
9 

The Intel iAPX 432 

9. I Introduction 

In 1981, Intel introduced the first object-based microproc- 
essor, the iAPX 432 [Intel 8 1, Rattner 81, Organick 831. Like 
the IBM System38, the Intel 432 implements many operating 
system functions in hardware and microcode, including proc- 
ess scheduling, interprocess communication, and storage allo- 
cation. The integration of such software operations in hard- 
ware is particularly impressive when considered with the Intel 
432’s VLSI implementation. 

The Intel 432 design effort began in 1975 with an attempt to 
implement in silicon a system much like Carnegie-Mellon’s 
Hydra operating system [Wulf 74a]. Three chips compose the 
Intel 432 processing elements. The central processing unit, 
called the General Data Processor (GDP), is implemented on 
two 64-pin VLSI chips. Together, the GDP chips contain over 
160,000 components. The Interface Processor (IP), responsi- 
ble for communication and data transfer between the Intel 432 
and its I/O subsystems, is the third 64-pin chip. Design and 
layout of the chip set took more than 100 man-years. 

The 432 is a multiprocessor system that can accommodate a 
total of six processors, each either a GDP or II’. The general 
structure of the 432 multiprocessor system is shown in Figure 
9-1. All of the processors are connected to a single multiproces- 
sor message bus through which they communicate with each 
other and with shared system memory. The IPs connect the 
multiprocessor system to Intel Multibus subsystems. Each 
Multibus is controlled by an associated processor, such as an 

159 



The Intel iAPX 432 

1 
Multiorocessor messaPe bus 

160 

&I IP 

‘&JiJig 
Figure 9-I Intel iAPX 432 Structure 

Intel 8086, that connects to local memory and some number of 
I/O devices. The II’s transfer data between Intel 432 memory 
and Multibus local memory; all I/O is actually performed by 
the associated processor. 

The Intel 432 instruction set provides two types of instruc- 
tions: scalar and object-oriented. The scalar instruction set 
consists of a small set of move and store operators, boolean 
arithmetic, binary and floating point arithmetic, and compari- 
son operations. Scalar instructions operate on 8-bit characters, 
16- and 32-bit signed and unsigned integers, and 32-, 64-, and 
80-bit floating point numbers. The 432 has a stack architec- 
ture; instruction operands can be fetched from the stack and 
results can be pushed onto the stack. There are no general-pur- 
pose registers. 

An object-oriented instruction set provides operations on 
abstract objects that are managed by a combination of hard- 
ware and software. The following sections examine many of 
those object types and the details of object addressing on the 
Intel 432. It should be noted that the Intel 432 architecture has 
evolved since its introduction; this chapter reflects the system 
as of revision 3 [Intel 821. 



9.2 Segments and 

Objects 9.2 Segments and Objects 

The concepts of object-based computing are deeply imbed- 
ded in the Intel 432. All system resources are represented as 
objects; for example, a processor object maintains the state of 
each GDP or IP in the system. Each processor object then 
contains a queue of process objects, which represent work to be 
scheduled and executed. All objects are addressed through 
capabilities which, on the Intel 432, are called access descrip- 
tors (ADS). (The vendor’s terminology is used in this chapter 
for compatibility with Intel literature. The notation “AD” is 
used throughout for “capability.“) 

At the lowest level, objects are composed of memory seg- 
ments, and a memory segment is the most fundamental object 
(called a generic object on the Intel 432). Each Intel 432 segment 
has two parts: a data part for scalars and an access part for ADS, 
as shown in Figure 9-2. Objects requiring both data and access 
descriptors can be stored in a single segment. Segments are 
addressed through ADS, as the figure illustrates. The data part 
grows upward (in the positive direction) from the boundary 
between the two parts, while the access part grows downward 
(in the negative direction) from the dividing line. The hard- 
ware ensures that only data operations are performed on the 
data part and that AD operations are performed on the access 
part. 

Each part of a segment can be from 0 to 64K bytes in size. 
Data elements in the data part are addressed as byte displace- 
ments from the dividing line. ADS, which are 32bits long, are 
addressed by integer indices from the dividing line. The access 
part can therefore contain up to 16K ADS. Both data elements 
and ADS are addressed as positive indices within the segment; 

Data elements 0 

Accessdesa L 
Accessdescriptors 

0 
I 1 (AD index) 

I 2 

figure 9-2: Intel 432 Segment 161 



The Intel iAPX 432 the hardware determines the part of the segment to access 
based on the type of the required operand. 

In addition to basic storage segments, the Intel 432 hard- 
ware supports a number of system object types, listed in Table 
9-l. The representation for an instance of a system object is 
maintained in a storage segment. Operating system type man- 
agers are responsible for creating new instances of system ob- 
jects. A type manager creates and sets the type for an object 
through the CREATE TYPED OBJECT instruction. The operands 
for this instruction specify the object’s type, the data part size, 
and the access part size. The instruction returns an AD for the 
new object, which the type manager uses to initialize the object 
appropriately. 

For each system object type, the 432 architecture specifies 
the meaning of some of the data andor access fields. These 
processor-defined fields are stored in the low-index portions of 
the two segment parts, adjacent to the boundary. A type man- 
ager is free to allocate additional data or access descriptor space 
in higher address parts of the two regions for object informa- 
tion needed by software. 

162 

GENERIC SEGMENT basic storage for data and access descriptors 
(capabilities) 

DYNAMIC SEGMENT 
storage segment created by a programmer- 
defined type manager 

INSTRUCTION SEGMENT 
segment containing executable code 

PROCESS basic unit of scheduling 
PROCESSOR 432 GDP or IP 
DOMAIN module or package 
CONTEXT dynamic state for a procedure invocation 
MESSAGE PORT interprocess communication object 
CARRIER extension of a message used to queue it to a 

port 
TYPE DEFINITION object containing information about a spe- 

cific object type 
TYPE CONTROL object permitting creation of specific object 

types 
STORAGE RESOURCE 

OBJECT TABLE 

source of primary memory for object storage 
allocation 
mapping table of object descriptors 

Tab/e 9-1: Intel 432 System Object Types 



9.3 Object Addressing 9.3 Object Addressing 

As in previous capability-based systems, there are two com- 
ponents to the Intel 432 addressing structure. First, a single 
descriptor contains the physical mapping information for each 
object. These descriptors, on the Intel 432, are called object 
descriptors. Second, programs specify access descriptors to refer 
to objects that they wish to manipulate. All ADS for an object 
refer to that object indirectly through its single object descrip- 
tor. The following sections describe first object descriptors and 
then access descriptors. 

9.3.1 Object Descriptors 

For each Intel 432 object there is a single object descriptor. 
The object descriptor contains information about the physical 
location and state of the object. The purpose of the object de- 
scriptor is to locate this physical object information in a single 
place so that objects can be easily relocated or synchronized. 
Each object descriptor is 16 bytes long. There are several types 
of object descriptors, but the most common is a storage seg- 
ment descriptor, shown in Figure 9-3. Table 9-2 describes the 
fields in the storage segment descriptor. 

I Comp’eted 
127 lj2 

X TDO-AD image 

96 

I 
95 

Level X Object Type 

80 79 73 1 64 

- Copied 

63 

31 

48 47 32 

AP Length DP Length 

Base Address x x x x x x 11 

8 0 

Entry Type 

- OD Valid 

DP Valid 

A/located 

Windowed 

Altered 

Accessed 

F@ure 9-3: Intel 432 Storage Segments Descriptor 163 



The Intel iAPX 432 

ENTRY TYPE 
OD VALID 

DP VALID 

ALLOCATED 

WINDOWED 

ALTERED 
ACCESSED 
BASE ADDRESS 

DP LENGTH 

AI’ LENGTH 

OBJECT TYPE 

COPIED set to 1 whenever an AD referencing this 
object is copied 

LEVEL 

TDO-AD IMAGE 

level of this object (generally the call depth 
at which it was allocated) 
AD that defines the type manager that cre- 
ated this object 

COMPLETED used by software in object initialization 

indicates that this is a storage descriptor 
specifies whether the object descriptor can 
be used for addressing 
indicates whether or not the object has a 
data part 
specifies whether or not storage is allocated 
for this object 
indicates whether or not this object is being 
mapped by an IP 
set to 1 whenever the object is written 
set to 1 whenever the object is accessed 
primary memory address of the first byte of 
the segment’s data part 
length in bytes (minus one) of the segment’s 
data part 
length in bytes (minus one) of the segment’s 
access part 
type of the object, consisting of a 5-bit sys- 
tem type field (specifying system objects, 
shown in Table 9-1) and a 3-bit processor 
type field (specifying whether a GDP or IP 
owns the object) 

Tab/e 9-2: Intel 432 Storage Segment Descriptor Fields 

164 

Each object descriptor is contained in an object table. The 
Intel 432 object table corresponds to the central capability 
table of previous systems. Unlike previous systems, however, 
there are many object tables in existence at any time. In gen- 
eral, every process executing in the 432 has an associated object 
table. Or, several processes can share a single object table. An 
object table therefore contains information about objects local 
to one or more processes. 

In addition to the many process object tables, there is a 
single system-wide Object Table Directory. The Object Table 
Directory contains object descriptors that address each of the 
process object tables. Object tables are thus objects themselves 
and can be swapped out or relocated like other objects. 
The Object Table Directory, however, must always reside in 



primary memory. Each processor object contains the primary 9.3 Object Addressing 

memory address of the Object Table Directory. 

9.3.2 Access Descriptors 

While each object has only one object descriptor, many ac- 
cess descriptors can be used to address the object. ADS are 
32-bits long and specify addressing and access rights to an ob- 
ject. To execute an instruction that manipulates an object, the 
programmer specifies the location of an AD for the object. The 
AD is specified by its index in the access part of a segment. 
The collection of ADS accessible to a procedure define that 
procedure’s execution environment: that is, the set of objects 
the procedure can address and manipulate. 

An AD, illustrated in Figure 9-4, contains access rights to 
an object along with two 12-bit mapping indices. The read, 
write, and type rights fields are rights with respect to the ad- 
dressed object. Type rights are type dependent and their en- 
coding is different for each object type. Some type rights for 
system objects are defmed by the architecture and evaluated by 
hardware instructions. The delete rights bit permits the pos- 
sessor to delete the AD itself. An attempt to delete an AD with 
this bit set to zero causes a fault. The unchecked copy rights 
bit, indicating whether the object was allocated from a global 
or local storage pool, is used to avoid dangling references 
(described in Section 9.6). 

Table 9-3 lists the instructions that operate on ADS. Note 
that ADS can be freely copied to the access part of any accessi- 
ble segment. The INSPECT ACCESS DESCRIPTOR instruction cop- 
ies the image of an AD to a segment’s data part for examina- 
tion. Of course, an AD image stored in a data part cannot be 
used as an AD. 

Locating an Intel 432 object through an AD requires two 
steps. The AD, in addition to the rights bits, contains two 
indices: an index into the system-wide Object Table Directory 

Figure 9-4: Intel 432 Access Descriptor f65 



The Intel iAPX 432 

COPY ACCESS DESCRIPTOR 
Copies an AD from one segment’s access 
part to another. 

MJLL ACCESS DESCRIPTOR 
Invalidates an AD. 

INSPECT ACCESS DESCRIPTOR 
Copies the information in an AD into a seg- 
ment’s data part. 

INSPECT OBJECT Copies the information from an AD and the 
object descriptor to which it refers into a 
segment’s data part. 

AMPLIFY RIGHTS Amplifies the rights in an AD under control 
of a Type Control Object. 

RESTRICT RIGHTS Removes rights specified by an AD. 
CREATE OBJECT Creates a segment with specified data part 

and access part lengths, and returns an AD 
for the segment. 

CREATE TYPED OBJECT 
Creates a segment of the specified type with 
specified data part and access part lengths, 
and returns an AD for the segment. 

Tab/e 9-3. Intel 432 Access Descriptor Instructions 

and an index into an object table. This mapping is shown in 
Figure 9-5. The first index locates the object descriptor for an 
object table. The second index locates the object descriptor for 
the specified object in the selected table. 

Each access to a byte in a segment potentially requires four 
references, one each to: 

l the access descriptor in an access segment, 
l the Object Table Directory, 
l the object table, and 
l the byte itself. 

166 

With the exception of the access to the AD, the two-level map- 
ping overhead is cornpark ble to the overhead required on any 
conventional virtual memory system. Of course, caches can be 
used to decrease this overhead substantially. The first imple- 
mentation of the 432 has several small on-chip caches to re- 
member recently used translations. 

Since AD index fields are 12 bits, an object table can have a 
maximum of 4096 (2i2) object descriptors. In addition, there 



12 4 12 4 
32-bit 

9.4 Program Execution 

Directory index xxxx Segment index xxxx access 
descriptor 

. 

- Object descriptor 

(16 byfesj 
. + Object descriptor 

Object Table 
Directory (16 bytes) 

Object Table 

Figure 9-5: Intel 432 Address Translation 

Object 

can be a maximum of 4096 object tables in the system at any 
time. Combined with the fact that a segment has a maximum 
size of 64K bytes, the total size of the address space is 240 
bytes. However, the maximum address space available to a 
procedure at any one time is 232 bytes. 

9.4 Program Execution 

Several system objects exist to support the representation 
and execution of procedures on the Intel 432, including: 

l the domain object, which defmes a module, package, or set of 
related procedures, 

l the instruction object, which defines a single executable proce- 
dure, and 

l the context object, which provides the execution environment 
for an executing procedure. 

These objects can be grouped into two classes-those that de- 
scribe the static representation of procedures (the domain and 
instruction objects) and those that describe the dynamic execu- 
tion of procedures (the context object). An instruction object 
corresponds to a Hydra procedure object, while the context 
object corresponds to a Hydra local name space object. At any 
time, there may be several context objects that represent differ- 
ent invocations of a single instruction object. The following 
sections describe these program objects in more detail. 167 



The Intel iAPX 432 9.4.1 Domains and Instruction Objects 

A domain object, illustrated in Figure 9-6, contains ADS for 
the instruction objects and local objects used within a module. 
The Intel 432 architecture specifies the format of the first two 
ADS in a domain. These ADS address instruction objects that 
handle fault and trace conditions for all procedures in the do- 
main. In the event of a fault or trace condition, the hardware 
automatically branches to the first instruction in the fault or 
trace object specified in the domain of the currently executing 
procedure. The remainder of a domain’s access part contains 
ADS for procedures and objects needed by the domain; these 
ADS are defined by the software system (usually a compiler) 
creating the domain. 

One of the objects typically addressed by a domain is a seg- 
ment containing scalar constants used by the domain’s proce- 
dures. Each instruction object, shown in Figure 9-6, contains 
the domain index of its scalar constants segment. This segment 
is needed because Intel 432 instructions do not have literal 
operand values embedded within the instruction stream. The 
instruction object also specifies the size of the context object to 
be produced as the result of the procedure call. The initial 

. 

168 

I I I I 

I 
Domam/oca/ 

object AD I lnslruction Ob/ect 

Domain Object 

Figure 9-6. Intel 432 Domain and Instruction Objects 



stack pointer index is the displacement to the start of the data 9.4 Program Execution 

stack in the context object. The use of these fields will become 
apparent in the following discussion of context objects. 

Instruction objects contain only a data part. Because Intel 
432 instructions are bit-addressable and can start on arbitrary 
bit boundaries, instructions are addressed as bit offsets into 
instruction objects. The first instruction in each instruction 
object begins at bit displacement 64, following the header of 
four 16-bit predefined fields. The maximum size of an instruc- 
tion segment is 64K bits, or 8K bytes, due to the bit address- 
ing. Although there is generally one instruction object for each 
procedure in the domain, procedures larger than 8K bytes re- 
quire additional instruction objects. The BRANCH INTERSEG- 
MENT instruction can be used to transfer control to another 
instruction object within the same domain. 

9.4.2 Procedure Call and Context Objects 

To transfer control to a procedure, a program executes a 
CALL instruction, causing the procedure to be invoked. On exe- 
cution of a CALL instruction, the hardware constructs a new 
context object. The context object is the procedure invocation 
record and defines the dynamic addressing environment in 
which the procedure executes. All addressing of objects and 
scalars occurs through the context object, and the context is 
the root of all objects reachable by the procedure. The struc- 
ture of the context object is illustrated in Figure 9-7. 

Although somewhat complicated, it is important to examine 
the context object in more detail to understand the addressing 
environment of the Intel 432. The context object has both a 
data part and an access part. The data part contains pointers 
that describe the current instruction execution. The domain 
index locates the AD for the executing instruction object 
within the current domain; the instruction pointer contains the 
bit offset of the current instruction in that instruction object. 
At the high-address end of the context object’s data part is the 
operand stack. This stack is used by instructions for computa- 
tion and intermediate storage of scalar values. The current 
stack pointer is also stored in the data part. 

The context object’s access part contains ADS that define 
the addressing environment for the procedure. Included are 
ADS for the current domain, which was specified by the CALL 
instruction, and the AD for the local constants segment, which 
was specified in the called instruction object. The global con- f69 



Data Part 

. 

Operand stack 

Instruction pointer I 

Domain index of current 
instruct/on object 

Operand stack pointer I 

Confext sfatus 

Current context AD 
(Environment 0) 

1 

-1 

Global constants AD 

Contex? message AD 

Current domain AD 

iocai constants AD 

input Parameter 
Object 

Procedure 
I and obiect 

Environment 1 AD 

Environment 2 AD - 

Environment 3 AD 

Caiiing confext AD 

Context /ink AD 

Desciiptor sfack AD 

lnterprocess message AD 

Domain Object Object 

-pL-l 
Constants Data 

Segment 

Access Part 

Figure 9-7. Intel 432 Context Oblect Representatron 



stants AD allows addressing of a process-wide data segment; 9.4 Program Execution 

the procedure explicitly loads this AD, if needed, through the 
COPY PROCESS GLOBALS instruction. The calling context AD ad- 
dresses the caller so that a RETURN can be executed. 

Interprocess communication is provided by instructions 
that send messages to and receive messages from port objects. 
Execution of a RECEIVE MESSAGE instruction causes the AD for 
the received message to be copied to the interprocess message 
AD in the context object’s access part. In this way, the pro- 
gram has immediate addressability to the message. The static 
Ziniz AD, which follows the interprocess message AD in the 
context, is provided to support languages that use static lexical 
scoping. 

9.4.3 Instruction Operand Addressing 

The important context object ADS from the addressing 
point of view are those named current context and environments 
1, 2, and 3 in Figure 9-7. As previously stated, an instruction 
must specify the location of an AD in order to manipulate any 
object. If the instruction manipulates one or more data ele- 
ments, it must provide ADS for the segments containing those 
elements. In general, then, every instruction operand specifies 
one or more ADS that provide addressability to that operand. 

At any moment during a procedure’s execution, ADS speci- 
fied by instructions must be located in one of four envirolzment 
objects. Environment object 0 is the context object itself. In- 
structions can specify any of the ADS within the context ob- 
ject’s access part; for example, to refer to the domain or the 
constants data segment. The three remaining environments, 
environments 1 through 3, are defined dynamically by the pro- 
cedure. A procedure loads an AD for any object into the envi- 
ronment slots in the context object to make ADS in that object 
addressable. The ENTER ENVIRONMENT instructions are pro- 
vided for this purpose. 

Therefore, to address an AD, an instruction specifies one of 
the four environment objects and an index to an AD in the 
object’s access part. Environment 0 is the context access part 
itself, which is self-addressed through the current context AD 
in the context object. Environments 1 through 3 are addressed 
through the three environment ADS in the context object. An 
instruction reference to an AD in one of the four environments 
is called an access selector. Figure 9-8 shows the three access 
selector formats. The low-order two bits in each selector spec- 171 



The Intel iAPX 432 232 

172 

3 2 1 0 

Dispiacement Short 
Direct 

7 2 1 0 

Displacement Long 
Direct 

15 

Dispiacement 

2 1 0 
Long 
indirect 

0 0 -- Currenf Context 
0 1 -- Environment 1 
1 0 -- Environment 2 
1 1 -- Environment 3 

Figure 9-8 Intel 432 Access Selector Formats 

ify the environment object; the three formats allow for 2-, 6-, 
or 14-bit displacements to an AD in the selected environment. 

The four environment segments thus provide efficient ad- 
dressing of ADS. An instruction can specify an immediate 4- or 
g-bit access selector describing the location of an AD for an 
operand. Or, it can specify the location of a 16-bit access selec- 
tor located in memory or on the stack. The short direct format 
efficiently addresses any of the first four ADS in any of the four 
environments. This includes the ADS for the global constants, 
context message (calling parameters), and current domain 
within the current context. All of the processor-defined ADS 
within the context object’s access part can be addressed using 
an 8-bit access selector. 

9.4.4 Context Allocation 

On an earlier version of the Intel 432 architecture, each 
CALL instruction caused dynamic allocation of the memory 
segment in which the new context object was constructed. Be- 
cause this allocation was time-consuming, the latest version of 
the Intel 432 supports preallocation of contexts on a per-proc- 
ess basis. The operating system allocates a linked list of fured- 
sized context object segments to each process. The contexts are 



9.5 Abstraction 

linked through the context link field in each context object. support 

When a call occurs, the processor reads the context link 
field to find the AD for the next context object to use. The 
length of this object is compared with the length fields stored 
in the called instruction object. If the instruction object re- 
quires a context object larger than the preallocated size, a fault 
will occur. The operating system can then allocate a context of 
the needed size. Or, if the context link is null, indicating that 
the preallocated contexts have been consumed, a fault will 
allow the operating system to perform additional allocations. 
Otherwise, the hardware quickly constructs the new context 
object from the linked segment. 

9.4.5 Parameter Passing 

Parameter passing on the Intel 432 is associated with the 
preallocation of contexts and is handled by software. In addi- 
tion to the default context object size, associated with each 
process is a default data part size and access part size of a 
parameter segment to be passed between contexts on procedure 
calls. However, instead of allocating a separate parameter seg- 
ment, an area of the data part and access part of each context 
object is reserved for parameter passing. When the operating 
system constructs the linked list of contexts, it places in the 
context message field of each context, an AD for a refinement of 
the previous context object. This refinement provides address- 
ability to the parameter data and access fields as if they were a 
single contiguous segment. 

Figure 9-9 illustrates how a procedure accesses parameters 
passed by its caller. The calling procedure places its data and 
access parameters in the predefmed parameter fields of its con- 
text object. The operating system had previously created a re- 
finement object descriptor for these parameter spaces and 
placed an AD for the refinement in the next context object. 
When the call occurs, the called context can access its parame- 
ters through its context message AD. 

9.5 Abstraction Support 

The principal goal of the Intel 432 is support for 
object-based programming. As previously described, the Intel 
432 provides a set of basic system object types. Each of the 
system object types is controlled by a type manager that is 
implemented partially in hardware-through a set of type-spe- 
cific instructions-and partially in operating system software. 173 



The Intel iAPX 432 A 

Operand stack 1 

Parameter dala space A 

Processoi-defined 
data fief& Rehnement C- Contexf message AD 

- object 

Processor-defined descriptor 

access f/e/ds 
. 

Parameter access space A 
&/led Context Object 

Other ADS 

1 1 
Calling Context Object 

Figure 9-9: Intel 432 Parameter Passing 

To extend the set of basic types, the Intel 432 provides mecha- 
nisms for the creation of programmer-defined types and pro- 
grammer-defined type managers. Since all objects are accessed 
through a high-level language, the programmer uses the same 
interface when dealing with system objects and with program- 
mer-defined objects. A programmer is free to create new types 
and type managers, adding to the set of available abstractions. 

There are three system object types involved in type man- 
ager support: 

l the domain, which defines the procedures and objects local to 
a single module of the type manager, 

l the Type Control Object (TCO), which is used in creation of 
system and programmer-defined objects, and 

l the Type Definition Object (TDO), which defines a particu- 
lar type manager. 

This section describes the use of these objects for the creation 
and manipulation of system and programmer-defined objects. 

174 

9.5.1 Domains and Refinements 

A domain object defines a collection of procedures and asso- 
ciated objects accessible to those procedures. By using the 432 
refinement mechanism, a programmer can create a protected 



9.5 Abstraction 
procedure environment with a domain object. That is, a pro- support 

grammer can construct a set of callable procedures that will 
have access to objects not available to their callers. 

Figure 9-10 shows a domain that consists of a collection of 
procedure ADS and object ADS. To construct a protected sub- 
system, the creator of the domain divides the domain into two 
sections: a public section and a private section. The public 
section consists of ADS for procedures that will be callable by 
users of the domain. The private section consists of ADS for 
procedures and objects that will be available only to called pro- 
cedures executing within the domain. 

Through the CREATE REFINEMENT instruction, the domain’s 
owner constructs a refinement of the domain that addresses 
only the public section-the section that will be visible to users 
of the domain. The CREATE REFINEMENT instruction returns an 
AD for this refinement. The AD for the domain refinement 
can be made available to other programmers, who can use this 
AD to call any of the public procedures. However, a possessor 
of this refinement AD has access only to the domain’s public 
part. 

This use of domain refinement creates a protected subsys- 
tem because of the action of the CALL instruction. When a CALL 
instruction is executed, the hardware places an AD for the 
called domain in the new context object, where it is accessible 
to the called procedure. The hardware always loads an AD for 

1 1 AD fo jdomein rehement 

Public 
Part 

L 
Procedure AD 

Procedure AD 

Procedure AD 

r 
Local procedure AD 

Code 
Private 

Part 

Domain Object 

Figure 9-10: Intel 432 Domain Refinement 175 



The Intel iAPX 432 the complete domain, even if the CALL was made through a 
refinement. Therefore, a procedure invoked through a refine- 
ment of a domain will have access to all of the ADS in its 
domain through its context object. Once executing, the proce- 
dure can manipulate private data objects or call private domain 
procedures. 

9.5.2 Creation of Typed Objects 

The Intel 432 supports two kinds of object types: system 
types and programmer-defined types. The system types were 
listed previously in Table 9-1; instances of system types are 
identified by the &bit system type field in their object table 
object descriptors. Two of the system types are generic object, 
which is a basic segment object with no special attributes, and 
dynamic object, which is an object controlled by a program- 
mer-defined type manager. 

Typed objects of any kind are created through the CREATE 
TYPED OBJECT instruction. Execution of the CREATE TYPED OB- 
JECT instruction requires possession of the AD for a type control 
object (TCO). A TCO permits its possessor to create and ma- 
nipulate objects of a specific type. The data part of a TCO is 
illustrated in Figure 9-11. 

Creation of a system object (with the exception of generic 
objects) requires possession of a TCO whose object type field 

Unused 

Write Rights 

ReadRights 

- UncheckedCopyRights 

Delete Rights 

12 x x x x 

8 4 X xxx x 

Dynamic/System 

Type Rights 

Type Testing Control 

Unused 

Object Type 

Figure 9-1 I: Intel 432 Type Conlrol Object Data Part 176 



9.5 Abstraction 
contains the 8-bit type value of the system type to be created. support 

In addition, the dynamic/system bit (bit 0) of the TCO must 
indicate that the TCO is for a system object. TCOs for the 
creation of specific system object types are constructed by the 
operating system and given to the operating system type man- 
agers for those types. The type manager for a system object is 
privileged only in its possession of the TCO for its type. 

Possession of a TCO for a specific type also allows the type 
manager to execute an AMPLIFY RIGHTS instruction for objects 
of its type. In this way, the type manager can return restricted 
ADS to its clients. These restricted ADS cannot be used to 
access the objects to which they refer. When a client returns an 
AD to a type manager as a parameter, however, the type man- 
ager can use its TCO to amplify the rights in the AD. Given an 
AD for an object and an AD for a TCO with matching type, 
the MPLIFY RIGHTS instruction ORs the rights bits specified in 
the TCO with the rights in the object AD, creating an AD with 
additional privileges. If the TCO and AD types do not match, 
the AMPLIFY RIGHTS instruction will cause a fault. 

9.5.3 Programmer-Defined Types 

To build a private type management system, a programmer 
obtains a type definition object (TDO) from the operating sys- 
tem. A TDO has no processor-defined fields, although its ac- 
cess part will typically be used to hold ADS for the domains 
that implement the type manager. The basic function of the 
TDO is to be the representative “type” for its objects. That is, 
while the type of a system object is specified by an 8-bit system 
object type field, the type of a dynamic object is specified by an 
AD for a TDO. All objects created by a specific type manager 
have an image of the AD for the type manager’s TDO stored in 
their object table object descriptor (shown as TDO-AD in Fig- 
ure 9-3). 

Once a type manager has obtained a TDO, it then obtains a 
TCO from the operating system for its type. This TCO will be 
for a dynamic object, as specified in its system type field and in 
the dynamic/system field. A TCO for a dynamic object con- 
tains an additional field-a single AD in its access part. This is 
the AD for the defining TDO. When the type manager exe- 
cutes a CREATE TYPED OBJECT instruction to allocate a Se@lXnt 
for the object’s representation, it specifies its TCO and the size 
of the segment to allocate. The hardware copies the TDO ac- 
cess descriptor from the TCO into the object descriptor for the 177 



The Intel iAPX 432 new segment, thereby “typing” the segment. Figure 9-12 
shows this addressing structure; the object descriptor for the 
new dynamic object contains the physical storage information 
for the object and the AD for the TDO. 

The programmer-defined type manager, like the system 
object type manager, protects its objects using restriction and 
amplification. When a client requests the creation of a new 
object, the type manager creates the object using the CREATE 
TYPED OBJECT instruction. The type manager then initializes 
the object appropriately and uses the RESTRICT RIGHTS instruc- 
tion to produce an AD to be returned to the client. This AD 
does not allow direct access to the object. When the client later 
specifies this AD as a parameter, the type manager amplifies 
rights in the AD to regain access to the object’s representation. 
Once again, the key to amplification is the possession of a 
TCO. The type manager executes an AMPLIFY RIGHTS instruc- 
tion specifying its private TCO and the AD for the object. If 
the TCO and the object descriptor for the object both contain 
the same TDO AD, the instruction will amplify the rights in 
the object AD. 

It is not necessary for programs to maintain ADS for all 
possible type managers. Given an AD for an object, a program 
can execute the RETRIEVE TYPE DEFINITION instruction; this 
instruction returns the AD for the TDO associated with the 
object. With the TDO AD, the program can access the AD for 
the domain implementing the type manager and can call type 
management procedures available through that domain. The 
domain AD stored in the TDO will typically be a refinement of 
the type manager’s domain. 

Dynamic object AD 
4 Domain AD 

TDO AD 
TDO 

Typed object 
storage 
iniormation 

Object Descriptor 

178 Rgure 9-12: Intel 432 Dynamic Object Addressing 

Storage Segment 



9.6 Storage Resources 9.6 Storage Resources 

Previous sections have described the creation of storage seg- 
ments through the CREATE OBJECT and CREATE TYPED OBJECT 
instructions; however, they have not described the mechanism 
by which primary memory is allocated. The abstraction of pri- 
mary storage is encapsulated in Intel 432 storage resource objects. 
A storage resource object (SRO) is a system object from which 
memory is allocated. Every memory allocation instruction 
specifies, either explicitly or by default, an SRO from which its 
primary memory is taken. 

Figure 9-13 illustrates the structure of an SRO and its asso- 
ciated objects. The representation of an SRO consists princi- 
pally of the AD for a physical storage object that describes a pool 
of available primary memory, and an AD for an object table. 
Each storage specifier in the physical storage object contains 
the primary memory address and size of a single contiguous 
block of free system memory. Initially, each physical storage - 
object has one storage specifier for a single large block. As 
storage is dynamically allocated and deallocated from an SRO, 
its memory becomes fragmented and new storage specifiers 
must be created to address the discontiguous pieces. 

Object table AD 

Storage Resource 

. . . 

Storage specifier 

Storage specifier 
Memory 

Current block 

Beginning biock 
u 

Physicai Storage Object 

Object descriptor 

I:::: Object descriptor 

. . . 

Object Table 

Figure 9-13: Intel 432 Storage Resource Object 179 



The Intel iAPX 432 When a program executes a CREATE OBJECT instruction, it 
specifies an SRO from which the storage is to be taken. The 
hardware allocates primary memory on a rotating first-tit basis 
from the SRO’s storage specifiers. After allocating the mem- 
ory, the hardware allocates an object descriptor for the new 
object in the SRO’s object table; an AD is returned that ad- 
dresses the object through that object descriptor. 

The SRO in Figure 9-13 is known as a global heap SRO and 
is used to allocate relatively long-lived objects. Storage allo- 
cated from a global SRO can be returned at any time. The 
SRO’s object table contains a descriptor that is the head of a 
list of unused object descriptors in the table. This list is used 
both for locating an empty table slot when an object is created 
and for returning an object descriptor when an object is de- 
stroyed. Returned storage is either combined with an adjacent 
free block in the SRO, or a new storage specifier is constructed 
to address it. 

Global heap SROs provide great flexibility for dynamic stor- 
age allocation. The disadvantage of global heaps, however, is 
that they require garbage collection for deallocation of storage. 
Although the overhead of garbage collection is acceptable for 
long-lived objects, it is prohibitive for short-lived objects. In 
particular, most objects created during the lifetime of a proce- 
dure could be more efficiently deallocated when the procedure 
terminates. For this reason, the Intel 432 provides a second 
type of storage resource called a local stack SRO. A local stack 
SRO supports efficient allocation and deallocation of short- 
lived storage during the lifetime of a procedure. 

A local stack SRO is not a separate object, but is associated 
with a process object. Each process object contains a local stack 
SRO, which consists of an AD for an object table and an AD 
for a physical storage object. This physical storage object is 
similar to that shown in Figure 9-13; however, it contains a 
single storage specifier for a single storage block. This storage 
block and the associated object table are used in a stack-like 
(LIFO) fashion for allocation of short-lived local storage. The 
local object table does not use a free list; instead, object 
descriptors are allocated consecutively. 

180 

During a procedure invocation, each short-lived object is 
allocated from a local stack SRO; each new object receives the 
next contiguous object descriptor and the next contiguous sec- 
tion of the storage block. When the procedure returns, all of 
the objects and object descriptors for short-term objects cre- 
ated by the procedure can be deallocated. This deallocation is 



simple when compared with global heap deallocation because 9.6 Storage Resources 

both the object table and storage block are managed as stacks. 
All of the short-term objects and descriptors allocated during a 
procedure call can be quickly deallocated by returning the ob- 
ject table and physical storage objects to their pre-call states. 

Local stack SROs are therefore more efficient for allocation 
and deallocation than global heap SROs, although they cannot 
accommodate objects of different lifetimes. The more difficult 
problem presented by local stack SROs is the control of ADS 
for local objects. Objects allocated from global heap SROs are 
only deallocated by a garbage collector. The garbage collector 
ensures that no ADS remain for an object before its storage and 
object descriptor are deallocated. If an object with an existing 
AD were deallocated, the AD would become a dangling refer- 
ence. For example, suppose that AD X addresses object Y 
through object descriptor Z. If object Y and object descriptor 
Z are deallocated while X still exists, AD X will be a dangling 
reference. Eventually, object descriptor Z will be reused to 
address a newly created object, and AD X could be used erro- 
neously to access that object. 

This problem is compounded in the case of local stack SROs 
by the rate at which object descriptors are reused. An object 
descriptor deallocated by a procedure return will very likely be 
reused by the next procedure call. Therefore, the Intel 432 
must be able to ensure that when a procedure returns, no ADS 
remain for short-term objects allocated during that call. To 
prevent such dangling references, the Intel 432 controls the 
propagation of ADS. The hardware prevents the storing of an 
AD into a segment whose lifetime is longer than the lifetime of 
the object addressed by that AD. 

The lifetime of an object is determined by the level number 
stored in its object descriptor. Each process has a current level 
number; the level number is first initialized when the process 
is created and is incremented by one at each procedure call. 
When an object is created, the current level number is stored 
in its object descriptor. An attempt to copy an AD for an object 
created at level N into a segment created at level N-l or lower 
will cause a fault. When an object allocated from a local stack 
SRO is destroyed on procedure return, the system can guaran- 
tee that no ADS for that object remain; that is, all of the storage 
into which the AD could have been copied must have been 
destroyed when the object was destroyed. 

Any object that is to be passed to other processes or stored 
in a more global segment must be allocated from a global heap 181 



The Intel iAPX 432 SRO instead of the default local stack SRO. The architecture 
ensures that only correct copying of ADS takes place. The un- 
checked copy rights bit in Intel 432 ADS provides an optimiza- 
tion for the required level check. The unchecked copy flag 
indicates whether the object was allocated from a level-O global 
heap. If so the level check can be avoided; otherwise, the level 
numbers in the object descriptors must be checked. 

9.7 Instructions 

The Intel 432 has a repertoire of about 225 instructions that 
operate on characters, integers, floating point numbers, and 
system objects. There are no general registers. Each context 
has a private operand stack that can be used for storing scalar 
temporaries. Scalar operands for instructions can be located 
either on the stack or in memory, and memory-to-memory 
operations are allowed. 

One of the unique features of the Intel 432 is its instruction 
encoding. Instructions are bit-variable in length and can start 
on any bit boundary. The instruction pointer thus contains the 
bit offset into the current instruction segment, which can be up 
to 8K bytes in size. An instruction consists of up to four fields, 
as shown in Figure 9-14. The fields themselves are also varia- 
ble-length and highly encoded. 

The 4- to 6-bit class field specifies the number of operands 
and their sizes. For example, the class may indicate that an 
instruction requires three 32-bit operands or two 16-bit oper- 
ands. Next, the 0- to 4-bit format field specifies whether each of 
the operands is (1) to be found on the stack or (2) to be speci- 
fied explicitly by a reference in the references field, and (3) if 
specified explicitly, which reference corresponds to which op- 
erand. The references field specifies where the (one to three) 
operands are to be found. A stack operand requires no refer- 
ence field entry, and a single reference may refer to two oper- 
.ands, as specified by the format field. For example, an operand 
that is both a source and destination requires only one refer- 
ence field to define its location. Finally, the 0- to 5-bit opcode 
specifies the operation to perform. 

182 Figure 9-14, Intel 432 Instruction Format 

Opcode References Format C/ass 
Least 
Significant 
Bit 



(Kviable length) (Variable length) 9.7 Instructions 

Figure 9-15: Intel 432 Reference Format 

The references field is the most important with respect to 
object addressing and requires the most complex encoding. 
The size of the references field depends on the number of oper- 
and references and the addressing mode for each. An instruc- 
tion operand can be either a scalar operand (e.g., integer, char- 
acter, floating point) or an object-level operand (e.g., process, 
domain, message port). If the instruction operand requires a 
scalar, the reference specifies its location. If the instruction 
operand requires an object-level operator, the reference speci- 
fies an AD for the object. 

The general format of a single reference is shown in Figure 
9-15. The length and format of the variable-length access and 
displacement components are determined by the leading con- 
trol fields. For example, in the case of a scalar operand, the 
instruction must specify two components needed to locate the 
scalar: 

l the location of an AD for the object containing the scalar, and 
l the displacement of the scalar within the object’s data part. 

The access component field locates the AD for the object; it is 
a 4- or S-bit field whose format was shown in Figure 9-8. The 
displacement component, in the simplest addressing mode, is a 
7- or 16-bit integer displacement. 

Several addressing modes are allowed that provide for indi- 
rect specification of the access and displacement components; 
that is, the access and displacement specifications for the refer- 
ence can be found in memory. For example, in the case of an 
indirectly specified displacement, the displacement field of the 
reference must itself contain an access and displacement part. 
Such general addressing modes provide for flexibility but can 
require many memory accesses in order to manipulate a single 
data element. Thus, a reference to an element of a dynamically 
allocated one-dimensional array might indicate: 183 



The Intel iAPX 432 l an access selector for the segment containing the array, 
l the displacement of the array in the segment, 
l an access selector for a possibly different segment containing 

the array index, and 
l a displacement of the index in this second segment. 

Many options are provided for each part of the specification 
and, in general, commonly occurring options can be efficiently 
encoded. Stack operands save the most instruction space be- 
cause they require no reference field bits. Space can also be 
saved in the reference field if operands are located at the start 
of a segment because this requires no offset. There is a large 
variance in instruction size-a three-operand instruction can 
take from 10 to more than 300 bits, depending on where the 
operands are to be found. 

184 

9.8 Discussion 

The Intel iAPX 432 is certainly one of the most sophisti- 
cated architectures in existence. By using the object-oriented 
approach throughout the development effort, the Intel 432 
designers have produced an extremely uniform and tightly-in- 
tegrated hardware/software system. This uniformity of hard- 
ware and software systems is due to the use of a consistent 
philosophy. Everything in the Intel 432 is an object. All objects 
have associated types that specify the operations that can be 
performed on those objects. Some objects have hardware-de- 
fined operations while others do not. However, from a lan- 
guage viewpoint, all objects are accessed in the same way. 

All objects, whether hardware-supported or not, are con- 
trolled by type manager modules. Programmers can freely add 
new types to the system by creating new type managers. The 
mechanisms of domain refinement and type definition object 
provide a way for type managers to exhibit privilege over their 
objects and the environments in which their procedures exe- 
cute. A type manager can restrict and later amplify privileges 
in ADS for its objects by using a privately held type control 
object. By permitting client access to type management proce- 
dures through a refinement, an executing type management 
procedure can obtain access to a richer environment than its 
caller. 

There are no special privileges in the Intel 432 system. The 
mechanisms used by programmer-defined type managers are 
identical to those used by operating system type managers. 



In addition, the concept of programmer-defined type is an 9.8 Discussion 

integral part of the addressing system, in that each object 
descriptor has space for a TDO access descriptor. Few pre- 
vious systems have allocated sufficient space to integrate 
programmer-defined objects so tightly into the hardware 
architecture. 

The designers of the Intel 432 have closely adhered to the 
concept of separate procedure address spaces, as presented in 
the Dennis and Van Horn model. Each procedure invocation 
causes the construction of a new context object that defines the 
procedure’s addressing environment. This is true even of calls 
to procedures within the same domain, for which both proce- 
dures will have access to a similar set of objects. 

Although an initial implementation of the Intel 432 had sep- 
arate data segments and capability segments, the current ver- 
sion supports segments with both a data part and a capability 
part, as on STAROS. The object descriptor addresses the bar- 
rier between the two parts and contains the size of each part. 
Refinements are provided that allow the construction of what 
appears to be a single two-part sement from contiguous sub- 
sets of the two parts of a segment. Two-part segments do not 
allow the flexibility provided by tagging; however, they effec- 
tively reduce the number of needed segments by a factor of 
two. This affects performance by reducing the number of seg- 
ment allocations required to create a new object. 

Another performance enhancement has resulted from the 
preallocation of context objects. When a procedure call occurs, 
the hardware simply follows the context link to the next wait- 
ing context object. That object has already been prepared with 
a refinement of the parameter space in the calling context. In 
addition, the use of local stack SROs for allocating short-lived 
objects reduces the need for garbage collection. These changes 
to the CALL instruction have reduced its execution time from 
300 microseconds on early prototypes to under 100 microsec- 
onds on the current version of the Intel 432. 

Capabilities on the Intel 432 are 32 bits in size. Of this, 24 
bits form the actual ID or address part of the capability. Thus, 
there are a maximum of 224 objects at any time. Segments have 
a maximum (data part) size of 64K, which is relatively small 
when compounded by the lack of cross-segment addressing. 
That is, due to the structure of Intel 432 addresses, it is not 
possible to transparently cross a segment boundary by incre- 
menting the address. Therefore, the compiler must produce 
special code for objects whose data parts cannot be held in a 185 



The Intel iAPX 432 single segment. This is true also of procedures that are larger 
than SK bytes, although this is probably a rare occurrence. 

The instantaneous address space of the Intel 432 is 232 
bytes, based on the use of the four environment ADS stored in 
the context object. These environment ADS act somewhat like 
capability registers, and, in fact, the Intel 432 GDP has special 
internal registers to hold their values. At any time, ADS in use 
by a procedure must be stored in one of the four environment 
objects. To access objects located indirectly through the envi- 
ronments, the procedure must explicitly traverse the structure, 
loading ADS for each level in the tree. 

The Intel iAPX 432 is an ambitious system in terms of both 
architecture and implementation. It is particularly impressive 
when considered in relation to the other available single-chip 
processors. But it is fair to say that the Intel 432 has not been 
a commercial success. Although there were over 100 Intel 432 
systems in the hands of universities and customers by 1983, 
this is a small number by microprocessor standards. The com- 
mercial problems of the Intel 432 are probably due in part to 
premature (and somewhat overzealous) marketing of the prod- 
uct before its implementation and software were ready. The 
initial version of the Intel 432 had performance problems, 
which have been corrected to some extent by later versions of 
the architecture. Still, whether or not the Intel 432 succeeds as 
a product, it has opened a new era of microprocessor design. 

9.9 For Further Reading 

The book by [Organick 831 presents the most comprehen- 
sive description of the Intel 432. It describes the major compo- 
nents of the Intel 432 system-the Ada compiler, the iMAX 
operating system, and the iAPX 432 hardware architecture- 
and provides Ada programming examples as well. In the pub- 
lished literature, the paper by Pollack, Kahn, and Wilkinson 
describes the philosophy behind the Intel 432 object filing sys- 
tem [Pollack 811, and the paper by Cox, Korwin, Lai, and 
Pollack discusses the Intel 432 interprocess communication 
facility used for both message passing and process scheduling 
[Cox 831. Storage management on the Intel 432 is discussed in 
[Pollack 821. The Architecture Reference Manual [Intel 81, 
Intel 821 contains detailed descriptions of the Intel 432 archi- 
tecture. 

186 




