
6

The Hydra System

6. I Introduction

This chapter marks the transition from capability-based to
object-based computer systems. Although somewhat subtle,
the distinction is one of philosophy. The systems previously
described are primarily concerned with capabilities for mem-
ory addressing and protection, although they support abstrac-
tion and extension of operating system resources as well. The
principal concern of the systems discussed in the remaining
chapters is the use of data abstraction in the design and con-
struction of complex systems. In these systems, abstract objects
are the fundamental units of computing. Each system is viewed
as a collection of logical and physical resource objects. Users
can uniformly extend the system by adding new types of re-
sources and procedures that manipulate those resources.

The subject of this chapter is Hydra, an object-based oper-
ating system built at Carnegie-Mellon University. Hydra runs
on C.mmp (Computer.multi-mini-processor), a multiprocessor
hardware system developed at Carnegie. Hydra is significant
because of its design philosophy and the flexibility it provides
for users to extend the base system. This flexibility is sup-
ported by capability-based addressing.

6.2 Hydra Overview

In the early 197Os, a project began at Carnegie-Mellon Uni-
versity to investigate computer structures for artificial intelli-
gence applications. These applications required substantial
processing power available only on costly high-performance 103

The Hydra System processors. At that time, however, relatively inexpensive mini-
computers were becoming available. Therefore, the project
sought to demonstrate the cost performance advantages of
multiprocessors based on inexpensive minicomputers.

The C.mmp hardware was designed to explore one point in
the multiprocessor space [Fuller 781. Its hardware structure
differs from conventional multiprocessing systems in the use of
minicomputers, the large number of processors involved, and
the use of a crossbar switch for interconnecting processors to
main memory. C.mmp consists of up to 16 DEC PDP-11 mini-
computers connected to up to 32 megabytes of shared memory.
The memory is organized in 16 memory banks connected to
the processing units by a 16 x 16 crossbar switch.

Hydra [Wulf 74a, Wulf 811 is the operating system kernel
for the Cmmp computer system. Hydra is not a complete op-
erating system in the sense of Multics, Tops-20, or Unix’” ;
rather, it is a base on which different operating system facilities
can be implemented. For example, Hydra allows users to build
multiple file systems, command languages, and schedulers.
Hydra was designed to allow operating system experimenta-
tion: flexibility and ease of extension were important goals.
Experimentation is often difficult with traditional operating
systems because new subsystems require change to a privileged
kernel. Any error in privileged code can cause a system failure.
To avoid this problem, the designers of Hydra built a kernel on
which traditional operating system components could be im-
plemented as user programs. This facility has strong implica-
tions for the protection system because user programs must be
able to protect their objects from unauthorized access.

Two fundamental design decisions that permit experimenta-
tion on the Hydra system are:

l the separation of policy and mechanism in the kernel [Levin
751, and

l the use of an object-based model of computation with capa-
bility protection.

104

The separation of policy and mechanism allows experimen-
tation with policy decisions such as scheduling and memory
management. Basic mechanisms, such as low-level dispatch-
ing, are implemented in the kernel, while scheduling policy for
user processes can be set by (possibly multiple) higher-level
procedures. Because this part of the Hydra design is not re-
lated to the object system, it will not be described here.

6.3 Hydra Objects and
Hydra’s object model and its implementation are the subject of Types

the following sections.

6.3 Hydra Objects and Types

The philosophy that “everything is an object” is key to the
Hydra design. All physical and logical resources available to
Hydra programs are viewed as objects. Examples of objects are
procedures, procedure invocations (called local name spaces),
processes, disks, files, message ports, and directories. Objects
are the basic unit of addressing and protection in Hydra and
are addressed through capabilities. The Hydra kernel’s main
responsibility is to support the creation and manipulation of (1)
new object types, (2) instances of those types, and (3) capabili-
ties.

Each Hydra object is described by three components:

l A name that uniquely identifies the object from all other ob-
jects ever created. The name is a 64-bit number constructed
from an ever-increasing system clock value and a 4-bit num-
ber identifying the processor on which the object was created.

l A type that determines what operations can be performed on
the object. The type is actually the 64-bit name of another
object in the system that implements these operations.

l A representation that contains the information that makes up
the current state of the object. The representation consists of
two parts: a data-part and a C-list. The data-part contains
memory words that can be read or written; the C-list contains
capabilities for other objects and can only be modified
through kernel operations.

Figure 6-l shows an example of a Hydra object. Although
shown as strings, the object’s name and type are actually 64-bit
binary numbers. The object’s type is the name of another ob-
ject in the system-a type object. Hydra objects include capa-
bilities as part of their representation. By storing capabilities
for other objects in its C-list, an object can be built as a collec-
tion of several Hydra objects.

Each Hydra type represents a kind of resource. A type object
is the representative for all instances of a given resource. It
contains:

l information about the creation of new instances of the type
(for example, the initial C-list size and data-part size), and

l capabilities for procedures to operate on instances of the type. 105

\

i

n

g

/

6

k -1

“i

6.4 Processes,
Procedures, and Local
Name Spaces PROCESS The basic unit of scheduling and execution.

PROCEDURE Teyu;atic description of an executable pro-

LOCAL NAME SPACE (LNS)
The dynamic representation of an executing
procedure.

PAGE A virtual page of C.mmp memory that can
be directly accessed.

SEMAPHORE A synchronization primitive.
PORT A message transmission and reception facil-

ity.
DEVICE A physical I/O device.
POLICY A module that can make high-level schedul-

ing policy decisions.
DATA An object with a data-part only.
UNIVERSAL A basic object with both a C-list and data-

part.
TYPE The representative for all objects of a given

type.

Tab/e 6- 1: Hydra Kernel-Implemented Types

Thus, the type object is generally responsible for creating new
objects of its type and performing all operations on those ob-
jects. For example, to create a new message port, the user
issues a $CREATE call to the port type object. The port type
object creates a new port object, initializes its data-part and
C-list appropriately, and returns a capability for the object to
the caller. Table 6-l lists the types directly supported by the
Hydra kernel for performance reasons.

To extend the Hydra operating system, users create new
type objects that support new kinds of resources. A user
creates a new type object by calling the type manager for type
objects. Figure 6-2 shows the three-level Hydra type hierar-
chy. Note that all objects are represented by a type object,
including the type objects themselves. The special type object
at the root of the hierarchy is called type “type”; that is, both
its name and type are “type.” This specially designated object
is used to create and manipulate type objects.

6.4 Processes, Procedures, and Local Name Spaces

A process is the basic unit of scheduling in the Hydra sys-
tem. There is no explicit process hierarchy; any process can
create other processes and pass capabilities for those processes
to others. The access rights in a process capability determine
what operations can be performed on that process-for exam- 107

ple, whether it can be stopped and started. A process with 6.5 Hydra Operations

suitably privileged capabilities can, therefore, schedule the
execution of other processes.

The Hydra protection system is procedure-based rather
than process-based. All Hydra procedures are protected proce-
dures that carry their own execution domains. The current
domain of a process depends on the procedure that it is execut-
ing. The process is the entity in which the procedure is sched-
uled, and it maintains the chain of procedure calls that have
occurred within the process.

To differentiate a procedure from its executing invocations,
Hydra supports two object types: the procedure object and the
local name space object. A Hydra procedure object is the static
representation of a procedure. The procedure object contains
instructions, constant values, and capabilities that are needed
by the procedure for its execution. The capabilities are main-
tained in the C-list of the procedure object.

The procedure object is actually a template from which an
activation is built when the procedure is called. A procedure is
called through a procedure capability. When a procedure call
occurs, the Hydra kernel creates a local name space object and
initializes it from information contained in the associated pro-
cedure object. The LNS is the activation record for the execut-
ing procedure; it represents the dynamic state of the proce-
dure’s execution. Since procedures can be shared, several LNS
objects can exist to represent different activations of a single
procedure. Hydra allows both recursive and re-entrant proce-
dures.

The LNS defines the dynamic addressing environment for a
procedure. All of the objects that can be directly addressed by
the procedure must be reachable through capabilities in the
C-list of the LNS. The capabilities are initially obtained from
two places:

l the called procedure object (these are known as inherited ca-
pabilities), and

l capability actual parameters passed by the caller.

Within the executing procedure, capabilities are addressed by
their index in the LNS C-list. As the procedure executes, the
LNS changes as capabilities are acquired, copied, and deleted.

6.5 Hydra Operations

C.mmp is constructed from PDP-11 minicomputers, which
do not support capabilities or virtual memory addressing.

The Hydra System Therefore, all Hydra object operations are performed through
calls to the Hydra kernel. A procedure cannot manipulate the
data-part of an object with processor instructions. Instead, the
procedure performs a kernel operation to copy data from the
data-part into its local memory for examination or modifica-
tion. Another call to the kernel moves data from local memory
to the object’s data-part. No direct copying is allowed to the
c-list.

Since a number of operations are common to objects of all
types, the kernel provides a set of generic operations that can be
applied to any object, assuming the caller has a sufficiently
privileged capability. Table 6-2 lists some of these object oper-
ations, as well as some of the standard capability operations.

A typical kernel call might specify several parameters that
are capabilities. In general, any param?ter requiring a capabil-
ity will also allow a path to a capability. The path allows a user
to specify several levels of indirection to the target object. The
path is specified as a list of C-list indices, leading from a capa-

Copy data from the data-part of a specified
object to local memory.
Copy data from local memory to the data-
part of a specified object.
Append data from local memory to the
data-part of a specified object, extending the
size of the data-part.
Create a new data object (data-part only)
initialized with N words from a local seg-
ment, and return a capability for the new
object.
Create a new universal object (data-part and
C-list) and return a capability for the new
object.
Copy a specified target capability (e.g., in a
specified object’s C-list) to the current LNS
(local addressing environment).
Copy a capability from the current LNS to a
specified object C-list slot.
Append a capability from the current LNS
to a soecified obiect’s C-list, extending the
C-list size. ’
Compare two capabilities.
Reduce the rights in a specified capability.
Delete a specified capability.
Create a new object with the same type and
representation as another object.

110 Tab/e 6-2: Generic Object and Capability Operations

64-b/t object name Generic rights

Figure 6-3: Hydra Capability

Auxiliary rights

6.6 Capabilities and
Rights

bility in the current LNS C-list, through a capability in the
C-list of the object selected, and so on.

6.6 Capabilities and Rights

Hydra capabilities contain an object’s name and access
rights. The access rights are divided into two fields: a 16-bit
generic rights field and an 8-bit auxiliary rights field, as illus-
trated in Figure 6-3. (This figure is somewhat simplified; capa-
bilities have different formats which are shown in detail in
Section 6.9.) The generic rights, listed in Table 6-3, can be
applied to any Hydra object. In general, they control permis-
sion to execute the generic operations listed in Table 6-2. The
auxiliary rights field is type specific; its interpretation is made
by the procedures that operate on the specific object type.

The rights are single-bit encoded, and the presence of a bit
always indicates the granting of a privilege. This convention
simplifies rights restriction and rights checking and allows the

GetDataRts, PutDataRts, AppendDataRts
Required to get, put, or append data to
an object’s data-part.

GetCapaRts, PutCapaRts, AppendCapaRts
Required to get, put, or append to an
object’s data-part.

DeleteRts tfi;sr this capability to be deleted from a

KillRts Allows deletion of capabilities from the
C-list of the named object. The capability
to be deleted in that C-list must have
DeleteRts.

ModifyRts Required for any modification to an object’s
representation.

EnvRts Environment rights allows a capability to
be stored outside of the current LNS.

UncfRts Unconfined rights allows an object ad-
dressed through a specified object to be
modified.

CopyRts Required to execute the $COPY operation.

Tab/e 6-3. Capability and Generic Object Access Rights 111

The Hydra System kernel to verify that a capability has sufficient generic and aux-
iliary rights for a specific operation.

A type manager typically has the power, through possession
of a special capability, to gain additional privileges to an object
of its type passed by a caller. This facility, known as rights
amplification, will be described in Section 6.7. In some cases a
caller may wish to restrict a subsystem’s use of capability pa-
rameters and the objects they address. In particular, the user
may wish to ensure that a called procedure does not:

l modify the representation of an object,
l retain the capability for an object following return of the call,

or
l copy information from an object into any memory that could

be shared with other programs.

112

These restrictions can be guaranteed through the use of three
special rights listed in Table 6-3: modify rights (ModifyRts),
environment rights (EnvRts), and unconfined rights (UncfRts)
[Cohen 75, Almes 801.

ModifyRts is required in any capability that is used to mod-
ify the representation of an object. For example, in order to
write to an object’s data-part, the executing procedure must
have a capability containing both PutDataRts and ModifyRts.
By removing ModifyRts from a capability parameter, a pro-
gram can guarantee that a called procedure will not modify that
object because, unlike the other generic rights, ModifyRts can-
not be gained through amplification.

EnvRts is required for a procedure to remove a capability
from its local name space. When a program removes EnvRts
from a capability that is passed as a parameter, it guarantees
that no copies of the capability can be retained by the called
domain following its return. Without EnvRts, it is impossible
for a called procedure to save a capability in a local object’s
C-list to be used later. Although a capability without EnvRts
can be passed to another procedure as a parameter, that proce-
dure will once again find a capability in its LNS without EnvRts
and will not be able to save it. EnvRts also cannot be gained
through amplification.

Although EnvRts prohibits a procedure from saving a capa-
bility, it does not prohibit the procedure from copying all of
the possibly confidential information from that object into a
new object. UncfRts, when removed from a procedure capabil-
ity, restricts the storage of information by the called proce-

6.7 Supporting
dure. If a procedure is called using a capability lacking Protected Subsystems

UncfRts, all capabilities copied from the procedure object into
the LNS will have UncfRts and ModifyRts removed. That is,
the procedure will be forced to execute in an environment in
which it cannot modify any of its own objects or any objects
reachable through its own capabilities. Therefore, it will not be
able to maintain any permanent state following its return. The
only objects that can be modified by the call are those passed
by capability parameters that contain ModifyRts.

6.7 Supporting Pro tee ted Subsys terns

A major goal of the Hydra system is the support of the
object-based programming methodology. That is, facilities are
added to the operating system by creating new object types. A
type manager, represented by a Hydra type object, is a module
that creates new instances of its type and performs operations
on those instances. The objective of this methodology is to
localize knowledge of the representation and implementation
of each type to its type manager. Users can call type manager
procedures to create and manipulate objects, but cannot di-
rectly access an object’s representation.

To support this programming style, a type manager must be
able to:

l create new object instances of its type,
l return a capability for a new instance to the caller requesting

its creation (this capability identifies the object but must not
allow its owner to access the object’s representation directly),
and

l retain the ability to access the object’s representation when
passed a capability for an object it created.

The type manager must, therefore, be able to restrict the rights
in a capability that it returns to a caller and later amplify those
rights when the capability is returned. The amplified rights
permit the type manager to examine and modify the object’s
representation. Amplification occurs during procedure calls
through a special type of capability owned by the type manager
called a template.

6.7.1 Templates

There are two common operations that the kernel performs
during Hydra procedure calls. First, the kernel verifies that
parameter capabilities have the expected type and required 113

The Hydra System rights for the operation implemented by the procedure. Sec-
ond, the kernel can, under controlled circumstances, amplify
the rights passed in a capability parameter. This facility is re-
quired to allow subsystems to perform operations on an object
that are not permitted to the user of the object.

Both the type checking and amplification facilities are pro-
vided through a mechanism called capability templates. A tem-
plate is a kind of capability used by type managers to imple-
ment type systems. Templates do not address objects, but give
the possessor special privileges over objects or capabilities of a
specified type. As the name implies, the template capability is
a form used to verify the structure of a capability or to con-
struct a capability. Templates are stored in procedure C-lists
and can be manipulated with capability operations. There are
three types of templates: parameter templates, amplification
templates, and creation templates.

Parameter templates are used to verify the capability parame-
ters passed to a procedure. The procedure object’s C-list con-
tains parameter templates as well as capabilities for procedure-
local objects. When a procedure call occurs, the kernel builds
the LNS C-list from the procedure object’s C-list. The proce-
dure’s C-list contains its own capabilities that are copied di-
rectly to the LNS C-list and parameter templates that repre-
sent slots to be filled in with capabilities passed as parameters.
The parameter template contains a type field and a required
rights field. When copying a capability parameter to the LNS,
the kernel verifies that the type matches the template’s type
field and that the rights in the capability are at least as
privileged as those required by the template. Special templates
can also be provided that will match any type or rights.

The procedure C-list can also contain amplification tem-
plates. An amplification template contains a type field and two
rights fields: required rights and new rights. The type and
required rights fields of the amplification template are used to
validate the capability parameter in the same way that a param-
eter template is used. However, once validated, the kernel
stores the capability in the LNS with the new rights field speci-
tied in the amplification template. These rights can either am-
plify or restrict rights, as specified by the template.

114

Amplification templates can only be created by the owner of
a capability for a type object. In general, only a type object will
own the amplification templates for its own type. However, it
is possible for a subsystem to own amplification templates for
objects of several types. Figure 6-4 illustrates a Hydra proce-

$CALL (SEND-MESSAGE_;PROCEDURE-CAPABILITY,
PORT-CAPABILITY, MESSAGE-CAPABILITY)

Capabi/ity_A

Ampiification
tempiate

Capability-B

t CapabiiityAi

Amplified
_____t port capabiiity

Parameter
template

Procedure C-iist

Figure 6-4: Hydra Procedure Call

L NS C-iist

dure call that uses both parameter and amplification templates.
The call sends a message, identified by a message object capa-
bility, to a port identified by a port object capability. The call
is made to the port type manager that must manipulate the
representation of the port object to indicate that a message has

~ arrived. In this example, the C-list of the procedure object
1 contains two inherited capabilities that are copied directly to

the new LNS. The procedure C-list has an amplification tem-
plate that is merged with the port capability actual parameter.
The merge operation verifies the type and rights of the capabil-
ity and stores a capability in the LNS with amplified rights.
The procedure C-list also has a parameter template that is
merged with the message capability parameter. In this case,
the merge operation simply verities the type and access rights
of that capability and then copies the capability actual parame-
ter into the LNS.

The third template type, the creation template, is not used in
the procedure call mechanism, but can be used to create a new
instance of a specific type. A creation template contains an
object type and rights. Using the $CREATE kernel operation,
an object with the specified type and rights can be created. In
general, subsystems do not provide creation templates; they
require that a user call the subsystem in order to create a new
instance. The subsystem then uses its private creation template
to create the new instance, which the subsystem initializes ap-
propriately. The subsystem might then restrict some of the
rights in the capability returned for the new object and pass
that restricted capability to the user.

6.7 Supporting
Protected Subsystems

115

The Hydra System 6.7.2 Typecalls

A Hydra type manager can be thought of as a collection of
procedures that has the ability, usually through possession of
templates, to manipulate the representation of a particular ob-
ject type. A program calls these type management procedures
using procedure capabilities in the current LNS.

In fact, the concept of type manager is formalized by the
Hydra TYPECALL mechanism. A TYPECALL is a call to an
object’s type manager that is made through the capability for
the object itself. Thus, a procedure capability is not needed for
a TYPECALL; only a capability for an object is needed. The
procedure capability is located in the C-list of the object’s type
manager, which can be found indirectly through the object.

Figure 6-5 shows an example of the TYPECALL mechanism.
The TYPECALL invokes the second procedure in the type object
for the specified port object. Two parameters are passed to the
TYPECALL, the capability for the port object and the capability
for a message object. The capability for the port object is listed
twice: once as the object through which the TYPECALL is made
and once as a parameter to the TYPECALL.

The TYPECAU mechanism supports abstraction in several
ways. First, the owner of an object does not need to possess
capabilities for its type object or for procedure objects to
manipulate that object. In effect, a TYPECALL requests that
the object perform an operation on itself. Second, if all objects
support a common set of generic operations at identical type
indices, a user can find information without knowing an ob-
ject’s type. For example, if all type objects implement a “tell
me your type name” operation as the first procedure and “dis-
play yourself” as the second, then a user can apply those opera-
tions equally on all objects.

6.8 Hydra Object Storage System

A Hydra object, once created, has a lifetime independent of
the process that created it. As long as a capability exists for an
object, that object will be retained by Hydra and made availa-
ble when referenced. Hydra stores most long-lived objects on
disk when they are not in use and brings them into primary
memory when a reference is made. Given a capability for an
object, a user can perform any legitimate operation without
concern for whether or not the object is currently in primary
memory.

-

cu Q

2
9

-

The Hydra System Hydra, thus, provides a uniform single-level object address-
ing environment to its users. Although objects can be stored in
primary or secondary memory, the location of an object is in-
visible to the Hydra user. The Hydra kernel must, therefore,
manage the movement of objects between primary and second-
ary storage. The mechanism for storing and locating objects is
the Hydra Global Symbol Table.

The Global Symbol Table (GST) contains information
about every object reachable by the kernel. The GST is divided
into two parts: the Active GST and the Passive GST. The
Active GST maintains information about objects stored in pri-
mary memory, while the Passive GST maintains information
about objects stored in secondary memory. An object is said to
be active or passive depending on whether it is in primary or
secondary memory.

As previously stated, the representation of a Hydra object
consists of its C-list and data-part. In addition, the kernel con-
structs data structures called the active fixed part and passive
jixed part that contain state information for active and passive
objects, respectively. Table 6-4 shows the formats of the two
fixed parts. As their names imply, the fixed parts have a fixed
size for easy storage and access. Many object operations can be
satisfied by reference to the fixed part alone, and it is possible
for the active fmed part to be in primary memory while the
representation is still in secondary memory. In this case, the
object’s fixed part is said to be active while the representation
is passive.

When a new object is created, Hydra stores its representa-

Passive Fixed Part Active Fixed Part
Global Object Name Global Object Name
Object Flags Object Flags
Current Version Disk Address Current Version Disk Address
Previous Version Disk Address Previous Version Disk Address
Type Name Total Reference Count
Color (for garbage collection) Active Reference Count

Type Object Index
Checksum of Fixed Part
State
C-List Primary Memory Address
Data-Part Primary Memory Address
Mutex Semaphore (object lock)
Time Stamp (of last access)
Color (for garbage collection)

Tab/e 6-4 Hydra Active and Passive Fixed Parts 118

tion in primary memory and allocates and initializes an active
fured part. The kernel stores the object’s active fixed part in a
data structure called the Active GST directory. The Active
GST directory is organized as an array of 128 headers of linked
lists, as shown in Figure 6-6. Each linked list contains active
fixed parts, and the appropriate list for an object’s fixed part is
determined by a hashing function on the object’s 64-bit name.

The division--ofxhe Active GST directoryinto 128 lists __- .-
serves two purposes. First, it speeds up the GST search, since
the linked lists can be kept relatively short. Second, it allows
parallelism in the access of the active fixed parts. Only one
processor can search a linked list and access a specific active
fixed part at a time. By dividing the Active GST into 128 lists,
a lock can be maintained separately for each list, allowing si-
multaneous searches of different lists.

There are two events that cause a Hydra object to be copied
to secondary memory. First, passivation can be triggered by a
kernel process that removes objects from primary memory ac-
cording to their last reference times. This is analogous to swap-
ping in traditional systems. Second, a program can perform an
explicit UPDATE function, requesting that an object’s repre-
sentation be written to disk. In this case, the object remains
active with the guarantee that the active and passive copies are
identical. The UPDATE operation is used to ensure consistency
over system crashes, because any active representation
will be lost following a crash. UPDATE is used primarily by
type managers.

Two versions of each object are kept on secondary stor-

LOCK Active Fixed Parts

i
127 Link

El

Figure 6-6: Active Fixed Part Directory 119

The Hydra System age-a current version and a previous version. When an object
is passivated, its representation is written to secondary storage,
destroying the older of the two versions. If any failure occurs
during the write operation, the newer version on disk is left
intact. Following successful completion of the UPDATE, the
newly passivated image becomes the current version, with the
former current version becoming the previous version.

Passive objects are stored in the Passive GST. A passive
object is stored as a contiguous array of disk blocks containing
the passive fured part, data-part, and C-list. To locate a passive
object, a search of the Passive GST directory is made. The
Passive GST directory is stored on a high-speed, fixed-head
disk and consists of copies of all of the passive fixed parts. The
passive fured parts are organized in 256 blocks for the purpose
of synchronization and parallel search. The global object name
is used as a key in the search for the correct block.

Object activation occurs when the kernel fails to locate a
referenced object in the Active GST. The kernel must then
search the Passive GST directory. Activation can occur in two
phases. First, the object’s fixed part is activated. The active
fixed part is constructed from information in the passive fixed
part. Many operations can be completed with activation of the
fixed part alone. Then, if the object’s representation must be
activated, the C-list and data-part are read into memory.

120

6.9 Capability Representation

Just as Hydra objects can be active or passive, so Hydra
capabilities have both active and passive forms. These forms
are shown in Figure 6-7. Active and passive capabilities differ
in the format of the object address. An active capability con-
tains the primary memory address of the object’s active fixed
part, while a passive capability contains the object’s 64-bit
name. An object reference using an active capability is obvi-
ously more efficient, as it does not require a GST search.

An active capability cannot be stored on secondary memory
because it contains the primary memory address of the active
fixed part, which can be swapped out. When Hydra writes an
object to secondary storage, it converts all the capabilities in its
C-list to passive form. When Hydra activates an object, it
leaves capabilities in passive form until they are used. When a
program addresses an object through a passive capability, the
kernel searches the GST and converts that capability to active
form.

6.10 Reference Counts
and Garbage

Word Collection

15 87 0 15 87 0

Auxiiiary rights Flags 0 Auxiiiary rights Rags

Generic rights 1 Generic rights

Primary memory address 2 Checksum Unused

of ache fixed part 3 Unused

Global name first word 4 Giobai name first word

Giobai name second word 5 Giobai name second word

Unused Checksum 6 Giobai name third word

Type tab/e index of type object 7 Giobai name fourth word
4

Active Capability Passive CapaMity

Figure 6-7: Hydra Capability Formats

Because an active capability contains the primary memory
address of the active fmed part, an active fixed part cannot be
removed from memory as long as active capabilities exist for
the object. For this reason, an active reference count is main-
tained in the active fured part. The active reference count indi-
cates the number of physical addresses that exist for the fwed
part. When this count is decremented to zero, the active fixed
part (and the object’s representation) can be passivated.

6. IO Reference Counts and Garbage Collection

On systems such as Hydra, with long-term object storage, it
is difficult to know when an object can be deleted. An object
can have many users since capabilities can be freely passed
between processes. Users can also delete capabilities, and when
no capabilities exist for an object, the object should be deleted.
Objects that are no longer reachable are known as garbage ob-
jects and the general problem of finding them is known as
garbage collection.

Reference counts can help in the garbage collection prob-
lem, and Hydra maintains both an active reference count and a
total reference count in an object’s active fmed part. The total
reference count indicates the total number of capabilities for an
object, including passive capabilities in the Passive GST. If the
total and active reference counts in an active fixed part become
zero, the kernel deletes the object because it can no longer be
referenced. 121

The Hydra System Reference counts in themselves are insufficient to stop the
accumulation of garbage objects for several reasons. First, ref-
erence counts cannot catch object reference cycles. For exam-
ple, if objects X and Y have capabilities for each other in their
C-lists but no other capabilities for X and Y exist, then both
objects are garbage and should be deleted. However, both ob-
jects will have reference counts of one. Second, because the
active and passive fixed parts for Hydra objects are not always
consistent, any total reference count maintained in the passive
fixed part can be in error following a crash. This inconsistency
occurs because it is not feasible to modify the passive fixed part
reference count on every capability copy operation.

Because of the insufficiency of reference counts, Hydra in-
cludes a parallel garbage collector [Almes 801. The parallel gar-
bage collector consists of a collection of processes that execute
concurrently with normal system operation. The garbage col-
lector scans all objects, marking those that are reachable. The
color field in the active and passive fixed part is provided for
this purpose. Following the marking of objects, another scan is
made to locate objects that were not marked-those that
are unreachable and therefore are garbage. These objects are
deleted.

It is important to note that while the garbage collector is
running, capabilities can be freely copied and deleted. The
Hydra garbage collector must also cope with the dual residency
of objects in the Passive and Active GSTs.

f22

6.11 Discussion

Perhaps the best indication of Hydra’s success is that much
of its philosophy now seems obvious. The object model and the
large single-level object address space have found their way
into contemporary products. These ideas did not completely
originate with Hydra, nor was their implementation on Hydra
totally successful (reflections on the Hydra/C.mmp system by
its designers can be found in [Wulf 78 and Wulf 811). How-
ever, the basic philosophy has proven to be a valuable model
for system design.

Although previous capability systems provided primitive
objects, user-defined objects, and capability addressing, Hydra
is the first to present its users with a uniform model of the
abstract object as the fundamental system resource. All re-
sources are represented as objects, and objects can be protected
and passed from domain to domain. Users can create new re-

sources, represented by type objects, and can control instances 6.11 Discussion

of these resources through type-specific procedures.
As the designers point out, the system probably went too far

with the flexibility allowed for object protection [Wulf 811. For
example, although direct operations on an object’s representa-
tion can be restricted to the object’s type manager, the protec-
tion system allows any user with a sufficiently privileged capa-
bility to access the object. To support this generality in a
controlled fashion, Hydra defines a large set of generic object
rights. In the usual case, however, only the type manager is
allowed to access the object, and it must amplify the needed
rights through an amplification template. In general, it would
be simpler to restrict representation access to type managers
who are implicitly given all rights to their objects’ representa-
tions.

Hydra also attempts to solve some complex protection prob-
lems with special rights bits. A caller can prevent a called pro-
cedure from modifying an object or “leaking” information
from the object. However, it is not always possible for a proce-
dure to operate correctly without some of the special rights (for
example, modify rights). Some subsystems may not be able to
operate in a confmed environment. In addition, it is often diffi-
cult for the caller to know what effect the removal of special
rights will have on a called subroutine, although good docu-
mentation practices can help alleviate this problem.

Many of Hydra’s shortcomings are a result of the hardware
base, including the small address space and lack of hardware
capability support in the PDP-11s. All capability and object
operations are executed by operating system software, and
even a type manager must copy data from the representation of
its objects to local memory for modification. A domain change
on Hydra, which requires creation of a new local name space
object, type and rights checking of capabilities, and so forth,
takes over 35 milliseconds. This severe penalty for a domain
change forces a programming style that is contrary to that
which is intended. That is, if domain changes are expensive,
programmers will tend to use them infrequently and programs
will not be written to execute in the small constrained protec-
tion domains originally envisioned.

In general, Hydra’s objects are too expensive (in terms of
space overhead, time for creation, etc.) for their actual usage.
Measurements of Hydra show that over 98 percent of all ob-
jects are created and destroyed without ever being passivated
[Almes 801. Hydra objects are, therefore, relatively short- 123

The Hydra System lived. The same measurements show that the median object
size is 46 bytes for the data-part and 6 capabilities for the C-
list. The GST active fixed part overhead for such an object is
rather large, as is the cost of each capability.

An important feature of Hydra is the use of large object
names-its unique-for-all-time object identifiers. By using a
64-bit value for an object’s name, the kernel avoids searching
for dangling references when an object is deleted. Although an
object’s name never changes, capabilities are modified when
moved between primary and secondary storage. The change of
capability format is simply a performance optimization used to
reduce the overhead of Hydra’s software-implemented capabil-
ity support. An operation on an object’s capabilities, such as
the change from active to passive format, is simplified by the
fact that all capabilities are stored in a single C-list.

The Hydra GST is the mechanism for implementing a sin-
gle-level uniform address space. The single-level address space
greatly simplifies a number of problems for both users and the
operating system. Most programs do not need to know about
the existence of secondary storage. For type managers that
must ensure that an object’s representation is preserved on
secondary memory, Hydra provides the UPDATE operation.

The Hydra developers succeeded in constructing a large,
functioning operating system (details of the development can
be found in [Wulf 751). In addition, they were able to imple-
ment several useful subsystems outside of the kernel, as in-
tended. These included directory systems, file systems, text
editors, and command languages. Perhaps the greatest short-
coming of Hydra, however, was that it did not become a sys-
tem of choice among programmers at Carnegie-Mellon.
Lampson and Sturgis, in their retrospective on CAL-TSS,
state the common problem of many operating system research
projects:

. ..we failed to realize that a kernel is not the same thing as an
operating system, and hence drastically underestimated the
work required to make the system usable by ordinary program-
mers. The developers of Hydra appear to have followed us
down this garden path [Lampson 761.

Even so, a tremendous experience was gained from Hydra
that has passed to many follow-on systems. The Cmmp hard-

P ware was fmally dismantled in March 1980; however, still op-
erating at Carnegie-Mellon was a direct descendant of Hydra/

124 Cmmp, which is discussed in the next chapter.

6.12 For Further Reading

The Hydra philosophy was first presented in the original
CACM paper on Hydra [Wulf 74a]. More recently, Wulf,
Levin, and Harbison have written an excellent book on the
Hydra system that describes both the kernel and some of its
subsystems [Wulf 811. The book also includes performance
measurements of Hydra and the C.mmp hardware. The paper
by Wulf and Harbison is a retrospective on the HydraiCmmp
experience [Wulf 781.

Three papers on Hydra appeared in the Proceedings of the
5th ACM Symposium on Operating Systems Principles in 1975.
These well-known papers describe the separation of policy and
mechanism in Hydra [Levin 751, the Hydra protection system
[Cohen 751, and the Hydra software development effort [Wulf
751.

Almes’ thesis describes the Hydra garbage collector and also
presents measurements of the GST mechanism showing object
size and lifetime distributions [Almes 801. The paper by Almes
and Robertson describes the construction of one of several
Hydra file systems [Almes 781. Low-level details of the Hydra
kernel and its operations are documented in the Hydra Kernel
Reference Manual [Cohen 761.

6.12 For Further
Reading

The Cm* computer (Courtesy’Dr. Zary Segall)

