀t
i. Since he has less information, his expected loss at future times cannot decrease.

Moreover, the benchmark loss minj E
[
LTj
]

is weakly reduced. �

Against a balanced adversary, the sequence of actions of the decider is irrele-
vant. Taking D to be the uniform distribution over actions (i.e., pti = 1/n for each
i and t), we have

R∗T (L) = E

[
1

n

n∑
i=1

LTi −min
i
LTi

]
, (18.16)

where  LTi =
∑T
t=1 `

t
i.

18.5.3. The case of two actions. For n = 2, equation (18.16) reduces to

R∗T (L) =
1

2
(LT1 + LT2 )−min(LT1 , L

T
2 ) =

1

2
|LT1 − LT2 |.

Write Xt = `t1 − `t2 so that Xt ∈ {−1, 0, 1} with Et [Xt] = 0. To maximize3

E|
∑T
t=1Xt| = 2R∗T (L), we let Xt ∈ {−1, 1} so that St :=

∑t
k=1Xk is a simple

random walk. In other words, `t is i.i.d., equally likely to be (1, 0) or (0, 1). Thus,
by the Central Limit Theorem, we have

RT := R∗T (L) =
1

2
E|ST | =

1

2

√
T E|Z|(1 + o(1))

with Z ∼ N(0, 1), so E|Z| =
√

2
π .

Optimal decider

3 Let {Sk} be a simple random walk on Z. Condition on |{t ≤ T : Xt 6= 0}| =
m. Then it suffices to show that E [|Sm|] ≤ E [|ST |], which holds since E [|Sm|] =

E []j ∈ {0, . . . ,m− 1} | Sj = 0].
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326 18. ADAPTIVE DECISION MAKING

To find the optimal D, we consider an initial integer gap h ≥ 0 between the
actions and define

rT (h) = min
D

max
L
E
[
LTD −min{LT1 + h, LT2 }

]
,

where LTD =
∑T
t=1 `

t · pt. By the Minimax Theorem,

rT (h) = max
L

min
D
E
[
LTD −min{LT1 + h, LT2 }

]
.

As in the discussion above, the optimal adversary is balanced, so we have

rT (h) = max
L balanced

E
[

1

2
(LT1 + LT2 )−min(LT1 + h, LT2 )

]
= max
L balanced

E
[

1

2

(
|LT1 + h− LT2 | − h

)]
.

Again, the adversary’s optimal strategy is to select `t i.i.d., equally likely to be
(1, 0) or (0, 1), so with {St} denoting a simple random walk,

rT (h) =
1

2
E [|h+ ST | − h]. (18.17)

Fix an optimal strategy D for the decider. To emphasize the dependence on T
and h, write ψT (h) = p1

1, the probability that D assigns to action 1 in the first step.
If the adversary selects the loss vector `1 = (1, 0), then the gap between the losses
of the actions becomes h+ 1, the decider’s expected loss in this step is ψT (h), and

min(LT1 + h, LT2 ) = min(L̃T−1
1 + h+ 1, L̃T−1

2 ),

where L̃T−1
i refers to losses in the time interval [2, T ]. Thus, if the optimal adversary

assigns `1 = (1, 0) positive probability, then

rT (h) = rT−1(h+ 1) + ψT (h).

On the other hand, if the adversary selects `1 = (0, 1), then the gap between
the losses becomes h− 1, the decider’s expected loss is 1− ψT (h), and

min(LT1 + h, LT2 ) = min(L̃T−1
1 + h, L̃T−1

2 + 1) = 1 + min(L̃T−1
1 + h− 1, L̃T−1

2 ).

Thus, if the optimal adversary assigns `1 = (0, 1) positive probability, then

rT (h) = rT−1(h− 1)− 1 + 1− ψT (h) = rT−1(h− 1)− ψT (h).

To maximize regret, the adversary will select `1 so that

rT (h) = max
(
rT−1(h+ 1) + ψT (h), rT−1(h− 1)− ψT (h)

)
.

At optimality, the decider will choose ψT (h) to equalize these costs4, in which case

ψT (h) =
rT−1(h− 1)− rT−1(h+ 1)

2
.

Thus by (18.17)

ψT (h) =
1

4
E
[
|h− 1 + ST−1| − |h+ 1 + ST−1|+ 2

]
.

4 This is possible since 0 ≤ rT−1(h− 1)− rT−1(h+ 1) ≤ 2 by definition.
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Since for m integer

|m− 1| − |m+ 1| =


−2 if m > 0,

0 if m = 0,

2 if m < 0,

we conclude that

ψT (h) =
E
[
2 · 1{ST−1+h=0} + 4 · 1{ST−1+h<0}

]
4

=
1

2
P [ST−1 + h = 0] + P [ST−1 + h < 0]. (18.18)

In other words, ψT (h) is the probability that the action currently lagging by h will
be the leader in T − 1 steps.

Theorem 18.5.5. For n = 2, with losses in {0, 1}, the minimax optimal regret
is

RT =

√
T

2π
(1 + o(1)).

The optimal adversary strategy is to take `t i.i.d., equally likely to be (1, 0) or
(0, 1).

The optimal decision strategy {pt}Tt=1 is determined as follows: First, p1 =
(1/2, 1/2). For t ∈ [1, T − 1], let it be an action with the smaller cumulative loss
at time t, so that Ltit = min(Lt1, L

t
2). Also, let ht = |Lt1 − Lt2|. At time t + 1,

take the action it with probability pt+1
it

= 1− ψT−t(ht) and other action 3− it with

probability pt+1
3−it = ψT−t(ht).

Let Φ denote the standard normal distribution function. By the Central Limit
Theorem,

ψT (h) = Φ(−h/
√
T )(1 + o(1)) as T →∞,

so the optimal decision algorithm is easy to implement.

18.5.4. Adaptive versus oblivious adversaries. In the preceding, we as-
sumed the adversary is oblivious, i.e., selects the loss vectors `t = `t(D) indepen-
dently of the actions of the decider. (He can still use the mixed strategy D, but
not the actual random choices.)

A more powerful adversary is adaptive, i.e., can select loss vectors `t that
depend on D and also on the previous actions a1, a2, . . . , at−1. With the (standard)
definition of regret that we used, for every D, adaptive adversaries cause the same
worst-case regret as oblivious ones; both regrets simply equal the maximum over
individual loss sequences max`RT (D, `). For this reason, it is often noted that low
regret algorithms like the Multiplicative Weights Algorithm work against adaptive
adversaries as well as against oblivious ones.

Against adaptive adversaries, the notion of regret we use here is

RT (D, `) = E

[
LTD −min

i

T∑
t=1

`ti(a1, . . . , at−1)

]
. (18.19)

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



328 18. ADAPTIVE DECISION MAKING

An alternative known as policy regret is

R̂T (D, `) = E

[
LTD −min

i

T∑
t=1

`ti(i, . . . i)

]
. (18.20)

The notion of regret in (18.19) is useful in the setting of learning from expert advice
where it measures the performance of the decider relative to the performance of the
best expert. Next we give some examples where policy regret is more appropriate.

(1) Suppose the actions of the decider lead to big and equal losses to all the
experts and hence also to him, while if he consistently followed the advice
of expert 1, then he would have 0 loss. The usual regret for his destructive
actions will be 0, but the policy regret will be large. Such a scenario could
arise, for example, if the decider is a large investor in the stock market,
whose actions affect the prices of various stocks. Another example is when
the decider launches a military campaign causing huge losses all around.

(2) Let ` = {`t} be any oblivious loss sequence. Imposing a switching cost

can be modeled as an adaptive adversary L̃ defined by

˜̀t
i = `ti + 1{at−1 6=at−2} ∀i, t.

The usual regret will ignore the switching cost, i.e.,

RT (D,L) = RT (D, L̃) ∀D,

but policy regret will take it into account.
For example, if `ti = 1{i=t mod 2} and there are two actions, then MW

will eventually choose between the two actions with nearly equal proba-
bility, so its expected cost will be T/2 + O(1) plus the expected number
of switches, which is also T/2. The cost LTi will also be T/2 plus the

expected number of switches that MW does. Thus RT (MW, L̃) = O(1).

However, with policy regret, the benchmark mini
∑T
t=1 `

t
i(i, . . . , i) = T/2,

so R̂T (MW, L̃) = T/2 +O(1).

(3) Consider a decider playing repeated Prisoner’s Dilemma (as discussed in
Example 4.1.1 and §6.4) for T rounds.

player II

cooperate defect

p
la

ye
r

I

cooperate (−1,−1) (−10, 0)

defect (0,−10) (−8,−8)

Suppose that the loss sequence ` is defined by an opponent playing Tit-
for-Tat.5 In this case, defining a0 = C, the loss of action i at time t

5 Recall Definition 6.4.2: Tit-for-Tat is the strategy in which the player cooperates in round
1 and in every round thereafter plays the strategy his opponent played in the previous round.
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is:

`ti(at−1) =


1 (at−1, i) = (C,C),

0 (at−1, i) = (C,D),

10 (at−1, i) = (D,C),

8 (at−1, i) = (D,D).

Since it is a dominant strategy to defect in Prisoner’s Dilemma,

LTdefect > LTcooperate.

(This holds for any opponent, not just Tit-for-Tat.) Thus, for any decider
strategy,

E [RT (D, `)] = E

[∑
t

1{at=C}(1{at−1=C} + 21{at−1=D})

]
.

Minimizing regret will lead the decider towards defecting every round and
incurring a loss of 8(T − 1). However, minimizing policy regret will lead
the decider to cooperate for T − 1 rounds, yielding a loss of T − 1.

Notes

A pioneering paper [Han57] on adaptive decision-making was written by Hannan in
1957. (Algorithms with sublinear regret are also known as Hannan consistent.) Adaptive
decision making received renewed attention starting in the 1990s due to its applications
in machine learning and algorithms. For in-depth expositions of this topic, see the book
by Cesa-Bianchi and Lugosi [CBL06] and the surveys by Blum and Mansour (Chapter 4
of [Nis07]) and Arora, Hazan, and Kale [AHK12a].

James Hannan

The binary prediction problem with a perfect expert is folklore and can be found, e.g.,
in [CBL06]; the sharp bound in Theorem 18.1.4 is new, to the best of our knowledge. The
Weighted Majority Algorithm and the Multiplicative Weights Algorithm from §18.2.1 and
§18.3.2 are due to Littlestone and Warmuth [LW89, LW94]. A suite of decision-making al-
gorithms closely related to the Multiplicative Weights Algorithm [FS97, Vov90, CBFH+97]
go under different names including Exponential Weights, Hedge, etc. The sharp analy-
sis in §18.3.2 is due to Cesa-Bianchi et al. [CBFH+97]. The use of the Multiplicative
Weights algorithm to play zero-sum games, discussed in §18.4, is due to Grigoriadis and
Khachiyan [GK95] and Freund and Schapire [FS97]. Theorem 18.5.5 is due to [Cov65].
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330 18. ADAPTIVE DECISION MAKING

Our exposition follows [GPS14], where optimal strategies for three experts are also de-
termined. The notion of policy regret discussed in §18.5.4 is due to Arora, Dekel, and
Tewari [ADT12]. Example (3) of §18.5.4 is discussed in [CBL06].

There are several important extensions of the material in this chapter that we have
not addressed: In the multiarmed bandit problem6 [BCB12], the decider learns his loss in
each round but does not learn the losses of actions he did not choose. Surprisingly, even
with such limited feedback, the decider can achieve regret O(

√
Tn logn) against adaptive

adversaries [ACBFS02] and O(
√
Tn) against oblivious adversaries [AB10].

Instead of comparing his loss to that of the best action, the decider could examine
how his loss would change had he swapped certain actions for others, say, each occurrence
of action i by f(i). Choosing the optimal f(·) in hindsight defines swap regret. Hart
and Mas-Colell [HMC00b] showed how to achieve sublinear swap regret using Blackwell’s
Approachability Theorem [Bla56]. Blum and Mansour [BM05] showed how to achieve
sublinear swap regret via a reduction to algorithms that achieve sublinear regret. When
players playing a game use sublinear swap regret algorithms, the empirical distributions
of play converge to a correlated equilibrium.

The adaptive learning problem of §18.3.2 can be viewed as online optimization of
linear functions. An important generalization is online convex optimization. See, e.g., the
survey by Shalev-Shwartz [SS11].

David Blackwell Julia Robinson

In 1951, Brown [Bro51] proposed a simple strategy, known as Fictitious Play or Follow
the Leader, for the repeated play of a two-person zero-sum game: At time t, each player
plays a best response to the empirical distribution of play by the opponent in the first
t − 1 rounds. Robinson [Rob51] showed that if both players use fictitious play, their
empirical distributions converge to optimal strategies. However, as discussed in §18.1,
this strategy does not achieve sublinear regret in the setting of binary prediction with
expert advice. Hannan [Han57] analyzed a variant, now known as Follow the Perturbed
Leader, in which each action/expert is initially given a random loss and then henceforth the
leader is followed. Using a different perturbation, Kalai and Vempala [KV05] showed that
this algorithm obtains essentially the same regret bounds as the Multiplicative Weights
Algorithm. ([KV05] also handles switching costs.)

Exercise 18.4 is due to Avrim Blum.

Exercises

18.1. Consider the setting of §18.2, and suppose that ut (respectively dt) is the
number of leaders voting up (respectively down) at time t. Consider a
trader algorithm A that decides up or down at time t with probability pt,

6 This problem is named after slot machines in Las Vegas known as one-armed bandits.
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where pt = pt(ut, dt). Then there is an adversary strategy that ensures that
any such trader algorithmA incurs an expected loss of at least blog4(n)cLT∗ .
Hint: Adapt the adversary strategy in Proposition 18.1.3, ensuring that no
expert incurs more than one mistake during S0. Repeat.

18.2. In the setting of learning with n experts, at least one of them perfect,
suppose each day there are q > 2, rather than two, possibilities to choose
between. Observe that the adversary can still force at least blog2(n)c/2
mistakes in expectation. Then show that the decider can still guarantee
that the expected number of mistakes is at most log4(n).

Hint: Follow the majority opinion among the ` current leaders (if such
a majority exists) with probability p(x) (where the majority has size x`, as
in the binary case); with the remaining probability (which is 1 if there is no
majority), follow a uniformly chosen random leader (not in the majority).

18.3. Show that there are cases where any deterministic algorithm in the experts
setting makes at least twice as many mistakes as the best expert; i.e., for
some T , L(T ) ≥ 2LT∗ .

18.4. Consider the following variation on the Weighted Majority Algorithm:
On each day t, associate a weight wti with each expert i.
Initially, when t = 1, set w1

i = 1 for all i.

Each day t, follow the weighted majority opinion: Let Ut be the
set of experts predicting up on day t, and Dt the set predicting
down. Predict “up” on day t if WU (t) =

∑
i∈Ut w

t
i ≥ WD(t) =∑

i∈Dt w
t
i and “down” otherwise.

On day t+1, for each i such that (a) expert i predicted incorrectly
on day t and (b) wti ≥ 1

4n

∑
j w

t
j , set

wt+1
i =

1

2
wti . (18.1)

Show that the number of mistakes made by the algorithm during every
contiguous subsequence of days, say τ, τ + 1, . . . , τ + r, is O(m + log n),
where m is the fewest number of mistakes made by any expert on days
τ, τ + 1, . . . , τ + r.

18.5. Consider the sequential adaptive decision-making setting of §18.3 with
unknown time horizon T . Adapt the Multiplicative Weights Algorithm
by changing the parameter ε over time to a new value at t = 2j for
j = 0, 1, 2, . . .. (This is a “doubling trick”.) Show that the sequence of
ε values can be chosen so that for every action i,

L
T ≤ LTi +

√
2√

2− 1

√
1

2
T log n.
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18.6. Generalize the results of §18.5.4 for n = 2 to the case where the time horizon
T is geometric with parameter δ; i.e., the process stops with probability δ
in every round:
• Determine the minimax optimal adversary and the minimax regret.
• Determine the minimax optimal decision algorithm.

18.7.S
(a) For Y a normal N(0, 1) random variable, show that

e−
y2

2 (1+o(1)) ≤ P [Y > y] ≤ e−
y2

2 as y →∞.
(b) Suppose that Y1, . . . , Yn are i.i.d. N(0, 1) random variables. Show that

E
[

max
1≤i≤n

Yi

]
=
√

2 logn (1 + o(1)) as n→∞. (18.2)

18.8. Consider an adaptive adversary with bounded memory; that is,

`ti = `ti(at−m, . . . , at−1)

for constant m. Suppose that a decider divides time into blocks of length
b and uses a fixed action, determined by the Multiplicative Weights Algo-
rithm in each block. Show that the policy regret of this decider strategy is
O(
√
Tb log n+ Tm/b). Then optimize over b.
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APPENDIX A

Linear programming

A.1. The Minimax Theorem and linear programming

Suppose that we want to determine if player I in a two-person zero-sum game
with m×n payoff matrix A = (aij) can guarantee an expected gain of at least V . It
suffices for her to find a mixed strategy x which guarantees her an expected gain of
at least V for each possible pure strategy j player II might play. These conditions
are captured by the following system of inequalities:

x1a1j + x2a2j + · · ·+ xmamj ≥ V for 1 ≤ j ≤ n.

In matrix-vector notation, this system of inequalities becomes:

xTA ≥ V eT ,

where e is an all-1’s vector. (Its length will be clear from context.)
Thus, to maximize her guaranteed expected gain, player I should find an x ∈

Rm and a V ∈ R that

maximize V

subject to xTA ≥ V eT , (A.1)∑
1≤i≤m

xi = 1,

xi ≥ 0 for all 1 ≤ i ≤ m.

This is an example of a linear programming problem (LP). Linear program-
ming is the process of minimizing or maximizing a linear function of a finite set of
real-valued variables, subject to linear equality and inequality constraints on those
variables. In the linear program (A.1), the variables are V and x1, . . . , xm.

The problem of finding the optimal strategy for player II can similarly be
formulated as a linear program (LP):

minimize V

subject to Ay ≤ V, e (A.2)∑
1≤j≤n

yj = 1,

yj ≥ 0 for all 1 ≤ j ≤ n.

Many fundamental optimization problems in engineering, economics, and trans-
portation can be formulated as linear programs. A typical example is planning
airline routes. Conveniently, there are well-known efficient (polynomial time) algo-
rithms for solving linear programs (see notes) and, thus, we can use these algorithms
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Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



334 A. LINEAR PROGRAMMING

to solve for optimal strategies in large zero-sum games. In the rest of this appendix,
we give a brief introduction to the theory of linear programming.

A.2. Linear programming basics

Example A.2.1. (The protein problem). Consider the dilemma faced by a
student-athlete interested in maximizing her protein consumption, while consuming
no more than 5 units of fat per day and spending no more than $6 a day on protein.
She considers two alternatives: steak, which costs $4 per pound and contains 2 units
of protein and 1 unit of fat per pound; and peanut butter, which costs $1 per pound
and contains 1 unit of protein and 2 units of fat per pound.

Let x1 be the number of pounds of steak she buys per day, and let x2 be the
number of pounds of peanut butter she buys per day. Then her goal is to

max 2x1 + x2

subject to 4x1 + x2 ≤ 6, (A.3)

x1 + 2x2 ≤ 5,

x1, x2 ≥ 0.

21 1

Figure A.1. The purple region in the above graphs is the feasible set for
the linear program (A.3). The largest c for which the line 2x1 + x2 = c
intersects the feasible set is c = 4. The red arrow from the origin on the right
is perpendicular to all these lines.

The objective function of a linear program is the linear function being op-
timized, in this case 2x1 + x2. The feasible set of a linear program is the set
of feasible vectors that satisfy the constraints of the program, in this case, all
nonnegative vectors (x1, x2) such that 4x1 + x2 ≤ 6 and x1 + 2x2 ≤ 5.

The left-hand side of Figure A.1 shows this set. The question then becomes:
which point in this feasible set maximizes 2x1 + x2? For (A.3), this point is
(x1, x2) = (1, 2), and at this point 2x1 + x2 = 4. Thus, the optimal solution
to the linear program is 4.
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A.2.1. Linear programming duality. The Minimax Theorem that we proved
earlier shows that for any zero-sum game, the two linear programs (A.1) and (A.2)
have the same optimal value V ∗. This is a special case of the cornerstone of linear
programming, the Duality Theorem (Theorem A.2.2 in the next section).

To motivate this theorem, let’s consider the LP from the previous section more
analytically. The first constraint of (A.3) immediately implies that the objective
function is upper bounded by 6 on the feasible set. Doubling the second constraint
gives a worse bound of 10. But combining them, we can do better.

Multiplying the first constraint by y1 ≥ 0, the second by y2 ≥ 0, and adding
the results yields

y1(4x1 + x2) + y2(x1 + 2x2) ≤ 6y1 + 5y2. (A.4)

The left-hand side of (A.4) dominates the objective function 2x1 + x2 as long as

4y1 + y2 ≥ 2, (A.5)

y1 + 2y2 ≥ 1,

y1, y2 ≥ 0 .

Thus, for any (y1, y2) that is feasible for (A.5), we have 2x1 + x2 ≤ 6y1 + 5y2 for
all feasible (x1, x2). The best upper bound we can obtain this way on the optimal
value of (A.3) is the solution to the linear program

min 6y1 + 5y2 subject to (A.5). (A.6)

This minimization problem is called the dual of LP (A.3). Observing that (y1, y2) =
(3/7, 2/7) is feasible for LP (A.6) with objective value 4, we can conclude that
(x1, x2) = (1, 2), which attains objective value 4 for the original problem, must be
optimal.

A.2.2. Duality, more formally. We say that a maximization linear program
is in standard form 1 if it can be written as

max cTx

subject to

Ax ≤ b,

x ≥ 0

 , (P)

where A ∈ Rm×n, x ∈ Rn, c ∈ Rn, and b ∈ Rm. We will call such a linear program
(P) the primal LP. We say the primal LP is feasible if the feasible set

F(P) := {x | Ax ≤ b, x ≥ 0}
is nonempty.

As in the example at the beginning of this section, if y ≥ 0 in Rm satisfies
yTA ≥ cT , then

∀x ∈ F(P), yTb ≥ yTAx ≥ cTx. (A.7)

This motivates the general definition of the dual LP

1It is a simple exercise to convert from nonstandard form (such as a game LP) to standard
form. For example, an equality constraint such as a1x1 + a2x2 + · · ·+ anxn = b can be converted
to two inequalities: a1x1+a2x2+ · · ·+anxn ≥ b and a1x1+a2x2+ · · ·+anxn ≤ b. A ≥ inequality

can be converted to a ≤ inequality and vice versa by multiplying by −1. A variable x that is
not constrained to be nonnegative, can be replaced by the difference x′ − x′′ of two nonnegative
variables, and so on.
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min bTy

subject to

yTA ≥ cT ,

y ≥ 0,

 (D)

where y ∈ Rm. As with the primal LP, we say the dual LP is feasible if the set

F(D) := {y | yTA ≥ cT ; y ≥ 0}
is nonempty.

It is easy to check that the dual of the dual LP is the primal LP.2

Theorem A.2.2 (The Duality Theorem of Linear Programming). Sup-
pose that A ∈ Rm×n, x, c ∈ Rn, and y,b ∈ Rm. If F(P) and F(D) are nonempty,
then:

• bTy ≥ cTx for all x ∈ F(P) and y ∈ F(D). (This is called weak
duality.)
• (P) has an optimal solution x∗, (D) has an optimal solution y∗, and

cTx∗ = bTy∗.

Remark A.2.3. The proof of the Duality Theorem is similar to the proof of
the Minimax Theorem. This is not accidental; see the chapter notes.

Corollary A.2.4 (Complementary Slackness). Let x∗ be feasible for (P)
and let y∗ be feasible for (D). Then the following two statements are equivalent:

(1) x∗ is optimal for (P) and y∗ is optimal for (D).
(2) For each i such that

∑
1≤j≤n aijx

∗
j < bi we have y∗i = 0, and for each j

such that cj <
∑

1≤i≤m y
∗
i aij we have x∗j = 0.

Proof. Feasibility of y∗ and x∗ implies that∑
j

cjx
∗
j ≤

∑
j

x∗j
∑
i

y∗i aij =
∑
i

y∗i
∑
j

aijx
∗
j ≤

∑
i

biy
∗
i . (A.8)

By the Duality Theorem, optimality of x∗ and y∗ is equivalent to having equal-
ity hold throughout (A.8). Moreover, by feasibility, for each j we have cjx

∗
j ≤

x∗j
∑
i y
∗
i aij , and for each i we have y∗i

∑
j aijx

∗
j ≤ biy

∗
i . Thus, equality holds in

(A.8) if and only if (2) holds. �

A.2.3. An interpretation of a primal/dual pair. Consider an advertiser
about to purchase advertising space in a set of n newspapers, and suppose that cj
is the price of placing an ad in newspaper j. The advertiser is targeting m different
types of users, for example, based on geographic location, interests, age, and gender,
and wants to ensure that, on average, bi users of type i will see the ad. Denote
by aij the number of type i users expected to see each ad in newspaper j. The
advertiser must decide how many ads to place in each newspaper in order to meet
his various demographic targets at minimum cost. To this end, the advertiser solves
the following linear program, where xj is the number of ad slots from newspaper j
that she will purchase:

2A standard form minimization LP can be converted to a maximization LP (and vice versa)
by observing that minimizing bTy is the same as maximizing −bTy, and ≥ inequalities can be

converted to ≤ inequalities by multiplying the inequality by −1.
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min
∑

1≤j≤n

cjxj

subject to
∑

1≤j≤n

aijxj ≥ bi for all 1 ≤ i ≤ m, (A.9)

x1, x2 . . . , xn ≥ 0.

The dual program is

max
∑

1≤i≤m

biyi

subject to
∑

1≤i≤m

yiaij ≤ cj for all 1 ≤ j ≤ n, (A.10)

y1, y2 . . . , ym ≥ 0.

This dual program has a nice interpretation: Consider an online advertising
exchange that matches advertisers with display ad slots. The exchange needs to
determine yi, how much to charge the advertiser for each impression (displayed ad)
shown to a user of type i. Observing that yiaij is the expected cost of reaching the
same number of type i users online that would be reached by placing a single ad in
newspaper j, we see that if the prices yi are set so that

∑
1≤i≤m yiaij ≤ cj , then

the advertiser can switch from advertising in newspaper j to advertising online,
reaching the same combination of user types without increasing her cost. If the
advertiser switches entirely from advertising in newspapers to advertising online,
the exchange’s revenue will be ∑

1≤i≤m

biyi.

The Duality Theorem says that the exchange can price the impressions so as
to satisfy (A.10) and incentivize the advertiser to switch, while still ensuring that
its revenue

∑
i biyi (almost) matches the total revenue of the newspapers.

Moreover, Corollary A.2.4 implies that if inequality (A.9) is not tight for user
type i in the optimal solution of the primal, i.e.,

∑
1≤j≤n aijxj > bi, then yi = 0

in the optimal solution of the dual. In other words, if the optimal combination
of ads the advertiser buys from the newspapers results in the advertisement being
shown to more users of type i than necessary, then in the optimal pricing for the
exchange, impressions shown to users of type i will be provided to the advertiser for
free. This means that the exchange concentrates its fixed total charges on the user
types which correspond to tight constraints in the primal. Thus, the advertiser can
switch to advertising exclusively on the exchange without paying more and without
sacrificing any of the “bonus” advertising the newspapers were providing.

(The fact that some impressions are free may seem counterintuitive since pro-
viding ads has a cost, but it is a consequence of the assumption that the exchange
maximizes revenue from this advertiser. In reality, the exchange would maximize
profit, and these goals are equivalent only when the cost of production is zero.)

Finally, the other consequence of Corollary A.2.4 is that if xj > 0, i.e., some
ads were purchased from newspaper j, then the corresponding dual constraint must
be tight, i.e.,

∑
1≤i≤m yiaij = cj .
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A.2.4. The proof of the Duality Theorem∗. Weak duality follows from
(A.7). We complete the proof of the Duality Theorem in two steps. First, we will use
the Separating Hyperplane Theorem to show that supx∈F(P) cTx = infy∈F(D) bTy,
and then we will show that the sup and inf above are attained. For the first step,
we will need the following lemma.

Lemma A.2.5. Let A ∈ Rm×n, and let S = {Ax | x ≥ 0}. Then S is closed.

Proof. If the columns of A are linearly independent, then A : Rn 7→ W =
A(Rn) is invertible, so there is a linear inverse L : W 7→ Rn, from which

{Ax | x ≥ 0} = L−1{x ∈ Rn | x ≥ 0},

which is closed by continuity of L.
Otherwise, if the columns A(j) of A are dependent, then we claim that

{Ax | x ≥ 0} =

n⋃
k=1

{ n∑
j=1

zjA
(j) | z ≥ 0, zk = 0

}
.

To see this, observe that there is λ 6= 0 such that Aλ = 0. Without loss of
generality, λj < 0 for some j; otherwise, negate λ. Given x ∈ Rn, x ≥ 0, find
the largest t ≥ 0 such that x + tλ ≥ 0. For this t, some xk + tλk = 0. Thus,
Ax = A(x + tλ) ∈ {

∑n
j=1 zjA

(j) | z ≥ 0, zk = 0}.
Using induction on n, we see that {Ax | x ≥ 0} is the union of a finite number

of closed sets, which is closed. �

Next, we establish the following “alternative” theorem known as Farkas’ Lemma,
from which the proof of duality will follow.

Lemma A.2.6 (Farkas’ Lemma – 2 versions). Let A ∈ Rm×n and b ∈ Rm.
Then

(1) Exactly one of the following holds:
(a) There exists x ∈ Rn such that Ax = b and x ≥ 0 or
(b) there exists y ∈ Rm such that yTA ≥ 0 and yTb < 0.

(2) Exactly one of the following holds:
(a) There exists x ∈ Rn such that Ax ≤ b and x ≥ 0 or
(b) there exists y ∈ Rm such that yTA ≥ 0, yTb < 0 and y ≥ 0.

Proof. Part (1): (See Figure A.2 for a visualization of Part (1).) We first
show by contradiction that (a) and (b) can’t hold simultaneously: Suppose that x
satisfies (a) and y satisfies (b). Then

0 > yTb = yTAx ≥ 0,

a contradiction.
We next show that if (a) is infeasible, then (b) is feasible: Let S = {Ax | x ≥ 0}.

Then S is convex, and by Lemma A.2.5, it is closed. In addition, b 6∈ S since (a) is
infeasible. Therefore, by the Separating Hyperplane Theorem, there is a hyperplane
that separates b from S; i.e., yTb < a and yT z ≥ a for all z ∈ S. Since 0 is in
S, a ≤ 0 and therefore yTb < 0. Moreover, all entries of yTA are nonnegative: If
not, say the kth entry is negative, then by taking xk arbitrarily large and xi = 0 for
i 6= k, the inequality yTAx ≥ a would be violated for some x ≥ 0. Thus, it must
be that yTA ≥ 0.
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Figure A.2. The figure illustrates the two cases (1)(a) and (1)(b) of Farkas’
Lemma. The shaded region represents all positive combinations of the columns
of A.

Part (2): We apply Part (1) to an equivalent pair of systems. The existence of
an x ∈ Rn such that Ax ≤ b and x ≥ 0 is equivalent to the existence of an x ≥ 0
in Rn and v ≥ 0 in Rm such that

Ax + Iv = b ,

where I is the m×m identity matrix. Applying Part (1) to this system means that
either it is feasible or there is a y ∈ Rm such that

yTA ≥ 0,

Iy ≥ 0,

yT b < 0,

which is precisely equivalent to (b). �

Corollary A.2.7. Under the assumptions of Theorem A.2.2,

sup
x∈F(P)

cTx = inf
y∈F(D)

bTy.

Proof. Suppose that supx∈F(P) cTx < γ. Then {Ax ≤ b; −cTx ≤ −γ;

x ≥ 0} is infeasible, and therefore by Part (2) of Farkas’ Lemma, there is (y, λ) ≥ 0
in Rm+1 such that yTA− λcT ≥ 0 and yTb− λγ < 0. Since there is an x ∈ F(P),
we have

0 ≤ (yTA− λcT )x ≤ yTb− λcTx

and therefore λ > 0. We conclude that y/λ is feasible for (D), with objective value
strictly less than γ. �

To complete the proof of the Duality Theorem, we need to show that the sup
and inf in Corollary A.2.7 are attained. This will follow from the next theorem.

Theorem A.2.8. Let A ∈ Rm×n and b ∈ Rm. Denote

F(P=) = {x ∈ Rn |x ≥ 0 and Ax = b}.
(i) If F(P=) 6= ∅ and sup{cTx |x ∈ F(P=)} <∞, then this sup is attained.
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(ii) If F(P) 6= ∅ and sup{cTx |x ∈ F(P)} <∞, then this sup is attained.

The proof of (i) will show that the sup is attained at one of a distinguished,
finite set of points in F(P=) known as extreme points or vertices.

Definition A.2.9.

(1) Let S be a convex set. A point x ∈ S is an extreme point of S if
whenever x = αu + (1− α)v with u,v ∈ S and 0 < α < 1, we must have
x = u = v.

(2) If S is the feasible set of a linear program, then S is convex; an extreme
point of S is called a vertex.

We will need the following lemma.

Lemma A.2.10. Let x ∈ F(P=). Then x is a vertex of F(P=) if and only if
the columns {A(j) | xj > 0} are linearly independent.

Proof. Suppose x is not extreme; i.e., x = αv + (1 − α)w, where v 6= w,
0 < α < 1, and v,w ∈ F(P=). Thus, A(v −w) = 0 and v −w 6= 0. Observe that
vj = wj = 0 for all j 6∈ S, where S = {j | xj > 0}, since vj , wj ≥ 0. We conclude

that the columns {A(j) | xj > 0} are linearly dependent.

For the other direction, suppose that the vectors {A(j) | xj > 0} are linearly
dependent. Then there is w 6= 0 such that Aw = 0 and wj = 0 for all j 6∈ S. Then
for ε sufficiently small x± εw ∈ F(P=), and therefore x is not extreme. �

Lemma A.2.11. Suppose that sup{cTx |x ∈ F(P=)} <∞. Then for any point
x ∈ F(P=), there is a vertex x̃ ∈ F(P=) with cT x̃ ≥ cTx.

Proof. We show that if x is not a vertex, then there exists x′ ∈ F(P=) with
a strictly larger number of zero entries than x, such that cTx′ ≥ cTx. This step
can be applied only a finite number of times before we reach a vertex that satisfies
the conditions of the lemma.

Let S = {j|xj > 0}. If x is not a vertex, then the columns {A(j)|j ∈ S} are

linearly dependent and there is a vector λ 6= 0 such that
∑
j λjA

(j) = Aλ = 0 with
λj = 0 for j 6∈ S.

Without loss of generality, cTλ ≥ 0 (if not, negate λ). Consider the vector
x̂(t) = x + tλ. For t ≥ 0, we have cT x̂(t) ≥ cTx and Ax̂(t) = b. For t sufficiently
small, x̂(t) is also nonnegative and thus feasible.

If there is j ∈ S such that λj < 0, then there is a positive t such that x̂(t) is
feasible with strictly more zeros than x, so we can take x′ = x̂(t).

The same conclusion holds if λj ≥ 0 for all j and cTλ = 0; simply negate λ
and apply the previous argument.

To complete the argument, we show that the previous two cases are exhaustive:
if λj ≥ 0 for all j and cTλ > 0, then x̂(t) ≥ 0 for all t ≥ 0 and limt→∞ cT x̂(t) =∞,
contradicting the assumption that the objective value is bounded on F(P=). �

Proof of Theorem A.2.8. Part (i): Lemma A.2.11 shows that if the linear
program

maximize cTx subject to x ∈ F(P=)

is feasible and bounded, then for every feasible solution, there is a vertex with
at least that objective value. Thus, we can search for the optimum of the linear
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program by considering only vertices of F(P=). Since there are only finitely many,
the optimum is attained.

Part (ii): We apply the reduction from Part (2) of the Farkas’ Lemma to show
that the linear program (P) is equivalent to a program of the type considered in
Part (1) with a matrix (A; I) in place of A. �

A.3. Notes

There are many books on linear programming; for an introduction, see [MG07]. As
mentioned in the notes to Chapter 2, linear programming duality is due to von Neumann.

Linear programming problems were first formulated by Fourier in 1827. In 1939,
Kantorovich [Kan39] published a book on applications of linear programming and sug-
gested algorithms for their solution. He shared the 1975 Nobel Prize in Economics with
T. Koopmans “for their contributions to the theory of optimum allocation of resources.”

Dantzig’s development of the Simplex Algorithm in 1947 (see [Dan51a]) was sig-
nificant as, for many real-world linear programming problems, it was computationally
efficient. Dantzig was largely motivated by the need to solve planning problems for the
air force. See [Dan82] for the history of linear programming up to 1982. In 1970, Klee
and Minty [KM72] showed that the Simplex Algorithm could require exponential time in
the worst case. Leonid Khachiyan [Kha80] developed the first polynomial time algorithm
in 1979; The New York Times referred to this paper as “the mathematical Sputnik.” In
1984, Narendra Karmarkar [Kar84] introduced a more efficient algorithm using interior
point methods. These are just a few of the high points in the extensive research literature
on linear programming.

We showed that the Minimax Theorem follows from linear programming duality. In
fact, the converse also holds; see, e.g., [Dan51b, Adl13].

Exercises

A.1. Prove that linear programs (A.1) and (A.2) are dual to each other.

A.2. Prove Theorem 17.1.1 using linear programming duality and the Birkhoff –
von Neumann Theorem (Exercise 3.4).
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APPENDIX B

Some useful probability tools

B.1. The second moment method

Lemma B.1.1. Let X be a nonnegative random variable. Then

P(X > 0) ≥ (E[X])2

E[X2]
.

Proof. The lemma follows from this version of the Cauchy-Schwarz inequality:

(E[XY ])2 ≤ E
[
X2]E[Y 2] . (B.1)

Applying (B.1) to X and Y = 1X>0, we obtain

(E[X])2 ≤ E
[
X2]E[Y 2] = E

[
X2]P(X > 0) .

Finally, we prove (B.1). Without loss of generality E
[
X2
]

and E
[
Y 2
]

are both positive.

Letting U = X/
√
E[X2] and V = Y/

√
E[Y 2] and using the fact that 2UV ≤ U2 + V 2, we

obtain
2E[UV ] ≤ E

[
U2]+ E

[
V 2] = 2.

Therefore,
(E[UV ])2 ≤ 1,

which is equivalent to (B.1). �

B.2. The Hoeffding-Azuma Inequality

Lemma B.2.1 (Hoeffding Lemma [Hoe63]). Suppose that X is a random variable with
distribution F such that a ≤ X ≤ a + 1 for some a ≤ 0 and E [X] = 0. Then for any
λ ∈ R,

E
[
eλX

]
≤ eλ

2/8.

Proof. This proof is from [BLM13]. Let

Ψ(λ) = logE
[
eλX

]
.

Observe that

Ψ′(λ) =
E
[
XeλX

]
E [eλX ]

=

∫
xdFλ,

where

Fλ(u) =

∫ u
−∞ e

λxdF∫∞
−∞ e

λxdF
.

Also,

Ψ′′(λ) =
E
[
eλX

]
E
[
X2eλX

]
−
(
E
[
XeλX

])2
(E [eλX ])2

=

∫
x2dFλ −

(∫
xdFλ

)2

= Var(Xλ),

where Xλ has law Fλ.
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For any random variable Y with a ≤ Y ≤ a+ 1, we have

Var(Y ) ≤ E

[(
Y − a− 1

2

)2
]
≤ 1

4
.

In particular,
|Ψ′′(λ)| ≤ 1/4

for all λ. Since Ψ(0) = Ψ′(0) = 0, it follows that |Ψ′(λ)| ≤ |λ|
4

, and thus

Ψ(λ) ≤
∣∣∣∣∫ λ

0

θ

4
dθ

∣∣∣∣ =
λ2

8

for all λ. �

Theorem B.2.2 (Hoeffding-Azuma Inequality [Hoe63]). Let St =
∑t
i=1Xi be a mar-

tingale; i.e., E [St+1|Ht] = St where Ht = (X1, X2, . . . , Xt) represents the history. If all
|Xt| ≤ 1, then

P [St ≥ R] ≤ e−R
2/2t.

Proof. Since − 1
2
≤ Xt+1

2
≤ 1

2
, the previous lemma gives

E
[
eλXt+1 |Ht

]
≤ e

(2λ)2

8 = eλ
2/2,

so

E
[
eλSt+1 |Ht

]
= eλStE

[
eλXt+1 |Ht

]
≤ eλ

2/2eλSt .

Taking expectations,

E
[
eλSt+1

]
≤ eλ

2/2E
[
eλSt

]
,

so by induction on t

E
[
eλSt

]
≤ etλ

2/2.

Finally, by Markov’s Inequality,

P [St ≥ R] = P
[
eλSt ≥ eλR

]
≤ e−λRetλ

2/2.

Optimizing, we choose λ = R/t, so

P [St ≥ R] ≤ e−R
2/2t. �
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APPENDIX C

Convex functions

We review some basic facts about convex functions:

(1) A function f : [a, b]→ R is convex if for all x, z ∈ [a, b] and α ∈ (0, 1) we have

f(αx+ (1− α)z) ≤ αf(x) + (1− α)f(z). (C.1)

f(x)

f(z)

Figure C.1. A convex function f .

(2) The definition implies that the supremum of any family of convex functions is
convex.

3

2
1

Figure C.2. The supremum of three convex functions.

344
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C. CONVEX FUNCTIONS 345

(3) For x < y in [a, b] denote by S(x, y) = f(y)−f(x)
y−x the slope of f on [x, y]. Con-

vexity of f is equivalent to the inequality

S(x, y) ≤ S(y, z)

holding for all x < y < z in [a, b].
(4) For x < y < z, the inequality in (3) is equivalent to S(x, y) ≤ S(x, z) and to

S(x, z) ≤ S(y, z). Thus, for f convex in [a, b], the slope S(x, y) is (weakly)
monotone increasing in x and in y as long as x, y are in [a, b]. This implies
continuity of f in (a, b).

(5) It follows from (3) and the Mean Value Theorem that if f is continuous in [a, b]
and has a (weakly) increasing derivative in (a, b), then f is convex in [a, b].

(6) The monotonicity in (4) implies that a convex function f in [a, b] has an increas-
ing right derivative f ′+ in [a, b) and an increasing left derivative f ′− in (a, b]. Since
f ′+(x) ≤ f ′−(y) for any x < y, we infer that f is differentiable at every point of
continuity in (a, b) of f ′+.

(7) Since increasing functions can have only countably many discontinuities, a con-
vex function is differentiable with at most countably many exceptions. The
convex function f(x) =

∑
n≥1 |x − 1/n|/n2 indeed has countably many points

of nondifferentiability.
(8) Definition: We say that s ∈ R is a subgradient of f at x if

f(y) ≥ f(x) + s · (y − x) ∀y ∈ [a, b]. (C.2)

The right-hand side as a function of y is called a supporting line of f at x.
See Figure C.3 and Figure C.4

(9) If s(t) is a subgradient of f at t for each t ∈ [a, b], then

s(y)(x− y) ≤ f(x)− f(y) ≤ s(x)(x− y) ∀x, y ∈ [a, b]. (C.3)

These inequalities imply that s(·) is weakly increasing and f(·) is continuous on
[a, b].

(10) Fact: Let f : [a, b] → R be any function. Then f has a subgradient for all
x ∈ [a, b] if and only if f is convex and continuous on [a, b].
Proof:
=⇒: f is the supremum of affine functions (the supporting lines). Continuity
at the endpoints follows from the existence of a subgradient at these points.
⇐=: By (4), any s ∈ [f ′−(x), f ′+(x)] is a subgradient.

(11) Proposition: If s(x) is a subgradient of f at x for every x ∈ [a, b], then

f(t) = f(a) +

∫ t

a

s(x) dx ∀t ∈ [a, b].

Proof: By translation, we may assume that a = 0. Fix t ∈ (0, b] and n > 1.
Define

tk :=
kt

n
.

For x ∈ [tk−1, tk) , define

gn(x) = s(tk−1) and hn(x) = s(tk).

Then gn(·) ≤ s(·) ≤ hn(·) in [0, t), so∫ t

0

gn(x) dx ≤
∫ t

0

s(x) dx ≤
∫ t

0

hn(x) dx. (C.4)

By (C.3),

t

n
s(tk−1) ≤ f(tk)− f(tk−1) ≤ t

n
s(tk) ∀k ∈ [1, n].
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Summing over k ∈ [1, n] yields∫ t

0

gn(x) dx ≤ f(t)− f(0) ≤
∫ t

0

hn(x) dx. (C.5)

Direct calculation gives that∫ t

0

hn(x) dx−
∫ t

0

gn(x) dx = [s(t)− s(0)]
t

n
,

so by (C.4) and (C.5), we deduce that∣∣∣∣f(t)− f(0)−
∫ t

0

s(x) dx

∣∣∣∣ ≤ [s(t)− s(0)]
t

n
.

Taking n→∞ completes the proof.

f(t)

Figure C.3. The line `t(·) is a supporting line at t and f ′+(t) is a subgradient
of f at t.

t

f(t)

Figure C.4. A collection of supporting lines at t.
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pq

f(p)

f(q)

Figure C.5

(12) Jensen’s inequality: If f : [a, b] → R is convex and X is a random variable
taking values in [a, b], then f(E [X]) ≤ E [f(X)]. (Note that for X taking just
two values, this is the definition of convexity.)
Proof: Let `(·) be a supporting line for f at E [X]. Then by linearity of expec-
tation,

f(E [X]) = `(E [X]) = E [`(X)] ≤ E [f(X)].

(13) The definition (C.1) of convex functions extends naturally to any function de-
fined on a convex set K in a vector space. Observe that the function f : K → R
is convex if and only if for any x,y ∈ K, the function

Ψ(t) = f(tx + (1− t)y)

is convex on [0, 1]. It follows that

Ψ(1) ≥ Ψ(0) + Ψ′+(0);

i.e., for all x,y ∈ K,

f(x) ≥ f(y) +∇f(y) · (x− y). (C.6)

A vector v ∈ Rn is a subgradient of a convex function f : Rn → R at y if
for all x

f(x) ≥ f(y) + v · (x− y).

If f is differentiable at y, then the only subgradient is ∇f(y).
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APPENDIX D

Solution sketches for selected exercises

Chapter 2

2.a. Consider the betting game with the following payoff matrix:

player II

L R
p
la

y
er

I

T 0 2

B 5 1

Draw graphs for this game analogous to those shown in Figure 2.2, and
determine the value of the game.

Solution sketch.
Suppose that player I plays T with probability x1 and B with probability 1−

x1, and suppose that player II plays L with probability y1 and R with probability
1− y1. (We note that in this game there is no saddle point.)

0 1

2

5

1

1/6
Player II’s mixed strategy

Expected
loss

of player II
: when player I         
  plays B 

 : when player I
   plays T

Worst-case
     loss

0 1

2

5

1

Player I’s mixed strategy

Expected
gain

of player I

: when player II   
  plays L

Worst-case
     gain

2/3

: when player II
  plays R

Figure D.1. The left side of the figure shows the worst-case expected gain of
player I as a function of her mixed strategy (where she plays T with probability
x1 and B with probability 1−x1). This worst-case expected gain is maximized
when she plays T with probability 2/3 and B with probability 1/3. The
right side of the figure shows the worst-case expected loss of player II as a
function of his mixed strategy when he plays L with probability y1 and R
with probability 1 − y1. The worst-case expected loss is minimized when he
plays L with probability 1/6 and R with probability 5/6.

348
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Reasoning from player I’s perspective, her expected gain is 2(1 − y2) for
playing the pure strategy T , and 4y2 + 1 for playing the pure strategy B. Thus,
if she knows y2, she will pick the strategy corresponding to the maximum of
2(1 − y2) and 4y2 + 1. Player II can choose y2 = 1/6 so as to minimize this
maximum, and the expected amount player II will pay player I is 5/3. This is
the player II strategy that minimizes his worst-case loss. See Figure D.1 for an
illustration.

From player II’s perspective, his expected loss is 5(1 − x1) if he plays the
pure strategy L and 1 + x1 if he plays the pure strategy R, and he will aim to
minimize this expected payout. In order to maximize this minimum, player I will
choose x1 = 2/3, which again yields an expected gain of 5/3.

2.c. Prove that if equation (2.9) holds, then player I can safely ignore row i.

Solution sketch. Consider any mixed strategy x for player I, and use it to con-
struct a new strategy z in which zi = 0, z` = x` + β`xi for ` ∈ I, and zk = xk for
k 6∈ I ∪ {i}. Then, against player II’s j-th strategy

(zTA− xTA)j =
∑
`∈I

(x` + β`xi − x`)a`j − xiaij ≥ 0.

2.e. Two players each choose a number in [0, 1]. If they choose the same number, the
payoff is 0. Otherwise, the player that chose the lower number pays $1 to the
player who chose the higher number, unless the higher number is 1, in which case
the payment is reversed. Show that this game has no mixed Nash equilibrium.
Show that the safety values for players I and II are −1 and 1 respectively.

Solution sketch. Given a mixed strategy F ∈ ∆ for player I and given ε > 0, find
a point α such that F (α) > 1 − ε. Then taking G supported in [α, 1) yields a
payoff of at least 1− ε to player II.

2.6. Given a 5 × 5 zero-sum game, such as the following, how would you quickly
determine by hand if it has a saddle point:

20 1 4 3 1

2 3 8 4 4

10 8 7 6 9

5 6 1 2 2

3 7 9 1 5


?

Solution sketch. A simple approach is to “star” the maximum element in each
column and underline the minimum element in each row. (If there is more than
one, star/underline all of them.) Any element in the matrix that is both starred
and underlined is a saddle point. In the example below, the 6 at position (3, 4)
is a saddle point.
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20∗ 1 4 3 1

2 3 8 4 4

10 8∗ 7 6∗ 9∗

5 6 1 2 2

3 7 9∗ 1 5



2.17. Consider a directed graph G = (V,E) with nonnegative weights wij on each edge
(i, j). Let Wi =

∑
j wij . Each player chooses a vertex, say i for player I and j

for player II. Player I receives a payoff of wij if i 6= j and loses Wi −wii if i = j.
Thus, the payoff matrix A has entries aij = wij − 1{i=j}Wi. If n = 2 and the
wij ’s are all 1, this game is called Matching Pennies.

• Show that the game has value 0.

Solution sketch.
∑
j aij = 0 for all i, so by giving all vertices equal weight,

player II can ensure a loss of at most 0.
Conversely, for any strategy y ∈ ∆n for player II, player I can select action
i with yi = mink yk, yielding a payoff of∑

j

aijyj =
∑
j

wij(yj − yi) ≥ 0.

• Deduce that for some x ∈ ∆n, xTA = 0.

Solution sketch. By the Minimax Theorem, ∃x ∈ ∆n with xA ≥ 0. Since
xA1 = 0, we must have xA = 0.

2.19. Prove that if set G ⊆ Rd is compact and H ⊆ Rd is closed, then G+H is closed.
(This fact is used in the proof of the Minimax Theorem to show that the set K
is closed.)

Solution sketch. Suppose that xn + yn → z, where xn ∈ G and yn ∈ H for all n.
Then there is a subsequence xnk → x ∈ G; we infer that ynk → z − x, whence
z − x ∈ H.

2.20. Find two sets F1, F2 ⊂ R2 that are closed such that F1 − F2 is not closed.

Solution sketch. F1 = {xy ≥ 1}, F2 = {x = 0}, F1 + F2 = {x > 0}.

2.21. Consider a zero-sum game A and suppose that π and σ are permutations of player
I’s strategies {1, . . . ,m} and player II’s strategies {1, . . . , n}, respectively, such
that

aπ(i)σ(j) = aij (D.1)

for all i and j. Show that there exist optimal strategies x∗ and y∗ such that
x∗i = x∗π(i) for all i and y∗j = y∗σ(j) for all j.
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Solution sketch. First, observe that there is an ` such that π` is the identity
permutation (since there must be k > r with πk = πr, in which case ` = k − r).
Let (πx)i = xπ(i) and (σy)j = yσ(j).

Let Ψ(x) = miny xTAy. Since (πx)TA(σy) = xTAy, we have Ψ(x) = Ψ(πx)
for all x ∈ ∆m. Therefore, for all y ∈ ∆n(

1

`

`−1∑
k=0

πkx

)T
Ay ≥ 1

`

`−1∑
k=0

Ψ(πkx) = Ψ(x).

Thus, if x is optimal, so is x∗ = 1
`

∑`−1
k=0 π

kx. Clearly πx∗ = x∗.

2.22. Player I chooses a positive integer x > 0 and player II chooses a positive integer
y > 0. The player with the lower number pays a dollar to the player with the
higher number unless the higher number is more than twice larger in which case
the payments are reversed.

A(x, y) =


1 if y < x ≤ 2y or x < y/2,

−1 if x < y ≤ 2x or y < x/2,

0 if x = y.

Find the unique optimal strategy in this game.

Solution sketch. 1 strictly dominates any x > 4, and 4 strictly dominates 3. Re-
stricting to 1, 2, and 4, we get Rock-Paper-Scissors.

Chapter 4

4.6. Show that there is no pure Nash equilibrium, only a unique mixed one, and both
commitment strategy pairs have the property that the player who did not make
the commitment still gets the Nash equilibrium payoff.

player II

C D

p
la

y
er

I

A (6,−10) (0, 10)

B (4, 1) (1, 0)

Solution sketch. In this game, there is no pure Nash equilibrium (one of the
players always prefers another strategy, in a cyclic fashion). For mixed strategies,
if player I plays (A,B) with probabilities (p, 1 − p) and player II plays (C,D)
with probabilities (q, 1 − q), then the expected payoffs are 1 + 3q − p + 3pq for
player I and 10p + q − 21pq for player II. We easily get that the unique mixed
equilibrium is p = 1/21 and q = 1/3, with payoffs 2 for player I and 10/21 for
player II.

If player I can make a commitment, then by choosing p = 1/21 − ε for
some small ε > 0, she will make player II choose q = 1, and the payoffs will be
4 + 2/21− 2ε for player I and 10/21 + 11ε for player II. If player II can make a
commitment, then by choosing q = 1/3 + ε, he will make player I choose p = 1,
and the payoffs will be 2+6ε for player I and 10/3−11ε for player II. Notice that
in both of these commitment strategy pairs, the player who did not make the
commitment gets a larger payoff than he does in the symmetric Nash equilibrium.
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Chapter 5

5.6. Show that any d-simplex in Rd contains a ball.

Solution sketch. The d-simplex ∆0 with vertices the origin and the standard ba-
sis e1, . . . , ed in Rd contains the ball B(y, 1

2d
), where y := 1

2d
(e1 + · · · + ed).

Given an arbitrary d-simplex ∆, by translation we may assume its vertices are
0,v1, . . . ,vd. Let A be the square matrix with columns vi for i ≤ d. Since these
columns are linearly independent, A is invertible. Then ∆ contains B(Ay, ε),
where ε := min{‖Ax‖ such that ‖x‖ = 1/d} > 0.

5.7. Let K ⊂ Rd be a compact convex set which contains a d-simplex. Show that K
is homeomorphic to a closed ball.

Solution sketch. Suggested steps:

(i) By Exercise 5.6, K contains a ball B(z, ε). By translation, assume without
loss of generality that B(0, ε) ⊂ K.

(ii) Show that ρ : Rd → R defined by

ρ(x) = inf{r > 0 :
x

r
∈ K}

is subadditive (i.e., ρ(x+ y) ≤ ρ(x) + ρ(y)) and satisfies

‖x‖
diam(K)

≤ ρ(x) ≤ ‖x‖
ε

for all x. Deduce that ρ is continuous.

Solution of step (ii): Suppose x
r
∈ K and y

s
∈ K, where r, s ≥ 0. Then

x+ y

r + s
=

r

r + s
· x
r

+
s

r + s
· y
s
∈ K,

so ρ(x+ y) ≤ r + s. Therefore ρ(x+ y) ≤ ρ(x) + ρ(y), from which

ρ(x+ y)− ρ(x) ≤ ‖y‖
ε
.

Similarly,

ρ(x)− ρ(x+ y) ≤ ρ(x+ y − y)− ρ(x+ y) ≤ ‖y‖
ε
.

(iii) Define

h(x) =
ρ(x)

‖x‖ x

for x 6= 0 and h(0) = 0 and show that h : K → B(0, 1) is a homeomorphism.

Chapter 6

6.3. Consider the zero-sum two-player game in which the game to be played is ran-
domized by a fair coin toss. (This example was discussed in §2.5.1.) If the toss
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comes up heads, the payoff matrix is given by AH , and if tails, it is given by AT :

AH =

player II

L R

p
la

y
er

I

U 8 2

D 6 0

and AT =

player II

L R

p
la

y
er

I

U 2 6

D 4 10

For each of the settings below, draw the Bayesian game tree, convert to
normal form, and find the value of the game.
(a) Suppose that player I is told the result of the coin toss and both players

play simultaneously.
(b) Suppose that player I is told the result of the coin toss, but she must reveal

her move first.

Solution sketch.
(a) In what follows UH (respectively, UT ) means that player I plays U if the coin
toss is heads (respectively, tails), and DH (respectively, DT ) means that the play
I plays D if the coin toss is heads (respectively, tails).

player II

L R

p
la

y
er

I

UH , UT 5 4

UH , DT 6 6

DH , UT 4 3

DH , DT 3 5

The value of the game is 6, since row 2 dominates all other rows.

(b) A column strategy such as LU , LD means that that player II plays L regardless
of what move player I reveals, whereas strategy LU , RD means that player II plays
L if player I reveals U , but plays R if player I reveals D.

player II

LU , LD LU , RD RU , RD RU , LD

p
la

y
er

I

UH , UT 5 5 4 4

UH , DT 6 9 6 3

DH , UT 4 1 3 6

DH , DT 5 5 5 5
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The value of the game is 5. Clearly the value of the game is at least 5, since
player I can play the pure strategy DH , DT . To see that it is at most 5, observe
that row 1 is dominated by row 4 for player I and column 1 is dominated by
column 3 for player II. By playing LU , RD with probability 0.5 and RU , RD
with probability 0.5, player II can ensure that player I’s payoff is at most 5.

Chapter 7

7.2. Consider the following symmetric game as played by two drivers, both trying
to get from Here to There (or two computers routing messages along cables of
different bandwidths). There are two routes from Here to There; one is wider,
and therefore faster, but congestion will slow them down if both take the same
route. Denote the wide route W and the narrower route N . The payoff matrix
is

player II (yellow)

W N

p
la

y
er

I
(r

ed
)

W (3, 3) (5, 4)

N (4, 5) (2, 2)

Payoffs: Payoffs:Payoffs:

3 4522 3

Figure D.2. The left-most image shows the payoffs when both drivers drive
on the narrower route, the middle image shows the payoffs when both drivers
drive on the wider route, and the right-most image shows what happens when
the red driver (player I) chooses the wide route and the yellow driver (player
II) chooses the narrow route.

Find all Nash equilibria and determine which ones are evolutionarily stable.

Solution sketch. There are two pure Nash equilibria: (W,N) and (N,W ).
If player I chooses W with probability x, player II’s payoff for choosing W is

3x+ 5(1− x), and for choosing N is 4x+ 2(1− x). Equating these, we get that
the symmetric Nash equilibrium is when both players take the wide route with
probability x = 0.75, resulting in an expected payoff of 3.5 for both players.

Is this an evolutionarily stable equilibrium? Let x = (.75, .25) be our equilib-
rium strategy. We already checked that xTAx = zTAx for all pure strategies z;
we need only check that zTAz < xTAz. For z = (1, 0), xTAz = 3.25 > zTAz = 3
and for z = (0, 1), xTAz = 4.25 > zTAz = 2, implying that x is evolutionarily
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stable.

Chapter 8

8.7. Show that the price of anarchy bound for the market sharing game from §8.3 can
be improved to 2− 1/k when there are k teams. Show that this bound is tight.

Solution sketch. We know that S includes some top j cities and that S∗ covers the

top k. For each i, we have ui(ci, c−i) ≥ V (S∗)−V (S)
k−j . So

∑
i(k − j)ui(ci, c−i) ≥

k(V (S∗) − V (S)) or kV (S∗) ≤ (2k − j)V (S), so V (S∗) ≤ (2 − 1/k)V (S) since
j ≥ 1.

8.8. Consider an auctioneer selling a single item via a first-price auction: Each of
the n bidders submits a bid, say bi for the ith bidder, and, given the bid vector
b = (b1, . . . , bn), the auctioneer allocates the item to the highest bidder at a price
equal to her bid. (The auctioneer employs some deterministic tie-breaking rule.)
Each bidder has a value vi for the item. A bidder’s utility from the auction
when the bid vector is b and her value is vi is

ui[b|vi] :=

{
vi − bi, i wins the auction,

0, otherwise.

Each bidder will bid in the auction so as to maximize her (expected) utility. The
expectation here is over any randomness in the bidder strategies. The social
surplus V (b) of the auction is the sum of the utilities of the bidders and the
auctioneer revenue. Since the auctioneer revenue equals the winning bid, we have

V (b) := value of winning bidder.

Show that the price of anarchy is at most 1−1/e; that is, for b a Nash equilibrium,

E [V (b)] ≥
(

1− 1

e

)
max
i
vi.

Hint: Consider what happens when bidder i deviates from bi to the distribution
with density f(x) = 1/(vi − x), with support [0, (1− 1/e)vi].

Solution sketch. We first show that the price of anarchy is at most 1/2. Suppose
the n bidders have values v1, . . . , vn and their bids, in Nash equilibrium, are
b = (b1, . . . , bn). Without loss of generality, suppose that v1 ≥ vi for all i.
Consider what happens when bidder 1 deviates from b1 to b∗1 := v1/2. We have

u1[b|v1] ≥ u1[b∗1,b−i|v1] ≥ v1
2
−max

i
bi, (D.1)

and since ui[b|vi] ≥ 0 for all i 6= 1, we have∑
i

ui[b|vi] ≥
v1
2
−max

i
bi.

On the other hand, ∑
i

ui[b|vi] = vi∗ −max
i
bi,

where i∗ is the winning bidder, so

vi∗ ≥
v1
2
.

To extend this to 1 − 1/e, consider instead what happens when bidder 1
deviates from b1 to the distribution with density f(x) = 1/(v1−x), with support
[0, (1− 1/e)v1].
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Let p := maxi>1 bi. Then instead of (D.1), we get

u1[b∗1,b−i|v1] ≥
∫ (1−1/e)v1

p

(v1 − x)f(x) dx ≥
(

1− 1

e

)
v1 −max

i
bi.

As above, from this we conclude that the value of the winning bidder vi∗ satisfies

vi∗ ≥
(

1− 1

e

)
v1.

Chapter 11

11.1. Show that the Talmud rule is monotone in A for all n and coincides with the
garment rule for n = 2.

Solution sketch. The monotonicity of the Talmud rule follows from the mono-
tonicity of CEA and CEL and the observation that if A = C/2, then ai = ci/2
for all i. Thus, if A is increased from a value that is at most C/2 to a value that
is above C/2, then the allocation to each claimant i also increases from below
ci/2 to above ci/2.

Suppose that n = 2, and let c1 ≤ c2. We consider the two cases:
• A ≤ C/2: Then c2 ≥ A.

– If also c1 ≥ A, then (a1, a2) = (A/2, A/2).
– If c1 < A, then a1 = c1

2
and a2 = A− c1

2
≤ c2

2
.

In both cases, this is the CEA rule with claims ( c1
2
, c2

2
).

• A > C/2: Then c1 < A.
– If c2 ≥ A, then a1 = c1/2 and a2 = A − c1

2
, so `1 = c1

2
and `2 =

c2 −A+ c1
2
≤ c2

2
.

– If c2 < A, then a1 = c1
2

+ 1
2
(A − c2) and a2 = c2

2
+ 1

2
(A − c1), so

`1 = `2 = C−A
2
.

In both cases, this is the CEL rule with claims ( c1
2
, c2

2
).

Chapter 13

13.4. Show that Instant Runoff violates the Condorcet winner criterion, IIA with pref-
erence strengths, and cancellation of ranking cycles.

Solution sketch. If 40% of the population has preference order A�B�C, 40% of
the population has C�B�A, and 20% of the population has B�A�C, then B is
a Condorcet winner but loses an IRV election. To see that IRV violates IIA with
preference strength, consider what happens when C is moved to the bottom for
the second 40% group. To see that IRV violates cancellation of ranking cycles,
suppose that 40% of the population has preference order A�B�C, 35% of the
population has B�C�A, and 25% of the population has C�A�B. Then A is the
winner of IRV, but eliminating the 75% of the population that are in a ranking
cycle will change the winner to B.

Chapter 14

14.5. Find a symmetric equilibrium in the war of attrition auction discussed in §14.4.3,
under the assumption that bids are committed to up-front, rather than in the
more natural setting where a player’s bid (the decision as to how long to stay in)
can be adjusted over the course of the auction.
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Solution sketch. Let β be a symmetric strictly increasing equilibrium strategy.
The expected payment p(v) of an agent in a war-of-attrition auction in which all
bidders use β is

p(v) = F (v)n−1E
[

max
i≤n−1

β(Vi)
∣∣∣ max
i≤n−1

Vi ≤ v
]

+ (1− F (v)n−1)β(v).

Equating this with p(v) from (14.9), we have∫ v

0

(F (v)n−1 − F (w)n−1)dw =

∫ v

0

β(w)(n− 1)F (w)n−2f(w)dw + (1− F (v)n−1)β(v).

Differentiating both sides with respect to v, cancelling common terms, and sim-
plifying yields

β′(v) =
(n− 1)vF (v)n−2f(v)

1− F (v)n−1
,

and hence

β(v) =

∫ v

0

(n− 1)wF (w)n−2f(w)

1− F (w)n−1
dw.

For two players with F uniform on [0, 1] this yields

β(v) =

∫ v

0

w

1− wdw = −v − log(1− v).

14.13. Determine the explicit payment rule for the three tie-breaking rules just discussed.

Solution sketch. Fix a bidder, say 1. We consider all the possibilities for when
bidder 1 might win and what his payment is in each case. Suppose that

ϕ = max
i≥2

ψi(bi)

is attained k times by bidders i ≥ 2. Let

[v−(ϕ), v+(ϕ)] = {b : ψ1(b) = ϕ}

and

b∗ = max{bi : ψi(bi) = ϕ, i ≥ 2}.
• Tie-breaking by bid:

– If ψ1(b1) > ϕ, then bidder 1 wins and pays max{b∗, v−(ϕ)}.
– If ψ1(b1) = ϕ and b1 is largest among those with virtual valuation at

least ϕ, then bidder 1 wins and pays max{b∗, v−(ϕ)}.
• Tie-breaking according to a fixed ordering of bidders:

– If ψ1(b1) = ϕ and bidder 1 wins (has the highest rank), then his
payment is v−(ϕ).

– If ψ1(b1) > ϕ, then his payment is v−(ϕ) if he has the highest rank
and v+(ϕ) otherwise.

• Random tie-breaking:
– If ψ1(b1) = ϕ, then bidder 1 wins with probability 1

k+1
, and if bidder

1 wins, he is charged v−(ϕ).
– If ψ1(b1) > ϕ, then bidder 1 wins, and he is charged

1

k + 1
v−(ϕ) +

k

k + 1
v+(ϕ),

because in 1
k+1

of the permutations he will be ranked above the other k
bidders with virtual value ϕ.
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14.14. Consider two bidders where bidder 1’s value is drawn from an exponential dis-
tribution with parameter 1 and bidder 2’s value is drawn independently from
Unif[0, 1]. What is the Myerson optimal auction in this case? Show that if
(v1, v2) = (1.5, 0.8), then bidder 2 wins.

Solution sketch. We first compute the virtual value functions:

ψ1(v1) = v1 − 1 and ψ2(v2) = v2 −
1− v2

1
= 2v2 − 1.

Thus, bidder 1 wins when v1 − 1 ≥ max(0, 2v2 − 1), whereas bidder 2 wins when
2v2 − 1 ≥ max(0, v1 − 1). If (v1, v2) = (1.5, 0.8), then bidder 2 wins and pays
ψ−1

2 (ψ1(1.5)) = 0.75. This shows that in the optimal auction with non-i.i.d. bid-
ders, the bidder with the highest value might not win.

Chapter 18

18.7. (a) For Y a normal random variable, N(0, 1), show that

e−
y2

2
(1+o(1)) ≤ P [Y > y] ≤ e−

y2

2 as y →∞.
(b) Suppose that Y1, . . . , Yn are i.i.d. N(0, 1) random variables. Show that

E
[

max
1≤i≤n

Yi

]
=
√

2 logn (1 + o(1)) as n→∞. (D.1)

Solution sketch.
(a) ∫ ∞

y

e−x
2/2 dx ≤ 1

y

∫ ∞
y

xe−x
2/2 dx =

1

y
e−y

2/2

and

∫ y+1

y

e−x
2/2 dx ≥ e−

(y+1)2

2 .

(b) Let Mn = E [max1≤i≤n Yi]. Then by a union bound

P
[
Mn ≥

√
2 logn+

x√
2 logn

]
≤ ne−(logn+x) = e−x.

On the other hand,

P
[
Yi >

√
2α logn

]
= n−α+o(1),

so P
[
Mn ≥

√
2α logn

]
=
(

1− n−α+o(1)
)n
→ 0 for α < 1.
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décisions rendues à la pluralité des voix (eng: Essay on the application of analysis
to the probability of majority decisions), 1785. In The French Revolution Research
Collection. Pergamon Press, Headington Hill Hall, Oxford OX3 0BW UK, 1785.

http://gallica.bnf.fr/scripts/ConsultationTout.exe?E=0&O=N041718. 229

[DD92] Robert W Dimand and Mary Ann Dimand. The early history of the theory
of strategic games from waldegrave to borel. History of Political Economy,

24(Supplement):15–27, 1992. 10
[DDT12] Constantinos Daskalakis, Alan Deckelbaum, and Christos Tzamos. The complexity

of optimal mechanism design. arXiv preprint arXiv:1211.1703, 2012. 263

[Dem82] Gabrielle Demange. Strategyproofness in the assignment market game. Labratorie

dEconometrie de lEcole Polytechnique, Paris, 1982. 310

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

http://gallica.bnf.fr/scripts/ConsultationTout.exe?E=0&O=N041718


364 BIBLIOGRAPHY

[DF81] L. E. Dubins and D. A. Freedman. Machiavelli and the Gale-Shapley algorithm.

Amer. Math. Monthly, 88(7):485–494, 1981. 187

[DG85] Gabrielle Demange and David Gale. The strategy structure of two-sided matching
markets. Econometrica: Journal of the Econometric Society, pages 873–888, 1985.

[DGP09] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The

complexity of computing a nash equilibrium. SIAM Journal on Computing,
39(1):195–259, 2009. 94

[DGS86] Gabrielle Demange, David Gale, and Marilda Sotomayor. Multi-item auctions. The

Journal of Political Economy, pages 863–872, 1986. 310
[DHM79] Partha Dasgupta, Peter Hammond, and Eric Maskin. The implementation of social

choice rules: some general results on incentive compatibility. Rev. Econom. Stud.,

46(2):185–216, 1979. 296
[DN08] Avinash K Dixit and Barry Nalebuff. The art of strategy: a game theorist’s guide

to success in business & life. WW Norton & Company, 2008. 134
[DPS15] Nikhil R Devanur, Yuval Peres, and Balasubramanian Sivan. Perfect bayesian equi-

libria in repeated sales. In Proceedings of the Twenty-Sixth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 983–1002. SIAM, 2015. 263
[DS61] L. E. Dubins and E. H. Spanier. How to cut a cake fairly. Amer. Math. Monthly,

68:1–17, 1961. 202

[DS84] Peter G. Doyle and J. Laurie Snell. Random walks and electric networks, volume 22
of Carus Mathematical Monographs. Mathematical Association of America, Wash-

ington, DC, 1984. 70

[Dub57] L. E. Dubins. A discrete evasion game. Princeton University Press, Princeton,
N.J., 1957. 70

[Ede62] M. Edelstein. On fixed and periodic points under contractive mappings. J. London

Math. Soc., 37:74–79, 1962. 112
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[Rei81] S. Reisch. Hex ist PSPACE-vollständig. Acta Inform., 15:167–191, 1981. 31

[Rob51] Julia Robinson. An iterative method of solving a game. Ann. of Math. (2), 54:296–
301, 1951. 330

[Rob79] Kevin Roberts. The characterization of implementable choice rules. Aggregation
and revelation of preferences, 12(2):321–348, 1979. 296

[Roc84] Sharon C. Rochford. Symmetrically pairwise-bargained allocations in an assign-
ment market. Journal of Economic Theory, 34(2):262–281, 1984. 310

[Ron01] Amir Ronen. On approximating optimal auctions. In Proceedings of the 3rd ACM

conference on Electronic Commerce, pages 11–17. ACM, 2001. 263

[Ros73] R.W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. Inter-
national Journal of Game Theory, 2:65–67, 1973. 93

[Ros81] Robert W Rosenthal. Games of perfect information, predatory pricing and the
chain-store paradox. Journal of Economic theory, 25(1):92–100, 1981. 134

[Rot82] Alvin E. Roth. The economics of matching: stability and incentives. Math. Oper.

Res., 7(4):617–628, 1982. 187

Licensed to AMS. 
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms

http://www1.cs.columbia.edu/~library/2004.html
http://www1.cs.columbia.edu/~library/2004.html
http://arxiv.org/abs/cs/0508071
http://arxiv.org/math/0508580
http://arxiv.org/math/0508580
http://arxiv.org/math/0508580
http://arxiv.org/math/0508580
http://arxiv.org/abs/math.AP/0605002
http://arxiv.org/abs/math.AP/0605002


372 BIBLIOGRAPHY

[Rot86] Alvin E Roth. On the allocation of residents to rural hospitals: a general property of

two-sided matching markets. Econometrica: Journal of the Econometric Society,

pages 425–427, 1986. 188
[Rot88] Alvin E Roth. The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge

University Press, 1988. 213

[Rot15] Alvin E Roth. Who Gets Whatand Why: The New Economics of Matchmaking
and Market Design. Houghton Mifflin Harcourt, 2015. 187

[Rou03] Tim Roughgarden. The price of anarchy is independent of the network topology.

Journal of Computer and System Sciences, 67(2):341–364, 2003. 165
[Rou05] Tim Roughgarden. Selfish routing and the price of anarchy, volume 174. MIT press

Cambridge, 2005. 164

[Rou09] Tim Roughgarden. Intrinsic robustness of the price of anarchy. In Proceedings of
the forty-first annual ACM symposium on Theory of computing, pages 513–522.

ACM, 2009. 165
[Rou12] Tim Roughgarden. The price of anarchy in games of incomplete information. In

Proceedings of the 13th ACM Conference on Electronic Commerce, pages 862–879.

ACM, 2012. 165, 263
[Rou13] Tim Roughgarden. Algorithmic Mechanism Design, CSE 364A Lecture Notes.

2013. 165, 296

[Rou14] Tim Roughgarden. Frontiers in Mechanism Design, CSE 364B Lecture Notes.
2014. 165, 262, 263, 296

[RRVV93] Alvin E. Roth, Uriel G. Rothblum, and John H. Vande Vate. Stable matchings,

optimal assignments, and linear programming. Math. Oper. Res., 18(4):803–828,
1993. 188

[RS81] John G Riley and William F Samuelson. Optimal auctions. The American Eco-

nomic Review, pages 381–392, 1981. 262
[RS92] Alvin E Roth and Marilda A Oliveira Sotomayor. Two-sided matching: A study

in game-theoretic modeling and analysis. Number 18. Cambridge University Press,
1992. 187, 310
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frageträgheit: Teil i: Bestimmung des dynamischen preisgleichgewichts. Zeitschrift

für die gesamte Staatswissenschaft/Journal of Institutional and Theoretical Eco-
nomics, pages 301–324, 1965. 134

[Sel75] Reinhard Selten. Reexamination of the perfectness concept for equilibrium points

in extensive games. International journal of game theory, 4(1):25–55, 1975. 94
[Sel98] Reinhard Selten. Axiomatic characterization of the quadratic scoring rule. Exper-

imental Economics, 1(1):43–62, 1998. 296
[Sha53a] C. E. Shannon. Computers and automata. Proc. Inst. Radio Eng., 41:1234–1241,

1953.

[Sha53b] L. S. Shapley. A value for n-person games. In Contributions to the theory of games,
vol. 2, Annals of Mathematics Studies, no. 28, pages 307–317. Princeton University

Press, Princeton, N. J., 1953. 213

[Sha79] Adi Shamir. How to share a secret. Comm. ACM, 22(11):612–613, 1979.
[Sha17] Haim Shapira. Gladiators, Pirates and Games of Trust. Watkins Publishing, Lon-

don, 2017. 93

[Sie13] Aaron N. Siegel. Combinatorial game theory, volume 146 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 2013. 32

[Sig05] Karl Sigmund. John maynard smith and evolutionary game theory. Theoretical

population biology, 68(1):7–10, 2005. 140
[Sio58] Maurice Sion. On general minimax theorems. Pacific J. Math., 8:171–176, 1958.

48
[Sky04] Brian Skyrms. The stag hunt and the evolution of social structure. Cambridge

University Press, 2004. 93

[SL96] B. Sinervo and C. M. Lively. The rock-paper-scissors game and the evo-
lution of alternative male strategies. Nature, 380:240–243, March 1996.

http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1996Natur.

380..240S&db_key=GEN. 146
[Smi74] J Maynard Smith. The theory of games and the evolution of animal conflicts.

Journal of theoretical biology, 47(1):209–221, 1974. 263

[Smi82] John Maynard Smith. Evolution and the Theory of Games. Cambridge University
Press, 1982. 145

[Smi01] S. Smirnov. Critical percolation in the plane. I. Conformal invariance and Cardy’s

formula. II. Continuum scaling limit, 2001. http://www.math.kth.se/~stas/

papers/percol.ps.

[Sot96] Marilda Sotomayor. A non-constructive elementary proof of the existence of stable

marriages. Games Econom. Behav., 13(1):135–137, 1996. 187
[SP73] John Maynard Smith and George. R. Price. The logic of animal conflict. Nature,

246:15, 1973. 145
[Spe28] E. Sperner. Neuer beweis für die invarianz der dimensionszahl und des gebietes.

Abh. Math. Sem. Univ. Hamburg, 6(1):265–272, 1928. 112
[Spe74] Andrew Michael Spence. Market signaling: Informational transfer in hiring and

related screening processes, volume 143. Harvard Univ Press, 1974. 134
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externality, 269, 275

extreme point, 340
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fair division, 5, 193–203
Farkas’ Lemma, 338

feasible LP, 334, 335

first-price auctions
Bayes-Nash equilibrium, 241

uniform values, 236
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Fish-Selling, 123, 124

Fishmonger’s problem, 253

fixed point property (f.p.p.), 103
fixed-point theorems, 99–113
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Folk Theorem, 131–134

for average payoffs, 133
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Gale, David, 187, 310

Gale-Shapley algorithm, 180–184

game tree, 114
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combinatorial, 33
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general-sum, 74–100

potential games, 85–90

random-turn, 171–177
repeated, 129–134

Folk Theorem, 133

zero-sum, 34–72
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Chicken, 79, 92, 144
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dominant strategy, 75
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imperfect information, 4, 119–122
incomplete information, 4, 44, 122–128
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ex-post, 244, 245
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properties, 221

Iterated Prisoner’s Dilemma, 130
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König’s Lemma, 62, 299
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Koutsoupias, Elias, 164
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Kuhn’s Theorem, 121
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linear programming duality, 335
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Duality Theorem, 336, 338–341

Farkas’ Lemma, 338
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weak duality, 336
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logarithmic scoring rule, 295

Lookahead auction, 258–260
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maximum matching, 59, 62

maximum weight matching, 299–301
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envy-free, 273
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men-proposing algorithm, 181
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complete, 101
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Minimax Theorem, 37, 45–48
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minimum line-cover, 62
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Plus One, 39

policy regret, 328
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best-response dynamics, 87, 93
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pure strategy equilibrium, 87

preference profile, 218
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price of anarchy, 5, 148–170

affine latency functions, 153
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Braess Paradox, 148

edge flow, 151
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extension theorems, 162–164

first-price auction, 249–250

market sharing game, 158–160
network formation, 156–158
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selfish routing, 148–156
smoothness, 162

socially optimal traffic flow, 149
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traffic flow, 151

traffic-anarchy tradeoff, 156
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pure strategy, 87, 115, 120
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random-turn games, 171–177
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