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ABSTRACT

In the near future, new storage-class memory (SCM) tech-
nologies – such as phase-change memory and memristors –
will radically change the nature of long-term storage. These
devices will be cheap, non-volatile, byte addressable, and near
DRAM density and speed. While SCM offers enormous oppor-
tunities, profiting from them will require new storage systems
specifically designed for SCM’s properties.

This paper presents Echo, a persistent key-value storage sys-
tem designed to leverage the advantages and address the chal-
lenges of SCM. The goals of Echo include high performance
for both small and large data objects, recoverability after fail-
ure, and scalability on multicore systems. Echo achieves its
goals through the use of a two-level memory design targeted
for memory systems containing both DRAM and SCM, ex-
ploitation of SCM’s byte addressability for fine-grained trans-
actions in non-volatile memory, and the use of snapshot isola-
tion for concurrency, consistency, and versioning. Our evalua-
tion demonstrates that Echo’s SCM-centric design achieves the
durability guarantees of the best disk-based stores with the per-
formance characteristics approaching the best in-memory key-
value stores.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management

General Terms

Design, Performance, Reliability
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1. INTRODUCTION
For most of its history, OS data management has been severely

constrained by the physical characteristics of the slow, block-
oriented disks required for persistent storage. In the near future,
however, emerging storage-class memory (SCM) technologies
will likely revolutionize persistent storage. SCM devices – such
as phase-change memory (PCM) [23, 39] and memristors [42]
– will offer exciting and inexpensive storage options that com-
bine the best characteristics of DRAM and disk in novel ways.
The primary benefits of SCM include: (1) durability of writes
across power failures, (2) density competitive with DRAM,
likely to reach a terabyte on the memory bus in a few years,
(3) byte-addressability, instead of the block-oriented accesses
of SSD and disk, and (4) latency within two- to four-times that
of DRAM access.

SCM has several weaknesses as well, however, including an
asymmetry of read and write costs (with writes significantly
more expensive), and write wear-out over time, which sug-
gests the need for wear leveling. However, its speed and byte-
addressable access granularity are far better than for SSDs, and
even its write endurance is significantly improved.

While today’s storage systems could simply substitute SCM
for current storage technologies, this approach has numerous
drawbacks. For example, just replacing disks and SSDs with
SCM will result in unnecessary overhead from the block-oriented
structure and interface of existing file systems. Similarly, re-
placing all of main memory (DRAM) with SCM – without con-
sidering atomicity, for example – will result in inconsistent data
on recovery after failure, in addition to a loss of performance.
Therefore, technology replacement alone cannot achieve the
full potential of storage-class memories. In the near future,
we believe that SCM technology can significantly improve OS
storage and management of persistent data, but this will require
new storage systems explicitly designed for the characteristics
of SCM.

Our work focuses on future systems that are likely to provide
SCM storage directly on the memory bus along with DRAM;
others have considered this environment as well ([10, 44]). In



that context, this paper describes the high-level architecture and
implementation of a storage system designed to exploit the ad-
vantages, and to mitigate the challenges, of future SCM-based
technologies in such architectures. Called Echo, our system has
three main design goals:

1. Variable granularity. As a replacement for both main
memory and disk stores, Echo should efficiently manage
storage and retrieval of both small and large data blocks –
from a few bytes to many megabytes.

2. Consistency and recoverability. Echo must preserve data
consistency and avoid corruption of durable in-memory data
structures in the case of failure and restart.

3. Scalability and concurrency. Performance must scale with
the number of clients and requests; that is, Echo must han-
dle parallel operations over the store on increasingly large-
scale multicore CPUs.

We designed Echo to be a lightweight, persistent, key-value
storage system that uses an SCM-aware architecture to meet
these goals in multiple ways. First, it relies on SCM’s byte ad-
dressability to support efficient storage of both fine- and large-
grained data objects. Second, it employs a two-level “hybrid”
memory design, using DRAM as a thin layer to offset the per-
formance and wear-out weaknesses of SCM. And third, it em-
ploys transactions and snapshot isolation [4] to support con-
currency, data consistency, recoverability, and scalability for
multicore processors.

The existence of snapshot isolation and byte addressability in
non-volatile memory have convenient benefits. Snapshot iso-
lation creates multiple versions of data objects to ensure that
each concurrent thread sees a consistent data view. With byte
addressability, Echo can cheaply and atomically commit a new
object version using a single memory write (e.g., a pointer flip)
to non-volatile SCM. This leads naturally to historical version-
ing; by simply maintaining data versions committed to non-
volatile memory, Echo can easily support common versioning
applications, such as auditing, backup, intrusion detection, and
error recovery (e.g., [8, 16, 17, 21, 27, 30]). And by writing
new object versions rather than overwriting existing ones, Echo
provides a simple form of wear leveling for SCM.

Others have noted that new SCM memory technologies have
the potential to fundamentally change OS design and struc-
ture [3]; e.g., removing the 50-year-old premise of a two-level
store has important implications for the file system, the virtual
memory, the I/O system, and so on. In this context, we believe
that a general-purpose SCM-centric, key-value storage system
such as Echo is a first building block in that direction, on top
of which either OS or higher-level software could be crafted.
While previous SCM research has focused on non-volatile per-
sistent objects [10], non-volatile memory regions [44], and tra-
ditional file systems [11], to our knowledge, Echo is the first
fine-grained, persistent key-value store specifically designed
for SCM technology.

Overall, while the individual techniques used in Echo are
not new in themselves, Echo provides a careful blending of in-
memory and durable storage management techniques, leading
to a new system explicitly tuned for the benefits of non-volatile
memory technologies expected in the near future.

2. ARCHITECTURE
This section briefly describes Echo’s high-level architecture,

which seeks to exploit the advantages and offset the weaknesses
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Figure 1: The Echo execution architecture.

of SCM. Specifically, the architecture strives to: (1) improve
performance and simplify recoverability by clearly separating
transient, uncommitted state from durable, consistent state; (2)
maximize scalability through concurrency and reduced locking,
and (3) expose historical versions of data to applications, while
letting them choose how versions are managed.

Echo could be used in multiple ways, for example: (1) as
a storage instance for a single multithreaded application, (2)
as a storage system accessed in shared memory by multiple
trusting applications, (3) as a server-based store for multiple
untrusting processes, or (4) inside the OS, e.g., storing the data
and metadata for a durable SCM-based kernel file system.

2.1 Architectural Model
Echo is a persistent, versioned, key-value store whose per-

manent data is maintained in non-volatile SCM. Figure 1 shows
its basic execution model. On the left is a collection of worker

threads, each with its own local store. The workers and local
stores provide isolation and scalability; each worker thread can
perform independent, thread-local storage operations without
interference from the others. To write a consistent version of
its local data to Echo’s persistent store, a worker thread exe-
cutes a commit transaction; this ensures that all modified data
in the local store is written atomically and can be recovered if
failure occurs during the process.

On the right of Figure 1 are one or more master threads,
which perform most of the commit work in the master store.
The figure shows a commit queue of requests from worker threads
that the master threads service, processing one commit at a time
and merging it into the master store.

As noted above, since DRAM and SCM differ in both per-
formance and durability, we expect that SCM-based systems
will contain both DRAM and SCM components. Our archi-
tecture exploits this dual-memory structure to benefit from the
best properties of each memory technology. For this reason,
Echo worker threads maintain their data in DRAM: that data
is volatile, and access to it is fast. The master store is kept in
SCM: the master is durable, but access (write access in partic-
ular) is slightly slower than to DRAM. This two-level scheme
reduces writes to SCM, which also has advantages for write
endurance.

2.2 Consistency Model
Key to Echo’s architecture is a consistency model based on

snapshot isolation [4]. Snapshot isolation trades full serial-
izability for increased concurrency and performance because
readers do not block writers. This tradeoff, used in a number



Operation Description Return Value

master_create() Create new master store store pointer

local_create(master) Create new local store attached to master store pointer

get(key) Get key’s value for worker’s snapshot value

put(key, value) Put key-value in the local store

delete(key) Delete key from local store

commit() Commit local changes to master store snapshot num.

set_current_snapshot(s) Set local store to fetch from snapshot s

get_version_iterator(key) Iterate over all values for a key version iter.

get_snapshot_iterator(s) Iterate over key-value pairs in snapshot s snapshot iter.

keep_snapshot(s) Prevent collection of snapshot s

delete_snapshot(s) Mark snapshot s for collection

delete_store(store) Delete a master or local store

Table 1: The Echo API. All operations except create take

a pointer to a local store as a parameter.

of commercial systems where serializability is not critical, is
available or standard in most database systems, such as Mi-
crosoft SQL Server, Oracle, and PostgreSQL [28, 34, 37].

Echo’s database is a key-value store organized as a sequence
of snapshots. A snapshot consists of a unique, monotonically
increasing snapshot number and a set of key-value pairs. Threads
manipulate the store using transactions; committing a transac-
tion creates a new snapshot with a new snapshot number.

Each transaction thus executes under a thread-local current
snapshot number, ensuring that all data it reads is consistent.
However, thread writes to key-value pairs are made only in
thread-local (volatile) memory. When a thread completes its
transaction, it commits any modified data to the master store,
creating a new snapshot that is durable and globally visible to
all threads. This allows multiple threads to work independently
and without coordination until a commit.

Snapshot isolation explicitly supports two of Echo’s design
goals. It supports scalability by allowing a high degree of con-
currency on the part of worker threads. And it supports recov-
ery because its transaction mechanism ensures data consistency
following failure. Versioning is also inherent in this scheme: by
keeping old data versions committed to SCM, a thread can ex-
plicitly back up to a previous snapshot and read a consistent set
of data from the past.

2.3 API
Table 1 presents Echo’s API. An application creates a per-

sistent master store and multiple local stores (usually one per
application thread) to connect to the master. A put operation
copies a key-value pair to the local store. A get operation
returns the key’s value from the master store using the local
store’s current snapshot number.

A commit operation commits the key-value pairs in the lo-
cal store’s transaction to the master store. In addition, commit
implicitly begins a new transaction, i.e., all values put to the
local store between one commit and the next are written to the
master at the next commit.

Echo includes a key delete operation, which is a put of a
special “tombstone” value. Once the delete is committed to
a snapshot Si, all gets for that key from snapshot Si or later
will return not-found. If a value is put to the key in a later
snapshot, Sj , then all gets after Sj will once again return a
value. Because Echo retains historical data, delete does not
immediately free any data. Instead, we rely on a storage man-
agement mechanism to free data while maintaining complete
snapshots in the store.

2.4 Version and Storage Management
Versioning is an inherently space-expensive operation. As

a consequence, Echo’s architecture supports three alternatives
for storage management. First, some applications may wish to
keep all versions of the data they’ve committed. Second, an
application can manually and precisely manage its storage; it
does this by using the Echo API to explicitly delete specific
snapshots no longer of interest, retaining only a subset of ver-
sioned data. Third, an application can choose Echo’s automatic

version collector, which uses a system-wide policy to reduce
storage consumption. We do not discuss the details of storage
management in this paper.

2.5 Failure Model
On a power-loss failure, the data committed to SCM at the

time of the failure can be accessed on resumption and will be in
a consistent state. All other application data, including stacks
and uncommitted local storage, is inaccessible or potentially
corrupted after failure. On power resumption, a root pointer to
a master Echo store kept in SCM is provided to the application,
which allows the application to initiate the recovery process.
Hardware support for flushing data in the processors’ caches
(and possibly their CPU state, as well) to SCM on an impending
failure may let us relax this failure model.

2.6 Architectural Implications of SCM
The use of PCM or other SCM technologies introduces sev-

eral challenges that influence Echo’s architecture. First is write-

performance. While SCM reads are only slightly longer than
DRAM’s, SCM write latencies are expected to be many times
greater than writes to standard DRAM. Therefore, Echo uses a
hybrid, two-tiered approach, as previously described, in which
threads maintain and manipulate local, volatile data in DRAM.
We write only committed, persistent state to SCM, which avoids
storing the metadata of every local put in SCM. This approach
reduces accesses to SCM, making the system less dependent
on write characteristics (such as latency and endurance), while
letting threads perform thread-local work with the greatest pos-
sible performance.

The second challenge that influences Echo’s architecture con-
cerns CPU caching. SCM promises systems that are automat-
ically persistent across power failures, but the limitations of
today’s processor architectures make this difficult to achieve in
practice. Today’s CPUs have large caches; when a power in-
terruption occurs, dirty data that has not been evicted from the
cache is lost, making recovery difficult. Recent work on SCM
storage solves this problem by flushing data after it has been
stored in memory [10, 43, 44]. This approach requires care
for correctness and may hurt performance; e.g., flushed cache
lines on the x86 are written back and invalidated, which causes
a miss on the next read. Flushing thus causes more reads and
writes to memory on top of the added write cost to SCM. Our
separation of committed state from temporary state ensures that
the cost of flushing is paid only for committed state.

SCM’s third technical challenge is the reachability problem,
which causes issues with common memory allocation mecha-
nisms. Use of the standard C malloc in an SCM system can
cause the application and the library to have different views of
memory following failure. While this behavior is difficult to
resolve, Echo is built so that it can be recovered to a consistent
state after a failure.
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3. IMPLEMENTATION
We now focus on a brief discussion of the data structures and

low-level details that provide insight into Echo’s implementa-
tion. The Echo prototype is a shared library implemented in
approximately 8,000 lines of C code. The library is included
by applications and accessed through the API shown in Table 1.
The majority of Echo’s code resides in an access method mod-
ule that implements puts and gets to storage system data
structures.

For memory management, we use the tcmalloc li-
brary [18] for its scalability and performance benefits rela-
tive to the standard Linux glibc malloc library. We access
tcmalloc through a set of Echo-specific wrappers, as de-
scribed below. Threading and synchronization rely on the stan-
dard Linux pthread library.

3.1 Echo Data Structures
Echo supports a key-value storage system with multiple

volatile local stores and a single persistent master store. Our
prototype implements key-value storage using hash tables.
While other data structures (such as trees of various types)
might be suitable as well, we chose a hash table for its low-
latency access at the cost of marginally greater storage space.
Future work may incorporate tree structures as a means of sup-
porting range queries, if needed. Both local and master stores
use the same underlying data structure. The code for stores is
unified, with minor differences; each hash table knows whether
it is a local or master store and performs or omits certain steps
based on this knowledge.

Figure 2 shows the master store’s organization. Its four main
data structures, all stored in SCM, include:

1. A hash table used to lookup version tables in the store
2. A per-key version table, consisting of a vector of version

table entries that maintains the history of committed values
for the key

3. A commit log that records and sequences commits regis-
tered by multiple worker threads

4. A set of commit records, each of which describes a single
transaction and includes a list of the key-value pairs to be
committed to the master store

Data values are allocated independently in the SCM heap
and are pointed to by commit records and version table entries.
The commit log contains pointers to the commit records in the
order they were committed.

A version table entry (VTE) contains a pointer to the data
in SCM, its size, snapshot number, and a pointer to the com-
mit record for this key-value pair. Commit records facilitate
conflict detection and recovery. A commit record describes a
transaction and contains a list of key-value pairs to be commit-
ted (or already committed if the transaction completed success-
fully). It also contains beginning and ending snapshot numbers,
used to determine the range of conflicts. The ending snapshot
number is a unique identifier for the committed transaction.

A local store is a simplified version of the master; it keeps
only a single value and a unique VTE per key rather than a ver-
sion table. Structures in the local store are allocated from the
volatile heap in DRAM. Each transaction starts with an empty
local store. For each put request, the worker thread creates
or modifies a VTE in its local store. A get request returns
the value from its local store if one has been put during the
current transaction. If the local store does not contain the re-
quested key-value pair, the thread fetches the value from the
master store using the current snapshot number.

Note that the structure and organization of Echo’s master
store relies on its ability to perform direct, fine-grained, byte-
addressable reads and writes to durable SCM storage. Echo
can simply and cheaply allocate (and deallocate) variable-sized
blocks of durable heap memory for its persistent store. Re-
coverability is ensured through transactions committed directly
into this memory through CPU instructions. In contrast, ex-
isting high-performance storage systems (key-value or other-
wise) must use block-oriented optimization techniques – such
as write-ahead logging, group commits, or clustering of data
– in order to achieve I/O efficiency and durability on SSDs or
disks.

3.2 Committing Transactions
An application thread performs a commit to make the data

in its local store persistent and visible to other workers in the
system. In Section 2.1, we described the Echo architecture con-
ceptually using a collection of worker threads and a separate
pool of master threads; however, in our current implementa-
tion, local worker threads assume the role of a master thread on
a commit and immediately merge it into the master store.

To begin the commit process, the local worker allocates a
commit record in SCM. It then iterates through all key-value
pairs in its local store, copying each value into SCM and insert-
ing into the commit record the corresponding key and its value
pointer. Upon completion, it appends a pointer to the record
to the commit log, at which point the transaction is formally
committed and completely recoverable. The worker thread then
assumes the role of a master merge thread and inserts the key-
value pairs from the commit record into the master store while
checking for conflicts. We leave the discussion of conflicts,
aborts, and rollbacks to future work.

When the local worker performs its first get or put oper-
ation in a new transaction, its current snapshot number is au-
tomatically set to the greatest committed snapshot number in
the master store. Snapshots beyond this are not made visible
to local workers because they have either aborted or not yet
committed.



3.3 Lightweight Versioning
Having described the basic transaction mechanism, we

briefly note that the support of versions in an SCM-based store
such as Echo is extremely lightweight. Versioning makes sense
for persistent memory because it leverages the techniques al-
ready used to provide transactional updates to persistent data.
In order to provide fail-safe transactions, local workers “ap-
pend” their new values into durable memory at the beginning
of the commit. The system cannot overwrite existing values in-
place, which would cause inconsistencies in the case of a fail-
ure. Therefore, since we cannot update values in-place, there is
little cost to keeping previous versions around for the benefit of
applications.

A worker can get keys from older snapshots by chang-
ing its current snapshot number to a previous version using
set_current_snapshot. In general, access to historical
data is read-only; while the worker may still perform puts, any
attempt to commit with an old snapshot number is likely to
abort due to conflicts.

3.4 Hardware Implications
Our implementation makes several assumptions about the

underlying hardware architecture. We assume cache flushing
capability, which is needed to guarantee durable writes to SCM
from current processors. Echo also requires some control over
instruction ordering. These two instructions are available in all
modern x86 processors [20]. We also assume that dirty cache
lines evicted from the cache are written back to SCM in the
presence of power failures; the amount of power required to
ensure this in PCM DIMMs is discussed in [11].

We previously described several SCM-related issues, such
as the impact of hardware data caching and the need for flush-
ing. To address these problems consistently, we developed a set
of functions that wrap the standard C memory-allocation func-
tions in tcmalloc’s library. These wrappers implement the
additional necessary steps to ensure correctness and durability.

Lastly, when allocating and updating data structures residing
in the non-volatile heap, we always follow a series of steps to
ensure that the state of a data structure. The last field in every
data structure is its state: when a data structure is initialized
or updated, the other fields of the structure must be updated
and flushed to memory first; only afterwards is the state field
updated to a new value and flushed. This two-step process en-
sures that the state field is never made persistent in SCM before
the rest of the data structure has been safely stored, thereby en-
suring consistency on recovery after failure.

4. EVALUATION
This section provides a simple measurement of Echo’s per-

formance, including latency, throughput, and scalability for
various workloads.

We compare Echo’s performance to two key-value stores that
represent optimized approaches at both ends of the spectrum of
possible SCM adoption. First, we compare to Google’s Lev-
elDB [19], a high-performance key-value store designed for
conventional block-storage devices. Second, we compare Echo
to Masstree [26], an in-memory key-value store. For a fair
comparison, we: (1) placed Masstree’s log in a ramdisk to ap-
proximate porting it to SCM, as we did with LevelDB, and (2)
copied values returned by get operations in Masstree to a sep-

1

10

100

1000

10000

100000

Masstre
e

Echo

LevelDB R
AM

LevelDB SSD

LevelDB D
isk

S
in

g
le

 O
p

 L
a
te

n
c
y
 (
u

s
e
c
s
) 
O

p
s
iz

e
=

1
0

2
4

b
y
te

 

PUT

UPDATE

GET

3
.2

3
.2

2
.6

5
.8

5
.2

2
.2

7
1
.7

7
1
.0

4
.0

1
2
4
8
.1

1
2
7
4
.5

4
4
.3

1
3
1
0
5
.4

1
3
3
8
2
.3

4
4
.0

Figure 3: Average latency per operation for value sizes of

1K bytes.

arate buffer to match the semantics of Echo and LevelDB (by
default, Masstree just returns a pointer).

LevelDB, Masstree and Echo are all distinct systems with
different sets of features, making their direct comparison chal-
lenging. More specifically, there are two important feature dif-
ferences to note. First, LevelDB and Masstree support ordered
keys (and hence range queries over keys), while Echo does not,
since it uses a hash table as its core data structure. This is likely
to account for some of the performance differences between the
systems, but it is important to note that Echo’s architecture is
not tied to a hash table as the core data structure — using a
hash table is just an initial design decision for us. Second, Echo
supports continuous data versioning, something that the other
systems do not support.

We, like previous studies, [10, 11, 32, 43, 44] assume that
hardware support will be provided for functionality such as
cache flush on power failure. Because we assume that this
will be default behavior, we do not explicitly flush the cache
for any of the stores. Further, our evaluations approximate the
behavior of SCM using DRAM, which allows us to run exper-
iments on native hardware. This is appropriate due to cache
hit rates in the absence of flushing, as well as the read-heavy
workloads we evaluate on (assuming that read latency is com-
parable to DRAM read latency). However, both cache miss rate
and memory access latency have the potential to affect Echo’s
performance, given widely varying workloads.

We ran all experiments on an AMD Magny-Cours Opteron
with quad 1.9 GHz 12-core processors (48 cores total) and
64GB of memory, running Red Hat Enterprise Linux Server
release 6.3 (Santiago). The SSD disk was a 180GB high perfor-
mance 520 series Intel Solid State Drive with a SATA 3.0Gb/s
connection. The disk and ramdisk sizes were 120GB and 4GB,
respectively. We used ext4 file systems.

4.1 Basic Performance: Single-Operation
Latency

As a baseline, we examine the latency of a single get or
put operation in a single thread over the three systems. Our
experiments used a fixed value size of 1K bytes, with mea-
surements averaged over several thousand operations to remove
anomalies. We ensured that puts were durable by performing
a commit (Echo) or sync (LevelDB) after every put. There is
no commit/sync operation after Masstree puts, since Masstree
does not support such operations.

Figure 3 shows the latency (log scale) for single get or put
operations on the various systems. Echo’s get latency is about



the same as Masstree’s.1 Echo’s put latency is about 2x slower
than Masstree.

The figure also shows LevelDB with ramdisk, SSD, and
moving-head disk. Compared to LevelDB operating in DRAM
(LevelDB-RAM), Echo is approximately 1.79x faster for gets
(2.2 usec vs. 4 usec), 12.25x faster for puts to new keys (5.9
usec vs. 71.7 usec), and 13.73x faster for updates (5.2 usec
vs. 71.0 usec). The comparatively low get time for the three
LevelDB configurations shows the effectiveness of LevelDB’s
memory caching. Not surprisingly, durable puts on SSD and
disk are orders of magnitude slower than in DRAM ramdisk.
We omit these configurations for clarity in the second diagram.

4.2 Scalability: Throughput Scaling with
Core Count

Increased concurrency can lead to increased synchronization
contention on metadata accesses, potentially reducing scalabil-
ity. To examine this impact, we ran a synthetic workload exper-
iment to measure aggregate operation throughput over all cores
to show how the various systems scale with core count. An ex-
periment launches n threads, each pinned to a separate core for
fairness. Each thread performed random accesses on the store
for a fixed period of time (about 5 seconds), gathering statis-
tics on the number of puts and gets performed. Note that
this is a worst-case scenario since all threads are performing
continuous store operations in a tight loop.

Figure 4 shows the throughput of a mixed workload of 80%
gets and 20% puts for Echo, LevelDB, and Masstree, as
a function of the core count. We see that even when run on
ramdisk, LevelDB’s scalability is seriously limited and far be-
low the other systems.

For this experiment we measured two versions of Masstree:
one with logging and checkpointing for persistence, and one
with those features turned off (i.e., a memory-only, nondurable
Masstree). The throughput of memory-only Masstree exceeds
that of Echo by a small factor, which increases with core count.
Though it provides durability, the throughput of the logging
Masstree configuration is below that of Echo due to the cost of
background threads accessing structures and incurring filesys-
tem overhead for durability. Therefore, we see that persistence
is not free, even for a key-value store that is highly optimized
for memory.

5. RELATED WORK

Non-volatile Memory Systems. Previous research efforts have
examined the use of SCM for different abstractions in persis-
tent memory. Mnemosyne [44] supports persistent regions that
user code can map into its virtual address space and manip-
ulate directly through word-level operations. NV-Heaps [10]
supports a persistent object heap, focusing on safe pointers
and programming. Both provide transaction mechanisms for
concurrency and failure recovery. BPFS [11] is a file system

that maintains a persistent in-memory tree for file data, direc-
tories, and i-nodes; its copy-on-write (“short-circuit shadow

1As noted above, we modified Masstree to copy the 1KB get
data into a buffer to match Echo’s and LevelDB’s behavior. Just
reading the get data from Masstree through a returned pointer
would save approximately 20% from the time shown, and re-
turning the pointer only (the default) would be 2x faster than
the read-only case (around 1 usec).
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Figure 4: Average total throughput as the number of

threads increases, with a workload of 80% gets.

paging”) mechanism uses byte addressability to perform fine-
grained file updates in SCM. Echo operates at a higher level
than Mnemosyne and NV-Heaps, providing a persistent key-
value store with a standard get/put interface for applications; it
benefits from snapshot isolation for concurrency, consistency,
and versioning and leverages DRAM along with SCM to in-
crease performance and SCM write lifetime.

Venkataraman et al. [43] present consistent and durable data
structures (CDDSs) using a B-tree that allows in-memory up-
dates on a single copy. Rio Vista [25] combines a battery-
backed DRAM file cache with a recoverable memory library
to improve transaction performance for a disk-based system.
Narayanan and Hodson [32] provide a study of “whole-system
persistence” for legacy applications, which operates by flushing
state to SCM on failure, arguing that the flush-on-fail approach
is superior to in-memory persistent heaps.

Several projects have considered hybrid memory systems,
particularly using NAND flash (SSD). Mogul et al. [29] de-
scribe systems using both DRAM and flash, with OS support
for optimizing migration between the two. SkimpyStash [12]
is a key-value store tailored for flash with a highly optimized
DRAM lookup layer, the contributions of which are largely or-
thogonal to Echo. eNVy [45] uses a flash-based storage system
with a small battery-backed SRAM buffer to hide latency, and
Qureshi et al. [38] describe the advantages of a PCM-based
main memory system with a small DRAM buffer. Like BPFS
and Mnemosyne, Echo assumes a memory architecture con-
sisting of both DRAM and NVRAM accessible on the memory
bus. To our knowledge, Echo is the only long-term, key-value
storage system designed for SCM persistent memory.

Versioned Systems. Many versioned systems have been stud-
ied in the past. For example, Driscoll et al. [15] developed
techniques for maintaining all versions of linked data struc-
tures. The KeyKOS OS implemented efficient full-system
checkpointing to disk [22]. Many file systems provide version-
ing or checkpointing: Elephant [41] automatically retains all
versions of user files; ZFS [35] uses copy-on-write to enable
faster file system snapshots, and the recent Btrfs [7] supports
both readable and writable snapshots, as well. Echo integrates a
versioned hash table with its write-ahead commit log to achieve
versioning at little cost on top of the mechanisms already used
for transactional updates.



Transactions and Snapshot Isolation. Multiversion concur-

rency control (MVCC) applies timestamps or version num-
bers to data, allowing each client to read data consistent with
its current timestamp [5]. The main benefit of MVCC over
other database techniques, such as two-phase locking, is that
readers do not block writers of the same data; this enables
increased transaction throughput if conflicts between writers
are infrequent. Many versioned data systems are based on
MVCC, often implemented using copy-on-write (e.g., CDDS
and BPFS). Echo implements snapshot isolation, which is a
form of MVCC; however, while most MVCC systems discard
old versions when no readers remain, Echo maintains previous
versions and provides efficient historical access and garbage
collection.

MVCC is still the standard for high-performance transaction
processing systems with strong isolation guarantees, including
Oracle [34] and MySQL [31], and for research systems such as
Hyder [6]. Google uses snapshot isolation in Percolator [36] to
perform incremental updates to its web index.

Key-value Stores. We have used Echo as a shared library
linked to application code; Berkeley DB [33] and LevelDB [19]
are libraries offering persistent key-value storage, but they
are designed for disks rather than SCM. FlashStore [13]
and BufferHash [1] are key-value stores optimized for SSDs.
Masstree [26] is a highly optimized, key-value store that
achieves high throughput across many cores by using multiple
tree structures and optimistic concurrency control in memory;
it uses write-ahead logging and periodic checkpoints to disk for
durability. Echo maintains its versioned, durable store directly
in SCM, using transactions to commit multiple values at once
for consistency on failure.

Key-value stores have also become extremely prevalent as
infrastructure backing the Web [2, 9, 14, 24, 40]. Distributed
key-value stores are attractive because they can be scaled-out
much more aggressively than traditional relational databases.
These systems offer a wide range of data models, consistency
and availability guarantees, and support for multi-key updates.
For Echo, our focus is on efficient versioning and the use of
non-volatile memory rather than on these properties. How-
ever, we believe that Echo would make a suitable backing store
for many of these distributed key-value stores on future servers
with SCM.

6. CONCLUSIONS
This paper presented the design and implementation of

Echo, a key-value storage system explicitly designed for future
storage-class memory technologies. Echo is intended to pro-
vide the durability guarantees of block-storage systems while
achieving the performance and scalability commensurate with
state-of-the-art key-value stores. Key to Echo’s design is its
two-level memory structure and the use of snapshot isolation
for concurrency, consistency, and versioning. The simple mea-
surements presented show the potentials of Echo’s esign to
meet our goals.
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