
An Overview of the Blue Gene/L
System Software Organization

George Almási
�
, Ralph Bellofatto

�
, José Brunheroto

�
, Călin Caşcaval

�
, José G.

Castaños
�
, Luis Ceze

�
, Paul Crumley

�
, C. Christopher Erway

�
, Joseph Gagliano

�
,

Derek Lieber
�
, Xavier Martorell

�
, José E. Moreira

�
, Alda Sanomiya

�
, and Karin

Strauss
�

�
IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598-0218�
gheorghe,ralphbel,brunhe,cascaval,castanos,pgc,erway,
jgaglia,lieber,xavim,jmoreira,sanomiya � @us.ibm.com�

Department of Computer Science
University of Illinois at Urbana-Champaign

Urabana, IL 61801�
luisceze,kstrauss � @uiuc.edu

Abstract. The Blue Gene/L supercomputer will use system-on-a-chip integra-
tion and a highly scalable cellular architecture. With 65,536 compute nodes,
Blue Gene/L represents a new level of complexity for parallel system software,
with specific challenges in the areas of scalability, maintenance and usability. In
this paper we present our vision of a software architecture that faces up to these
challenges, and the simulation framework that we have used for our experiments.

1 Introduction

In November 2001 IBM announced a partnership with Lawrence Livermore National
Laboratory to build the Blue Gene/L (BG/L) supercomputer, a 65,536-node machine de-
signed around embedded PowerPC processors. Through the use of system-on-a-chip in-
tegration [10], coupled with a highly scalable cellular architecture, Blue Gene/L will de-
liver 180 or 360 Teraflops of peak computing power, depending on the utilization mode.
Blue Gene/L represents a new level of scalability for parallel systems. Whereas existing
large scale systems range in size from hundreds (ASCI White [2], Earth Simulator [4])
to a few thousands (Cplant [3], ASCI Red [1]) of compute nodes, Blue Gene/L makes
a jump of almost two orders of magnitude.

The system software for Blue Gene/L is a combination of standard and custom
solutions. The software architecture for the machine is divided into three functional
entities (similar to [13]) arranged hierarchically: a computational core, a control infras-
tructure and a service infrastructure. The I/O nodes (part of the control infrastructure)
execute a version of the Linux kernel and are the primary off-load engine for most sys-
tem services. No user code directly executes on the I/O nodes. Compute nodes in the
computational core execute a single user, single process minimalist custom kernel, and
are dedicated to efficiently run user applications. No system daemons or sophisticated
system services reside on compute nodes. These are treated as externally controllable



entities (i.e. devices) attached to I/O nodes. Complementing the Blue Gene/L machine
proper, the Blue Gene/L complex includes the service infrastructure composed of com-
mercially available systems, that connect to the rest of the system through an Ethernet
network. The end user view of a system is of a flat, toroidal, 64K-node system, but the
system view of Blue Gene/L is hierarchical: the machine looks like a 1024-node Linux
cluster, with each node being a 64-way multiprocessor. We call one of these logical
groupings a processing set or pset.

The scope of this paper is to present the software architecture of the Blue Gene/L ma-
chine and its implementation. Since the target time frame for completion and delivery
of Blue Gene/L is 2005, all our software development and experiments have been con-
ducted on architecturally accurate simulators of the machine. We describe this simula-
tion environment and comment on our experience.

The rest of this paper is organized as follows. Section 2 presents a brief description
of the Blue Gene/L supercomputer. Section 3 discusses the system software. Section 4
introduces our simulation environment and we conclude in Section 5.

2 An Overview of the Blue Gene/L Supercomputer

Blue Gene/L is a new architecture for high performance parallel computers based on
low cost embedded PowerPC technology. A detailed description of Blue Gene/L is pro-
vided in [8]. In this section we present a short overview of the hardware as background
for our discussion on its system software and its simulation environment.

2.1 Overall Organization

The basic building block of Blue Gene/L is a custom system-on-a-chip that integrates
processors, memory and communications logic in the same piece of silicon. The BG/L
chip contains two standard 32-bit embedded PowerPC 440 cores, each with private L1
32KB instruction and 32KB data caches. Each core also has a 2KB L2 cache and they
share a 4MB L3 EDRAM cache. While the L1 caches are not coherent, the L2 caches
are coherent and act as a prefetch buffer for the L3 cache.

Each core drives a custom 128-bit double FPU that can perform four double preci-
sion floating-point operations per cycle. This custom FPU consists of two conventional
FPUs joined together, each having a 64-bit register file with 32 registers. One of the con-
ventional FPUs (the primary side) is compatible with the standard PowerPC floating-
point instruction set. We have extended the PPC instruction set to perform SIMD-style
floating point operations on the two FPUs. In most scenarios, only one of the 440 cores
is dedicated to run user applications while the second processor drives the networks. At
a target speed of 700 MHz the peak performance of a node is 2.8 GFlop/s. When both
cores and FPUs in a chip are used, the peak performance per node is 5.6 GFlop/s.

The standard PowerPC 440 cores are not designed to support multiprocessor ar-
chitectures: the L1 caches are not coherent and the architecture lacks atomic memory
operations. To overcome these limitations BG/L provides a variety of synchronization
devices in the chip: lockbox, shared SRAM, L3 scratchpad and the blind device. The



lockbox unit contains a limited number of memory locations for fast atomic test-and-
sets and barriers. 16 KB of SRAM in the chip can be used to exchange data between the
cores and regions of the EDRAM L3 cache can be reserved as an addressable scratch-
pad. The blind device permits explicit cache management.

The low power characteristics of Blue Gene/L permit a very dense packaging as
shown in Figure 1. Two nodes share a node card that also contains SDRAM-DDR
memory. Each node supports a maximum of 2 GB external memory but in the current
configuration each node directly addresses 256 MB at 5.5 GB/s bandwidth with a 75 cy-
cle latency. Sixteen compute cards can be plugged in a node board. A cabinet with two
midplanes contains 32 node boards for a total of 2048 CPUs and a peak performance of
2.9/5.7 TFlops. The complete system has 64 cabinets and 16 TB of memory.

In addition to the 64K compute nodes, BG/L contains a number of I/O nodes (1024
in the current design). Compute nodes and I/O nodes are physically identical although
I/O nodes are likely to contain more memory. The only difference is in their card pack-
aging which determines which networks are enabled.

Fig. 1. High-level organization of the Blue Gene/L supercomputer. All 65,536 compute nodes are
organized in a ���������	�
��� three-dimensional torus.

2.2 Blue Gene/L Communications Hardware

All inter-node communication is done exclusively through messages. The BG/L ASIC
supports five different networks: torus, tree, Ethernet, JTAG, and global interrupts. The



main communication network for point-to-point messages is a three-dimensional torus.
Each node contains six bi-directional links for direct connection with nearest neighbors.
The 64K nodes are organized into a partitionable 64x32x32 three-dimensional torus.
The network hardware in the ASICs guarantees reliable, unordered, deadlock-free de-
livery of variable length (up to 256 bytes) packets, using a minimal adaptive routing
algorithm. It also provides simple broadcast functionality by depositing packets along
a route. At 1.4 Gb/s per direction, the unidirectional bisection bandwidth of a 64K node
system is 360 GB/s. The I/O nodes are not part of the torus network.

The tree network supports fast configurable point-to-point messages of fixed length
(256 bytes) data. It also implements broadcasts and reductions with a hardware latency
of 1.5 microseconds for a 64K node system. An ALU in the network can combine
incoming packets using bitwise and integer operations, and forward a resulting packet
along the tree. Floating point reductions can be performed in two phases (one for the
exponent and another one for the mantissa) or in one phase by converting the floating-
point number to an extended 2048-bit representation. I/O and compute nodes share the
tree network. Tree packets are the main mechanism for communication between I/O
and compute nodes.

The torus and the tree networks are memory mapped devices. Processors send and
receive packets by explicitly writing to (and reading from) special memory addresses
that act as FIFOs. These reads and writes use the 128-bit SIMD registers.

A separate set of links provides global OR/AND operations (also with a 1.5 mi-
croseconds latency) for fast barrier synchronization.

The Blue Gene/L computational core can be subdivided into partitions, which are
electrically isolated and self-contained subsets of the machine. A partition is dedicated
to the execution of a single job. The tree and torus wires between midplanes (half a
cabinet) are routed through a custom chip called the Link Chip. This chip can be dy-
namically configured to skip faulty midplanes while maintaining a working torus and
to partition the torus network into multiple, independent torii. The smallest torus in
BG/L is a midplane (512 nodes). The tree and torus FIFOs are controlled by device
control registers (DCRs). It is possible to create smaller meshes by disabling the FIFOs
of the chips at the boundary of a partition. In the current packaging schema, the smallest
independent mesh contains 128 compute nodes and 2 I/O nodes.

Finally, each BG/L chip contains a 1Gbit/s Ethernet macro for external connectivity
and supports a serial JTAG network for booting, control and monitoring of the system.
Only I/O nodes are attached to the Gbit/s Ethernet network, giving 1024x1Gbit/s links
to external file servers.

Completing the Blue Gene/L machine, there is a number of service nodes: a tra-
ditional Linux cluster or SP system that resides outside the Blue Gene/L core. The
service nodes communicate with the computational core through the IDo chips. The
current packaging contains one IDo chip per node board and another one per midplane.
The IDo chips are 25MHz FPGAs that receive commands from the service nodes using
raw UDP packets over a trusted private 100 Mbit/s Ethernet control network. The IDo
chips support a variety of serial protocols for communication with the core. The �

���

network controls temperature sensors, fans and power supplies. The JTAG protocol is
used for reading and writing to any address of the 16 KB SRAMs in the BG/L chips,



MMCS lib

Scheduler

Ethernet

Ethernet
Control

File servers

tree

tree

torus

torus

torus torus

JTAG

JTAG

ciod

Linux

user apps user apps

ciod

Linux

user apps user apps

BLRTS BLRTS

BLRTS BLRTS

IDo

Pset 0

Pset 1023

I/O Node 0

I/O Node 1023

Compute Node 0 Compute Node 63

Compute Node 0 Compute Node 63

MMCS

IDo lib

Service
Node

MMCS lib

Front end
Console

DB

Fig. 2. Outline of the Blue Gene/L system software. The computational core is partitioned into
1024 logical processing sets (psets), each with one I/O node running Linux and 64 compute nodes
running the custom BLRTS kernel. External entities connect the computational core through two
Ethernet networks for I/O and low level management.

reading and writing to registers and sending interrupts to suspend and reset the cores.
These services are available through a direct link between the IDo chips and nodes, and
bypass the system software running on the target nodes.

3 Blue Gene/L System Software

To address the challenges of scalability and complexity posed by BG/L we have de-
veloped the system software architecture presented in Figure 2. This architecture is
described in detail in this section.

3.1 System Software for the I/O Nodes

The Linux kernel that executes in the I/O nodes (currently version 2.4.19) is based on
on a standard distribution for PowerPC 440GP processors. Although Blue Gene/L uses
standard PPC 440 cores, the overall chip and card design required changes in the boot-
ing sequence, interrupt management, memory layout, FPU support, and device drivers
of the standard Linux kernel. There is no BIOS in the Blue Gene/L nodes, thus the
configuration of a node after power-on and the initial program load (IPL) is initiated
by the service nodes through the control network. We modified the interrupt and ex-
ception handling code to support Blue Gene/L’s custom Interrupt Controller (BIC). The
implementation of the kernel MMU remaps the tree and torus FIFOs to user space. We
support the new EMAC4 Gigabit Ethernet controller We also updated the kernel to save
and restore the double FPU registers in each context switch.



The nodes in the Blue Gene/L machine are diskless, thus the initial root file system
is provided by a ramdisk linked against the Linux kernel. The ramdisk contains shells,
simple utilities, shared libraries, and network clients such as ftp and nfs.

Because of the non-coherent L1 caches, the current version of Linux runs on one of
the 440 cores, while the second CPU is captured at boot time in an infinite loop. We are
investigating two main strategies to effectively use the second CPU in the I/O nodes:
SMP mode and virtual mode. We have successfully compiled a SMP version of the
kernel, after implementing all the required interprocessor communications mechanisms,
because the BG/L’s BIC is not OpenPIC [6] compliant. In this mode, the TLB entries
for the L1 cache are disabled in kernel mode and processes have affinity to one CPU.
Forking a process in a different CPU requires additional parameters to the system call.
The performance and effectiveness of this solution is still an open issue. A second, more
promising mode of operation runs Linux in one of the CPUs, while the second CPU is
the core of a virtual network card. In this scenario, the tree and torus FIFOs are not
visible to the Linux kernel. Transfers between the two CPUs appear as virtual DMA
transfers.

We are also investigating support for large pages. The standard PPC 440 embedded
processors handle all TLB misses in software. Although the average number of instruc-
tions required to handle these misses has significantly decreased, it has been shown that
larger pages improve performance [23].

3.2 System Software for the Compute Nodes

The “Blue Gene/L Run Time Supervisor” (BLRTS) is a custom kernel that runs on the
compute nodes of a Blue Gene/L machine. BLRTS provides a simple, flat, fixed-size
256MB address space, with no paging, accomplishing a role similar to PUMA [19]. The
kernel and application program share the same address space, with the kernel residing
in protected memory at address 0 and the application program image loaded above,
followed by its heap and stack. The kernel protects itself by appropriately programming
the PowerPC MMU. Physical resources (torus, tree, mutexes, barriers, scratchpad) are
partitioned between application and kernel. In the current implementation, the entire
torus network is mapped into user space to obtain better communication efficiency,
while one of the two tree channels is made available to the kernel and user applications.

BLRTS presents a familiar POSIX interface: we have ported the GNU Glibc run-
time library and provided support for basic file I/O operations through system calls.
Multi-processing services (such as fork and exec) are meaningless in single process
kernel and have not been implemented. Program launch, termination, and file I/O is
accomplished via messages passed between the compute node and its I/O node over
the tree network, using a point-to-point packet addressing mode. This functionality is
provided by a daemon called CIOD (Console I/O Daemon) running in the I/O nodes.
CIOD provides job control and I/O management on behalf of all the compute nodes in
the processing set. Under normal operation, all messaging between CIOD and BLRTS
is synchronous: all file I/O operations are blocking on the application side. We used the
CIOD in two scenarios:

1. driven by a console shell (called CIOMAN), used mostly for simulation and testing
purposes. The user is provided with a restricted set of commands: run, kill, ps,



set and unset environment variables. The shell distributes the commands to all the
CIODs running in the simulation, which in turn take the appropriate actions for
their compute nodes.

2. driven by a job scheduler (such as LoadLeveler) through a special interface that
implements the same protocol as the one defined for CIOMAN and CIOD.

We are investigating a range of compute modes for our custom kernel. In heater
mode, one CPU executes both user and network code, while the other CPU remains
idle. This mode will be the mode of operation of the initial prototypes, but it is unlikely
to be used afterwards. In co-processor mode, the application runs in a single, non-
preemptable thread of execution on the main processor (cpu 0). The coprocessor (cpu
1) is used as a torus device off-load engine that runs as part of a user-level application
library, communicating with the main processor through a non-cached region of shared
memory. In symmetric mode, both CPUs run applications and users are responsible
for explicitly handling cache coherence. In virtual node mode we provide support for
two independent processes in a node. The system then looks like a machine with 128K
nodes.

3.3 System Management Software

The control infrastructure is a critical component of our design. It provides a separation
between execution mechanisms in the BG/L core and policy decisions in external nodes.
Local node operating systems (Linux for I/O nodes and BLRTS for compute nodes)
implement services and are responsible for local decisions that do not affect overall
operation of the machine. A “global operating system” makes all global and collective
decisions and interfaces with external policy modules (e.g., LoadLeveler) and performs
a variety of system management services, including: (i) machine booting, (ii) system
monitoring, and (iii) job launching.

In our implementation, the global OS runs on external service nodes. Each BG/L
midplane is controlled by one Midplane Management and Control System (MMCS)
process which provides two paths into the Blue Gene/L complex: a custom control li-
brary to access the restricted JTAG network and directly manipulate Blue Gene/L nodes;
and sockets over the Gbit/s Ethernet network to manage the nodes on a booted partition.

The custom control library can perform:

– low level hardware operations such as: turn on power supplies, monitor temperature
sensors and fans, and react accordingly (i.e. shut down a machine if temperature
exceeds some threshold),

– configure and initialize IDo, Link and BG/L chips,
– read and write configuration registers, SRAM and reset the cores of a BG/L chip. As

mentioned in Section 2, these operations can be performed with no code executing
in the nodes, which permits machine initialization and boot, nonintrusive access to
performance counters and post-mortem debugging.

This path into the core is used for control only; for security and reliability reasons,
it is not made visible to applications running in the BG/L nodes. On the other hand,



the architected path through the functional Gbit/s Ethernet is used for application I/O,
checkpoints, and job launch.

We chose to maintain the entire state of the global operating system using stan-
dard database technology. Databases naturally provide scalability, reliability, security,
portability, logging, and robustness. The database contains static state (i.e., the physical
connections between each HW component) and dynamic state (i.e., how the machine is
partitioned, how each partition is configured, and which parallel application is running
in each partition). Therefore, the database is not just a repository for read-only config-
uration information, but also an interface for all the visible state of a machine. External
entities (such as a scheduler) can manipulate this state by invoking stored procedures
and database triggers, which in turn invoke functions in the MMCS processes.

Machine Initialization and Booting. The boot process for a node consists of the fol-
lowing steps: first, a small boot loader is directly written into the (compute or I/O) node
memory by the service nodes using the JTAG control network. This boot loader loads a
much larger boot image into the memory of the node through a custom JTAG mailbox
protocol.

We use one boot image for all the compute nodes and another boot image for all
the I/O nodes. The boot image for the compute nodes contains the code for the com-
pute node kernel, and is approximately 64 kB in size. The boot image for the I/O nodes
contains the code for the Linux operating system (approximately 2 MB in size) and the
image of a ramdisk that contains the root file system for the I/O node. After an I/O node
boots, it can mount additional file systems from external file servers. Since the same
boot image is used for each node, additional node specific configuration information
(such as torus coordinates, tree addresses, MAC or IP addresses) must be loaded. We
call this information the personality of a node. In the I/O nodes, the personality is ex-
posed to user processes through an entry in the proc file system. BLRTS implements
a system call to request the node’s personality.

System Monitoring in Blue Gene/L is accomplished through a combination of I/O
node and service node functionality. Each I/O node is a full Linux machine and uses
Linux services to generate system logs.

A complementary monitoring service for Blue Gene/L is implemented by the ser-
vice node through the control network. Device information, such as fan speeds and
power supply voltages, can be obtained directly by the service node through the control
network. The compute and I/O nodes use a communication protocol to report events
that can be logged or acted upon by the service node. This approach establishes a com-
pletely separate monitoring service that is independent of any other infrastructure (tree
and torus networks, I/O nodes, Ethernet network) in the system. Therefore, it can be
used even in the case of many system-wide failures to retrieve important information.

Job Execution is also accomplished through a combination of I/O nodes and service
node functionality. When submitting a job for execution in Blue Gene/L , the user speci-
fies the desired shape and size of the partition to execute that job. The scheduler selects a



set of compute nodes to form the partition. The compute (and corresponding I/O) nodes
selected by the scheduler are configured into a partition by the service node using the
control network. We have developed techniques for efficient allocation of nodes in a
toroidal machine that are applicable to Blue Gene/L [16]. Once a partition is created,
a job can be launched through the I/O nodes in that partition using CIOD as explained
before.

3.4 Compiler and Run-time Support

Blue Gene/L presents a familiar programming model and a standard set of tools. We
have ported the GNU toolchain (binutils, gcc, glibc and gdb) to Blue Gene/L and set
it up as a cross-compilation environment. There are two cross-targets: Linux for I/O
nodes and BLRTS for compute nodes. IBM’s XL compiler suite is also being ported to
provide advanced optimization support for languages like Fortran90 and C++.

3.5 Communication Infrastructure

The Blue Gene/L communication software architecture is organized into three layers:
the packet layer is a thin software library that allows access to network hardware; the
message layer provides a low-latency, high bandwidth point-to-point message delivery
system; MPI is the user level communication library.

The packet layer simplifies access to the Blue Gene/L network hardware. The packet
layer abstracts FIFOs and devices control registers into torus and tree devices and
presents an API consisting of essentially three functions: initialization, packet send and
packet receive. The packet layer provides a mechanism to use the network hardware
but doesn’t impose any policies on its use. Hardware restrictions, such as the 256 byte
limit on packet size and the 16 byte alignment requirements on packet buffers, are not
abstracted by the packet layer and thus are reflected by the API. All packet layer send
and receive operations are non-blocking, leaving it up to the higher layers to implement
synchronous, blocking and/or interrupt driven communication models. In its current
implementation the packet layer is stateless.

The message layer is a simple active message system [12, 17, 21, 22], built on top of
the torus packet layer, which allows the transmission of arbitrary messages among torus
nodes. It is designed to enable the implementation of MPI point-to-point send/receive
operations. It has the following characteristics:

No packet retransmission protocol. The Blue Gene/L network hardware is com-
pletely reliable, and thus a packet retransmission system (such as a sliding window
protocol) is unnecessary. This allows for stateless virtual connections between pairs of
nodes, greatly enhancing scalability.

Packetizing and alignment. The packet layer requires data to be sent in 256 byte
chunks aligned at 16 byte boundaries. Thus the message layer deals with the packe-
tizing and re-alignment of message data. Re-alignment of packet data typically entails
memory-to-memory copies.



Packet ordering. Packets on the torus network can arrive out of order, which makes
message re-assembly at the receiver non-trivial. For packets belonging to the same mes-
sage, the message layer is able to handle their arrival in any order. To restore order for
packets belonging to different messages, the sender assigns ascending numbers to indi-
vidual messages sent out to the same peer.

Cache coherence and processor use policy. The expected performance of the mes-
sage layer is influenced by the way in which the two processors are used (as discussed
in Section 3.2). Co-processor mode is the only one that effectively overlaps computa-
tion and communication. This mode is expected to yield better bandwidth, but slightly
higher latency, than the others.

MPI: Blue Gene/L is designed primarily to run MPI [20] workloads. We are in the
process of porting MPICH2 [5], currently under development at Argonne National
Laboratories, to the Blue Gene/L hardware. MPICH2 has a modular architecture. The
Blue Gene/L port leaves the code structure of MPICH2 intact, but adds a number of
plug-in modules:

Point-to-point messages. The most important addition of the Blue Gene/L port is
an implementation of ADI3, the MPICH2 Abstract Device Interface [14]. A thin layer
of code transforms e.g. MPI Request objects and MPI Send function calls into calls
into sequences of message layer function calls and callbacks.

Process management. The MPICH2 process management primitives are docu-
mented in [7]. Process management is split into two parts: a process management in-
terface (PMI), called from within the MPI library, and a set of process managers (PM)
which are responsible for starting up/shutting down MPI jobs and implementing the
PMI functions.

MPICH2 includes a number of process managers (PM) suited for clusters of general
purpose workstations. The Blue Gene/L process manager makes full use of its hierar-
chical system management software, including the CIOD processes running on the I/O
nodes, to start up and shut down MPI jobs. The Blue Gene/L system management soft-
ware is explicitly designed to deal with the scalability problem inherent in starting,
synchronizing and killing 65,536 MPI processes.

Optimized collectives. The default implementation of MPI collective operations in
MPICH2 generates sequences of point-to-point messages. This implementation is obliv-
ious of the underlying physical topology of the torus and tree networks. In Blue Gene/L op-
timized collective operations can be implemented for communicators whose physical
layouts conform to certain properties.

– The torus hardware can be used to efficiently implement broadcasts on contiguous
1, 2 and 3 dimensional meshes, using a feature of the torus that allows depositing a
packet on every node it traverses. The collectives best suited for this (e.g. Bcast,
Allgather, Alltoall, Barrier) involve broadcast in some form.

– The tree hardware can be used for almost every collective that is executed on the
MPI COMM WORLD communicator, including reduction operations. Integer operand
reductions are directly supported by hardware. IEEE compliant floating point re-
ductions can also be implemented by the tree using separate reduction phases for
the mantissa and the exponent.



– Non MPI COMM WORLD collectives can also be implemented using the tree, but
care must be taken to ensure deadlock free operation. The tree is a locally class
routed network, with packets belonging to one of a small number of classes and tree
nodes making local decisions about routing. The tree network guarantees deadlock-
free simultaneous delivery of no more than two class routes. One of these routes is
used for control and file I/O purposes; the other is available for use by collectives.

4 Blue Gene/L Simulation Environment

The first hardware prototypes of the Blue Gene/L ASIC are targeted to become oper-
ational in mid-2003. To support the development of system software before hardware
is available, we have implemented an architecturally accurate, full system simulator
for the Blue Gene/L machine [11]. The node simulator, called bglsim , is built using
techniques described in [18, 15]. Each component of the BG/L ASIC is modeled sep-
arately with the desired degree of accuracy, trading accuracy for performance. In our
simulation environment, we model the functionality of processor instructions. That is,
each instruction correctly changes the visible architectural state, while it takes one cy-
cle to execute. We also model memory system behavior (cache, scratch-pad, and main
memory) and all the Blue Gene/L specific devices: tree, torus, JTAG, device control
registers, etc. A bglsim process boots the Linux kernel for the I/O nodes and BLRTS
for the compute nodes. Applications run on top of these kernels, under user control.

When running on 1.2 GHz Pentium III machine, bglsim simulates an entire BG/L
chip at approximately 2 million simulated instructions per second – a slow-down of
about 1000 compared to the real hardware. By comparison, a VHDL simulator with
hardware acceleration has a slow-down of ����� , while a software VHDL simulator has
a slow-down of ����� . As an example, booting Linux takes 30 seconds on bglsim ,
7 hours on the hardware accelerated VHDL simulator and more that 20 days on the
software VHDL simulator.

Large Blue Gene/L system are simulated using one bglsim process per node, as
shown in Figure 3. The bglsim processes run on different workstations and commu-
nicate through a custom message passing library (CommFabric), which simulates the
connectivity within the system and outside. Additionally, different components of the
system are simulated by separate processes that also link in CommFabric. Examples
are: the IDo chip simulator, a functional simulator of an IDo chip that translates packets
between the virtual JTAG network and Ethernet; the Tapdaemon and EthernetGateway
processes to provide the Linux kernels in the simulated I/O nodes with connectivity to
the outside network, allowing users to mount external file-systems and connect using
telnet, ftp, etc. We use this environment to develop our communication infrastructure,
the control infrastructure and we have successfully executed the MPI NAS Parallel
Benchmarks [9].



MMCS lib

Scheduler

Ethernet

CommFabric library

File servers

Ethernet
gateway

IDo
simulator

Ethernet
Control

user apps

BLRTS

bglsim

user apps

BLRTS

bglsim

ciod

Linux

bglsim

user apps

BLRTS

bglsim

user apps

BLRTS

bglsim

ciod

Linux

bglsim

MMCS

IDo lib

Service
Node

MMCS lib

Front end
Console

Pset

Pset

Tapdaemon

DB

Fig. 3. Overview of the Blue Gene/L simulation environment. Complete Blue Gene/L chips are
simulated by a custom architectural simulator (bglsim ). A communication library (CommFab-
ric) simulates the Blue Gene/L networks.

5 Conclusions

Blue Gene/L is the first of a new series of high performance machines being developed
at IBM Research. The hardware plans for the machine are complete and the first small
prototypes will be available in late 2003.

In this paper, we have presented a software system that can scale up to the demands
of the Blue Gene/L hardware. We have also described the simulation environment that
we are using to develop and validate this software system. Using the simulation envi-
ronment, we are able to demonstrate a complete and functional system software envi-
ronment before hardware becomes available. Nevertheless, evaluating scalability and
performance of the complete system still requires hardware availability. Many of the
implementation details will likely change as we gain experience with the real hardware.

References

1. ASCI Red Homepage. http://www.sandia.gov/ASCI/Red/.
2. ASCI White Homepage. http://www.llnl.gov/asci/platforms/white.
3. Cplant homepage. http://www.cs.sandia.gov/cplant/.
4. Earth Simulator Homepage. http://www.es.jamstec.go.jp/.
5. The MPICH and MPICH2 homepage. http://www-unix.mcs.anl.gov/mpi/

mpich.
6. Open Firmware Homepage. http://www.openfirmware.org.
7. Process Management in MPICH2. Personal communication from William Gropp.



8. N. R. Adiga et al. An overview of the BlueGene/L supercomputer. In SC2002 – High
Performance Networking and Computing, Baltimore, MD, November 2002.

9. G. Almasi, C. Archer, J. G. Castanos, M. G. X. Martorell, J. E. Moreira, W. Gropp, S. Rus,
and B. Toonen. MPI on BlueGene/L: Designing an Efficient General Purpose Messaging
Solution for a Large Cellular System. Submitted for publication to the 2003 Euro PVM/MPI
workshop.

10. G. Almasi et al. Cellular supercomputing with system-on-a-chip. In IEEE International
Solid-state Circuits Conference ISSCC, 2001.

11. L. Ceze, K. Strauss, G. Alm ási, P. J. Bohrer, J. R. Brunheroto, C. Caşcaval, J. G. Castanos,
D. Lieber, X. Martorell, J. E. Moreira, A. Sanomiya, and E. Schenfeld. Full circle: Simulating
Linux clusters on Linux clusters. In Proceedings of the Fourth LCI International Conference
on Linux Clusters: The HPC Revolution 2003, San Jose, CA, June 2003.

12. G. Chiola and G. Ciaccio. Gamma: a low cost network of workstations based on active mes-
sages. In Proc. Euromicro PDP’97, London, UK, January 1997, IEEE Computer Society.,
1997.

13. D. Greenberg, R. Brightwell, L. Fisk, A. Maccabe, and R. Riesen. A system software ar-
chitecture for high-end computing. In Proceedings of Supercomputing 97, San Jose, CA,
1997.

14. W. Gropp, E. Lusk, D. Ashton, R. Ross, R. Thakur, and B. Toonen. MPICH Abstract
Device Interface Version 3.4 Reference Manual: Draft of May 20, 2003. http://www-
unix.mcs.anl.gov/mpi/mpich/adi3/adi3man.pdf.

15. S. A. Herrod. Using Complete Machine Simulation to Understand Computer System Behav-
ior. PhD thesis, Stanford University, February 1988.

16. E. Krevat, J. Castanos, and J. Moreira. Job scheduling for the Blue Gene/L system. In Job
Scheduling Strategies for Parallel Processing, volume 2537 of Lecture Notes in Computer
Science, pages 38–54. Springer, 2002.

17. S. Pakin, M. Lauria, and A. Chien. High performance messaging on workstations: Illinois
Fast Messages (FM) for Myrinet. In Supercomputing ’95, San Diego, CA, December 1999,
1995.

18. M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta. Complete computer simulation: The
SimOS approach. IEEE Parallel and Distributed Technology,, 1995.

19. L. Shuler, R. Riesen, C. Jong, D. van Dresser, A. B. Maccabe, L. A. Fisk, and T. M. Stallcup.
The PUMA operating system for massively parallel computers. In In Proceedings of the Intel
Supercomputer Users’ Group. 1995 Annual North America Users’ Conference, June 1995.

20. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI - The Complete
Reference, second edition. The MIT Press, 2000.

21. T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-net: A user-level network interface
for parallel and distributed computing. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles, Copper Mountain, Colorado, December 1995.

22. T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages: a mech-
anism for integrated communication and computation. In Proceedings of the 19th Interna-
tional Symposium on Computer Architecture, May 1992.

23. S. J. Winwood, Y. Shuf, and H. Franke. Multiple page size support in the Linux kernel. In
Proceedings of Ottawa Linux Symposium, Ottawa, Canada, June 2002.


