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Abstract
Energy efficiency is a key concern in the design of mod-
ern computer systems. One promising approach to energy-
efficient computation, approximate computing, trades off
output accuracy for significant gains in energy efficiency.
However, debugging the actual cause of output quality prob-
lems in approximate programs is challenging. This paper
presents dynamic techniques to debug and monitor the qual-
ity of approximate computations. We propose both offline
debugging tools that instrument code to determine the key
sources of output degradation and online approaches that
monitor the quality of deployed applications.

We present two offline debugging techniques and three
online monitoring mechanisms. The first offline tool identi-
fies correlations between output quality and the execution
of individual approximate operations. The second tracks
approximate operations that flow into a particular value.
Our online monitoring mechanisms are complementary ap-
proaches designed for detecting quality problems in de-
ployed applications, while still maintaining the energy sav-
ings from approximation.

We present implementations of our techniques and de-
scribe their usage with seven applications. Our online moni-
tors control output quality while still maintaining significant
energy efficiency gains, and our offline tools provide new
insights into the effects of approximation on output quality.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]: Debugging aids; D.2.5 [Testing and Debug-
ging]: Monitors

Keywords Approximate computing; debugging; monitor-
ing
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1. Introduction
Energy efficiency has become a critical component of com-
puter system design. Battery life is a major concern in mo-
bile and embedded devices; power bills make up a large part
of the cost of running data centers; and the dark silicon prob-
lem limits the amount of usable silicon resources [9].

Approximate computing is a promising approach that al-
lows systems to trade accuracy for energy efficiency or per-
formance [2, 3, 8, 10, 15, 22, 27, 28]. These techniques ex-
ploit applications’ tolerance to occasional errors and provide
imprecise but efficient computation for certain parts of the
program. For example, a lossy image compression algorithm
can tolerate some small errors: users are unlikely to notice
minor image imperfections and lossy codecs already com-
promise on image fidelity. To exploit this tolerance, the al-
gorithm can selectively use unreliable hardware components
or unsound code transformations. For example, reducing the
DRAM refresh rate saves energy at the cost of occasional
memory errors [20] and loop perforation skips some loop
iterations [28].

Imprecise computation must be used carefully to avoid
compromising too much on software quality. Previous work
has given programmers control over the use of approxima-
tion [2, 3, 8, 22, 27]. In Relax [8], programmers mark regions
of code where hardware errors can safely go uncorrected.
In EnerJ [27], a type system distinguishes data that can tol-
erate errors from data that requires full precision and typ-
ing rules prevent approximate-to-precise information flow.
Carbin et al. [3] propose a proof system for reasoning about
acceptability properties in the face of imprecision. The Rely
system [4] statically determines the probability that values
produced by an approximate computation are correct.

These static approaches are valuable and help bound the
negative effects of approximation. However, even with static
safety guarantees that prevent outright crashes and bound er-
ror margins (such as Relax’s spatial error bounding or En-
erJ’s noninterference), some approximations can be more
pernicious than others in terms of their effect on the pro-
gram’s quality of result (QoR). Hence, dynamic tools are
important too. The situation is analogous to conventional
software development, where static tools like Coverity [7]



or Lint [16] and dynamic tools like Valgrind [24] play im-
portant and complementary roles in software quality.

This paper presents tools that use dynamic analysis to
help debug and control the QoR of approximate programs.
We first propose offline debugging tools that instrument pro-
grams to determine the critical data locations and code points
that most affect QoR—to the best of our knowledge, these
are the first tools to address debugging approximate code.
We then propose online mechanisms to monitor quality and
let programs adjust approximation levels or re-execute code.

We argue that both styles are important pieces of an
approximate programming ecosystem. Offline tools, while
too heavyweight for usage in deployment, are well-suited
for pre-deployment debugging and QoR investigation. They
help programmers better understand why QoR suffers and
where approximation is valuable. Conversely, online mon-
itoring can be lightweight enough to run in deployed code
and adaptively adjust approximation levels or correct erro-
neous results when faced with QoR issues that arise post-
deployment (due, for example, to unanticipated program in-
puts or variations in approximate hardware).

Our contributions include:

• a debugging tool for dynamically tracking approximate
dataflow,

• a debugging tool for identifying correlations between
approximate operations and output quality,

• three approaches to online quality monitoring, and
• an extensible online monitoring framework.

Section 2 describes a strawman approach to quality con-
trol, and explains why it is too heavyweight for the online
setting and too weak for offline debugging. Section 3 dis-
cusses two novel styles of offline approximate code instru-
mentation and tracing that can be used to identify problem-
atic code points and data locations for debugging. We also
describe where these fit into the design space of offline ap-
proximation debugging tools. Section 4 introduces three ap-
proaches to low-overhead online monitoring. Two of our ap-
proaches (precise sampling and verification functions) are
similar to previous proposals, but, to the best of our knowl-
edge, the third (fuzzy memoization) is novel in the context
of online quality monitoring. Section 5 describes the design
space of online quality monitors, and where our approaches
fit into this space. Section 6 describes salient implementa-
tion details of our systems. Section 7 describes our expe-
rience with using the prototypes to investigate and control
QoR, including three use cases where we combined offline
debugging with online monitoring. Using our tools in con-
cert typically lets us prevent 50–100% of the errors due to
approximation while retaining 44–78% of the original en-
ergy savings. The final two sections discuss related work and
conclude.

2. The Quality-Control Strawman
When writing code that trades off accuracy for resource us-
age, it is essential to understand how this trade-off affects
computation quality. While resource usage—time or power,
for example—can be measured directly, quality must be as-
sessed using a program-specific metric. We refer to this
application-defined notion of output quality as the quality
of result, or QoR. For example, in an object recognition ap-
plication, the QoR metric may be the rate of correct classifi-
cations.

One way to measure QoR is to run the approximate por-
tion(s) of a program twice for each input—once approxi-
mately, once precisely—and compare results. In an offline
setting, this could be done repeatedly in a controlled envi-
ronment with a variety of inputs. We refer to this as approx-
imation profiling. In an online setting, we could do this in
real time with each input seen “in the wild.” We refer to
this as complete online monitoring. This section argues that
approximation profiling is insufficient and complete online
monitoring is inappropriate.

For example, consider evaluating approximate pixel com-
putations in a ray tracer:

evaluate { tracePx(x, y); }

The strawman would effectively execute this as:

approx = tracePx(x, y);
precise = runPrecise { tracePx(x, y); }
if (abs(approx - precise) > Threshold)

throw new FailedQoR();

In an online tool, this approach provides real-time quality
updates as each approximate computation completes. This
enables programs to respond immediately, e.g., by adjusting
energy parameters, or by re-executing erroneous computa-
tions. Unfortunately, such an approach also has fundamen-
tal problems. First, the code assumes idempotence of the
monitored code block, but approximate computations can
and often do have side effects. To run a non-idempotent
code block twice, we need to buffer or roll back side ef-
fects. Second, comparing numeric return values is insuffi-
cient for measuring the QoR of many applications. QoR is
inherently domain-specific, so we must support application-
specific metrics. For example, a video application may prefer
neighboring frames that are distorted in the same way (thus
preventing jitter) over neighboring frames with less distor-
tion but which are distorted in different ways. Another ex-
ample is an algorithm that searches for local optima. An ap-
proximate version that selects a different optimum from the
precise version can have equal—or possibly even superior—
result quality. Lastly, and most importantly, an online moni-
toring scheme must not cost more than the savings provided
by the original approximation. Executing twice clearly vio-
lates this requirement.

Section 4 addresses the online cost problem by propos-
ing three significantly cheaper monitoring schemes, each



of which work for different application scenarios. Any ap-
proach to QoR monitoring will also need to address side
effects and provide flexible QoR metrics. We address these
needs with a flexible monitoring API that provides hooks for
programmer-specified quality metrics (see [25] for details on
our API) and with a framework that provides transparent side
effect isolation (see Sections 5.3 and 6.2).

In the offline case, on the other hand, cost is not an is-
sue. During pre-deployment quality testing and debugging,
spending extra time and energy to improve performance in
the field is wise. In fact, we can do much more than just
approximation profiling. The strawman tells us only what
the final QoR was, with no reason why. It gives no indica-
tion of which operations or data are critical to QoR. Devel-
opers need more program introspection when working with
approximation. We propose approaches that let us track ap-
proximation and errors at a much finer grain (individual op-
erations or variables) and correlate them with output quality.
These tools thus help identify the source of a quality issue
rather than merely determining that an issue exists.

3. Offline QoR Debugging
This section describes two offline tools for investigating the
QoR of approximate applications. Dataflow instrumentation
(Section 3.1) tracks the number of approximate operations
that flow into each approximate variable. Correlation instru-
mentation (Section 3.2) tracks the number of times each ap-
proximate operation executes and the number of times it pro-
duces an incorrect result. By running the instrumented pro-
gram multiple times, we can identify the operations and er-
rors that are most correlated with poor QoR and thus may
represent quality bugs.

3.1 Dataflow Instrumentation
There can be wide variance in how many approximate op-
erations flow into the computation of various values. This
variance may not be proportional to the savings provided by
approximation. In such cases, the approximate computation
of values can degrade QoR much more than the energy sav-
ings would justify. For example, an image transform may
compute a scaling factor for its output by traversing the in-
put to compute the difference between the maximum and
minimum pixels. If the input image is approximate data, this
computation requires many approximate operations. If any
such operation experiences a bit flip, the scaling factor and
hence every output pixel will be incorrect. Thus, even though
this computation likely comprises only a small portion of
the program’s energy usage, it can have disastrous impact
on QoR.

Such scenarios motivate our dataflow instrumentation
tool. Given an approximate operation O1 and an operation
O2 with inputs i1, ..., in and result R, we say O1 flows into
R if O1 = O2 or if O1 flows into one of i1, ..., in. Our tool

tracks the number of approximate operations that flow into
each result and memory location.

We built our tool on top of a version of LLVM enhanced
with approximate versions of the IR operations for arith-
metic and memory access. We use a compiler pass to add
code after every IR operation to compute the number of ap-
proximate operations that flow into the result of the opera-
tion. For each IR data location (e.g., user variable, memory
address, SSA name), we create a shadow counter that tracks
the approximate flow into the result held in that location. For
most operations, we simply sum the shadow counters asso-
ciated with the operands, add 1 if the operation is approxi-
mate, and assign the result into the shadow counter for the
result of the operation. For store operations, we add code to
store the counter associated with the store’s value operand
into a shadow memory (after adding one if the store itself
is approximate). For load operations, we retrieve the asso-
ciated counter from the shadow memory and add one if the
load operation is approximate. Finally, for calls, we utilize
a shadow parameter-return stack to keep track of counts for
parameters and results.

We also provide API-level access to these counters.
See [25] for details.

3.2 Correlation Instrumentation
In many approximate applications, particular approximate
code points (operations that are executed approximately) are
more likely to cause poor QoR than others. For example, a
code point that always executes may have much more im-
pact than one in a rarely used control flow branch. Our sec-
ond offline approach, correlation instrumentation, helps de-
velopers identify these critical points by tracking the execu-
tion and error frequencies of every approximate code point
during multiple program executions with varied QoRs. The
result is a series of correlation vectors, where each vector
consists of a QoR and execution and error counts for every
approximate code point. Off-the-shelf tools can then deter-
mine which vector coordinates are most highly correlated
with QoR.

Our instrumentation maintains two counters for each ap-
proximate code point (approximate LLVM bytecodes in our
implementation). One counter records the number of times
the code point executes. The other counts the number of er-
rors, determined as follows: For operations other than mem-
ory references, we re-execute the operation precisely and
compare the result. For stores, we precisely store an iden-
tical value into a shadow memory (e.g., a hash table keyed
on memory addresses—see Section 6.1), along with the code
point performing the store. At loads, we look up the loaded
address in the shadow memory and compare the result to
the approximately loaded value. If there is a mismatch, we
can charge the error counters of the store (obtained from the
shadow memory), the load, or both. This decision can be
programmer-driven or chosen by the tool. Here we have as-
sumed a model where approximate data is only accessed via



approximate loads and approximate stores. We can general-
ize this by simply using the shadow memory for every store.

This approach is not context-sensitive—we are tracking
correlations to individual program counters. Nothing con-
ceptually prevents adding context sensitivity, but we have
not found it necessary for the applications we studied. It
would greatly increase the number of counters and could ob-
scure some correlations.

3.3 Offline Debugging Design Space
Our offline debugging approaches can be viewed as flow
analysis (dataflow instrumentation) and statistical correla-
tion (correlation instrumentation). To our knowledge, these
are the two general ways of assigning blame to a program
point. Variants on these approaches are possible, including:

• Context sensitivity: As mentioned above, our correla-
tion instrumentation approach is not context-sensitive:
We analyze code points inside library functions as single
points even for common functions like memset where
uses from some callers may correlate more with QoR
than uses from other callers.

• Interactivity: Our prototypes do not offer user interac-
tivity. For example, one could imagine supporting break-
points (like in a debugger) and providing access to our
counters while execution is paused.

• Granularity of instrumentation: Our prototypes instru-
ment at a fine-grained level (IR operations for correla-
tion, and individual expression results for dataflow). Ag-
gregating information at coarser granularity may provide
complementary insights.

4. Online QoR Monitoring
Next, we turn our attention to online quality monitoring in
order to detect and compensate for QoR problems in the
field. As code that is deployed with the application, these
tools must have very low overheads. If the monitoring cost
outweighs the approximation savings, it is trivially better to
run precise code rather than monitor approximate code.

4.1 Precise Sampling
The first approach we consider is precise sampling. Like our
strawman, precise sampling compares the results of the pre-
cise and approximate versions of the monitored code. Un-
like the strawman, this strategy checks only a random subset
of the executions. In the sampled executions, a developer-
provided function compares the output of the two execu-
tions. The developer can tune the sampling frequency to
manage the trade-off between overhead and monitoring pre-
cision.

In a ray tracer, a sampling monitor might execute as
follows:

res = tracePx(x, y);
if (random() < sampleFreq) {

prec = runPrecise {tracePx(x, y);}
if (!compare(result, prec, approxOut,

preciseOut))
throw new FailedQoR();

}
image[x][y] = res;

Here compare is a developer-supplied function that com-
pares precise and approximate results to decide whether the
QoR is acceptable. The approxOut and preciseOut ar-
guments capture any memory side effects of the two execu-
tions. This is left intentionally vague here; side effects are an
orthogonal issue discussed in Section 5.3.

Precise sampling is appropriate for applications where
quality properties can be checked by looking at a random
subset of the output. We can monitor—with probabilistic
guarantees—the fraction of correct executions of a code
block or its average error. We cannot use precise sampling
for applications that require a bound on the worst-case error.
Precise sampling also assumes good quality inputs to the
monitored computation, otherwise the precise run may not
generate a high quality output to compare with.

Our monitoring framework and API (described in [25])
includes support for precise sampling with customized QoR
metrics and sampling parameters. We discuss example use
cases in Section 7.3.

4.2 Verification Functions
Verification functions are routines supplied by the developer
to check the QoR of a computation. Verification functions
are useful whenever we can check a result at significantly
lower cost than computing the result.

Our framework supports three distinct forms of verifica-
tion functions. Each form requires different inputs and is
useful in different situations. The first, traditional verifica-
tion, verifies the outputs of the current execution based on
its inputs. For example, a 3-SAT verifier could check that the
variable assignments satisfy the formula clauses. The sec-
ond, streaming verification, verifies the output of the current
execution based on the output of past executions. For exam-
ple, a video decoder could check that the current frame bears
a sufficient resemblance to past frames. The final form, con-
sistent output verification, looks only at the output of the
current computation and verifies that it holds some desired
property: for example, that a computed probability distribu-
tion sums to 1.0 or that a number lies within an expected
range. Like precise sampling, traditional verification func-
tions rely on good quality inputs to the computation, since
the inputs are used to check the output. The other two forms
rely only on outputs, so they are less sensitive to problems
with the input.

Our monitoring APIs (described in [25]) support all three
forms of verification function.



4.3 Fuzzy Memoization
Our third approach to quality monitoring is fuzzy memoiza-
tion. Fuzzy memoization records previous inputs and outputs
of the checked code and predicts the output of the current
execution from past executions with similar inputs. We esti-
mate the QoR by checking how different the current output
is from the predicted output. Similar ideas have been used
by Chaudhuri et al. [6] and Alvarez et al. [1] to provide ap-
proximate execution rather than to check execution quality.

We identify several variations distinguished by their pre-
diction mechanisms. The simplest, which we call simple
fuzzy memoization, predicts the previously recorded output
with the most similar input. Another variation (interpolated
fuzzy memoization) performs interpolation between a set of
similar previous inputs. Finally, learned fuzzy memoization
applies machine learning techniques to learn the relation be-
tween inputs and outputs. Like verification functions, fuzzy
memoization solves the overhead issue with frequent cheap
checks rather than rare expensive checks. It is applicable
when the function computed by the checked code is rela-
tively continuous (or easily learnable). Our framework im-
plements the interpolated style.

QoR monitors based on fuzzy memoization become more
accurate as they observe more executions of the monitored
code. In the early stages, the prediction model contains few
inputs. As execution proceeds, the monitor adds more results
to the model and predictions improve. However, if a poorly
approximated result is added to the model, it can hurt future
estimates. Also, depending on the memoization implemen-
tation, adding results may increase memory overheads and
eventually outweigh the energy savings from approximation.
In addition, even after many results have been added to the
model, new results in poorly sampled (or discontinuous) re-
gions of the input space may have poor predictions.

To address these issues, we propose a three-pronged ap-
proach. First, the monitor should use some precise runs to
ensure that the model is seeded with known-good values.
Precise runs should be used early in the program execution
to seed the model with some initial values, and with ran-
dom sampling throughout execution to enhance the model
with data from additional regions of the input space. Sec-
ond, the monitor should limit the number of approximate
results added to the model and add only those whose QoR
estimates meet a developer-specified threshold. This pre-
vents the model from growing too large and may keep some
bad data from corrupting the model. However, as mentioned
above, it is also possible that a negative prediction is due to
a poor model rather than poor QoR. This may be caused,
for example, by a sparsely sampled input region. Thus, our
third proposal is that some failed checks lead to precise re-
execution to improve the model.

For example, a fuzzy memoization monitor running our
ray tracer might execute as follows:

if (preciseSeedingRun()) {

result = runPrecise { tracePx(x, y); }
addMemo(x, y, result, sideEffects);

} else {
result = tracePx(x, y);
if (!compNearestMemos(x, y, result,

sideEffects))
if (updateModel())

// Rerun precisely, update memos
else throw new FailedQoR();

}
image[x][y] = result;

Here, the addMemo call adds a new result to the model
and compNearestMemos finds nearby memoized results
to compare with our current result.

Efficient fuzzy memoization requires storing previous re-
sults as input–output pairs that can be efficiently retrieved
when we encounter nearby inputs. A self-balanced binary
search tree (O(log n) lookup) worked well in our prototype.

Our monitoring APIs (described in [25]) provide support
for interpolated fuzzy memoization.

5. The Online Monitoring Design Space
We now consider the broader design space of online quality
monitoring. We begin with a discussion of the dimensions
of the design space (Section 5.1). We then mention a possi-
ble additional dimension—code-centric versus data-centric
annotation—and argue why code-centric is the better choice
(Section 5.2). Finally, we discuss how to handle side effects
and re-execution (Section 5.3).

5.1 Design Space Dimensions
We can describe the design space of online QoR monitoring
algorithms in terms of four (mostly) orthogonal dimensions:

• What is Checked: Do we check every execution, or a
sample? If we sample, what is the distribution?

• Checkable Quality Properties: What can we verify? Do
we want every execution to be within some error bound?
Or do we want the average error over all executions to be
within the bound? Do we want at least some percentage
of the executions to match the precise result? Also, how
configurable is the QoR metric—must it be reducible to
a number that we verify is close to an expected value,
or can developers create arbitrary code to check correct-
ness?

• Checking Parameters: What inputs are supplied to the
checking algorithm? Do we look only at the outputs of
the current execution? Or do we look at the inputs as
well? Can we also look at inputs and outputs of past
executions? Or at the results of a precise execution?

• Side Effects: How do we deal with the side effects of
approximate computations? This is a significant issue, so
we devote Section 5.3 to discussing it.



Approach What Is Checked Checking Parameters Applicability and Checkable
Quality Properties

Precise Sampling Sampled executions Approximate and precise outputs Applicable to code that can be
re-executed. Desired properties
must not require examining ev-
ery execution.

Verification Functions Every execution Applicable when checking a re-
sult is cheaper than computing it.

Traditional Approximate inputs and outputs
Streaming Current and old approximate outputs
Consistency Approximate outputs

Fuzzy Memoization Every execution Current and old inputs and outputs Applicable to computations with
easily learnable outputs. The de-
sired property must be repre-
sentable as a distance metric.

Table 1. How each of our monitoring approaches fits into the full design space. Handling side effects (not shown) is orthogonal.

Certain regions of this space are undesirable or impossible.
For example, requiring the results of a precise computation
combined with checking every execution leads to the pro-
hibitive overhead of our strawman. Similarly, it is impossible
to use sampling to provide error bounds on every execution.

Table 1 fits the approaches from Section 4 into this space.

5.2 The Code-Centric Nature of Quality Measurement
QoR monitoring can be expressed in either a code-centric or
a data-centric style. In this section, we describe and contrast
both styles and argue for the benefits of a code-centric style.

Code-centric annotations specify requirements on regions
of code. For example, the following annotation might spec-
ify that the value of a pixel should be similar to the previ-
ously computed pixel:

pixel = checkComp(computePixel, args,
compareToPrevious);

Here checkComp will call computePixel(args) and
pass its result to compareToPrevious, which will com-
pare that result to the last result it saw.

Data-centric annotations, in contrast, apply to pieces of
approximate data. Such requirements are typically relative
to the corresponding value at the same time during a precise
execution of the program. For example, the following anno-
tation could specify that the value of pixelA should vary at
most 5% compared to its value during a precise execution:

@Approx<0.05> double pixelA;

The two opposing annotation styles have two important
similarities. First, the choice of code-centric versus data-
centric monitoring is orthogonal to the choice of code-
centric versus data-centric approximation. For instance,
the computePixel function in the code-centric exam-

ple above may base its approximation on data-centric anno-
tations on values used to compute the pixel. Second, code-
centric annotations are not limited to checking return values:
they can check any data that is live at the end of the computa-
tion. The two approaches differ less in which data is checked
and more in the frequency and granularity of checks.

Code-centric monitoring has three important advantages:

Developer expectations. Code-centric annotations apply
to the result of a computation, which is generally what pro-
grammers care about. Appropriate QoR constraints are less
obvious on intermediate values. Data-centric annotations on
intermediate values may also generate false positives. For
example, a ray tracer computes a pixel by adding the con-
tributions of many rays. If the initial rays have small con-
tributions compared to later rays, even large relative errors
in those rays may have little impact on the final computed
value.

Checking flexibility. Limiting checking to specific times
lets code-centric monitors perform more expensive checks.
If we must constantly monitor all intermediate values of a
variable, the checks must be extremely cheap. Conversely,
with a code-centric specification, QoR requirements can be
represented by arbitrary functions, as long as they are cheap
relative to the cost of the computation being checked. If this
computation is, for example, the tracing and summing of
all of the rays that contribute to a pixel value, the checking
function can be fairly complex. If we attempt to loosen the
semantics of data-centric annotations to check the value at
only certain points, they essentially become code-centric
annotations.

Implementation of monitoring and recovery. Limiting
checking to explicit points in the computation simplifies
the implementation of the monitoring framework. Monitor-



ing need only be invoked via explicit library calls; we do
not need to instrument variable accesses. In addition, code-
centric annotations make it easy to take recovery actions,
such as re-execution, in response to quality monitoring.

5.3 Dealing With Side Effects
Monitored computations naturally have inputs (arguments)
and outputs (return values) that can be checked by a QoR
monitor. But what if approximate computations mutate other
data or have other side effects? These side effects impact
quality and may differ in an approximate execution. For
example, control flow changes in the approximate execution
may cause a write to execute that does not occur in the
precise version.

Unanticipated side effects can harm quality in ways that
the developer-specified metrics do not account for, violat-
ing the expectation that quality monitoring catches all un-
acceptable precision losses. Any monitoring solution needs
to account for this difficulty. We identify three general ap-
proaches:

• Ignore side effects: This is the simplest approach, but it
shifts the burden entirely to the developer. The monitor
assumes that the inputs to the QoR function or verifier
are the only things that matter. Developers must ensure
that any other possible side effects are incidental and
will not affect the overall quality of the computation.
This can be difficult, however, due to the possibility of
unanticipated side effects. It may be more appropriate in
a mostly functional language where side effects are less
common.

• Ensure precise and approximate side effects are iden-
tical: In this approach, the compiler and runtime system
ensure that if an approximate execution modifies any data
that is not checked by the monitor, then an equivalent pre-
cise execution would have produced the same modifica-
tion. In the general case this requires significant, high-
overhead, dynamic cooperation from the runtime system.

• Restrict side effects: Our final approach simply detects
and forbids side effects in monitored code except for data
that is local to the computation or explicitly marked as
an output of the computation. The monitor can check this
explicitly marked output data and verify its quality. If the
runtime detects disallowed side effects, it raises an ex-
ception. This approach again requires runtime coopera-
tion, but can be done relatively cheaply (as shown in Sec-
tion 6.2).

We contend that ignoring side effects pushes too much of
the burden onto the developer and that ensuring identical
side effects creates too much overhead. Thus our monitor-
ing framework pursues the third option, as discussed in Sec-
tion 6.2.

6. Implementation Issues
This section describes some of the most interesting details of
our QoR tool implementations. Section 6.1 describes imple-
menting shadow memories for our offline approaches. Sec-
tion 6.2 discusses handling side effects in monitored code,
including controlling their impact on quality and buffer-
ing/rollback for approaches that may require multiple exe-
cutions. More details can be found in [25].

6.1 Shadow Memories
Both our offline tools require a shadow memory. Dataflow
instrumentation uses the shadow memory to track dataflow
counts across loads and stores. Correlation instrumentation,
on the other hand, uses the shadow memory to track the ac-
tual values stored in approximate memory. When we load
from an address in approximate memory, we check the corre-
sponding shadow memory address to see if the loaded value
is correct (if it is not correct, we increment the appropriate
error counter).

Both forms of shadow memory are implemented as hash
tables keyed on the real memory address. The values are
either the dataflow counter for dataflow instrumentation or
the stored value and the address of the store’s error counter
for correlation instrumentation.1 Stores correspond to hash
table inserts and loads to table lookups. Key reinsertions
(i.e., stores to a previously-used address) replace the old
value.

6.2 Side Effects in Monitored Code
Our monitoring system restricts side effects by allowing
monitored code to write only to objects that are either part
of the output list or local to the monitored code. Other mem-
ory writes result in an exception. Possible implementation
strategies include reusing existing memory protection mech-
anisms or keeping per-object data indicating which checked
computations may write to the object. Our prototype uses
the latter since it is built on top of the EnerJ simulator [27],
which already tracks per-object state for other purposes.

In particular, our prototype tracks whether objects are
writable by augmenting heap-allocated objects with per-
object state containing a region number. This state is up-
dated and tracked by the same runtime routines that man-
age our framework’s dynamic monitors. Specifically, users
of our framework monitor computations by wrapping the
computation in an implementation of a function object in-
terface that we provide. They then pass the computation to
our primary monitoring API [25], checkApprox. They
may also optionally provide a list of output data: objects
that the computation is allowed to modify.2 When we call

1 We track the store’s error counter so that we can assign “blame” to the
store in the event of an error due to the approximate memory.
2 If an output list is specified, our framework also automatically passes it to
the QoR metric, verification function, or fuzzy memoization predictor, so
that modifications to these objects may also be monitored.



checkApprox, our framework creates a new region by in-
crementing a global region counter. To support nested calls,
each call to checkApprox also records the region number
of the parent call and restores the counter when it returns.
Thus, as we return from the checkApprox invocations on
the call stack, we also unwind the region number stack. If
any output objects were specified, we set their region num-
ber to the number of region we are entering. Similarly, if any
objects are allocated inside a checked region, we set their
region number to the number of the current region. When
entering a nested region, we first check that any output ob-
jects were writable by the parent region. (It is unsafe to make
an object writable by the child when it is not writable by the
parent.) Before returning from a region, we reset the output
objects’ region numbers to the parent region number. Thus,
to enforce side effect restrictions, all stores to heap objects
inside monitored code must simply check that the desti-
nation object’s region number matches the current region
number. If there is a mismatch, we throw an exception.

Our implementation requires a static list of output/side-
effectable objects, which we found adequate for all of the use
cases we examined. If necessary, the implementation could
made more flexible by allowing users to register objects-
that-can-change midway through an approximate computa-
tion. Also note that this approach requires non-reversible
side-effects to be buffered as writes to side-effectabe objects.

In addition to restricting side effects, our implementa-
tion needs to buffer and roll back side effects for monitor-
ing approaches that incorporate re-execution (e.g., precise
sampling). We provide buffering using a copy-on-write pol-
icy for non-local objects. To implement copy-on-write, we
add a boolean to each object indicating whether it should
be copied when written and a pointer to the copy (initially
null). If buffering is needed (e.g., during the first execution
of a sampled execution), we iterate through the list of objects
marked as outputs (i.e., the objects for which side effects are
allowed) and set the copy-on-write flag. If a store occurs to
an object whose flag is set, we check the copy pointer and
create a copy if it is null. We then perform the store to the
copy instead of the original object. When we load from an
object with the copy-on-write boolean set, we again check
the copy pointer and read the copy if it is present. After the
first execution completes, we remove all the copies and un-
set the copy-on-write flag. This allows the subsequent run to
start as if from scratch.

7. Use Cases
To evaluate our dynamic QoR tools, we experimented with
seven approximate applications. For three, we used offline
debugging in concert with online monitoring,3 for one we
used just offline debugging, and for three we added just

3 Our offline tools were built on top of the LLVM-based EnerC infrastruc-
ture for approximate computing in C/C++, and our monitoring prototype
was built on top of the EnerJ infrastructure for approximate computing in

monitoring. For two programs, we created two monitored
versions using different monitoring approaches, resulting in
a total of eight monitoring configurations.

Section 7.1 describes our approximate applications. Sec-
tion 7.2 discusses insights gained via our offline debugging
tools. Section 7.3 details our online monitoring results.

7.1 Applications
We considered the following applications, which cover a va-
riety of approximation use cases, including scientific com-
puting, image processing, simulations, and games:

• We used precise sampling online monitoring with an
approximate simple ray tracer (from [27]).

• We used two types of verification function monitoring
(streaming and consistency) with an approximated ver-
sion of the classic Asteroids game [17].

• We used traditional verification to monitor the approxi-
mated JME triangle intersection kernel from [27].

• We used both dataflow and correlation instrumentation to
debug the QoR of a Sobel filter, and used fuzzy memo-
ization to monitor and correct the remaining errors.

• We used dataflow instrumentation to better understand
the approximation patterns of an FFT kernel (from [27])
and used this to inform our design of two online moni-
tors: a consistency verification monitor and a fuzzy mem-
oization monitor.

• We used correlation instrumentation to better understand
the approximation present in an approximate version of
the PARSEC canneal simulated annealing bench-
mark. This convinced us that the error patterns were such
that a monitor was not necessary.

• We used correlation instrumentation to debug the quality
of an approximate version of the PARSEC Black Scholes
benchmark (and a Java port of it). We then built a consis-
tency verification monitor to detect any remaining errors.

7.2 Offline Debugging Tool Results
Results summary. Our offline debugging tools enabled us
to narrow in on the key quality issues in our applications, and
to better understand their key characteristics. In one case,
we were able to solve an intermittent segmentation fault.
In others, we were able to identify and correct the issues
that most commonly led to poor output QoR, and in another,
we were able to gain insights that led us to design a better
monitor. Figure 1 shows how correlations are distributed in
the applications where we used correlation instrumentation.
Overall, our tools helped us improve quality, understand
behavior, and design better monitors.

Sobel filter. Our instrumentation of the approximate Sobel
filter enabled us to debug two problems: an intermittent seg-

Java, so we were able to use both tools only in applications where we could
find similarly coded C and Java versions.
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Figure 1. Graphs showing correlations between code points and QoR in (a) canneal, (b) Sobel filtering, and (c) Black
Scholes. The x-axes represent source lines, and the y-axes represent QoR correlations. The x-axes are sorted by correlation
value to show how the correlations are distributed: a relatively small number of code points have high correlation to QoR.

mentation fault and frequent poor quality filter results (e.g.,
no edges). To track down the crash, we created correlation
vectors where the QoR component was determined entirely
by whether or not we crashed. These vectors quickly pointed
us to a code point where the application was reading from an
array. Dataflow instrumentation confirmed that the array in-
dex could be influenced by approximate operations.

To investigate the poor quality results, we created correla-
tion vectors whose QoR was based on the number of correct
elements of the result and determined that the highest cor-
relation was with code that computed a scaling factor which
was later applied to every pixel. This scaling factor was be-
ing computed approximately by scanning the initial image.
Dataflow instrumentation confirmed that there were a large
number of approximate operations in this scan. Since this
value impacts every output pixel, it was causing our frequent
garbage results.

FFT. Our primary insights with FFT came from dataflow
instrumentation. We checked the approximate dataflow into
each element of the result and determined that, even with
the relatively small FFT we used in testing (32K elements),
each element of the output vector was dependent on many
approximate operations (almost 180K). Due to the structure
of the FFT, if an error corrupts an intermediate array value
early in the computation, errors can propagate through the
rest of the FFT result. This insight led us to design a monitor
for the FFT application that catches any errors early so that
we could either attempt to correct them or simply restart the
computation.

Simulated annealing. For canneal, we created correla-
tion vectors where the QoR component was determined by
the difference in route length from the precisely computed
version. When we plugged our vectors into a spreadsheet
to compute correlations, we determined that the results with
lower quality were strongly correlated with errors in approx-
imate operations inside the random number generation rou-
tines and nothing else. The random number generation is
used to compute random steps in the simulation, and these
errors appeared to effectively be altering the randomization.
This was causing our annealer to simply find different local
minima. In fact, a number of these different minima were

better than the one found by the precise version. This inves-
tigation gave us increased confidence in the results of our
approximation, and convinced us that monitoring was un-
necessary for this application.

Black Scholes. In Black Scholes, our correlation instru-
mentation identified two locations with particularly high cor-
relation to QoR. In both cases, we were loading a value from
a location in approximate storage that had not been accessed
in a long time. In our EnerJ-based approximation model,
the decay of an approximate memory value is based on the
amount of time since it was last accessed. This suggests that
future approximate languages may want a language feature
that forces a refresh of approximate storage.

7.3 Monitoring Results
Results summary. The overheads of our monitored appli-
cations appear in Table 3. All applications were run five
times. The final column displays the percentage of the orig-
inal energy savings that are retained with monitoring, which
ranges from 44% to 78%. The second to last column displays
the energy usage of the monitored approximate computation
relative to the original precise (and unmonitored) computa-
tion. Table 2 contains a detailed breakdown of overheads.
Memory overhead is related to the amount of data that must
be remembered in order to verify results, and can be reduced
through clever monitor design by application developers. Ta-
ble 4 shows our monitoring accuracy.

A Note on our Energy Model. To evaluate the energy over-
head of online monitoring, we reuse the energy simulation
model from the evaluation of EnerJ [27]. The model quanti-
fies the normalized energy consumed by the CPU and mem-
ory systems during an entire program execution. This tech-
nique assumes a hardware substrate capable of enabling ap-
proximation for each instruction and each cache line as in
Truffle [10]. However, our techniques would also work with
approximation applied to regions of code instead of individ-
ual instructions.

For each program, we consider four configurations: fully
precise (the baseline), approximate without monitoring,
fully precise with monitoring, and approximate with moni-
toring. The difference between the approximate executions
with and without monitoring reflects the energy “given



Instruction Instruction Instruction Memory Memory Memory
Application Compute Check Overhead Compute Check Overhead
Triangle intersect, traditional verifier 95.8% 4.2% 4.4% 99.0% 1.0% 1.0%
Asteroids, streaming verifier 64.7% 35.3% 54.6% 89.1% 10.9% 12.3%
Asteroids, consistency verifier 74.1% 25.9% 35.0% 94.8% 5.2% 5.5%
Simple ray tracer, precise sampling 85.7% 14.7% 17.2% 69.9% 30.1% 43.1%
Sobel filter, fuzzy memoization 93.2% 6.8% 7.3% 75.4% 24.7% 32.7%
FFT, consistency verifier 93.5% 6.5% 7.0% 90.9% 9.1% 10.0%
FFT, fuzzy memoization 92.3% 7.7% 8.3% 99.7% 0.3% 0.3%
Black Scholes, consistency verifier 96.7% 3.3% 3.4% 74.2% 24.8% 34.8%

Table 2. The percentage of instructions and memory dedicated to the original computation (compute) and the monitoring
(check) for each application and online monitor. We measure these dynamically, as total instructions executed and total memory
footprint of the monitored versus unmonitored applications.

Precise Approx Savings
Application Type of Monitor Precise Approx Monitored Monitored Retained
Simple Ray Tracer Precise Sampling 100% 67.3% 117.2% 85.5% 44.3%
Asteroids, 10k frames Streaming Verifier 100% 91.2% 103.7% (130.0%) 95.0% (121.5%) 56.8%
Asteroids, 10k frames Consistency Verifier 100% 91.2% 104.8% (119.2%) 95.2% (107.4%) 54.5%
Triangle Intersection Traditional Verifier 100% 83.2% 104.3% 86.8% 77.7%
Sobel Filter Fuzzy Memoization 100% 85.6% 107.0% 92.9% 49.0%
FFT Consistency Verifier 100% 72.8% 106.9% 82.5% 64.3%
FFT Fuzzy Memoization 100% 73.4% 108.4% 81.6% 69.2%
Black Scholes Consistency Verifier 100% 73.1% 117.0% 88.1% 44.4%

Table 3. The modeled energy consumption of each monitored application. Energy is measured relative to the precise,
unmonitored execution energy (the Precise column). The Approx column shows the energy use of an unmonitored approximate
execution. The Precise Monitored column shows the energy use of a precise, monitored execution (this would not be useful in
practice, but is included to show the overall energy overhead of monitoring). Approx Monitored shows the energy use of an
approximate monitored execution and Savings Retained is the percentage of the unmonitored energy savings that are retained
after we add monitoring. Because the Asteroids results include a mix of monitored and unmonitored (post-training) frames, we
have included the relative costs of the monitored portion in parentheses in the appropriate columns.

back” to enable online monitoring. Although a monitored
precise execution is not useful in practice, it shows the over-
all energy overhead of monitoring. To compare monitored
and unmonitored executions, we scale the processor energy
by the increase in the number of instructions executed and
scale the memory energy by the increase in the time that
the memory must remain active. In most cases, the latter is
also represented by the increase in instruction count. How-
ever, in one case (the Asteroids application), the execution
time does not increase because the application uses sleep
calls to maintain the proper frame rate. Thus we did not
scale its memory energy. We apply the above energy scaling
factors to the precise unmonitored execution to determine
the energy usage of the precise monitored execution. We
then apply the approximation scaling factors from the En-
erJ model to the precise monitored energy to determine the
approximate monitored energy level.

Ray tracer. For the ray tracer, we applied precise sampling
with a sampling rate of 1% around the computation of each
pixel. Our overheads were relatively high due to the simplic-

ity of the pixel computation kernel (it only traces a scene
with a single known plane and texture). Despite the over-
heads, we still managed to retain nearly 50% of the original
energy savings. Our sampling also achieved an accurate es-
timate of the QoR. The mean average error of the monitor’s
estimate of the number of bad pixels was just 9.6%.

To demonstrate the utility of monitoring in practice, we
also built an end-to-end system on top of our monitored
ray tracer. This system takes advantage of the fact that cer-
tain areas of the image are more susceptible to errors than
other areas (e.g., areas with smaller features). Our end-to-
end monitored application decreases approximation when-
ever the error rate of sampled pixels gets above a config-
urable maximum threshold over a window of samples. Simi-
larly, we lower the energy if the error rate drops below a con-
figurable minimum threshold. This system reduced the error
rate to 4.6%, compared with a rate of 8.6% for the moni-
tored ray tracer without automatic adjustments. In addition,
it used slightly less energy than the regular monitored system
(84.8% versus 85.5%).



Asteroids. We tried two varieties of verification functions
to monitor our approximate Asteroids game: a streaming
verifier and a consistent output verifier. The streaming veri-
fier compares the positions of the asteroids and the ship with
their last known positions and verifies that they have not
moved by more than the maximum velocity. To reduce over-
head, we record and check only every fifth time step. Our
consistent output verifier simply checks that the velocities
are in the allowable range and that the positions are within
the screen bounds.

We also explored an end-to-end use case of monitoring
in the context of the Asteroids game. To do this, we added
hooks to the EnerJ runtime that allow developers to adjust
the simulated energy levels of the processor and memory.
We then set up our constraint function to check whether
the detected error rate was higher than 0.002% of positions.
Subjectively, we found that this error rate was sufficient to
make the game very playable. When our constraint function
detected a higher error rate, we raised the energy. Once our
monitor detected that the error rate had stayed below the
desired rate for 1000 (for streaming verification) or 2000
(for consistent output verification) frames, we declared the
training phase over. The higher count was necessary for
consistent output verification because it detects fewer errors
(see Table 4). After declaring training complete, we turned
the monitor off. For our results, we let the game run for
10,000 frames to capture an adequate mix of pre- and post-
training energy savings. Streaming verification did slightly
better than consistent output verification because it was able
to settle on the correct energy level more quickly and thus
turn off monitoring sooner. If we look at just the overhead
during the training phase, consistent output verification’s
overhead was better.

Triangle intersection. Our traditional verifier for triangle
intersection was based on the insight that triangles that are
close together are more likely to intersect than triangles that
are far apart. Thus, a traditional verifier could pick a point
on each of the two triangles and compute the Euclidean
distance between them. If the distance between them was
high and the computation returned true (intersection), the
monitor could declare a possible error. Similarly, if the dis-
tance was small and the computation returned false, we
could also declare an error. We quickly noticed, however,
that cases where we declared an intersection between two tri-
angles that were far apart were almost always real errors, but
cases where nearby triangles don’t intersect were a mixed
bag—many were false positives. So, we changed our veri-
fier to look only for the far-apart/intersecting case. We then
corrected errors we caught by declaring that they did not in-
tersect (since we only flagged erroneous intersections). This
optimization allowed us to retain 78% of the energy savings,
with a false positive rate of just 0.2%. We detected 47.7% of
errors, and our correction reduced the error rate from 5.2%to
2.7%.

Sobel filter. For the Sobel filter, we used fuzzy memoiza-
tion to monitor the computation of each pixel gradient. For
our memoization input, we summed the absolute values of
the differences between the north and south neighbors and
the east and west neighbors. For the output, we chose the
magnitude of the gradient vector (this is what edge detectors
look at). Our constraint accepted the computed value if it
was within 60 of the predicted value (we found empirically
that this threshold gave good results). Whenever the mon-
itor indicated a potential quality violation, we re-executed
the computation precisely. Our monitor successfully iden-
tified and corrected 86.7% of the erroroneus computations,
reducing the error rate from 0.66% to 0.09%. This reduction
was achieved with an overhead of just 7% and allowed us to
retain nearly 50% of the original energy savings. Our false
positive rate was just 2.5%.

FFT. Based on the insights from our offline tools, we de-
signed a consistent output verification monitor for the FFT
kernel. Rather than applying the verification only at the end
of the computation, we checked the intermediate results after
every 10 iterations. Our verifier checks that every element of
the array is within the maximum possible range based on the
size of the input array. This allows us to catch errors early,
rather than continuing with a computation that is bound to
have poor QoR. In addition, we also implemented a fuzzy
memoization monitor that predicts the magnitude of the out-
put array based on the magnitude of the input array. Both
monitors caught over 90% of the errors, had less than 2%
false positives, and retained over 60% of the energy savings.

Black Scholes. Finally, we implemented consistency ver-
ification monitoring for Black Scholes. We simply check if
the option value is within the maximum possible range, and
if not, declare an error. Our monitor reduced the error rate
from 3.68% to 1.26%, and retained 44.4% of the energy sav-
ings.

8. Related Work
Many systems are designed to relax output quality to im-
prove performance or energy consumption via software [2,
15, 28, 30] or hardware [5, 8, 10, 11, 19, 20, 23] techniques.
Dynamic QoR monitoring and debugging tools help make
these approximate computing techniques more feasible by
helping programmers understand and control quality degra-
dations.

Online quality monitoring. Our monitoring work is the
first (to our knowledge) to explore the design space of dy-
namic quality monitoring for approximate computations and
to implement a framework supporting multiple approaches
to monitoring. Here we review related efforts.

Green [2] is a framework for controlling approximation
that can, optionally, invoke user code on a sampling of ex-
ecutions to assess quality. The programmer must provide
an appropriate monitoring scheme. One example application



Application Type of Monitor Errors caught vs. perfect monitor False Positives
Simple Ray Tracer Precise Sampling Sampling rate (with a 9.6% MAE) 0.0%
Asteroids, 10k frames Streaming Verifier 54.8% 0.0%
Asteroids, 10k frames Consistency Verifier 8.0% 0.0%
Triangle Intersection Traditional Verifier 47.7% 0.2%
Sobel Filter Fuzzy Memoization 86.7% 2.5%
FFT Consistency Verifier 100.0% 0.0%
FFT Fuzzy Memoization 90.1% 1.3%
Black Scholes Consistency Verifier 65.8% 0.0%

Table 4. The percentage of errors caught by our online monitors. For precise sampling, the percentage of errors caught will
be approximately the sampling rate, with some level of error. We account for this in the table above by indicating that the
percentage caught will be the sampling rate, plus or minus the mean average error of the rate of sampled versus real errors. We
also show the percentage of executions that result in a false positive (i.e., the monitor reports a QoR error that does not occur).

uses a manual implementation of precise sampling (with no
support for controlling side effects). Our work is comple-
mentary: it explores the design space of monitoring schemes
and provides reusable implementations for a variety of prac-
tical approaches.

Grigorian et al. [13, 14] propose Light Weight Checks
that are similar to the verification functions we describe.
Their success reinforces our assertion that this is an impor-
tant coordinate in the monitoring design space.

PowerDial [15] also dynamically controls an applica-
tion’s degree of approximation. It monitors run-time condi-
tions (e.g., real-time deadlines) and adjusts quality accord-
ingly. Similarly, Eon [29] adjusts system energy at runtime
based on the availability and cost of energy and computa-
tional resources. Whereas those systems monitor resource
consumption, our work focuses on monitoring quality.

Quality-of-service profiling [22] uses offline profiling
runs during development to examine the QoR impact of un-
sound code transformations. The offline calibration steps in
Green and PowerDial work similarly. Online quality moni-
toring, as in our work, requires efficient mechanisms that do
not overwhelm the benefits of approximation.

Previous work [1, 6] uses approximate (or fuzzy) mem-
oization to provide approximation rather than to check the
quality of approximation. In that setting, fuzzy memoization
can be more expensive—since it replaces a baseline com-
putation instead of augmenting it—but must also be more
accurate.

Offline quality debugging. Our dynamic, instrumentation-
based debugging tools pinpoint program points that lead
to poor output quality. These techniques complement prior
static and dynamic approaches.

Static approaches conservatively bound the quality im-
pacts of approximate computing. Carbin et al. [3] propose
a proof system for verifying programmer-specified correct-
ness properties and other work [21, 30] uses probabilis-
tic reasoning to prove accuracy bounds on program trans-
formations. EnerJ [27] provides noninterference guarantees.

Rely [4] bounds the probability that values produced by an
approximate computation are correct by examining the static
data flow of nondeterministic operations. In this sense, it rep-
resents a static complement to our dataflow instrumentation
technique. Static techniques provide important safety prop-
erties but are necessarily conservative; our dynamic tech-
niques are critical to addressing run-time events that static
analyses cannot rule out.

There is also relevant work in the field of dynamic instru-
mentation. Lam et. al. [18] use instrumentation to determine
where they can safely reduce floating point precision (a spe-
cific form of approximation). Roth et al. [26] and Ganai et
al. [12] apply dynamic dataflow analyses to debugging in
other environments, namely MPI and multi-threading.

The aforementioned work on quality-of-service profil-
ing [22] describes an exhaustive search process for identi-
fying program loops that do not need full precision. In con-
trast, our instrumentation approaches apply to finer-grained
sources of error without resorting to brute-force search.

9. Conclusion
Dynamic tools are invaluable for debugging and monitor-
ing quality-of-result for approximate computations. We have
shown that offline quality debugging is useful for under-
standing quality tradeoffs during pre-deployment develop-
ment and testing, and online quality monitoring can de-
tect and correct quality degradations in approximate appli-
cations. Just as static and dynamic tools complement each
other in other aspects of software development, we view our
dynamic tools as a key addition to the tools available for us-
ing approximate computing.
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