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Abstract

Recent years have seen an explosion of interest in lift and project methods, such as those proposed
by Lovász and Schrijver [40], Sherali and Adams [49], Balas, Ceria and Cornuejols [6], Lasserre [36, 37]
and others. These methods are systematic procedures for constructing a sequence of increasingly tight
mathematical programming relaxations for 0-1 optimization problems.

One major line of research in this area has focused on understanding the strengths and limitations
of these procedures. Of particular interest to our community is the question of how the integrality gaps
for interesting combinatorial optimization problems evolve through a series of rounds of one of these
procedures. On the one hand, if the integrality gap of successive relaxations drops sufficiently fast, there
is the potential for an improved approximation algorithm. On the other hand, if the integrality gap for
a problem persists, this can be viewed as a lower bound in a certain restricted model of computation.

In this paper, we study the integrality gap in these hierarchies for the knapsack problem. We have
two main results. First, we show that an integrality gap of 2 − ε persists up to a linear number of
rounds of Sherali-Adams. This is interesting, since it is well known that knapsack has a fully polynomial
time approximation scheme [30, 39]. Second, we show that Lasserre’s hierarchy closes the gap quickly.
Specifically, after t2 rounds of Lasserre, the integrality gap decreases to t/(t− 1).

Thus, we provide a second example of an integrality gap separation between Lasserre and Sherali
Adams. The only other such gap we are aware of is in the recent work of Fernandez de la Vega and
Mathieu [19] (respectively of Charikar, Makarychev and Makarychev [12]) showing that the integrality
gap for MAXCUT remains 2 − ε even after ω(1) (respectively nγ) rounds of Sherali-Adams. On the
other hand, it is known that 2 rounds of Lasserre yields a relaxation as least as strong as the Goemans-
Williamson SDP, which has an integrality gap of 0.878.

1 Introduction

Many approximation algorithms work in two phases: first, solve a linear programming (LP) or semi-definite
programming (SDP) relaxation; then, round the fractional solution to obtain a feasible integer solution to
the original problem. Such an algorithm is analyzed by comparing the value of the output to that of the
fractional solution, and thus cannot hope to yield a better approximation ratio than the integrality gap of
the relaxation.

This paradigm is amazingly powerful; in particular, under the unique game conjecture, it yields the best
possible ratio for Maxcut1, and that ratio is exactly equal to the integrality gap of the Goemans-Williamson
SDP [23, 18, 32, 33, 43]. However, for any given combinatorial optimization problem, in general, there
are many possible LP/SDP relaxations, and so the integrality gap seems to say more about the particular
relaxation chosen than about the intrinsic difficulty of the problem. Starting from an arbitrary LP relaxation,
lift and project methods provide a systematic procedure for constructing a sequence of increasingly tight
mathematical programming relaxations for 0-1 optimization problems. A number of different procedures
of this type have been proposed: by Lovász and Schrijver [40], Sherali and Adams [49], Balas, Ceria and
Cornuejols [6], Lasserre [36, 37] and others. While they differ in the details, they operate in a series
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of rounds starting from an LP or SDP relaxation and eventually ending with the exact integer polytope.
The strengthened relaxation after t rounds can typically be solved in nO(t) time and, roughly, satisfies the
property that the values of any t variables in the original relaxation can be expressed as the projection of a
convex combination of integer solutions.

A major line of research in this area has focused on understanding the strengths and limitations of these
procedures. Of particular interest to our community is the question of how the integrality gaps for interesting
combinatorial optimization problems evolve through a series of rounds of one of these procedures. On the
one hand, if the integrality gap of successive relaxations drops sufficiently fast, there is the potential for an
improved approximation algorithm (see [15, 16, 8, 9] for example). On the other hand, if the integrality gap
for a problem persists, this can be viewed as a lower bound to approximability in a certain restricted model
of computation. Since the various lift-and-project schemes implicitly come up in most known sophisticated
approximation algorithms for NP-hard problem (such as Sparsest Cut and Maximum Satisfiability), a large
integrality gap after a linear (or even logarithmic) number of rounds rules out (unconditionally) a very wide
class of efficient approximation algorithms. Indeed, several very strong negative results of this type have
been obtained (see [4, 2, 10, 12, 20, 44, 47, 48, 50, 46] and others).

What do these negative results really mean? They might be further evidence of the intrinsic difficulty
of the problems studied, which are all well-known hard problems (Maxcut, Sparsest cut, Vertex cover,
Hypergraph vertex cover, etc.). Or . . . perhaps they might be evidence that the lift and project models of
computation are weak! To explore this latter possibility, we focus on one problem that is well-known to be
“easy” from the viewpoint of approximability: In this paper, we study the integrality gap in these hierarchies
for the knapsack problem. Our main results are the following:

• We show that an integrality gap close to 2 persists up to a linear number of rounds of Sherali-Adams.
(The integrality gap of the standard LP is 2.)

This is interesting since it is well known that knapsack has a fully polynomial time approximation
scheme [30, 39]. This shows that integrality gap lower bounds for hierarchies such as Sherali-Adams
do not necessarily imply an inherent bound on approximability. In other words, the Sherali-Adams re-
stricted model of computation has serious weaknesses: a lower bound in that model does not necessarily
imply that it is difficult to get a good approximation algorithm.

• We show that Lasserre’s hierarchy closes the gap quickly. Specifically, after t2 rounds of Laserre, the
integrality gap decreases to t/(t− 1).

Thus, we provide a second example of an integrality gap separation between Lasserre and Sherali
Adams. The only other such gap we are aware of is in the recent work of Fernandez de la Vega and
Mathieu [19] (respectively of Charikar, Makarychev and Makarychev [12]) showing that the integrality
gap for MAXCUT remains 2 − ε even after ω(1) (respectively nγ) rounds of Sherali-Adams. On the
other hand, it is known that 2 rounds of Lasserre yields a relaxation as least as strong as the Goemans-
Williamson SDP, which has an integrality gap of 0.878.

1.1 Related Work

Many known approximation algorithms can be recognized in hindsight as starting from a naive relaxation
and strengthening it using a couple of levels of lift-and-project. The original hope [3] had been to use lift and
project systems as a systematic approach to designing novel algorithms with better approximation ratios, but
instead, the last few years have mostly seen the emergence of a multitude of lower bounds. Indeed, lift and
project systems have been studied mostly for well known difficult problems: Maxcut [12, 19, 48], Sparsest
cut, [12, 13] Vertex cover [2, 3, 4, 11, 20, 21, 28, 48, 50], Hypergraph vertex cover, TSP [14], Maximum
acyclic subgraph [12], CSP [47, 51], and more.

The knapsack problem [41, 31] has a fully polynomial time approximation scheme [30, 39]. The natural LP
relaxation (to be stated in full detail in the next section) has an integrality gap of 2−ε [31]. Although we are
not aware of previous work on using the lift and project systems for knapsack, the problem of strengthening
the LP relaxation via addition of well-chosen inequalities has been much the object of much interest in the
past in the mathematical programming community (stronger LP relaxations are extremely useful to speed
up branch-and-bound heuristics.) The knapsack polytope was studied in detail by Weismantel [52]. Valid
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inequalities were studied in [5, 25, 26, 53, 7]. In particular, whenever S is a minimal set (w.r.to inclusion)
that does not fit in the knapsack, then

∑
S∪{j:∀i∈S,wj≥wi} xj ≤ |S| − 1 is a valid inequality. Generalizations

and variations were also studied in [17, 27, 54]. Thus, in spite of the existence of a dynamic program to solve
the knapsack problem, the problem is fundamental enough that understanding the knapsack polytope (and
its lifted tightenings) is of intrinsic interest.

Our results confirm the impression from [34, 46] for example that the Sherali-Adams lift and project is
not powerful enough for the scope of our ambition. But so far, the results on integrality gaps in the Lasserre
hierarchy are relatively few. The first negative results were about k-CSP [47, 51]. Our positive results leave
open the possibility that the Lasserre hierarchy may have promise as a tool to capture the intrinsic difficulty
of problems.

2 Preliminaries

2.1 The Knapsack problem

Our focus in this paper is on the Knapsack problem. In the Knapsack problem, we are given a set of n objects
V = [n] with sizes c1, c2, . . . cn, values v1, v2, . . . vn, and a capacity C. We assume that for every i, ci ≤ C.
The objective is to select a subset of objects of maximum total value such that the total size of the objects
selected does not exceed C.

The linear programming (LP) relaxation [31] for Knapsack is given by:

max
∑
i∈V

vixi

s.t.


∑
i∈V

cixi ≤ C

0 ≤ xi ≤ 1 ∀i ∈ V

(1)

The intended intepretation of an integral solution of this LP is obvious: xi = 1 means the object i is selected,
and xi = 0 means it is not. The constraint can be written as g(x) = C −

∑
i cixi ≥ 0.

Let Greedy denote the algorithm that puts objects in the knapsack by order of decreasing ratio vi/ci,
stopping as soon as the next object would exceed the capacity.

Lemma 1 ([?]) Consider an instance (C, V ) of Knapsack and its LP relaxation K given by (1). Then

Value(K) ≤ Value(Greedy(C, V )) + max
i∈V

vi.

2.2 The Sherali-Adams and Lasserre hierarchies

We next review the lift-and-project hierarchies that we will use in this paper. The descriptions we give here
assume that the base program is linear and mostly use the notation given in the survey paper by Laurent
[38]. To see that these hierarchies apply at a much greater level of generality we refer the reader to Laurent’s
paper [38].

Let K be a polytope defined by a set of linear constraints g1, g2, . . . gm:

K = {x ∈ [0, 1]n|g`(x) ≥ 0 for ` = 1, 2, . . . m}. (2)

We are interested in optimizing a linear objective function f over the convex hull P = conv (K∩{0, 1}n)
of integral points in K. Here, P is the set of convex combinations of all integral solutions of the given
combinatorial problem and K is the set of solutions to its linear relaxation. For example, if K is defined
by (1), then P is the set of convex combinations of valid integer solutions to Knapsack.

If all vertices of K are integral then P = K and we are done. Otherwise, we would like to strengthen
the relaxation K by adding additional valid constraints. The Sherali-Adams (SA) and Lasserre hierar-
chies are two different systematic ways to construct these additional constraints. In the SA hierarchy, all
the constraints added are linear, whereas Lasserre’s hierarchy is stronger and introduces a set of positive
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semi-definite constraints. However, for consistency, we will describe both hierarchies as requiring certain
submatrices to be positive semi-definite (readers who are not familiar with the following formulation of SA
are referred to Appendix A for a linear formulation of the hierarchy.)

To this end, we first state some notation. Throughout this paper we will use P (V ) to denote the power
set of V , and Pt (V ) to denote the collection of all subsets of V whose sizes are at most t. Also, given two
sets of coordinates T and S, T ⊆ S and y ∈ RS , by y|T we denote the projection of y onto T .

Next, we review the definition of the shift operator between two vectors x, y ∈ RP(V ): x ∗ y is a vector in
RP(V ) such that

(x ∗ y)I =
∑
J⊆V

xJyI∪J .

Lemma 2 ( [38] ) The shift operator is commutative: for any vectors x, y, z ∈ RP(V ), we have x ∗ (y ∗ z) =
y ∗ (x ∗ z).

A polynomial P (x) =
∑

I⊆V aI

∏
i∈I xi can also be viewed as a vector indexed by subsets of V . We

define the vector P ∗ y accordingly: (P ∗ y)I =
∑

J⊆V aJyI∪J .

Finally, let T be a collection of subsets of V and y be a vector in RT . We denote by MT (y) the matrix
whose rows and colums are indexed by elements of T such that

(MT (y))I,J = yI∪J .

The main observation is that if x ∈ K∩{0, 1}n then (yI) = (
∏

i∈I xi) satisfies MP(V )(y) = yyT� 0
and MP(V )(g` ∗ y) = g`(x)yyT� 0 for all constraints g`. Thus requiring principal submatrices of these two
matrices to be positive semi-definite yields a relaxation.

Definition 3 For any 1 ≤ t ≤ n, the t-th Sherali-Adams lifted polytope SAt (K) is the set of vectors
y ∈ [0, 1]Pt(V ) such that y∅ = 1, MP(U)(y)� 0 and MP(W )(g` ∗ y)� 0 for all ` and subsets U,W ⊆ V such
that |U | ≤ t and |W | ≤ t− 1.

We say that a point x ∈ [0, 1]n belongs to the t-th Sherali-Adams polytope sat (K) iff there exists a
y ∈ SAt (K) such that y{i} = xi for all i ∈ [n].

Definition 4 For any 1 ≤ t ≤ n, the t-th Lasserre lifted polytope Lat (K) is the set of vectors y ∈ [0, 1]P2t(V )

such that y∅ = 1, MPt(V )(y)� 0 and MPt−1(V )(g` ∗ y)� 0 for all `.
We say that a point x ∈ [0, 1]n belongs to the t-th Lasserre polytope lat (K) if there exists a y ∈ Lat (K)

such that y{i} = xi for all i ∈ V .

Note that MP(U)(y) has at most 2t rows and columns, which is constant for t constant, whereas MPt(V )(y)
has

(
n+1
t+1

)
rows and columns.

It is immediate from the definitions that sat+1 (K) ⊆ sat (K), and lat+1 (K) ⊆ lat (K) for all 1 ≤ t ≤ n−1.
In addition, lat (K) ⊆ sat (K). Sherali and Adams [49] show that san (K) = P , Thus, the sequences

K ⊇ sa1 (K) ⊇ sa2 (K) ⊇ · · · ⊇ san (K) = P

K ⊇ la1 (K) ⊇ la2 (K) ⊇ · · · ⊇ lan (K) = P

define hierarchies of polytopes that converge to P . Furthermore, the Lasserre hierarchy is “stronger” than
the Sherali-Adams hierarchy. In this paper, we show that for the Knapsack problem, the Lasserre hierarchy
is strictly stronger.

2.3 The integrality gap of the hierarchies

We will be studying the integrality gaps of the lifted polytopes for Knapsack. For a given Knapsack instance
K, a level t and a particular hierarchy H (where H is either Sherali-Adams or Lasserre), define Ht(K) to be
the ratio between the optimal solution in the t-th lifted polytope (the maximum value of

∑
i viy{i}, for y in

the t-th lifted polytope on instance K) and the optimal value of the objective function for a feasible integral
solution. The integrality gap at the t-th level of the hierarchy H is supK Ht(K).
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3 Lower bound for the Sherali-Adams hierarchy for Knapsack

In this section, we show that the integrality gap of the t-th level of the Sherali-Adams hierarchy for Knapsack
is 2. This lower bound even holds for the uniform Knapsack problem, in which vi = ci = 1 for all i. 2.

Theorem 5 For every t, the integrality gap at the t-th level of the Sherali-Adams hierarchy for Knapsack is
equal to 2.

Proof. Let t ≥ 2. Consider the instance K of Knapsack with n objects where ci = vi = 1 for all i ∈ V and
capacity C = 2(1 − ε). Let α = C/(n + (t− 1)(1 − ε)) and consider the vector y ∈ [0, 1]Pt(V ) defined by

y∅ = 1
y{i} = α

yI = 0 if |I| > 1

We claim that y ∈ SAt (K). Consider any subset U ⊆ V such that |U | ≤ t. We have

MP(U)(y) =
(

MP1(U)(y) 0
0 0

)
, with MP1(U)(y) =


1 α α · · · α
α α 0 · · · 0
α 0 α · · · 0
...

...
...

. . .
...

α 0 0 · · · α

 .

Since |U | ≤ t < n, |U |α ≤ 1, and it is easy to see that this implies MP1(U)(y)� 0, and so MP(U)(y)� 0.
Next, let g(x) = C −

∑
i∈V cixi and consider any subset W ⊆ V such that |W | ≤ t− 1. Again, we have

MP(W )(g ∗ y) =
(

MP1(W )(g ∗ y) 0
0 0

)
, MP1(W )(g ∗ y) =


C − nα (C − 1)α (C − 1)α · · · (C − 1)α

(C − 1)α (C − 1)α 0 · · · 0
(C − 1)α 0 (C − 1)α · · · 0

...
...

...
. . .

...
(C − 1)α 0 0 · · · (C − 1)α

 .

Since |W | ≤ t− 1, by definition of α we have |W |(C − 1)α ≤ C − nα, and it is easy to see that this implies
MP1(W )(g ∗ y)� 0, and so MP(W )(g ∗ y)� 0. Thus y ∈ SAt (K).

The integer optimum has value 1, so the integrality gap is at least the value of y, which is nα =
2(1 − ε)/(1 + (t − 1)(1 − 2ε)/n). The supremum over all ε is 2/(1 + (t − 1)/n), and the supremum of that
over all n is 2, so the integrality gap is at least 2.

On the other hand, it is well-known that the base linear program K has value at most 2OPT (that is an
immediate consequence of Lemma 1), hence, by the nesting property, every linear program in the hierarchy
has integrality gap exactly equal to 2.

4 A decomposition theorem for the Lasserre hierarchy

In this section, we develop the machinery we will need for our Lasserre upper bounds. It turns out that it is
more convenient to work with families (zX) of characteristic vectors rather than directly with y. We begin
with some definitions and basic properties.

Definition 6 (extension) Let T be a collection of subsets of V and let y be a vector indexed by sets of T .
We define the extension of y to be the vector y′, indexed by all subsets of V , such that y′I equals yI if I ∈ T
and equals 0 otherwise.

2Some people call this problem Unweighted Knapsack or Subset Sum.
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Definition 7 (characteristic polynomial) Let S be a subset of V and X a subset of S. We define the
characteristic polynomial PX of X with respect to S as

PX(x) =
∏
i∈X

xi

∏
j∈S\X

(1 − xj) =
∑

J:X⊆J⊆S

(−1)|J\X|
∏
i∈J

xi.

Lemma 8 (inversion formula) Let y′ be a vector indexed by all subsets of V . Let S be a subset of V and,
for each X subset of S, let zX = PX ∗ y′:

zX
I =

∑
J:X⊆J⊆S

(−1)|J\X|y′I∪J .

Then y′ =
∑

X⊆S zX .

Proof. Fix a subset I of V . Substituting the definition of zX
I in

∑
X⊆S zX

I , and changing the index of
summation, we get ∑

X⊆S

zX
I =

∑
A⊆S

∑
J⊆A

(−1)|J| y′I∪A.

For A 6= ∅ the inner sum is 0, so only the term for A = ∅, which equals y′I , remains.

Lemma 9 Let y′ be a vector indexed by all subsets of V , S be a subset of V and X be a subset of S. Then
zX
I = zX

I\X for all I

zX
I = zX

∅ if I ⊆ X

zX
I = 0 if I ∩ (S \X) 6= ∅

Proof. Let I ′ = I \ X and I ′′ = I∩X. Using the definition of zX
I and noticing that X ∪ I ′′ = X yields

zX
I = zX

I′ . This immediately implies that for I ⊆ X, zX
I = zX

∅ .
Finally, consider a set I that intersects S \X and let i ∈ I∩(S\X). In the definition of zX

I , we group the
terms of the sum into pairs consisting of J such that i /∈ J and of J ∪ {i}. Since I = I ∪ {i}, we obtain:∑

J:X⊆J⊆S

(−1)|J\X|y′I∪J =
∑

J:X⊆J⊆S\{i}

(
(−1)|J\X| + (−1)|J\X|+1

)
y′I∪J = 0.

Corollary 10 Let y′ be a vector indexed by all subsets of V , S be a subset of V and X be a subset of S.
Let wX be defined as zX/zX

∅ if zX
∅ 6= 0 and defined as 0 otherwise. Then, if zX

∅ 6= 0, then wX
{i} equals 1 for

elements of X and 0 for elements of S \X.

Definition 11 (closed under shifting) Let S be an arbitrary subset of V and T be a collection of subsets
of V . We say that T is closed under shifting by S if

Y ∈ T =⇒ ∀X ⊆ S, X ∪ Y ∈ T .

The following lemma generalizes Lemma 5 in [38]. It proves that the positive-semidefinite property carries
over from y to (zX).

Lemma 12 Let S be an arbitrary subset of V and T be a collection of subsets of V that is closed under
shifting by S. Let y be a vector indexed by sets of T . Then

MT (y)� 0 =⇒ ∀X ⊆ S, MT (zX)� 0.
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Proof. Since MT (y)� 0, there exist vectors vI , I ∈ T , such that 〈vI , vJ〉 = yI∪J . Fix a subset X of S. For
each I ∈ T , let

wI =
∑

H⊆S\X

(−1)|H|vI∪X∪H ,

which is well-defined since T is closed under shifting by S.
Let I, J ∈ T . It is easy to check that 〈wI , wJ〉 = (zX)I∪J . Indeed,

〈wI , wJ〉 =
∑

H⊆S\X

∑
L⊆S\X

(−1)|H|+|L|〈vI∪X∪H , vJ∪X∪L〉 (3)

=
∑

H⊆S\X

∑
 L⊆S\X

(−1)|H|+|L|yI∪J∪X∪H∪L (4)

by definition of vI , vJ and since T is closed under shifting by S (so that this is well-defined). Consider a
non-empty subset H of S \ X and let i ∈ H. We group the terms of the inner sum into pairs consisting of
L such that i /∈ L and of L ∪ {i}. Since H = H ∪ {i}, we obtain:∑

L⊆S\X

(−1)|H|+|L|yI∪J∪X∪H∪L =
∑

L⊆(S\X\{i})

(
(−1)|H|+|L| + (−1)|H|+|L|+1

)
yI∪J∪X∪H∪L = 0.

Thus, the expression in (4) becomes

〈wI , wJ〉 =
∑

L⊆S\X

(−1)|L|yI∪J∪X∪L = (zX)I∪J .

This implies that MT (zX)� 0.
In the rest of the section, we prove a decomposition theorem for the Lasserre hierarchy, which allows

us to “divide” the action of the hierarchy and think of it as using the first few rounds on some subset of
variables, and the other rounds on the rest. We will use this theorem to prove that the Lasserre hierarchy
closes the gap for the Knapsack problem in the next section.

Theorem 13 Let t > 1 and y ∈ Lat (K). Let k < t and S be a subset of V and such that

|I∩S| ≥ k =⇒ yI = 0. (5)

Consider the projection y|P2t−2k(V ) of y to the coordinates corresponding to subsets of size at most 2t − 2k
of V . Then there exist subsets X1, X2, . . . , Xm of S such that y|P2t−2k(V ) is a convex combination of vectors
wXi with the following properties:

• wXi

{j} =
{

1 if j ∈ Xi

0 if j ∈ S \Xi;

• wXi ∈ Lat−k (K); and

• if Ki is obtained from K by setting xj = wXi

{j} for j ∈ S, then wXi |P2t−2k(V \S) ∈ Lat−k (Ki).

To prove Theorem 13, we will need a couple more lemmas. In the first one, using assumption (5), we
extend the positive semi-definite properties from y to y′, and then, using Lemma 12, from y′ to zX .

Lemma 14 Let t, y, S, k be defined as in Theorem 13, and y′ be the extension of y. Let T1 = {A such that |A\S| ≤ t− k},
and T2 = {B such that |B\S| < t− k}. Then for all X ⊆ S, MT1(zX)� 0 and, for all `, MT2(g` ∗ zX)� 0 .

Proof. We will first prove that MT1(y′)� 0 and, for all `, MT2(g` ∗ y′)� 0. Order the columns and rows
of MT1(y′) by subsets of non-decreasing size. By definition of T1, any I ∈ T1 of size at least t must have
|I∩S| ≥ k, and so y′I = 0. Thus

MT1(y′) =
(

M 0
0 0

)
,
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where M is a principal submatrix of MPt(V )(y).Thus M� 0, and so MT1(y′)� 0.
Similarly, any J ∈ T2 of size at least t − 1 must have |J ∪ {i}∩S| ≥ k for every i as well as |J∩S| ≥ k,

and so, by definition of g` ∗ y′ we must have (g` ∗ y′)J = 0. Thus

MT2(g` ∗ y′) =
(

N 0
0 0

)
,

where N is a principal submatrix of MPt−1(V )(g` ∗ y). Thus N� 0, and so MT2(g` ∗ y′)� 0.
Observe that T1 is closed under shifting by S. By definition of zX and Lemma 12, we thus get MT1(zX)� 0.
Similarly, observe that T2 is also closed under shifting by S. By Lemma 2, we have g` ∗ (PX ∗ y′) =

PX ∗ (g` ∗ y′), and so by Lemma 12 again we get MT2(g` ∗ zX)� 0.

Lemma 15 Let t, y, S, k be defined as in Theorem 13, and y′ be the extension of y. Then for any X ⊆ S:

1. zX
∅ ≥ 0.

2. If zX
∅ = 0 then zX

I = 0 for all |I| ≤ 2t− 2k.

Proof. Let T1 be defined as in Lemma 14. By Lemma 14 MT1(zX)� 0 and zX
∅ is a diagonal element of this

matrix, hence zX
∅ ≥ 0.

For the second part, start by considering J ⊆ V of size at most t − k. Then J ∈ T1, and so the matrix
M{∅,J}(zX) is a principal submatrix of MT1(zX), hence is also positive semidefinite. Since zX

∅ = 0,

M{∅,J}(zX) =
(

0 zX
J

zX
J zX

J

)
� 0,

hence zX
J = 0.

Now consider any I ⊆ V such that |I| ≤ 2t− 2k, and write I = I1∪I2 where |I1| ≤ t− k and |I2| ≤ t− k.
M{I1,I2}(z

X) is a principal submatrix of MT1(zX), hence is also positive semidefinite. Since zX
I1

= zX
I2

= 0,
Since

M{I1,I2}(z
X) =

(
0 zX

I

zX
I 0

)
� 0,

hence zX
I = 0.

We now have what we need to prove Theorem 13.

Proof of Theorem 13. By definition, Lemma 8 and the second part of Lemma 15, we have

y|P2t−2k(V ) = y′|P2t−2k(V ) =
∑
X⊆S

zX |P2t−2k(V ) =
∑
X⊆S

zX
∅ wX |P2t−2k(V ).

By Lemma 8 and by definition of y, we have
∑

X⊆S zX
∅ = y∅ = 1, and the terms are non-negative by the

first part of Lemma 15, so y|P2t−2k(V ) is a convex combination of wX ’s, as desired.
Consider X ⊆ S such that zX

∅ 6= 0. By Lemma 14, MT1(zX)� 0 and MT2(g` ∗zX)� 0 for all `, and so this
also holds for their principal submatrices MPt−k(V )(zX) and MPt−k−1(V )(g` ∗ zX). Scaling by the positive
quantity zX

∅ , by definition of wX this also holds for MPt−k(V )(wX) and MPt−k−1(V )(g` ∗wX). In other words,
wX |P2t−2k(V ) ∈ Lat−k (K).

Since MPt−k(V )(wXi)� 0, by taking a principal submatrix, we infer MPt−k(V \S)(wXi)� 0. Similarly,
MPt−k(V )(g` ∗wXi)� 0 and so MPt−k(V \S)(g` ∗wXi)� 0. Let g′` be the constraint of Ki obtained from g` by
setting xj = wXi

{j} for all j ∈ S. We claim that for any I ⊆ V \S, (g′` ∗ zXi)I = (g` ∗ zXi)I ; scaling implies
that MPt−k(V \S)(g′` ∗ wXi) = MPt−k(V \S)(g` ∗ wXi) and we are done.

To prove the claim, let g`(x) =
∑

j∈V ajxj +b. Then, by Corollary 10, g′` =
∑

j∈V \S ajxj +(b+
∑

j∈Xi
aj).

Let I ⊆ V \S. We see that

(g` ∗ wXi)I − (g′` ∗ wXi)I =
∑
j∈Xi

ajw
Xi

I∪{j} +
∑

j∈S\Xi

ajw
Xi

I∪{J} −
∑
j∈Xi

ajw
Xi

I .

By Lemma 9, wXi

I∪{j} = wXi

I for j ∈ Xi and wXi

I∪{j} = 0 for j ∈ S\Xi. The claim follows.
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5 Upper bound for the Lasserre hierarchy for Knapsack

In this section, we use Theorem 13 to prove that for the Knapsack problem the gap of Lat (K) approaches 1
quickly as t grows, where K is the LP relaxation of (1). First, we show that there is a set S such that every
feasible solution in Lat (K) satisfies the condition of the Theorem.

Given an instance (C, V ) of Knapsack, Let OPT (C, V ) denote the value of the optimal integral solution.

Lemma 16 Consider an instance (C, V ) of Knapsack and its linear programming relaxation K given by (1).
Let t > 1 and y ∈ Lat (K). Let k < t and S = {i ∈ V |vi > OPT (C, V )/k }. Then:∑

i∈I∩S

ci > C =⇒ yI = 0.

Proof. There are three cases depending on the size of I:

1. |I| ≤ t − 1. Recall the capacity constraint g(x) = C −
∑

i∈V cixi ≥ 0. On the one hand, since
MPt−1(V )(g ∗ y)� 0, the diagonal entry (g ∗ y)I must be non-negative. On the other hand, writing out
the definition of (g ∗ y)I and noting that the coefficients ci are all non-negative, we infer (g ∗ y)I ≤
CyI −

(∑
i∈I ci

)
yI . But by assumption,

∑
i∈I ci > C. Thus we must have yI = 0.

2. t ≤ |I| ≤ 2t − 2. Write I = I1∪I2 = I with |I1|, |I2| ≤ t − 1 and |I1∩S| ≥ k. Then yI1 = 0. Since
MPt(y)� 0, its 2-by-2 principal submatrix M{I1,I2}(y) must also be positive semi-definite.

M{I1,I2}(y) =
(

0 yI

yI yi1

)
,

and it is easy to check that we must then have yI = 0.

3. 2t− 1 ≤ |I| ≤ 2t. Write I = I1∪I2 = I with |I1|, |I2| ≤ t and |I1∩S| ≥ k. Then yI1 = 0 since t ≤ 2t− 2
for all t ≥ 2. By the same argument as in the previous case, we must then have yI = 0.

The following theorem shows that the integrality gap of the tth level of the Lasserre hierarchy for Knapsack
reduces quickly when t increases.

Theorem 17 Consider an instance (C, V ) of Knapsack and its LP relaxation K given by (1). Let t ≥ 2.
Then

Value(Lat (K)) ≤ (1 +
1

t− 1
)OPT,

and so the integrality gap at the t-th level of the Lasserre hierarchy is at most 1 + 1/(t− 1).

Proof. Let S = {i ∈ V |vi > OPT (C, V )/(t− 1)}. Let y ∈ Lat (K). If |I∩S| ≥ t − 1, then the elements
of I ∩ S have total value greater than OPT (C, V ), so they must not be able to fit in the knapsack: their
total capacity exceeds C, and so by Lemma 16 we have yI = 0. Thus the condition of Theorem 13 holds for
k = t− 1.

Therefore, y|P2(V ) is a convex combination of wXi with Xi ⊆ S, thus Value(y) ≤ maxi Value(wXi). By
the first and third properties of the Theorem, we have:

Value(wXi) ≤
∑
j∈Xi

vj + Value(La1 (Ki)).

By the nesting property of the Lasserre hierarchy, Lemma 1, and definition of S,

Value(La1 (Ki)) ≤ Value(Ki) ≤ OPT (C − Cost(Xi), V \ S)) + OPT (C, V )/(t− 1).

9



By the second property of the Theorem, wXi is in Lat−k (K) ⊆ K, so it must satisfy the capacity constraint,
so

∑
i∈Xi

ci ≤
∑

i∈I ci ≤ C, so Xi is feasible. Thus:

Value(y) ≤ max
feasible X⊆S

∑
j∈X

vj + OPT (C − Cost(X), V \ S))

 + OPT (C, V )/(t− 1)

The first expression in the right hand side is equal to OPT (C, V ), hence the Theorem.

Remark 18 We note that the analysis above suggests a new PTAS (albeit an inefficient one). For the
straightforward details, see Appendix B.

6 Conclusion

We have shown that for the Knapsack problem, an integrality gap of 2− ε persists up to a linear number of
rounds of Sherali-Adams, whereas Lasserre’s hierarchy closes the gap quickly. (In fact, we have observed that
large gaps persist under Sherali-Adams for a number of other “easy” problems as well, including minimum
and maximum spanning trees and a scheduling problem, among others.)

The obvious conclusion is: Sherali-Adams is weak (hence good algorithms based on Sherali-Adams are
surprising, negative results are unsurprising). Lasserre might be strong, hence negative results in the Lasserre
hierarchy might have meaningful implications on the intrinsic difficulty of the problem under study.
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Appendix

A A linear formulation of the Sherali-Adams hierarchy

For any constraint g`(x) ≥ 0 in the definition of the base polytope K and any subsets I, J ⊆ V , the following
constraint is a consequence of the fact that x ∈ [0, 1]n:

g`(x)
∏
i∈I

xi

∏
j∈J

(1 − xj) ≥ 0. (6)

If x is indeed integral, then xk
i = xi for any k ≥ 1. Thus, the constraint obtained by expanding (6) and

replacing xk
i by xi holds in P and can be added to strengthen the relaxation. However, this constraint is

not linear. To preserve the linearity of the system, each product
∏

i∈I xi is replaced by a variable yI .
In addition, to keep the number of variables from growing exponentially, we restrict ourselves to only

variables yI such that |I| ≤ t. By this, we “lift” the polytope K to a polytope SAt (K) ⊆ [0, 1]Pt(V ).

Definition 19 Let K be a polytope defined as in equation 2. For any 1 ≤ t ≤ n, the t-th Sherali-Adams
lifted polytope SAt (K) is defined by

SAt (K) =
{
y ∈ Pt ([n])

∣∣y∅ = 1, and g′`,I,J(y) ≥ 0 for any ` and I, J ⊆ V s.t. |I∪J | ≤ t− 1
}

where g′`,I,J(y) is obtained by:

1. multiplying g`(x) by
∏

i∈I xi

∏
j∈J(1 − xj);

2. expanding the result and replacing each xk
i by xi; and

3. replacing each
∏

i∈S xi by yS.

We say that a point x ∈ [0, 1]V belongs to the t-th Sherali-Adams polytope sat (K) iff there exists a
y ∈ SAt (K) such that y{i} = xi for all i ∈ V .

In particular, in the case of Knapsack, SAt (K) is the set of all points in [0, 1]Pt(V ) that satisfy the following
constraints for any I, J ⊆ V such that I∩J = ∅ and |I| + |J | ≤ t− 1:

n∑
i=1

ci

∑
L⊆J

(−1)|L|yI∪L∪{i} ≤ C
∑
L⊆J

(−1)|L|yI∪L, (7)

and
0 ≤

∑
L⊆J

(−1)|L|yI∪L∪{i} ≤
∑
L⊆J

(−1)|L|yI∪L, ∀i ∈ V.

For a proof that this definition is equivalent to Definition 3, we refer the reader to Laurent’s paper [38].
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B A New PTAS for Knapsack

As a side product of the analysis of the Lasserre hierarchy, we obtain a new PTAS, albeit a rather inefficient
one, for Knapsack. First, solve the SDP of the t-th level of the Lasserre hierarchy for Knapsack to obtain the
vector y ∈ {0, 1}P2t(V ). Let S be the set of objects of value at least OPT

t−1 (Assume we know OPT by binary

search?). By the analysis, we know that y|P(S) is a convex combination of the integral vectors in {0, 1}P(OPT ).
Then, for each integral vector w that appears in the convex combination with positive coefficient, we compute
the value of Xi and construct the greedy solution on the reduced instance C − cost(Xi), V \ S. We output
the best of all the solutions thus constructed.
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