
Finding Structure in Entropy: Improved Approximation
Algorithms for TSP and other Graph Problems

Nathan Klein

A dissertation

submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2023

Reading Committee:

Anna Karlin, Chair

Shayan Oveis Gharan, Chair

Cynthia Vinzant

©Copyright 2023
Nathan Klein

University of Washington

Abstract

Finding Structure in Entropy: Improved Approximation Algorithms for TSP and other Graph

Problems

Nathan Klein

Co-Chairs of the Supervisory Committee:

Anna Karlin and Shayan Oveis Gharan

Department of Computer Science

This dissertation demonstrates that there is an approximation algorithm for the metric trav-

eling salesperson problem (TSP) with approximation ratio below 3/2. This represents the first

improvement in nearly half a century, answering a long-standing open problem in combinatorial

optimization.

The algorithm we analyze, a variant of Christofides’ 3/2 approximation from the 1970s,

exploits a distribution over spanning trees that has as much entropy as possible subject to obeying

certain marginal constraints. A key component of this work is to show that despite the inherent

unpredictability of such a distribution, the trees it produces nevertheless exhibit surprisingly

robust structural properties. To show these properties, we use that the generating polynomials of

these distributions have a zero-free region in the complex plane, allowing us to employ a suite

of tools coming from work on the geometry of polynomials. As a byproduct of our analysis, we

prove several new statements that sharply characterize the behavior of such distributions.

We also discuss several other results in network design, including a lower bound for this

algorithm, an optimal rounding algorithm for a special case of TSP, and improved algorithms for

the k-edge-connected multi-subgraph problem and the laminar thin tree problem.

Acknowledgements

Thanks to my amazing advisors Anna Karlin and Shayan Oveis Gharan, I am one of the lucky
few for which graduate school was mostly just fun. You showed me beautiful mathematics, taught
me how to give talks and do research, and pushed me to work hard, but all with an exceptionally
light touch which never made being your student feel like a job. I don’t know how you did it – I
often feel like you tricked me into getting a PhD. I am immensely grateful to both of you.

I have been fortunate to have many teachers and mentors over my life who have gone above
and beyond to guide and nurture me: Lynn Legler, Alan Tung, Luca Matone, Sam Reiner, Sibylle
Johner, Amir Eldan, Gregory Fulkerson, Nicholas Kraft, Kami Vaniea, Jonathan Katz, Justin Kolb,
Kira Goldner, Tom Wexler, and Alexa Sharp. I also thank Robert Bosch, Lola Thompson, Elizabeth
Wilmer, Chris Marx, Cynthia Vinzant, Thomas Rothvoss, and James Lee for being exceptional
teachers: you all taught me how to think and how to do mathematics.

And thank you to my collaborators, from which I have learned that the greatest part of research
is time spent working with others: Fateme Abbasi, Dorna Abdolazimi, Jannis Blauth, Jarek Byrka,
Vincent Cohen-Addad, Cody Freitag, Ellis Hershkowitz, Billy Jin, Kevin Kim, Janardhan Kulkarni,
Jonathan Leake, Kasper Lindberg, Martin Nägele, Neil Olver, Sherry Sarkar, Jakub Tarnawski,
David Williamson, Rico Zenklusen, and Xinzhi Zhang. I am also very grateful to the UW theory
group for creating a fun and welcoming community, and for my friends in Seattle and elsewhere
for supporting me and giving me a life beyond math.

I thank NSF for generously supporting me through the Graduate Research Fellowship Program,
and the University of Washington for its support through teaching. I am also grateful to the
Hausdorff Institute, the Institute of Advanced Study, and Microsoft Research for their support.

Finally, thank you to my parents, Bill and Jane, my brother Alex, and my partner Flora. I could
not have done this without you, or really much of anything at all.

Contents

1 Introduction 8
1.1 Approximation Algorithms . 9
1.2 High Level Overview of Techniques . 10
1.3 Other Results on TSP . 14

1.3.1 Lower Bounds for the Max Entropy Algorithm 14
1.3.2 Optimal Results for a Special Case of TSP . 15

1.4 Summary of Results on TSP and Corollaries . 16
1.5 Other Results on Network Design Problems . 17

1.5.1 Designing k-Edge-Connected Graphs . 17
1.5.2 The Thin Tree Conjecture and the Laminar Crossing Spanning Tree Problem 18

2 Essential Background 19
2.1 Polyhedra of Interest . 19

2.1.1 Notation . 19
2.1.2 The Subtour LP . 19
2.1.3 The Spanning Tree Polytope . 20

2.2 The O-Join Polyhedron and the Integrality Gap of PSub 21
2.3 The Maximum Entropy Algorithm for TSP . 22

2.3.1 λ-uniform Spanning Trees . 22
2.3.2 The Algorithm . 23

2.4 Generating Polynomials and λ-uniform Spanning Trees 25
2.5 Real Stable Polynomials . 26
2.6 Strongly Rayleigh Distributions . 28
2.7 Additional Properties of SR Distributions . 32
2.8 Staying in the λ-Uniform Distribution . 33
2.9 The Structure of (Near) Minimum Cuts . 36

2.9.1 Notation . 37
2.9.2 The Cactus Representation . 38
2.9.3 Near Minimum Cuts . 38
2.9.4 The Polygon Representation . 40

3 Building Up: Degree Cuts and The Half Integral Case 42
3.1 The Degree Cut Case . 42

3.1.1 The Construction of s in the Half Integral Degree Cut Case 43
3.1.2 Proof of Lemma 3.1 . 45
3.1.3 The Construction of s in the General Degree Cut Case 46

3.2 The Half Integral Case . 47
3.2.1 Critical Sets . 48

3.3 Overview of Analysis . 52
3.4 Probabilistic lemmas . 54
3.5 Proof of Main Theorem . 56
3.6 Summary of special cases . 60

4

4 Overview 61
4.1 Three New Techniques . 61

4.1.1 Polygon Structure for Near Minimum Cuts Crossed on one Side. 61
4.1.2 Generalized Gurvits’ Lemma . 62
4.1.3 Conditioning while Preserving Marginals . 63

4.2 Overview of Proof . 63
4.2.1 Ideas underlying proof of Theorem 4.6 . 65
4.2.2 Proof ideas for Theorem 4.7 . 68

5 Polygons and the Hierarchy of Near Minimum Cuts 76
5.1 Notation . 76
5.2 Cuts Crossed on Both Sides . 76
5.3 Proof of the Main Technical Theorem, Theorem 12.1 79
5.4 Structure of Polygons of Cuts Crossed on One Side 80
5.5 Happy Polygons . 85
5.6 Hierarchy of Cuts and Proof of Theorem 5.6 . 89
5.7 Hierarchy Notation . 92

6 Probabilistic statements 94
6.1 Properties of Bernoulli-Sum Random Variables . 94
6.2 Random Spanning Trees . 97
6.3 Gurvits’ Machinery and Generalizations . 99
6.4 Max Flow . 102
6.5 Good Edges . 106
6.6 2-1-1 and 2-2-2 Good Edges . 111

7 Matching 115

8 Reduction and payment 119
8.1 Increase for Good Top Edges . 122
8.2 Increase for Bottom Edges . 128

8.2.1 Case 1: Ŝ is a degree cut . 129
8.2.2 Case 2: S and its parent Ŝ are both polygon cuts 131

9 Introduction to the Integrality Gap Result and a Proof Overview 134
9.1 New techniques and contributions . 134
9.2 Proof Overview . 136
9.3 Overview of proof of Theorem 9.7 – no inside atoms 139
9.4 Satisfying the above desiderata . 141

9.4.1 Defining bad events for each polygon point 143
9.4.2 Defining the slack increase sets for bad events 143

9.5 Extending to polygons with inside atoms . 145

5

10 Polygon Representation: Redux 148
10.1 Our polygon notation and the root . 149
10.2 Properties of inside atoms . 151
10.3 New properties of polygon representations . 151

10.3.1 Almost diagonal cuts and the chain lemma . 152
10.4 Another structural property of inside atoms . 154

11 Using the Polygon Representation for Cuts Crossed on Both Sides 156
11.1 Notation and a preliminary lemma . 156
11.2 Main theorem . 157
11.3 All cuts are satisfied . 159
11.4 Every cut is mapped to a constant number of bad events 160

12 Putting everything together for the integrality gap 162
12.1 Constructing the slack vector s . 163
12.2 Proof of Theorem 1.2 using Theorem 12.1 . 164

13 Derandomizing the Max Entropy Algorithm 167
13.1 High level proof overview . 167
13.2 Computing probabilities . 169

13.2.1 Notation . 169
13.2.2 Matrix tree theorem . 169

13.3 Computing parities in a simple case . 170
13.4 A deterministic algorithm in the degree cut case . 170
13.5 A deterministic algorithm in the general case . 172

14 Computation for c(s∗) 174
14.1 Polygon representation preprocessing . 175

14.1.1 Computation for cuts crossed on both sides 175
14.2 Preprocessing for cuts crossed on one side . 177
14.3 Computation of E [c(s∗) | Set] . 179

15 Computation for c(s) 179
15.1 Hierarchy definition and computation . 179
15.2 Edge bundles, A, B, C degree partition, and edge classification 181
15.3 Max Flow . 184
15.4 Matching . 185
15.5 Reductions . 186
15.6 Increases . 187

15.6.1 Increases for bottom edges . 187
15.6.2 Increases for top edges . 189

15.7 Computation of E [c(s) | Set] . 189

16 A Lower Bound for Max Entropy: k-Donuts 191
16.1 The Max Entropy Algorithm on the k-Donut . 191
16.2 Analyzing the Performance of Max Entropy on the k-Donut 193

6

17 4/3 for Cycle Cut Instances 196
17.1 Technical Overview . 198
17.2 Preliminaries . 199

17.2.1 The structure of minimum cuts . 199
17.3 Cycle cut instances and the hierarchy of critical tight sets 200
17.4 Structure of cycle cuts . 202
17.5 Proof of Theorem 17.1 . 205
17.6 The Markov Chains . 207
17.7 Fixed Point and Algorithm . 213
17.8 Characterizing the Feasible Region . 214
17.9 Conclusion and Open Questions . 217

18 An Improved Approximation Algorithm for k-ECSM 218
18.1 Proof Overview . 219
18.2 Preliminaries . 221

18.2.1 Background . 221

18.3 Warm-up: a Simple Algorithm with a 1 + O
(√ ln k

k

)
-Approximation Ratio. 223

18.4 Improved Algorithm and Proof of Main Theorem . 225
18.5 Conclusion . 231

19 Thin Trees for Laminar Families 232
19.1 Introduction . 232
19.2 Preliminaries and Results . 235
19.3 Notation . 235
19.4 Polyhedral Background . 235
19.5 Our Results . 236
19.6 Proof Overview . 237
19.7 Reduction to L-aligned Points . 238
19.8 Laminar thin trees for L-aligned points via iterative relaxation 241
19.9 Conclusion . 247

A Preliminary Background 257
A.1 Graphs, Walks, and Circuits . 257
A.2 Metric Completion and Equivalent Formulations of Metric TSP 258
A.3 The Double Tree Algorithm . 259
A.4 The Christofides-Serdyukov Algorithm . 259
A.5 Integrality Gap . 260

B Proofs from Section 6 263

C Cuts crossed on one side 270
C.1 Cuts crossed on one side . 270
C.2 Notation and results that we re-use . 270
C.3 Main theorem for cuts crossed on one side . 272

D Proof of Theorem 12.1 274

7

1 Introduction

The metric traveling salesperson problem (TSP) is the following: given a list of cities and their
pairwise symmetric distances, find the shortest route that visits each city at least once and returns
to the starting point. Equivalently, given a weighted graph, we wish to find the shortest closed
walk that visits every vertex. In the following, we will call such closed walks TSP tours.

Figure 1: On the left, a graph in which all edge weights are equal to 1. On the right is a minimum
cost TSP tour. It has cost 11.

Metric TSP has been of practical use for hundreds of years. See, for example, a note on
designing practical TSP tours from 1832 discussed in [App+07]. And it is still of immense use
today, as TSP models a large class of planning and decision problems. Many companies use TSP
to route and schedule their vehicles and airplanes; researchers at the NIH use TSP solvers to
construct maps related to genome sequencing; semi-conductor companies use it to design chips
and optimize drilling routes on circuitboards. Typically, these organizations solve TSP to obtain a
solution to the standard problem using approximation algorithms and then modify it to satisfy
additional application-specific constraints.

For theorists, though, TSP’s real utility comes from its ability to inspire exciting new mathe-
matics. It has played the role of mathematical muse: it sparked the use of linear programming
relaxations to model and solve non-convex optimization problems [DFJ54], was one of the first
problems proved NP-Complete [Kar72], and was one of the first problems for which an approxima-
tion algorithm was developed [Chr76]. It also inspired local search techniques such as simulated
annealing [KGV83] and the field of average case analysis [BHH59]. To give you a sense of the
impact of these ideas, these five works collectively have roughly 80,000 citations and each created
research areas that are active to this day.

It is difficult to say why exactly TSP encourages so much new mathematics. One possibility
is that it is simply more studied than many other problems, perhaps because of its ubiquity in
real life: popping into the theorist’s head when they run errands or go on a road trip. However, I
think there is also something special about the mathematical structure of TSP: there is a global
constraint on the set of edges (that the output is connected) as well as a local constraint (that every
vertex has even degree), and – unlike many other problems – these local constraints cannot be
fixed locally.1 This throws a wrench in algorithm design and makes many methods unusable,
prompting frustration and wonder in just the right ratio to hook the unsuspecting researcher. As
Christos Papadimitriou once said, “TSP isn’t a problem, it’s an addiction."

1If I have a connected set of edges, and a vertex is odd, my impulse might be to simply add an arbitrary edge to
that vertex to make it even. However, that edge might make another vertex odd. So, this local constraint also deals
with the global structure of the graph.

8

1.1 Approximation Algorithms

Optimization problems like TSP abound in the world around us. Unfortunately, many of those
routinely seen in applications are NP-Hard. In other words, unless P=NP, finding exact answers
to these questions takes exponential time. Therefore, we must often accept finding approximate
answers. Enter approximation algorithms:

For a minimization problem, we say an algorithm A is a (randomized) α approximation
algorithm if on every instance I , the (expected) cost of A(I) is at most α times the cost of
the optimal solution for I .

In addition to providing worst-case guarantees and good approximate solutions quickly,
developing approximation algorithms helps us understand the core difficulties of solving NP-
Hard problems. Approximation algorithms are the main focus of this thesis.

The golden standard in approximation algorithms is to find an algorithm with α very close to
1. In certain special cases, it is even possible to find an approximation algorithm with α = 1 + ε
for any ε > 0 and running time polynomial in n and 1/ε. For metric TSP, however, we know
that any polynomial time algorithm must obey α ≥ 123

122 unless P=NP [KLS15]. However, we are
currently far from finding an algorithm with a guarantee so close to 1.

In the 1970s, Christofides and Serdyukov independently found the same beautiful 3/2 approx-
imation algorithm for metric TSP [Chr76; Ser78]. The algorithm, often taught in a first algorithms
course, is to find a minimum cost spanning tree T of the input graph and then add the minimum
cost matching on the odd degree vertices of T. The resulting graph is Eulerian and therefore has
an Eulerian tour, which is a TSP tour as it visits every vertex and returns to the starting point.2

Due to the algorithm’s simplicity, some researchers believed it would quickly be improved
upon. However that was not the case, and improving upon it remained open despite significant
work, e.g. [Wol80; SW90; BP91; Goe95a; CV00; GLS05; BEM10; BC11a; SWZ12; HNR17; HN19;
KKO20]. As stated by Bill Cook [Coo12]:

Christofides’ algorithm first appeared in a Carnegie Mellon University research
report in 1976. At the time, the result seemed easy enough. Thirty years later, with no
improvements in sight, it no longer seems so simple. Indeed, it is a pressing problem
to find a polynomial-time approximation algorithm with α less than 1.5, capable of
handling all metric instances.

Case in point, it is at the top of a list of ten open problems in approximation algorithms in
Shmoys and Williamson’s textbook on the subject from 2011 [WS11].

The main result of this dissertation is to finally address this problem, albeit with an astronomi-
cally small improvement. In particular, I discuss joint work with my advisors Anna Karlin and
Shayan Oveis Gharan in which we show the following theorem:

Theorem 1.1. For some absolute constant ε > 10−36, there is a deterministic 3
2 − ε approximation

algorithm for metric TSP.

As discussed in Section 1.4 and summarized in the below Table 1, this also improves the best
known approximation algorithm for a range of other problems such as Path TSP and 2-ECSM.

2If desired, this tour can be shortcut to a Hamiltonian cycle by assuming that the costs form a metric (as is the case
in metric TSP).

9

Problem Input Approximability

Path TSP An arbitrary symmetric metric, but find
a path instead of a cycle

1.5− 10−36 approximation
(this work with [TVZ20])

Prize-Collecting TSP An arbitrary symmetric metric. Vertices
are given a value π(v), and the tour can
skip vertices at a cost of π(v) per vertex
skipped

1.599 [BN23; BKN23]

Many Visits TSP An arbitrary symmetric metric, and ver-
tices have requirements r(v) for the
number of visits

1.5− 10−36 approximation
(this work with [PS23])

Capacitated Vehicle
Routing

An arbitrary symmetric metric, and ver-
tices have demands between 0 and 1.
Design a set of tours visiting all nodes
such that each contains a fixed depot
vertex and no tour has demand more
than 1

(1.5− 10−36 + 2)(1− 1
3000)

(this work with [Fri+22;
BV22])

2-Edge-Connected
Multi-Subgraph

Given an arbitrary symmetric metric,
buy the cheapest set of edges that 2-
edge-connects the graph

1.5− 10−36 approximation
(this work with [GB93b])

Table 1: Approximability of some TSP variants and related problems. While the approximability
of Prize-Collecting TSP is not currently related to the TSP constant, over the years many works
have used approximation algorithms for TSP as a subroutine, e.g. [Arc+11; Goe09].

1.2 High Level Overview of Techniques

The reason Christofides’ algorithm is no better than a 3/2 approximation (see Appendix A for
a proof that it is no worse than a 3/2 approximation) is because it can be forced to choose a
spanning tree with an expensive matching, as shown in Fig. 2.

In other words, it is easy to design a graph where the minimum spanning tree has an expensive
matching. However, intuitively, one might imagine that it is not so easy to design a graph in which
“many" spanning trees simultaneously have expensive matchings. This observation is a small
piece of intuition for the merits of the algorithm we study, first proposed by Asadpour, Goemans,
Madry, Oveis Gharan, and Saberi [Asa+10] in 2010 for asymmetric TSP and then used around the
same time for symmetric TSP by Oveis Gharan, Saberi, and Singh [OSS11]. The algorithm is very
similar to Christofides’ algorithm. It only differs in the first step: instead of picking a minimum
spanning tree, it picks a random spanning tree from a well-chosen distribution of large support.

To find this distribution, we first solve the natural linear programming relaxation for TSP. This
LP, first formulated by Dantzig, Fulkerson and Johnson [DFJ54], is often known as the subtour
elimination LP or the Held-Karp relaxation (see also [HK70]). As input, we assume we get our TSP
instance in the form of a weighted graph G = (V, E) with metric completion c (see Appendix A for
various equivalent formulations of TSP and the definition of metric completion). Where for F ⊆ E
we let x(F) = ∑e∈F xe, the subtour LP finds the cheapest point x ∈ PSub, i.e. the one minimizing

10

Figure 2: A tight example for Christofides’ algorithm. Let ce = 1 for all edges. In red is a minimum
spanning tree, and marked in red are the odd vertices. In blue is a minimum cost matching on the
odd vertices. We can force the algorithm to pick the red edges by making their costs just slightly
cheaper than the remaining edges. The cost of the tour produced by the algorithm here is 3

2 n− 2,
which is a 3/2 approximation as n→ ∞.

∑
u,v

c{u,v}x{u,v}. Where δ(S) := {{u, v} ∈ E : u ∈ S, v /∈ S}, PSub is defined as follows:

Subtour Polytope

PSub :=


x(δ(S)) ≥ 2 ∀ S (V
x(δ(v)) = 2 ∀v ∈ V
x{u,v} ≥ 0 ∀ u, v ∈ V

(1)

Notice that if we replace the constraint x{u,v} ≥ 0 with x{u,v} ∈ {0, 1}, this polytope describes
the set of Hamiltonian tours. Thus it is a natural (and valid) relaxation for the problem, meaning
that the cost of any optimal solution to this LP is at lower bound on the cost of the optimal TSP
tour. By solving3 this LP we obtain a fractional solution x which we will use as a starting point
for constructing our distribution.

It is well known that any point x ∈ PSub can be written as a convex combination of 1-trees
(spanning trees plus an edge) [Wol80; SW90]. Instead of finding an arbitrary convex combination,
this algorithm finds the distribution µ over 1-trees such that PT∼µ [e ∈ T] = xe for all edges E,
and has as much entropy as possible among all such distributions. This is why the algorithm is
often called the “max entropy" algorithm for TSP. As hinted at above, one way to account for
the improvement given by the max entropy algorithm is to argue that it is able to avoid such
adversarial examples via its inherent randomness.

In order to prove this formally, we will need to have a deep understanding of the properties of
the max entropy algorithm. It turns out that max entropy distributions over spanning trees are
equivalent to so-called λ-uniform spanning tree distributions, in which we have a vector λ ∈ RE

≥0
and the probability of a tree T is proportional to ∏e∈T λe. This allows us to state the algorithm as
follows:

3Note this LP has exponentially many constraints, one for each set S (V. However there is an efficient separation
oracle for the problem in the form of any global minimum cut algorithm, and it can be solved in strongly polynomial
time (see [Sch03], pp. 984-986).

11

Max Entropy Algorithm

1. Solve the subtour LP to obtain x ∈ PSub.(2)

2. Choose an arbitrary root r. Then there is a λ-uniform distribution µλ over the graph
G′ = (V r {r}, E r δ(r)) such that PT∼µλ

[e ∈ T] = xe (see Section 2 for more details,
and note that the equality is met with possibly exponentially small error).

3. Sample T ∼ µλ and find the minimum cost matching M on the odd vertices of T.
Output3 T]M.

We give a sample point x ∈ PSub and its resulting distribution µλ in Fig. 3 and Fig. 4.

1
2

1
2

1
2

1
2

1
2

1
2

1 1

1

1
2

1
2

1
2 1

2

1

1

1

k1
k

k2

k2

Figure 3: On the left is a point in PSub. In the middle, the root (chosen arbitrarily) is marked in red.
The remaining nodes and non-dashed edges form a point z ∈ PST. On the right is a λ-uniform
distribution with marginals approximately equal to z, where k is chosen to be a positive number
tending to ∞. (The ε error in Theorem 2.6 goes to 0 as k→ ∞.)

1
4




+ 1

4




+ 1

4




+ 1

4




Figure 4: The trees and their probabilities in the above λ-uniform distribution. We show only
the trees T for which limk→∞ P [T] > 0 and give their probabilities in the limit. Note that after
sampling, two edges from the red vertex above are added at random (sampled proportional to xe).

λ-uniform distributions have been studied for some time, with their roots going back to the
work of Kirchhoff and Borchardt in the mid-1800s. We will study λ-uniform distributions in
their own right, building on this long history. However, we will crucially use a more modern
view of λ-uniform distributions as part of a broader class of strongly Rayleigh (SR) distributions,
introduced by Borcea, Brändén, and Liggett [BBL09]. These distributions are characterized by the

12

Re

Im

p(x) 6= 0

Figure 5: A distribution is strongly Rayleigh if its generating polynomial is real stable. One way
to characterize a multivariate real stable polynomial is that its hyperbolicity cone contains the
positive orthant, or equivalently that every restriction of the polynomial to a line pointing to the
positive orthant is real rooted. y = 1/x is real stable, as shown by the above plot: in blue are the
real roots of y = 1/x, and every line with positive slope hits two real zeros and thus is real rooted.
An equivalent definition of real stability is that the polynomial has no roots in the upper half of
the complex plane, i.e. if all variables have positive imaginary value then the polynomial cannot
vanish.

location of the roots of their generating polynomials (see Fig. 5 for a brief explanation). This allows
us to study their properties using tools from the geometry of polynomials, linking operations
from the two worlds: conditioning, for example, is now kin to differentiation, truncation with
homogenization, projection with specialization, and so on.

By exploiting this link, probabilists have proved powerful properties of strongly Rayleigh
distributions. In our proof we exploit a range of these properties and find some new ones as
well. One elementary fact that is a consequence of this link is that every vertex has even degree
in the sampled tree T from the algorithm above with probability at least 1

2 (1− e−2) ≈ 0.43. This
alone should give the reader some hope that max entropy is better than Christofides: in the bad
example above, the matching is expensive because every vertex is odd. This fact demonstrates
that such a thing does not occur in a typical max entropy tree.

However, properties of strongly Rayleigh distributions alone are not enough, and neither
is having many even vertices.4 After using properties of λ-uniform and SR distributions to
understand our spanning tree distribution, we turn to the structure of the near-minimum cuts of
graphs. The cost of the matching is closely related to these structures, as we will explain in future
sections. In particular, we prove new properties of the polygon representation [Ben95; BG08] and
show that cut structures of a particular type lead to polygons with additional properties.

These two pieces are the mathematical core of our proof. We then use these to carefully
construct an analysis which shows that the matching is slightly cheaper than the one guaranteed

4For example, even if there are only two odd vertices for a given tree, if they have distance OPT/2 we get a 3/2
approximation. Indeed, even the property that every vertex is even independently with probability 1− o(1) would not
even be enough to beat 3/2 on the cycle graph. One would need to combine this property with other observations.

13

1

2

34

5

6

7

8

9

10 11

12

13

14

15

16

1

2
3

4

5

6

7
8

9

10
11

12

13

14

15

16

Figure 6: Consider the graph on the left, with minimum cut 7 (or, consider setting xe = 2
7 for

all edges and a min cut of 2 as in the support graph of a solution to PSub). On the right is the
polygon representation of the connected component of all proper cuts with at most 8 edges (or
x(δ(S)) ≤ 2 + 1/7). We prove many new properties of this representation for use in our analysis.

by Christofides in expectation.
Finally, we show that the algorithm can be derandomized using the method of conditional

expectation and the matrix tree theorem, which allows us to evaluate the generating polynomial
of the max entropy distribution at any point in the complex plane. This derandomization shows
that while randomness is a useful tool for analysis, it is not fundamental to the improvement.

1.3 Other Results on TSP

1.3.1 Lower Bounds for the Max Entropy Algorithm

We now know that max entropy out-performs Christofides’ algorithm by at least a small constant.
While perhaps the most pressing problem is to figure out a significantly improved analysis for
max entropy (3

2 − 10−36 is certainly not the true approximation ratio of the algorithm), it is also
worthwhile to determine lower bounds for the algorithm to better understand how far we might
expect to push the analysis.

It has long been conjectured that the natural linear programming relaxation for TSP has an
integrality gap of 4/3, as we will discuss later – this is informally known as simply “the 4/3rds
conjecture." Therefore a natural target for max entropy is 4/3. I will discuss joint work with Billy
Jin and David Williamson in which we show for the first time that there are examples where the
Eulerian tour returned by max entropy has cost strictly greater than 4/3 times the cost of the
LP. In particular, we show that a variant of the “k-donut" instance introduced by Boyd and Sebő
[BS21] gives a lower bound of 11/8 for the Eulerian tour returned by max entropy. Interestingly,
our lower bound example is an instance of graphic TSP, and empirically, max entropy performs
extremely well on graphic instances (see [GW17]). This highlights the often large gap between

14

Figure 7: An example of a half integral cycle cut instance, in which every edge represents LP
value 1/2. This is also the canonical integrality gap example for the Subtour LP. The cuts present
in the hierarchy are shown in blue.

worst case and average case performance.
This work shows that despite its promise, the max entropy algorithm is unlikely to resolve the

4/3 conjecture. However there is still a slim possibility that it does: we do not bound the cost of
the tour produced after shortcutting. There may be a way to exploit this in the proof, although
at the moment all known algorithms for TSP of which we are aware only look at the cost of the
Eulerian tour.

1.3.2 Optimal Results for a Special Case of TSP

Instead of trying to bring down the approximation ratio from 3/2− ε to something slightly
smaller, one in pursuit of proving the 4/3rds conjecture can ask: what is the largest class of
instances for which we can find a 4/3 approximation? In joint work with Billy Jin and David
Williamson, we found a 4/3 approximation for a class of instances we call “half integral cycle
cuts," and proved that the integrality gap of this class is at most 4/3. This class includes the two
known examples achieving the integrality gap of the LP relaxation for TSP, thus our result is tight.

Our results work by constructing a hierarchy of cuts similar to what is done in the analysis of
max entropy, taking the form of a laminar family L ⊆ 2V . We then perform a top-down induction
on L: for each set in L, we define a set of “patterns” of edges incident on it such that the set
has even degree. For each pattern, we give a distribution of edges connecting the chain of child
nodes in the cycle cut, which induces a distribution of patterns on each child. Crucially, we then
show that there is a feasible region R of distributions over patterns, such that if the distribution of
patterns on the parent node belongs to R, then the induced distribution on patterns on each child
node also belong to R. The algorithmic idea is illustrated in Fig. 8.

To handle the many possible configurations of the red edges, we designate four distinct states
that they may be in and analyze the behavior of a Markov chain showing transitions between

15

S

G r S

Figure 8: S is an example of a cut in L with three children. In gray is the rest of the graph with S
contracted. In our recursive algorithm, we are given a distribution of Eulerian tours over G/S, so
in particular we know the distribution on the red edges. We then extend it to G with the children
of S in L contracted by picking a distribution over the black edges.

them. Our proof then boils down to finding transitions which have a good stationary distribution.
Interestingly, the lower bound example from above is in this class of instances. Thus, the

algorithm in this work outperforms max entropy (without shortcutting) on this example, achieving
4/3 instead of 11/8. This suggests two interesting directions: (i) further develop this algorithm
to work on larger classes of instances, and (ii) use ideas from this algorithm to modify the max
entropy algorithm, so that it performs better on this class of examples.

1.4 Summary of Results on TSP and Corollaries

The majority of this thesis is devoted to proving the following theorem:

Theorem 1.2. Let x ∈ PSub. Sample a tree T from the max entropy distribution µλ as in Algorithm 1, and
add a minimum cost matching M on the odd vertices of T. Then,

E [c(M)] ≤
(

1
2
− ε

)
c(x),

where ε > 10−36. Therefore, the max entropy algorithm produces a solution of expected cost at most
(3

2 − ε)c(x).

Implication for Path TSP. In recent exciting work, Traub, Vygen, Zenklusen [TVZ20] showed
that an α-approximation algorithm for metric TSP can be used as a black box to get a α(1 + ε)
approximation algorithm for Path TSP. With the above theorem, this implies that there is a 3/2− ε
approximation algorithm for Path TSP (for ε > 10−36). On the other hand, it is a folklore result
that the integrality gap of the natural LP relaxation of Path TSP is at least 3/2. Therefore, an
interesting consequence of the above theorem is that although the best possible approximation
factors of the two problems are the same (up to polynomial reductions), the natural LP relaxation
of metric TSP has a strictly smaller integrality gap.

16

Implication for 2-ECSM. In the 2-edge-connected multi-subgraph problem, or 2-ECSM for short,
we are given a weighted graph G and we want to find a minimum cost 2-edge-connected spanning
subgraph, where an edge can be chosen multiple times. The classical Christofides-Serdyukov
algorithm gives a 3/2-approximation for 2-ECSM and despite significant attempts [CR98; BFS16;
SV14; Boy+20] improved algorithms were designed only for special cases of the problem. Since
in [GB93a] it is shown that LP (2) is a valid relaxation for 2-ECSM, we also obtain a randomized
LP-relative 3

2 − ε approximation for the 2-edge-connected multi-subgraph problem.
We later show that the algorithm can be derandomized, giving the following theorem:

Theorem 1.3. The max entropy algorithm can be derandomized using the method of conditional expectation.
Therefore, there is a deterministic 3

2 − 10−36 approximation algorithm for TSP, 2-ECSM, and Path TSP.

As mentioned, we also show a lower bound on the performance of the algorithm.

Theorem 1.4. There is an infinite family of instances of graphic TSP for which the performance of the max
entropy algorithm is 1.375 as the size of the instances go to infinity.

A major open question is to determine the true worst-case performance of the max entropy
algorithm. We currently only know that it is in the range [1.375, 3

2 − 10−36].5

1.5 Other Results on Network Design Problems

I will also discuss new progress on two classic problems in network design: the k-edge-connected
spanning multi-subgraph problem and the thin tree conjecture.

1.5.1 Designing k-Edge-Connected Graphs

In an instance of the minimum k-edge connected spanning subgraph problem, or k-ECSS, we are
given an (undirected) graph G = (V, E) with n := |V| vertices and a cost function c : E → R≥0,
and we want to choose a minimum cost set of edges F ⊆ E such that the subgraph (V, F) is
k-edge connected. The k-edge-connected multi-subgraph problem, k-ECSM, is a close variant of
k-ECSS in which we want to choose a k-edge-connected multi-subgraph of G of minimum cost,
i.e., we can choose an edge e ∈ E multiple times. Note that without loss of generality we can
assume the cost function c in k-ECSM is a metric, i.e., for any three vertices x, y, z ∈ V, we have
c(x, z) ≤ c(x, y) + c(y, z).

Around four decades ago, Fredrickson and Jájá [FJ81; FJ82] designed a 2-approximation
algorithm for k-ECSS and a 3/2-approximation algorithm for k-ECSM. The latter essentially
follows from a reduction to the traveling salesperson problem (TSP). Since then, despite a number
of papers on the problem [CT00; KR96; Kar99; Gab05; GG08; Gab+09; Pri11; LOS12], progress was
made only in cases where the underlying graph is unweighted or k� log n. Most notably, Gabow,
Goemans, Tardos and Williamson [Gab+09] showed that if the graph G is unweighted then k-ECSS
and k-ECSM admit 1 + 2/k approximation algorithms, i.e., as k → ∞ the approximation factor
approaches 1.

Motivated by [Gab+09], Pritchard posed the following conjecture:

Conjecture 1.5 ([Pri11]). The k-ECSM problem admits a 1 + O(1)/k approximation algorithm.

5Although as remarked, if you consider the version of the algorithm with shortcutting, it may be possible to go
below 1.375.

17

In other words, if true, the above conjecture implies that the 3/2-classical factor can be
substantially improved for large k, and moreover that it is possible to design an approximation
algorithm whose factor gets arbitrarily close to 1 as k → ∞. With Anna Karlin, Shayan Oveis
Gharan, and Xinzhi Zhang we proved a weaker version of the above conjecture.

Theorem 1.6. There is a polynomial time randomized algorithm for (weighted) k-ECSM with approximation
factor (at most) 1 + 5.06√

k
.

This gives the first approximation algorithm with ratio tending to 1 as k→ ∞.

1.5.2 The Thin Tree Conjecture and the Laminar Crossing Spanning Tree Problem

A spanning tree T of a graph G is called α-thin if the number of edges of T crossing any given
cut of G is at most an α fraction of the total number of edges. In 2004, Goddyn [God04] made
the following conjecture: there exists a function f : Z+ → [0, 1] with limk→∞ f (k)/k = 0 such that
every k-edge-connected graph G has an f (k)-thin spanning tree. This has become known as the
thin tree conjecture, and it remains open despite substantial efforts.

A natural strengthening of the conjecture, which we will refer to as the strong thin tree conjecture
makes the same claim, but for f (k) = C/k for some constant C. This conjecture is found explicitly
in [Asa+17] and is the best that one could hope for up to constant factors; clearly no k-edge-
connected graph has an α-thin tree for any α < 1/k. In a different direction, there is also an
algorithmic question one can ask: if a thin tree always exists, can we find one in polynomial time?

The thin tree conjecture has some surprising implications. It implies the weak 3-flow conjecture
of Jaeger [Jae84]. This has since been resolved, by Thomassen [Tho12], however this would
provide an alternate proof. Another application lies in the asymmetric traveling salesman problem
(ATSP). As shown by Asadpour, Goemans, Madry, Oveis Gharan and Saberi [Asa+17; OS11], if the
constructive form of the strong thin tree conjecture is true, it would yield an O(1)-approximation
algorithm to ATSP. This has since been resolved by Svensson, Tarnawski and Végh [STV20] using
completely different methods. Nonetheless, a new algorithm stemming from thin trees would be
of significant interest.

In joint work with Neil Olver, we focus on a special case of the strong thin tree conjecture. We
show that we can obtain a strong thin tree if we only need it to be thin with respect to an arbitrary
laminar family of cuts. Previously results were only known if we want the tree to be thin with
respect to the vertex set [Goe06; SL15] or a chain of constraints [OZ18]. This work generalizes
both of these works in the context of the thin tree problem.

Our work also gives the first constant factor approximation to the laminar crossing spanning
tree problem. Here, we are given a weighted graph and a laminar family of cuts L with bounds
bS for each S ∈ L, and we suppose a tree T exists which has at most bS edges in δ(S) for every
S ∈ L. We show it is possible to find a tree with cost at most O(1) · c(T) and at most O(1) · bS
edges in every cut S ∈ L. Previously, it was not even known how to achieve O(1) · bS violation on
the cut constraints and an arbitrary violation in cost.

18

2 Essential Background

This section will introduce essential background for the main result of this dissertation, a deter-
ministic 3

2 − ε approximation for metric TSP for some constant ε > 10−36. It will:

• Introduce the subtour polytope, the spanning tree polytope, and the O-Join polytope and
show that the integrality gap is at most 1.5 using the analysis of Wolsey [Wol80] and Shmoys
and Williamson [SW90].

• Introduce the max entropy algorithm of Oveis Gharan, Saberi, and Singh [OSS11], the main
focus of this work.

• Introduce real stable polynomials and strongly Rayleigh distributions which we will use to
prove some essential properties of the max entropy algorithm.

• Introduce the structure of (near) minimum cuts and give some intuition about why their
structure is useful in the proof.

• Give a brief overview on the current state of knowledge of the max entropy algorithm and
some intuition for the proof.

In other words, here we give a much more in-depth introduction to our framework for studying
metric TSP. For the reader unfamiliar with basic terminology and background on TSP, such as the
definition of a closed walk, the notion of shortcutting an Eulerian tour to a Hamiltonian cycle,
the double tree algorithm, and the proof that Christofides’ algorithm is a 3/2 approximation, see
Appendix A.

Before starting, the reader may want to review Table 2. This shows a number of TSP variants
and their approximability, placing metric TSP in its larger context.

2.1 Polyhedra of Interest

Here we describe three important polyhedra for studying TSP.

2.1.1 Notation

For a graph G = (V, E) and a set S ⊆ V, we write

E(S) := {{u, v} ∈ E : u, v ∈ S},
δ(S) := {{u, v} ∈ E : u ∈ S, v /∈ S}.

For a vector x : E → R, and a set F ⊆ E, we write x(F) = ∑e∈F xe. We write x|F to denote the
restriction of x to the edges in F such that x|F ∈ RF.

2.1.2 The Subtour LP

As mentioned in the introduction, the following linear program, first formulated by Dantzig,
Fulkerson and Johnson [DFJ54], is extremely well-studied and an important tool for solving TSP
instances. It is often known as the subtour elimination polytope or the Held-Karp LP relaxation

19

Problem Input Approximability

(Asymmetric) TSP A (directed) weighted graph. Find the
min cost (directed) Hamiltonian cycle.

No α approximation for
any α [Kar72]

Asymmetric Metric TSP An arbitrary asymmetric metric 22 + ε approximation
[STV20; TV22]

Metric TSP An arbitrary symmetric metric 1.5− 10−36 approximation
(this work)

Graphic Metric TSP The metric completion of an un-
weighted graph

1.4 approximation [OSS11;
MS16; SV12]

Euclidean TSP A Euclidean metric in Rd 1 + ε approximation for
any ε > 0 if d is fixed
[Aro96; Mit99]

Bounded Genus TSP The metric completion of a bounded
genus graph

1 + ε approximation for
any ε > 0 [DHM07] (fol-
lowing work on planar
graphs [GKP95; Aro+98;
Kle05])

Table 2: Fundamental classes of TSP instances and their approximability.

(see also [HK70]). As input, we assume we get a weighted graph G = (V, E) with metric
completion c. We now want to minimize ∑

u,v
c{u,v}x{u,v} subject to x ∈ PSub, defined as follows:

Subtour Polytope

PSub :=


x(δ(S)) ≥ 2 ∀ S (V
x(δ(v)) = 2 ∀v ∈ V
x{u,v} ≥ 0 ∀ u, v ∈ V

(2)

This LP has exponentially many constraints, one for each set S (V. However there is an
efficient separation oracle for the problem in the form of any global minimum cut algorithm, and
it can be solved in strongly polynomial time (see [Sch03], pp. 984-986).

2.1.3 The Spanning Tree Polytope

For any graph G = (V, E), Edmonds [Edm70] gave the following description for the convex hull
of spanning tree of a graph G, known as the spanning tree polytope.

20

Spanning Tree Polytope

PST :=


z(E) = n− 1
z(E(S)) ≤ |S| − 1 ∀S (V
ze ≥ 0 ∀e ∈ E

(3)

Edmonds [Edm70] proved that the extreme point solutions of this polytope are the characteristic
vectors of the spanning trees of G. This implies that the integrality gap of PST is 1.

First we note the following:

Fact 2.1. Let x ∈ PSub. Then for all sets S (V, we have x(E(S)) ≤ |S| − 1.

Proof. We have

x(E(S)) =
2|S| − x(δ(S))

2
≤ 2|S| − 2

2
= |S| − 1.

Where we use that x(δ(S)) ≥ 2 for all S (V.

Therefore the only constraint broken by x ∈ PSub is the constraint x(E) = n− 1. We get the
following corollary:

Corollary 2.2. Let x ∈ PSub. Then n−1
n x ∈ PST.

A similar useful fact is as follows:

Fact 2.3. Let x ∈ PSub and S (V such that x(δ(S)) = 2. Then, if PST is the spanning tree polytope on
the graph G′ = (S, E(S)), we have x|E(S) ∈ PST.

Proof. Let z = x|E(S). We have

∑
e∈E(S)

ze =
2|S| − x(δ(S))

2
=

2|S| − 2
2

= |S| − 1.

Thus the first constraint holds. The remaining constraints hold due to Fact 2.1.

This follows from Fact 2.1.

Corollary 2.4. Given a graph G = (V, E), let x ∈ PSub and suppose e is an edge with xe = 1. Define x′

such that x′f = x f for all f 6= e and xe = 0. Then x′ ∈ PST.

2.2 The O-Join Polyhedron and the Integrality Gap of PSub

The following characterization of the O-Join polytope is due to Edmonds and Johnson [EJ73]:
for any graph G = (V, E), cost function c : E → R+, and a set O ⊆ V with an even number of
vertices, the minimum weight of an O-join equals the optimum value of the following integral
linear program: minimize c(y) subject to y ∈ POJ, where POJ is given by the following.

21

O-Join Polyhedron

POJ =

{
y(δ(S)) ≥ 1 ∀S ⊆ V, |S ∩O| odd
ye ≥ 0 ∀e ∈ E

(4)

In other words, they proved that the integrality gap of POJ is 1. The following useful fact is
immediate from the fact that x(δ(S)) ≥ 2 for all S ⊆ V.

Fact 2.5. Let x ∈ PSub. Then for any O ⊆ V (with |O| even), x/2 ∈ POJ.

We combine the above facts to show that the integrality gap of PSub is at most 3/2, following
the analysis of Wolsey [Wol80] and Shmoys and Williamson [SW90].

To do so, we show that Christofides’ algorithm produces a solution of cost at most 3
2 c(x) for

any solution x to the subtour LP.
First, notice that cost of a minimum spanning tree T is at most c(x). This is due to Corollary 2.2.

Since we can write n−1
n x as a convex combination of spanning trees, the cheapest one must cost at

most c(x). It remains to show that the cost of the matching on T is at most 1
2 c(x). However this

follows from the fact that the integrality gap of the O-Join polyhedron is 1 and Fact 2.5.

2.3 The Maximum Entropy Algorithm for TSP

Given the above background, we now introduce the max entropy algorithm.

2.3.1 λ-uniform Spanning Trees

The algorithm relies upon create a distribution of the following type.

λ-Uniform Spanning Trees

For a vector λ : E → R≥0, a λ-uniform distribution µλ over spanning trees of a graph
G = (V, E) is a distribution where for every spanning tree T ⊆ E, Pµ [T] = ∏e∈T λe

∑T′ ∏e∈T′ λe
.

[Asa+10] showed that for any point z ∈ PST, one can find a λ-uniform distribution over trees
with marginals z (up to negligible error) in polynomial time. In particular, they proved the
following theorem:

Theorem 2.6 ([Asa+10, Theorem 5.2]). Let z be a point in the spanning tree polytope (85) of a graph
G = (V, E). For any ε > 0, a vector λ : E→ R≥0 can be found in time polynomial in n, − log mine∈E ze
and log(1/ε) such that the corresponding λ-uniform spanning tree distribution µλ satisfies

∑
T∈T :T3e

Pµλ
[T] ≤ (1 + ε)ze, ∀e ∈ E,

i.e., the marginals are approximately preserved. In the above T is the set of all spanning trees of G.

Fig. 9 is an example output of the above theorem for the point z in the spanning tree polytope
where the topmost edge has ze =

1
2 and the remaining edges have z f =

3
4 . Notice that in this case

ε = 0, i.e. the λ-uniform distribution has marginals exactly z.

22

1

22 = 1
4


1

2

 + 1
4


1

2

 + 1
2

 22


1
2

3
4

3
4

Figure 9: Top is an example of a λ-uniform spanning tree distribution. The normalizing term is
∑T ∏e∈T λe = 8, so the probability of each tree is 1

8 ∏e∈T λe. The bottom picture represents the
marginal vector of this distribution, i.e. it represents the probability of each edge. Thus, this
λ-uniform distribution is a potential output of Theorem 2.6 for the point z ∈ PST above.

This computation can be done using the multiplicative weight update algorithm [Asa+10] or
by applying interior point methods [SV19] or the ellipsoid method [Asa+10]. (We note that the
multiplicative weight update method can only guarantee ε < 1/poly(n) in polynomial time.) We
will sometimes call such a distribution the maximum entropy distribution because a λ-uniform
distribution has maximal entropy over all distributions with marginals x.6

This theorem suggests the following algorithm for TSP. Instead of finding a minimum spanning
tree as in Christofides, select a random spanning tree from the distribution µλ. Then add the
minimum cost matching as before.

2.3.2 The Algorithm

Our starting point is to solve the subtour LP (2) to obtain a solution x0. We then pick an arbitrary
node, u, split it into two nodes u0, v0 and set x(u0,v0) = 1, c(u0, v0) = 0 and we assign half of
every edge incident to u to u0 and the other half to v0. This allows us to assume without loss of
generality that x0 has an edge e0 = (u0, v0) such that xe0 = 1, c(e0) = 0.

Using the above Theorem 2.6, we find a vector λ such that for every edge e ∈ E(G r {r}),
Pµλ

[e ∈ T] = xe(1± ε), for some ε < 2−n. We then sample a tree T ∼ µλ and add the minimum
cost matching on the odd degree vertices of T.

The guiding intuition for this algorithm is that a random spanning tree should have a cheaper
matching on average than the minimum spanning tree. This is what we are able to prove. However
to do so we need to understand properties of µλ. The next few sections are dedicated to giving
some essential background for studying µλ.

We will use the following definition:

Definition 2.7 (Satisfied cuts). For a set S ⊆ V such that u0, v0 /∈ S and a spanning tree T ⊆ E we say
a vector y : E→ R≥0 satisfies S if one of the following holds:

6Although, note that since we do not always find a distribution which preserves marginals exactly (as one does not
necessarily exist), for precision we generally refer to the distribution used by the algorithm as λ-uniform instead.

23

1
2

1
2

1
2

1
2

1
2

1
2

1 1

1

1
2

1
2

1
2 1

2

1

1

1

k1
k

k2

k2

Figure 10: On the left is a point in PSub. In the middle, the root (chosen arbitrarily) is marked in
red. The remaining nodes and non-dashed edges form a point z ∈ PST. On the right is a λ-uniform
distribution with marginals approximately equal to z that could the output of Theorem 2.6, where
k is chosen to be a large positive number. The ε error in Theorem 2.6 goes to 0 as k→ ∞.

1
4




+ 1

4




+ 1

4




+ 1

4




Figure 11: The trees and their probabilities in the above λ-uniform distribution. We show only
the trees T for which limk→∞ P [T] > 0 and give their probabilities in the limit. Note that after
sampling, two edges from the red vertex above are added at random (sampled proportional to xe).

Algorithm 1 Max Entropy Algorithm (slight modification of [OSS11])

Find an optimum solution x0 of (2), and let e0 = (u0, v0) be an edge with x0
e0
= 1, c(e0) = 0.

Let E0 = E ∪ {e0} be the support of x0 and x be x0 restricted to E and G = (V, E).
Find a vector λ : E→ R≥0 such that for any e ∈ E, Pµλ

[e] = xe(1± 2−n).
Sample a tree T ∼ µλ.
Let M be the minimum cost matching on odd degree vertices of T.
Output T ∪M.

• δ(S)T is even, or

• y(δ(S)) ≥ 1.

In other words, a cut is satisfied if the constraint corresponding to S is satisfied in POJ (where O is the odd
vertices of T) by y or the constraint does not exist.

To analyze our algorithm, we will see that the main challenge is to construct a (random) vector
y that satisfies all cuts and E [c(y)] ≤ (1/2− ε)c(x).

24

2.4 Generating Polynomials and λ-uniform Spanning Trees

Given a vector z ∈ RE and a set S ⊆ E, let zS := ∏e∈S ze. Let µ : {0, 1}E → R be a probability
distribution over subsets of E. The generating polynomial gµ ∈ R[{ze}e∈E] of µ is defined as
follows:

gµ(z) := ∑
S

µ(S)zS.

In general, this polynomial may have exponentially many terms and no compact representation.
However, if µ is the uniform distribution over spanning trees on a graph G (equivalently, the
1-uniform distribution), then Kirchhoff’s matrix tree theorem tells us that gµ has a very succinct
representation, which we prove here for completeness.

Theorem 2.8 (Matrix tree theorem). For a graph G = (V, E) let gT be the generating polynomial of the
1-uniform spanning tree distribution on G. Pick a root r ∈ V arbitrarily. Then,

gT ({ze}e∈E) = det(∑
e∈E

zeLe),

where for e = {u, v} with u, v 6= r we let Le ∈ RVr{r} = (1u − 1v)(1u − 1v)T be the Laplacian of e. For
e = {u, r} we let Le = 1u1T

u .

Proof. Let be = (1u − 1v) for e = {u, v} with u, v 6= r and be = 1u for e = {r, u}. Let B ∈ Rn−1×m

be the matrix with columns be for all e ∈ E (where |E| = m). Then, by Cauchy-Binet, where Z is
the diagonal matrix with entries ze,

det(∑
e∈E

zeLe) = det(BZBT) = ∑
S∈([m]

n−1)

det((BZ)[n−1],SBT
S,[n−1]) = ∑

S∈([m]
n−1)

zS det(B[n−1],S)
2

If the edges in S contain a cycle, then det(B[n−1],S) = 0 as the set of edges in the cycle are linearly
dependent. So it remains to show that the determinant is ±1 if S forms a spanning tree. To see
this, notice that since the tree contains a leaf, there must be a row of the matrix with exactly
one non-zero “leaf" entry. We can place this entry in the bottom right of the matrix, and recurse
(considering the leaf as deleted in the tree and the matrix), leaving us with an upper triangular
matrix. This implies det(B[n−1],S) = ±1 as desired.

We will often use the slightly more convenient form

gT ({ze}e∈E) = det(∑
e∈E

zeLe + 11T/n) (5)

where Le = (1u − 1v)T for all e = {u, v}. We leave the proof of the equivalence as an exercise.
This immediately generalizes to any λ-uniform distribution µλ. We can simply write (using

the above, and assuming λ is normalized such that ∑T∈T λT = 1):

gµλ
(z) = ∑

T∈T
λTzT = gT ({λeze}e∈E) =

1
n

det

(
∑
e∈E

zeλeLe + 11T/n

)

Another consequence of this fact which we will rely on later is that gµλ
can be computed at any

point in C in polynomial time.

25

λe =
3
4

λ f =
1
2λg = 1

2
=

3
8

zez f +
3
8

zezg +
1
4

z f zg

Figure 12: A normalized λ-uniform distribution and its generating polynomial.

For example, for the λ-uniform distribution from Fig. 12, one can check:

1
3

det


3
4 ze +

1
2 zg +

1
3 − 3

4 ze +
1
3 − 1

2 zg +
1
3

− 3
4 ze +

1
3

3
4 ze +

1
2 z f +

1
3 − 1

2 z f +
1
3

− 1
2 zg +

1
3 − 1

2 z f +
1
3

1
2 z f +

1
2 zg +

1
3

 =
3
8

zez f +
3
8

zezg +
1
4

z f zg

2.5 Real Stable Polynomials

For a field F, let F[z1, . . . , zn] be the ring of polynomials with coefficients in F in the indeterminates
z1, . . . , zn.

Real Stability

Let H = {z : =(z) > 0} be the upper half of the complex plane. We say a polynomial
p ∈ C[z1, . . . , zn] is stable if z ∈ Hn implies p(z) 6= 0, i.e. it has no zeros in Hn.a

We say a polynomial p is real stable if it is stable and p ∈ R[z1, . . . , zn].

aNote we do not treat the zero polynomial as stable.

For example, z1z2 + 1 is not stable since z1 = z2 = i is a root in H2. However, z1z2 − 1 is (real)
stable, since for any root in Hn we have z1, z2 not equal to 0 so z2 = 1

z1
. However =(z1) and =(1

z1
)

cannot both be positive.
We will often work with the following equivalent definition of stability.

Fact 2.9. A polynomial p ∈ C[z1, . . . , zn] is (real) stable if and only if for every a ∈ Rn
>0 and every b ∈ Rn,

the univariate polynomial p(ax + b) is (real) stable.

Proof. This follows from the identity Hn = {ax + b | a ∈ Rn
>0, b ∈ Rn, x ∈ H}.

Recall the following for univariate polynomials with real coefficients.

Fact 2.10. If p ∈ R[x], then if x is a root of p so is x.

Proof. Let p = ∑ aixi ∈ R[x] and x ∈ C for which p(x) = 0. Then,

0 = p(x) = ∑ aixi = ∑ āi x̄i = ∑ ai x̄i = p(x̄).

More abstractly, this is because complex conjugation is an automorphism of C which fixes R.

26

Note that the above is not true for univariate polynomials with complex coefficients, for
example z + i has just a single root z = −i. This is because complex conjugation does not fix C.
An immediate consequence of this is the following:

Corollary 2.11. A univariate polynomial p ∈ R[x] is real stable if and only if it is real rooted.
Thus, by Fact 2.9, a polynomial p ∈ R[z1, . . . , zn] is real stable if and only if for every a ∈ Rn

>0 and
every b ∈ Rn, the univariate polynomial p(ax + b) is real rooted.

We also record the following fact about univariate real rooted polynomials that we will give as
a consequence a key lemma in future sections:

Lemma 2.12 ([Edr53]). Let p ∈ R≥0[x] be real rooted, and suppose p(1) = 1. Then where p(x) = a0 +

a1x + a2x2 + · · ·+ adxd there exists independent Bernoullis B1, . . . , Bd such that ∀i, ai = P
[
∑d

i=1 Bi = i
]
.

Proof. Let λ1, . . . , λd ∈ R be the negation of the (not necessarily distinct) roots of p. Note ∀i, λi ≥ 0
since p has non-negative coefficients. Then p(x) = C ∏d

i=1(x + λi) for some C > 0, and since
p(1) = 1, we have C = 1

∏d
i=1(1+λi)

. Therefore

p(x) =
d

∏
i=1

x + λi

1 + λi
=

d

∏
i=1

(
x

1 + λi
+
(
1− 1

1 + λi

))
However this is simply ∏d

i=1(pix + (1− pi)) for Bernoullis with success probabilities pi =
1

1+λi
, as

desired.

The following is an important class of real stable polynomials:

Lemma 2.13. Suppose p(z1, . . . , zn) = det(∑n
i=1 ziPi + S) for positive semidefinite matrices P1, . . . , Pn ∈

Rn×n and a symmetric matrix S ∈ Rn×n. Then, p is real stable.

Proof. Consider any a ∈ Rn
>0, b ∈ Rn and the polynomial

q(x) = det

(
n

∑
i=1

(aix + bi)Pi + S

)
= det

(
x

n

∑
i=1

aiPi +
n

∑
i=1

biPi + S

)
.

By the above fact it is enough to prove that q is real rooted.
First assume that each Pi is positive definite. Then D = ∑n

i=1 aiPi is positive definite since
a ∈ Rn

>0, so it has a symmetric square root D1/2 and symmetric negative square root D−1/2.
Therefore we can rewrite this polynomial as

det(D1/2)det

(
xI + D−1/2

(
n

∑
i=1

biPi + S

)
D−1/2

)
det(D1/2)

det(D1/2) is a constant, so this is real rooted if det(xI + D−1/2(∑n
i=1 biPi + H)D−1/2) is real rooted.

However this is the characteristic polynomial of the matrix Q = D−1/2(∑n
i=1 biPi + S)D−1/2, so

its roots are the eigenvalues of Q. Finally we observe that Q is symmetric since all Pi and S are
symmetric, so its eigenvalues are all real, implying that this polynomial is real rooted as desired.

If the Pi are not positive definite, this follows from taking the limit of Pi + εI as ε → 0 and
applying Hurwitz’s theorem, summarized in the below corollary.

27

Corollary 2.14 (Of Hurwitz’s theorem (1.3.8 in [RS05])). A polynomial obtained as the limit of a
convergent sequence of stable polynomials is stable.

Real Stability of gµλ

It follows from Lemma 2.13 that the generating polynomial gµλ
of a λ-uniform spanning

tree distribution is real stable, since by Theorem 13.2 we can write it as a constant times
det

(
∑e∈E zeλeLe + 11T/n

)
(and λeLe are all positive semidefinite matrices and 11T/n is

symmetric).

Said again, the zeros of the polynomial gµλ
for any graph G and any λ ∈ R≥0 avoid the

upper half of the complex plane, i.e. if =(ze) > 0 for all e ∈ E, then gµλ
(z) 6= 0.

Real stable polynomials are closed under many natural operations, some of which we list
below:

• External field. p(z1, . . . , zn)→ p(λ1z1, . . . , λnzn) for λ ∈ R≥0.

• Specialization. p(z1, . . . , zn)→ p(z1, . . . , zi−1, a, zi+1, . . . , zn) for a ∈ R and i ∈ [n].

• Diagonalization. p(z1, . . . , zn)→ p(zi, . . . , zi) for any i ∈ [n].

• Differentiation. p(z1, . . . , zn)→ ∂
∂zi

p(z1, . . . , zn) for any i ∈ [n].

We leave these as an exercise. Note differentiation will need the Gauss-Lucas theorem: that the
roots of p′ for p ∈ R[x] lie in the convex hull of the roots of p.

2.6 Strongly Rayleigh Distributions

We can now introduce a class of probability distributions key to this thesis. Let BE be the set of all
probability measures on 2E.

Strongly Rayleigh distributions

We say µ ∈ BE is a strongly Rayleigh distribution, defined in [BBL09], if gµ is real stable.a

The above shows that every λ-uniform distribution over spanning trees is strongly Rayleigh.

aNotice that we only consider SR distributions on 2E. Thus, the generating polynomial of any SR distribution
is multiaffine.

There are a number of useful closure properties of strongly Rayleigh (SR) distributions. A
simple one is as follows:

Fact 2.15. If µ, µ′ are strongly Rayleigh distributions then so is µ× µ′.

Proof. gµ and gµ′ are both real stable. But gµ×µ′ = gµgµ′ . Thus the zeros of gµ×µ′ are the union of
the zeros of gµ and g′µ.

We summarize a number of important closure operations here:

28

Closure Operations of SR Distributions. SR distributions are closed under the following
operations. Here we are given a SR distribution µ ∈ BE and we are sampling a set S ∼ µ.

• Projection. For any F ⊆ E, the projection of µ onto F is SR and is defined as the measure µF
where for any A ⊆ F,

µF(A) = ∑
S:S∩F=A

µ(S).

• Conditioning. For any e ∈ E, µ|e∈S and µ|e 6∈S are SR, i.e. we can condition on an element to
be in or out of the sample.

• Truncation. For any integer k ≥ 0 and µ ∈ BE, the truncation of µ to k, µk defined as µ
conditioned on |S| = k, is SR. 7

• Product. As in the above fact, for any two SR distributions µE ∈ BE, µF ∈ BF the product
measure µE×F is SR. In particular this is the measure where for any A ⊆ E, B ⊆ F, µE×F(A ∪
B) = µE(A)µF(B).

These can be derived from the closure properties of stable polynomials listed in the previous
subsection. For example, conditioning an element e in is equivalent to differentiating with respect
to ze, and conditioning an element out is equivalent to specializing ze = 0.

Rank Sequence. The rank sequence of a distribution µ is the sequence

P [|S| = 0] , P [|S| = 1] , . . . , P [|S| = m] ,

where S ∼ µ. Let gµ(z) be the generating polynomial of µ. The diagonal specialization of µ is the
univariate polynomial

g̃µ(z) := gµ(z, z, . . . , z).

Observe that g̃(.) is the generating polynomial of the rank sequence of µ. By the above closure
properties of real stable polynomials, if µ is SR then g̃µ is real rooted. Thus, the following is an
immediate corollary of Lemma 2.12:

Corollary 2.16. Let µ be a strongly Rayleigh distribution. Then the rank sequence r0, r1, . . . , rm of µ
follows the law of a sum of independent Bernoullis, i.e. there exists Bernoullis B1, . . . , Bm such that
ri = P [∑m

i=1 Bi = i].

Bernoullis are particularly easy to analyze, especially when one applies the following theorem
of Hoeffding:

Theorem 2.17 ([Hoe56, Corollary 2.1]). Let g : {0, 1, . . . , n} → R and 0 ≤ q ≤ n for some integer
n ≥ 0. Let B1, . . . , Bn be n independent Bernoulli random variables with success probabilities p1, . . . , pn,
where ∑n

i=1 pn = q that minimizes (or maximizes)

E [g(B1 + · · ·+ Bn)]

over all such distributions. Then, p1, . . . , pn ∈ {0, x, 1} for some 0 < x < 1. In particular, if only m of
pi’s are nonzero and ` of pi’s are 1, then the remaining m− ` are q−`

m−` .

7Note that SR distributions are not necessarily closed under truncation of a proper subset, i.e., if we require exactly
k elements from F (E. We can of course project and then truncate, however we then lose the distribution on the
remaining elements.

29

We can now describe one of the most important aspects of SR distributions for our purposes:

Sum of Bernoullis and Even Vertices

We call a random variable with expectation q which has the same law as a sum of indepen-
dent Bernoullis as BS(q). By the closure of projection and the above corollary, we get the
following as immediately from Corollary 2.16, which is a crucial window into the behavior
of the max entropy algorithm.

Corollary 2.18. Let F ⊆ E and let µλ be the λ-uniform distribution from Algorithm 1 with
marginals x. Then, the random variable |F ∩ T| is a BS(x(F)).

It is intuitive that an important property of µλ should be that vertices have even degree in T
with constant probability.a The above corollary along with Theorem 2.17 lets us prove this
with ease, detailed shortly:

Lemma 2.19. Let T ∼ µλ where the marginals of x are a solution to (2) as in Algorithm 1. Then
for all vertices v, the probability that v has even degree in T is at least 0.43.

More generally, if S ⊆ V and 2 ≤ x(δ(S)) < 2.2, then

PT∼µλ
[|δ(S) ∩ T| even] ≥ 1

2
(1− e−2(x(δ(S))−1)) ≥ 0.43.

aIn particular, its behavior should differ from Christofides as detailed in Fig. 83.

Figure 13: Trees are shown in black and matchings in red. Assume that all edges have cost 1 in
this complete graph. While Christofides’ algorithm (left) may pick a minimum spanning tree with
many odd vertices, causing the matching on the odd vertices to be expensive (here 8 edges), a
tree sampled from a λ-uniform or max entropy distribution (right) will usually have a cheaper
matching (here only 4 edges). In this simple example, this is because in the tree drawn from the
max-entropy distribution will have many vertices of even degree by Lemma 2.19.

To prove the above lemma, we first need the following simple fact, which demonstrates the
benefits of working with Bernoullis.

30

Fact 2.20. Let B1, . . . , Bn be independent Bernoulli random variables each with expectation 0 ≤ p ≤ 1.
Then

P

[
∑

i
Bi even

]
=

1
2
(1 + (1− 2p)n)

Proof. Note that

(p + (1− p))n =
n

∑
k=0

pk(1− p)n−k
(

n
k

)
and ((1− p)− p)n =

n

∑
k=0

(−p)k(1− p)n−k
(

n
k

)
Summing them up we get,

1 + (1− 2p)n = ∑
0≤k≤n,k even

2pk(1− p)n−k
(

n
k

)
,

as desired.

This now lets us prove the following:

Lemma 2.21. Given a BS(q) random variable with 0 < q ≤ 1.2, then

P [BS(q) even] ≤ 1
2
(1 + e−2q)

Proof. We apply Hoeffding’s theorem Theorem 2.17 to the function indicating if BS(q) is even.
First, if q ≤ 1, then by Hoeffding’s theorem we can write BS(q) as sum of n Bernoullis with success
probability p = q/n for some n ≥ 1. If n = 1, then the statement obviously holds. Otherwise, by
the previous fact, we have (for some n),

P [BS(q) even] ≤ 1
2
(1 + (1− 2p)n)) ≤ 1

2
(1 + e−2q)

where we used that |1− 2p| ≤ e−2p for p ≤ 1/2.
So, now assume q > 1. Write BS(q) as the sum of n Bernoullis, each with success probabilities

1 or p. First assume we have no Bernoullis with success probability 1. Then, either we only have
two non-zero Bernoullis with success probability q/2 in which case

P [BS(q) even] = (q/2)2 + (1− q/2)2 ≤ 0.62 + 0.42 =
1
2

and we are done. Otherwise, n ≥ 3 so p ≤ 1/2 and similar to the previous case we get
P [BS(q) even] ≤ 1

2 (1 + e−2q).
Finally, if q > 1 and one of the Bernoullis is always 1, i.e. BS(q) = BS(q− 1) + 1, then we get

P [BS(q) even] = P [BS(q− 1) odd] =
1
2
(1− (1− 2p)n−1) ≤ 1/2

where we used that p ≤ 0.5 (since q ≤ 1.2).

31

Now to obtain Lemma 2.19, we observe that (i) by Corollary 2.18, |δ(S) ∩ T| for any cut is a
BS(x(δ(S)); (ii) since any cut has at least 1 edge in T (with probability 1) there is a Bernoulli with
success probability 1 in BS(x(δ(S)), so we can model the parity of |δ(S)∩T| as 1+ BS(x(δ(S))− 1);
and finally (iii) we apply Lemma 2.21 so BS(x(δ(S))− 1).

Another beautiful consequence of the above Bernoulli fact (see [HLP52; Dar64; BBL09]) is
that the rank sequence of any strongly Rayleigh measure is ultra log concave (see below for the
definition), unimodal, and its mode differs from the mean by less than 1.

Definition 2.22 (Log-concavity [BBL09, Definition 2.8]). A real sequence {ak}m
k=0 is log-concave if

a2
k ≥ ak−1 · ak+1 for all 1 ≤ k ≤ m− 1, and it is said to have no internal zeros if the indices of its non-zero

terms form an interval (of non-negative integers). It is ultra log concave if
(

ak
(m

k)

)2
≥ ak−1

(m
k−1)
· ak+1
(m

k+1)
.

Figure 14: Two log concave sequences.

2.7 Additional Properties of SR Distributions

In this section we provide some additional properties of SR distributions. On a first reading one
could skip this subsection.

Negative Dependence Properties. An upward event, A, on 2E is a collection of subsets of E that
is closed under upward containment, i.e. if A ∈ A and A ⊆ B ⊆ E, then B ∈ A. Similarly, a
downward event is closed under downward containment. An increasing function f : 2E → R, is a
function where for any A ⊆ B ⊆ E, we have f (A) ≤ f (B). We also say f : 2E → R is a decreasing
function if − f is an increasing function. So, an indicator of an upward event is an increasing
function. For example, if E is the set of edges of a graph G, then the existence of a Hamiltonian
cycle is an increasing function, and the 3-colorability of G is a decreasing function.

Definition 2.23 (Negative Association). A measure µ ∈ BE is negatively associated if for any
increasing functions f , g : 2E → R, that depend on disjoint sets of edges,

Eµ [f] ·Eµ [g] ≥ Eµ [f · g]

It is shown in [BBL09; FM92] that strongly Rayleigh measures are negatively associated.

32

Stochastic Dominance. For two measures µ, ν : 2E → R≥0, we say µ � ν if there exists a coupling
ρ : 2E × 2E → R≥0 such that

∑
B

ρ(A, B) = µ(A), ∀A ∈ 2E,

∑
A

ρ(A, B) = ν(B), ∀B ∈ 2E,

and for all A, B such that ρ(A, B) > 0 we have A ⊆ B (coordinate-wise).

Theorem 2.24 ([BBL09]). If µ is strongly Rayleigh and µk, µk+1 are well-defined, then µk � µk+1.

Note that in the above particular case the coupling ρ satisfies the following: For any A, B ⊆ E
where ρ(A, B) > 0, B ⊇ A and |B r A| = 1, i.e., B has exactly one more element.

Let µ be a strongly Rayleigh measure on edges of G. Recall that for a set A ⊆ E, we write
AT = |A ∩ T| to denote the random variable indicating the number of edges in A chosen in a
random sample T of µ. The following facts immediately follow from the negative association and
stochastic dominance properties. We will use these facts repeatedly in this paper.

Fact 2.25 ([BBL09, Theorems 4.8, 4.19]). Let µ be any SR distribution on E, then for any F ⊂ E, and
any integer k

1. (Negative Association) If e /∈ F, then Pµ

[
e
∣∣FT ≥ k

]
≤ Pµ [e] and Pµ [e|FT ≤ k] ≥ Pµ [e]

2. (Stochastic Dominance) If e ∈ F, then Pµ [e|FT ≥ k] ≥ Pµ [e] and Pµ [e|FT ≤ k] ≤ Pµ [e].

The following fact is a direct consequence of the above, see e.g. Corollary 6.10 of [OSS11].

Fact 2.26. Let µ be a homogenous SR distribution on E. Then,

• (Negative association with homogeneity) For any A ⊆ E, and any B ⊆ A

Eµ [BT|AT = 0] ≤ Eµ [BT] + Eµ [AT] (6)

• Suppose that µ is a spanning tree distribution. For S ⊆ V, let q := |S| − 1−Eµ [E(S)T]. For any
A ⊆ E(S), B ⊆ E(S),

Eµ [BT]− q ≤ Eµ [BT|S is a tree] ≤ Eµ [BT] (Negative association and homogeneity)
Eµ [AT] ≤ Eµ [AT|S is a tree] ≤ Eµ [AT] + q (Stochastic dominance and tree)

2.8 Staying in the λ-Uniform Distribution

Since λ-uniform spanning tree distributions are special classes of SR distributions, if we perform
any of the above operations on a λ-uniform spanning tree distribution µ we get another SR
distribution. However the distributions are no longer necessarily λ-uniform. Below we list two
special operations that also preserve the λ-uniform property (with possibly a different λ). The
second operation is especially important to our proof.

33

Closure Operations of λ-uniform Spanning Tree Distributions For G = (V, E), a spanning tree
distribution µ ∈ BE, and T ∼ µ, we have:

• Conditioning. For any e ∈ E, {µ | e 6∈ T}, {µ | e ∈ T}.

• Tree Conditioning. For S ⊆ V, {µ | |E(S) ∩ T| = |S| − 1}, i.e. T restricted to S is a tree. We
will often just write S is a tree to denote such an event.

Note that λ-uniform spanning tree distributions are not necessarily closed under truncation and
projection.8 We remark that SR measures are also closed under an analogue of tree conditioning,
i.e., for a set F ⊆ E, let k = maxS∈supp µ |S∩ F|. Then, {µ | |S∩ F| = k} is SR. But if µ is a spanning
tree distribution we get an extra independence property which is a property we heavily rely on
throughout the entire work. Thus a general proof strategy we follow in this work to study a
particular event is to start with µλ, apply several tree conditioning operations, and only then
apply the stronger closure properties of general SR distributions. The independence property is
as follows:

Fact 2.27. For a graph G = (V, E), and a vector λ(G) : E → R≥0, let µλ(G) be the corresponding
λ-uniform spanning tree distribution. Then for any S (V,

{µλ(G) | |E(S) ∩ T| = |S| − 1} = {µλ(G) | S is a subtree} = µλ(G[S]) × µλ(G/S).

Proof. Intuitively, this holds because in the max entropy distribution (recall a λ-uniform distribu-
tion maximizes entropy subject to matching the marginals of x), conditioned on S being a tree,
any tree chosen inside S can be composed with any tree chosen on G/S to obtain a spanning tree
on G. So, to maximize the entropy these trees should be chosen independently. More formally for
any T1 ∈ G[S] and T2 ∈ G/S,

P [T = T1 ∪ T2 | S is a tree] =
λT1 λT2

∑T′1∈G[S],T′2∈G/S λT′1 λT′2

=
λT1

∑T′1∈G[S] λT′1
· λT2

∑T′2∈G/S λT′2

= PT′1∼G[S]
[
T′1 = T1

]
PT′2∼G/S

[
T′2 = T2

]
,

giving independence.

In the following, to denote that |E(S) ∩ T| = |S| − 1 we simply say “S is a tree." This situation
in is actually quite common due to the following lemma, which is very crucial to our proof:

Lemma 2.28. Let G = (V, E, x), and let µ be any distribution over spanning trees with marginals x. For
any ε-near min cut S ⊆ V (such that none of the endpoints of e0 = (u0, v0) are in S), we have

PT∼µ [S is a subtree of T] = PT∼µ [|T ∩ E(S)| = |S| − 1] ≥ 1− ε/2.
8For example, if we project to E(S) for some S ⊆ V and then truncate to µk for some k < |S| − 1, we have an SR

distribution on E(S) but we are not sampling a spanning tree anymore.

34

u0 v0

e0

Figure 15: Suppose this is a solution to PSub where every displayed edge has xe = 1/2. Then by
Fact 2.27 and Lemma 2.28, (i) the sampled tree is always a subtree inside the red set and inside the
blue set, and (ii) the edges in red are sampled independent of all other edges in T (and similarly
for blue).

Proof. First, observe that

E [E(S)T] = x(E(S)) ≥ 2|S| − x(δ(S))
2

≥ |S| − 1− ε/2,

where we used that since u0, v0 /∈ S, for any v ∈ S we have E [δ(v)T)] = x(δ(v)) = 2.
Let pS = PT∼µ [S is a subtree of T]. Then, we must have

|S| − 1− (1− pS) = pS(|S| − 1) + (1− pS)(|S| − 2) ≥ E [E(S)T] ≥ |S| − 1− ε/2.

Therefore, pS ≥ 1− ε/2.

Near minimum cuts and independence

As an immediate corollary of Fact 2.27 and Lemma 2.28, we obtain the following.

Let S ⊆ V be a near minimum cut, i.e. x(δ(S)) ≤ 2 + η. Then, with probability at least
1− η/2, the distribution µλ decomposes into µλ = µλ(G[S]) × µλ(G/S).

This is an incredibly powerful fact and says that (near) minimum cuts essentially break our
tree distribution into a collection of independent pieces. See Fig. 15 for an example. We
will use this fact over and over again in our proofs.

We also record a useful fact here:

Corollary 2.29. Let A, B ⊆ V be disjoint sets such that A, B, A ∪ B are εA, εB, εA∪B-near minimum cuts
w.r.t., x respectively, where none of them contain endpoints of e0. Then for any distribution µ of spanning
trees on E with marginals x,

PT∼µ [E(A, B)T = 1] ≥ 1− (εA + εB + εA∪B)/2.

35

Proof. By the union bound, with probability at least 1− (εA + εB + εA∪B)/2, A, B, and A ∪ B are
trees. But this implies that we must have exactly one edge between A, B.

2.9 The Structure of (Near) Minimum Cuts

Recall Fact 2.5, which claims that if x ∈ PSub then x/2 ∈ POJ for any O ⊆ V with |O| even. This
proves that the max entropy algorithm is a 3/2 approximation.

Our proof strategy will show that there is a random variable y : T → RE such that: (i) y ∈ POJ
with probability 1, where O is the set of odd vertices in T, and (ii) E [c(y)] ≤ (1

2 − ε)c(x) for some
ε > 0. This would complete the proof as it upper bounds the expected cost of the matching by
slightly less than half of the cost of the LP. To do this, we will show the following:

Slack vector and slack space

For some very small η > 0 there exists a slight perturbation of x/2 we call a “slack vector"
s : T → RE such that:

(i) Given a tree T, s(δ(S)) ≥ 0 with probability 1 for every S ⊆ V with |δT(S)| odd and
x(δ(S)) ≤ 2 + η.

(ii) E [se] ≤ −εxe for all e ∈ E for some ε > 0,

(iii) se ≥ − 1
2+η xe for all e ∈ E with probability 1.

We will call the space which x/2 + s lives the “slack space."

e

f

x/2

ηxe

ηx f

Figure 16: The space in which x/2 + s lives (with probability 1) projected onto e and f . We will
sometimes call this the slack space.

36

The existence of such a vector immediately implies a 3
2 − ε approximation for TSP. First observe

that y = x/2 + s has the property y ∈ POJ with probability 1. The reason is as follows: for every
cut S ⊆ V, if x(δ(S)) ≥ 2 + η, then y(δ(S)) ≥ (2 + η)(1

2+η) ≥ 1 by condition (iii). Therefore,
the cuts that are not η-near minimum are never violated in POJ, regardless of their parity in the
sampled tree T. However, condition (i) implies that all the near minimum cuts are satisfied. So, to
finish the proof one simply uses (ii). By the integrality of the O-Join polyhedron, the expected
cost of the matching is at most the expected cost of the solution x/2 + s we have designed, which
itself has expected cost at most (1

2 − ε)c(x).
The reason we design a slack vector of this type, which only deals with the near minimum cuts,

is that it reduces the space of constraints we have to worry about from every cut to a much smaller
set. To handle the near minimum cuts, we will need to intimately understand their structure. In
this section, as a warmup we introduce the structure of minimum cuts (where η = 0) and briefly
introduce polygons, a tool for understanding the structure of near minimum cuts.

Figure 17: Here is an example support graph and its cactus representation which is a variant of
the k-donut introduced by Boyd and Sebő [BS21]. The dotted edges have xe = 1/2 and the solid
edges xe = 1. One can check that every minimum cut of the graph on the left is represented in
the cactus as a cut containing exactly two edges. In particular the mapping φ from Theorem 2.34
should be clear: each of the black vertices in the left is mapped to a black vertex on the right. We
will return to this example later: it shows a lower bound of 11/8 for the performance of the max
entropy algorithm as the number of nodes goes to infinity.

2.9.1 Notation

For a set of edges A ⊆ E and (a tree) T ⊆ E, we write

AT = |A ∩ T|.

37

For two sets A, B ⊆ V, we say A crosses B if all of the following sets are non-empty:

A ∩ B, A r B, B r A, A ∪ B.

We write G = (V, E, x) to denote an (undirected) graph G together with special vertices u0, v0
and a weight function x : E→ R≥0 such that

x(δ(S)) ≥ 2, ∀S (V : u0, v0 /∈ S.

For such a graph, we say a cut S ⊆ V is an η-near min cut w.r.t., x (or simply η-near min cut when
x is understood) if x(δ(S)) ≤ 2 + η. Unless otherwise specified, in any statement about a cut
(S, S) in G, we assume u0, v0 6∈ S.

2.9.2 The Cactus Representation

Definition 2.30. Consider a graph G = (V, E) with min-cuts of value k.

• Any set S ⊆ V such that |δ(S)| = k (i.e., its boundary is a min-cut) is called a tight set.

• A cut (S, S) is proper if |S| ≥ 2 and |S| ≥ 2.

• Two sets S and S′ cross if all of S r S′, S′ r S, S ∩ S′ and V r (S ∪ S′) are non-empty.

To discuss the cactus representation, we will rely on a number of basic facts about min-cuts.
For proofs, see [FF09]. Suppose G is a k-edge connected graph, i.e. |δ(S)| ≥ k for all S ⊆ V.

Fact 2.31. If two tight sets S and S′ cross, then each of Sr S′, S′r S, S∩ S′ and S ∪ S′ are tight. Moreover,
there are no edges from S r S′ to S′ r S, and there are no edges from S ∩ S′ to S ∪ S′.

Therefore, if two distinct tight sets S and S′ cross each other, then δ(S) ∩ δ(S′) = ∅.

The following fact is especially useful to us, since the support graph of x is 4-edge-connected.

Fact 2.32. Suppose that every proper mincut is crossed by some other proper mincut. Then k is even and G
is a cycle, with k/2 parallel edges between each adjacent pair of vertices.

Definition 2.33 (Cactus Graph). A loopless and 2-edge connected graph C = (U, F) is a cactus if each
edge belongs to exactly one cycle.

Theorem 2.34 (Cactus Representation [DKL76]). Let G = (V, E) be a loopless graph with min-cut size
k ≥ 1. There is a cactus C = (U, F) and a mapping φ : V → U such that the 2-element cuts of C are in
one to one correspondence with the min-cuts of G. Equivalently, S is at tight set of G if and only if φ(X) is
a tight set of C.

2.9.3 Near Minimum Cuts

The previous subsection demonstrates that minimum cuts have a very simple structure. Unfortu-
nately, near minimum cuts get quite a bit more complicated. Here are some essential facts about
them. One can see that the lemmas are much more powerful when ε = 0.

Lemma 2.35. If A, B (V are disjoint and C = A ∪ B is an ε-near min cut then x(E(A, B)) ≥ 1− ε
2 .

38

Proof.

2 + ε ≥ x(δ(C))
= x(δ(A)) + x(δ(B))− 2 · x(E(A, B))
≥ 4− 2 · x(E(A, B))

And the claim follows.

Lemma 2.36 ([OSS11]). For G = (V, E, x), let A, B (V be two crossing εA, εB near min cuts respectively.
Then, A ∩ B, A ∪ B, A r B, B r A are εA + εB near min cuts.

Proof. We prove the lemma only for A ∩ B; the rest of the cases can be proved similarly. By
submodularity,

x(δ(A ∩ B)) + x(δ(A ∪ B)) ≤ x(δ(A)) + x(δ(B)) ≤ 4 + εA + εB.

Since x(δ(A ∪ B)) ≥ 2, we have x(δ(A ∩ B)) ≤ 2 + εA + εB, as desired.

The following lemma is proved in [Ben97]:

Lemma 2.37 ([Ben97, Lem 5.3.5]). For G = (V, E, x), let A, B (V be two crossing ε-near minimum
cuts. Then,

x(E(A ∩ B, A− B)), x(E(A ∩ B, B− A)), x(E(A ∪ B, A− B)), x(E(A ∪ B, B− A)) ≥ (1− ε/2).

Lemma 2.38. For G = (V, E, x), let A, B (V be two ε near min cuts such that A (B. Then

x(δ(A) ∩ δ(B)) = x(E(A, B)) ≤ 1 + ε, and

x(δ(A)r δ(B)) ≥ 1− ε/2.

Proof. Notice

2 + ε ≥ x(δ(A)) = x(E(A, B r A)) + x(E(A, B))

2 + ε ≥ x(δ(B)) = x(E(B r A, B)) + x(E(A, B))

Summing these up, we get

2x(E(A, B)) + x(E(A, B r A)) + x(E(B r A, B)) = 2x(E(A, B)) + x(δ(B r A)) ≤ 4 + 2ε.

Since B r A is non-empty, x(δ(B r A)) ≥ 2, which implies the first inequality. To see the second
one, let C = B r A and note

4 ≤ x(δ(A)) + x(δ(C)) = 2x(E(A, C)) + x(δ(B)) ≤ 2x(E(A, C)) + 2 + ε

which implies x(E(A, C)) ≥ 1− ε/2.

39

2.9.4 The Polygon Representation

Near min cuts can be represented by what is known as a polygon, which we will use to study
the η-near minimum cuts of a fractionally 2-edge-connected graph. All of the statements are
generalizable to the (1 + η)α near minimum cuts of an α-edge-connected graph (by rescaling) for
η ≤ 6/5.

Definition 2.39 (Connected Component of Crossing Cuts). Given the set of η-near min cuts of a graph
G = (V, E), construct a graph where two cuts are connected by an edge if they cross. Partition this graph
into maximal connected components. In the following, we will consider maximal connected components C of
crossing cuts and simply call them connected components. We say a connected component is a singleton
if it has exactly one cut and a non-singleton otherwise.

For a connected component C, let {ai}i≥0 be the coarsest partition of vertices V such that for any C ∈ C,
either ai ⊆ C or ai ⊆ C. Each set ai is called an atom of C and we write A(C) to denote the set of all
atoms.

Note for any atom ai ∈ A(C) which is an η-near min cut, (ai, ai) is a singleton component, and is not
crossed by any η-near min cut. Therefore (ai, ai) 6∈ C.

We can now represent any cut in S ∈ C either by the set of vertices it contains or as a subset of A(C).
In the following, we will often identify an atom with the set of vertices that it represents9.

1

2

34

5

6

7

8

9

10 11

12

13

14

15

16

1

2
3

4

5

6

7
8

9

10
11

12

13

14

15

16

Figure 18: Consider the graph on the left, with minimum cut 7 (or, consider setting xe =
2
7 for

all edges and a min cut of 2 as in the support graph of a solution to PSub). On the right is the
polygon representation of the connected component of all proper cuts with at most 8 edges (or
x(δ(S)) ≤ 2 + 1/7). This component consists of all proper near minimum cuts of the graph
excluding the cut {7, 8}, which is in its own connected component of size 1. As in the below
definition, 15 and 16 are inside atoms, the others are outside atoms. Note {7, 8} is a single atom.

9For example, it will be convenient to write cuts as subsets of atoms. In this case the cut is the union of the vertices
in those atoms.

40

To study these systems, we will utilize the polygon representation of near minimum cuts
defined in [Ben97] and then extended in [BG08]. Their work implies that any connected component
C of crossing η-near minimum cuts has a polygon representation with the following properties, so
long as η ≤ 2

5 :

Polygon Representation

1. A polygon representation is a convex regular polygon with a collection of representing
diagonals. All polygon edges and diagonals are drawn using straight lines in the plane.
The diagonals partition the polygon into cells.

2. Each atom of C is mapped to a cell of the polygon. If one of these cells is bounded
by some portion of the polygon boundary it is non-empty and we call its atom an
outside atom. We call the atoms of all other non-empty cells inside atoms. Note that
some cells may not contain any atom. WLOG label the outside atoms a0, . . . , am−1 in
counterclockwise order, and label the inside atoms arbitrarily. We also label points of
the polygon p0, . . . , pm−1 such that outside atom ai is on the side (pi, pi+1) and a0 is
on the side (pm−1, p0). (In future sections we will refer to the special atom called the
root, and if it is an outside atom WLOG we will label a0 as the root.)

3. No cell has more than one incident outer polygon edge.

4. Each representing diagonal defines a cut such that each side of the cut is given by the
union of the atoms on each side. Furthermore, the collection of cuts given by these
diagonals is exactly C.

The following fact follows immediately from the above discussion:

Fact 2.40. Any cut S ∈ C (represented by a diagonal of P) must have at least two outside atoms.

Definition 2.41 (Outside atoms). For a polygon P and a set S of atoms of P, we write OP(S) to denote
the set of outside atoms of P in S; we drop the subscript when P is clear from context. We also write O(P)
(or O(A(C)) where C is the connected component of P) to denote the set of all outside atoms of P.

Note that, given S ∈ C, since S may be identified with a set of atoms, O(S) is also well defined.

41

3 Building Up: Degree Cuts and The Half Integral Case

We will start with two special cases in terms of the structure of x ∈ PSub to slowly build up to the
fully general case. The first, called the “degree cut case" is not too difficult to beat 3/2 on and
provides a good introduction to our proof strategy. And despite its simplicity, it is an intriguing
open question to design an algorithm (or analysis for max entropy) with a significantly improved
constant in this simple case.

In the second case, we assume that every edge e ∈ E has xe ∈ {0, 1
2 , 1}. This assumption on x

is known as the half integral case and has been studied extensively in its own right. The proofs in
this section closely follow [KKO20], in which we obtained a 1.49993 approximation for the half
integral case prior to the improvement in the general case. The best known approximation for this
case is now 1.4983 [Gup+22], an approach which combines max entropy with a matroid-based
rounding algorithm introduced in [HN19].

The half integral case (building on the degree cut case) is an especially useful window into
the proof in the general case. As we highlight at the end of the section (Section 3.6), while the
analysis ideas we present may at first sound specialized to the half integral case, essentially all of
them will be present in some form in the general case. More than that, these ideas really appear
in their “idealized" form in the half integral case. So, we highly recommend fully understanding
this section before moving on, as then in future sections a reader can see a complicated statement
and parse it more quickly by comparing it to its cleaner analog in the half integral case.10

3.1 The Degree Cut Case

Here we assume that there exists an absolute constant η > 0 such that for every proper cut S ⊆ V
we have x(δ(S)) ≥ 2+ η. We allow one exception for the cut containing u0, v0, which by definition
of the algorithm has x(δ(S)) = 2. In this section we will deal with this by contracting u0 and v0 to
a single vertex r we call the root (this is achievable since we assume c({u0, v0}) = 0). Note that
δT(r) = 2 with probability 1.

As will be the case for the remainder of the paper, “all" we need to do is show how to construct
the slack vector s : T → RE with the three properties detailed in Section 2.9. Since this is the first
time we explicitly construct such a vector, we remind the reader of the three necessary properties:

(i) Given a tree T, s(δ(S)) ≥ 0 with probability 1 for every S ⊆ V with |δT(S)| odd and
x(δ(S)) ≤ 2 + η.

(ii) E [se] ≤ −εxe for all e ∈ E for some ε > 0,

(iii) se ≥ − 1
2+η xe for all e ∈ E with probability 1.

The reason the degree cut case is such a massive simplifying assumption is that condition (i)
instead simply reads that for all vertices v with δT(v) odd we require s(δ(v)) ≥ 0.

In the half integral case, as mentioned we have η = 1. This is because by splitting every edge
with xe = 1 into two edges with xe = 1/2, we obtain a 4-regular 4-edge connected graph. Such a
graph is Eulerian, so every cut has an even number of edges. Therefore in the degree cut case,
every non-vertex cut S has x(δ(S)) ≥ 3.

10Of course, many completely new techniques are required in the general case so this trick does not always work.

42

In this section, we say that an edge e = (u, v) is good if PT∼µ [u, v both even in T] ≥ p, where
we say a vertex v is even in a tree T if δ(v)T is even and we define p = 1/27. We will first assume
the following probabilistic lemma and obtain a 3

2 − ε approximation in the degree cut case. We
will then prove it in the following subsection.

Lemma 3.1 (Good Edges). Let v be a vertex. Then, if Gv is the set of good edges adjacent to v,
x(Gv) ≥ 1/2.

We note that not all edges are good, and call these edges “bad." Indeed, the variant of the
k-donut has a large number of bad edges. In the below picture (where we omit the root for a
cleaner picture), every edge connecting the two cycles is bad!

Figure 19: In the k-donut variant that is a running example in this dissertation, every red edge
(with the exception of those adjacent to the root, not shown here) has the property that its two
vertices never have the same parity in the tree at the same time. In this section, we call such edges
“bad." Note in future sections the definition of bad depends on the structure of near minimum
cuts.

3.1.1 The Construction of s in the Half Integral Degree Cut Case

The vector m will consist of the convex combination of two feasible points in the O(T)-Join
polyhedron, g and b (where g is for “good" edges and b is for “bad" edges).

For a tree T and an edge e = (u, v) we let:

ge =

{
1
6 If u and v are both even in T
1
4 Otherwise

Lemma 3.2. g is in POJ with probability 1.

Proof. First, consider any cut consisting of a single vertex v (or its complement). If v is odd, we
need to ensure that g(δ(v)) ≥ 1. If v is odd, then ge = 1/4 for all e ∈ δ(v), so this follows from
the fact that the support graph is 4-regular.

43

Now consider any cut S with 2 ≤ |S| ≤ n− 2. We now argue that g(δ(S)) ≥ 1 with probability
1. This follows from the fact that:

g(δ(S)) ≥ 1
6
|δ(S)| ≥ 1

6
· 6 = 1,

where we use that every cut S with 2 ≤ |S| ≤ n− 2 is not minimal so it has at least 6 edges.

We now design our second vector b. For a tree T and an edge e = (u, v) we let:

be =

{
1
2 If e is good
1
6 If e is bad

Lemma 3.3. b is in POJ.

Proof. For any non-vertex cut, similar to above, the O(T)-Join constraint is easily satisfied. For a
vertex cut v, by Lemma 3.1 there is at least one good edge adjacent to every vertex. Therefore,
b(v) ≥ 1

2 +
3
6 = 1.

Definition 3.4 (Matching vector m in the degree cut case). Let m = αb+(1− α)g, for some 0 < α < 1
we choose in the next subsection. Since b and g are both in the O(T)-Join polyhedron, so is m.

Lemma 3.5. For any good edge e, E [ge] ≤ 1
4 −

p
12 .

Proof. Let pe = PT∼µ [u, v even]. We can compute:

E [ge] =
pe

6
+

1− pe

4
≤ p

6
+

1− p
4

=
1
4
− p

12
,

as desired.

Therefore, for any good edge e,

E [me] ≤
1
2

α + (1− α)

(
1
4
− p

12

)
For any bad edge e, we have

E [me] ≤
1
6

α +
1
4
(1− α)

To make the two equal, we set α = p
4+p . Therefore,

E [me] ≤
1
4
− p

48 + 4p

for all edges e, giving a 1.4985 approximation for p = 1/27.

44

3.1.2 Proof of Lemma 3.1

We now prove the lemma from above which claims there is at least one good edge adjacent to
every vertex for p = 1/27.

To do so we first slightly strengthen Lemma 2.19 in the half integral case.

Lemma 3.6. Let S ⊆ V with x(δ(S)) = 2 in the half integral case. Then P [δT(S) even] ≥ 13/27.

Proof. By Corollary 2.16 δT(S) is a BS(2) for at most four Bernoullis with success probabilities
p1 ≥ p2 ≥ p3 ≥ p4. We now apply Hoeffding (Theorem 2.17) to the function indicating if δT(S) is
even. There are four possible cases for the worst case setting of the remaining three Bernoullis:

• p1 = p2 = 1, in which case the probability it is even is 1.

• p1 = 1 and p2 = p3 = 1/2. In this case the probability it is even is 1/2.

• p1 = 1 and p2 = p3 = p4 = 1/3. In this case, the probability it is even is 4/9+ 1/27 = 13/27.

• p1 = p2 = p3 = p4 = 1/2. Then the probability it is even is 1/2.

Note one can also exclude the last case by observing that since S is a cut in the graph, δT(S) ≥ 1
with probability 1, implying p1 = 1. One then applies Hoeffding to the remaining three Bernoullis
and the function indicating their sum is odd.

Lemma 3.7. For every vertex v in the half integral case, there is an edge e = {u, v} such that
P [u, v even] ≥ 1/27.

Proof. Let µ′ be the conditional measure where δT(v) = 1. Observe that in µ′, first we sample
a tree in G r {v}, and then we independently add an edge in δ(v). As conditioning δT(v) = 1
is equivalent to conditioning δT(v) ≤ 1, by Fact 2.25, Pµ′ [e ∈ T] ≤ 1/2 for all edges e ∈ δ(v).
Thus, for at least one edge e ∈ δ(v), we have 1/4 ≤ Pµ′ [e ∈ T] ≤ 1/2. In the special case that
P [δT(v) = 1] = 0, we just let e be an arbitrary edge in δ(v). Let e = {u, v}.

It remains to prove that Pµ [δ(u), δ(v) even] > 1/27.

P [δ(u), δ(v) even] = 1−P [δ(u) or δ(v) odd]
= 1−P [δ(u) odd]−P [δ(v) odd] + P [δ(u), δ(v) odd]
≥ 13/27−P [δ(v) odd] + P [δT(v) = 1∧ δ(u) odd] ,

by Lemma 3.30. First, note if P [δT(v) = 1] = 0, then we get that P [δT(v) = 2] = 1 (since
P [δT(v) ≥ 1] = 1, and E [δT(v)] = 2). So, the RHS is 13/27 and we are done.

Otherwise,

P [δT(v) = 1∧ δT(u) odd] = P [δT(u) odd | δT(v) = 1] ·P [δT(v) = 1]

≥ 1
4
·P [δT(v) = 1] .

The inequality is because edge e can make δ(u) odd by being in/out of the tree and that has
probability at least 1/4. Therefore,

P [δ(u), δ(v) even] ≥ 13/27−P [δT(v) odd] +
1
4

P [δT(v) = 1]

= 13/27− 3
4

P [δT(v) = 1]−P [δT(v) = 3] .

45

Finally, by Fact 2.26, the RHS attains its minimum value when δT(v) is sum of 4 Bernoullis with
success probabilities 1, 1/3, 1/3, 1/3.

3.1.3 The Construction of s in the General Degree Cut Case

We simply generalize the above to the degree cut case when η is an arbitrary constant and
the edges are not necessarily half integral. As before the vector m will consist of the convex
combination of two feasible points in the O(T)-Join polyhedron, g and b (where g is for “good"
edges and b is for “bad" edges).

Here we will rely on a probabilistic lemma which is slightly more involved to prove. It is an
immediate corollary of a statement proved later in this dissertation:

Corollary 3.8 (Corollary of Theorem 6.21). Let v be a vertex. Then, if Gv is the set of good edges adjacent
to v, x(Gv) ≥ 1.

For a tree T and an edge e = (u, v) we let:

ge =

{
1

2+η xe If u and v are both even in T
1
2 xe Otherwise

Lemma 3.9. g is in POJ.

Proof. First, consider any cut consisting of a single vertex v (or its complement). If v is odd, we
need to ensure that g(δ(v)) ≥ 1. If v is odd, then ge = xe/2 for all e ∈ δ(v), so this follows from
the fact that x(δ(v)) = 2.

Now consider any cut S with 2 ≤ |S| ≤ n− 2. We now argue that g(δ(S)) ≥ 1 with probability
1. This follows from the fact that:

g(δ(S)) ≥ 1
2 + η

x(δ(S)) ≥ 1
2 + η

(2 + η) = 1,

where we use that every cut S with 2 ≤ |S| ≤ n− 2 has x(δ(S)) ≥ 2 + η.

We now design our second vector b. For a tree T and an edge e = (u, v) we let:

be =

{ 1+η
2+η xe If e is good

1
2+η xe If e is bad

Lemma 3.10. b is in POJ.

Proof. For any non-vertex cut, similar to above, the O(T)-Join constraint is easily satisfied. For
a vertex cut v, by Corollary 3.8 the x weight of the set of good edges adjacent to v is at least 1.
Therefore, b(v) ≥ 1+η

2+η + 1
2+η = 1.

Definition 3.11 (Matching vector m in the degree cut case). Let m = αb + (1 − α)g, for some
0 < α < 1 we choose in the next subsection. Since b and g are both in the O(T)-Join polyhedron, so is m.

Lemma 3.12. For any edge e, E [me] ≤
(1

2 −
pη
9

)
xe.

46

Proof. Let pe = PT∼µ [u, v even]. We can compute:

E [ge] =

(
pe

2 + η
+

1− pe

2

)
xe ≤

(
p

2 + η
+

1− p
2

)
xe =

(
1
2
− ηp

4 + 2η

)
xe,

as desired.

Therefore, for any good edge e,

E [me] ≤
(

α

(
1 + η

2 + η

)
+ (1− α)

(
1
2
− ηp

4 + 2η

))
xe

For any bad edge e, we have

E [me] ≤
(

α

2 + η
+

1− α

2

)
xe

To make the two equal, we set α = p
2+p . Therefore,

E [me] ≤
(

p/(2 + p)
2 + η

+
1− p/(2 + p)

2

)
xe <

(
1
2
− pη

9

)
xe

for all edges e. Since η, p are absolute constants, this is at most (1
2 − ε)xe for some absolute

constant ε > 0. Therefore in the degree cut case, the expected cost of the max entropy algorithm
is at most (3

2 − ε)c(x).

3.2 The Half Integral Case

We now build up significantly and obtain a better-than-3/2 approximation for the half integral
case with no additional assumptions. Here we assume that there is an optimal LP solution with
xe ∈ {0, 1

2 , 1} for all edges e ∈ E. In particular, we show:

Theorem 3.13. Let x be a half-integral solution to (2), i.e. xe ∈ {0, 1
2 , 1} for all edges e ∈ E. Then, max

entropy algorithm produces a solution of expected cost at most 1.49993 · c(x).

Assumption 3.14. Throughout the paper, we assume that we are given a feasible half-integral solution of
the PSub, that is, for each e = {u, v}, xe ∈ {0, 1

2 , 1}.

Remark 3.15. We will often talk about the support graph G = (V, E) of x, replacing any edge of
value 1 with two parallel edges. Therefore the number of edges crossing any minimum cut is 4
(corresponding to fractional value 2), and the graph is Eulerian. Henceforth, any reference to the
graph G refers to this support graph.

One of the very nice things about the half integral case is that there are no cuts S with
2 < x(δ(S)) < 3, as every cut in this 4-regular support graph has an even number of edges (and
at least 4). This allows us to define a completely equivalent algorithm that adds a lot of intuition
for the proof. The equivalence is an immediate consequence of Fact 2.27 and Fact 2.1: for every
minimum cut S, E(S) is in the spanning tree polytope, thus µ decomposes into µE(S) × µG/S.

Thus we get the immediate consequence:

47

Algorithm 2 Algorithm for half-integral TSP

1: Given a half-integral solution x of the subtour LP, with an edge e+ with xe+ = 1.
2: Let G be the support graph of x.
3: Set T = ∅ . T will be a 1-tree
4: while there exists a proper tight set of G that is not crossed (by a tight set) do
5: Let S be a minimal such set such that e+ /∈ E(S) . Note such a set always exists, as S, S are

both proper tight sets, so one does not have e+. In Fact 3.17 we show that e+ /∈ δ(S).
6: Compute the maximum entropy distribution µ of E(S)
7: Sample a tree from µ and add its edges to T
8: Set G = G/S . Note we never contract e+.
9: end while

10: Randomly sample a cycle from G (including e+) and add it to T . In Fact 3.18 we show G
itself is a cycle

11: Compute the minimum O-Join on the odd nodes of T. Shortcut it and output the resulting
Hamiltonian cycle.

Fact 3.16. Any tree chosen from a max-entropy distribution corresponding to a proper tight set S which is
not crossed is independent of all other edges of T that we choose in different iterations of the while loop in
our algorithm.

Our algorithm can be viewed as essentially constructing a cactus representation of the min-cuts.
More precisely, the critical cuts of our algorithm (defined below) are in one to one correspondence
with the cycles of the cactus.

3.2.1 Critical Sets

In this section we will more fully explore the interaction between our algorithm and the structure
of the cactus representation of minimum cuts. From now on, assume G is the 4-regular support
graph of the half-integral LP solution x and that we have executed our algorithm on G.

Fact 3.17. In step 5 of the algorithm, we have e+ /∈ δ(S).

Proof. Say e+ ∈ δ(S), and let e+ = {u, v}. Then, since xe+ = 1, {u, v} is a tight set. It also crosses
S (as S is a proper set). That is a contradiction.

Fact 3.18. In step 10 of the algorithm the remaining graph G is a cycle of length at least 3 such that there
are exactly two parallel edges between each pair of consecutive vertices.

Proof. Let G be the graph which remains after the while loop in the algorithm terminates. By the
algorithm, e+ = {u, v} is not contracted yet. G has at least 3 vertices, as otherwise in the last of
the while we contracted a set S where e+ ∈ δ(S) which contradicts Fact 3.17. If G has 3 vertices
then it must be a cycle. Otherwise, {u, v} is a proper tight set in G, and it must be crossed. In this
case by Fact 17.4 G is a cycle of length at least 4.

A tight set S selected in step 5 of the algorithm is called a critical set and the corresponding
cut δ(S) := E(S, S) is called a critical cut. Vertices of G are degenerate critical sets.

48

There is a natural hierarchy of critical sets associated with the execution of the algorithm. The
leaves of the hierarchy are vertices of the original graph. If S and S′ are critical sets such that S or
a contracted version of S is a vertex in S′, then S is a child of S′ (respectively S′ is the parent of S).
If S̃ is an ancestor of S in the hierarchy of critical sets, then we say that S̃ is a higher critical set
than S (resp. S is a lower critical set than S̃). For example, in Fig. 21, critical set F is the parent of
and is higher in the hierarchy than critical sets A, B and C.

The root of the hierarchy is the graph G once we get to step 10 of the algorithm.

Definition 3.19 (Going higher). An edge e in δ(S) goes higher if the lowest critical set S′ such that
S (S′ satisfies e ∈ δ(S′).

Note that by Fact 3.16 any edge going higher is independent of all edges which do not.

t

a

h

e

g

f

b

A

B C D E

A

B C D

E

a

h
e

g

f
bF G

F G

a

g

b

h

Figure 20: Example execution on a half integral graph. In the first figure, we visualize five tree
operations in parallel, which we may do since all these tight sets have size 4 and are not crossed
by other tight sets. Similarly in the second figure we do two operations in parallel. In the final
step, a cycle is chosen by picking two edges at random. A, B, C, D, E are all “degree cuts" whereas
F and G are both “cycle cuts." t is an example top edge (as are all edges picked in the first graph).
a, g and b, h are cycle partners with respect to the cut F. e, f are companions.

Structure of critical cuts: Consider a critical set S chosen in step 5 in the algorithm. We will
abuse notation and, at any time during the execution of the algorithm, refer to G with vertex set V
as the graph remaining at that time, after contraction of all trees that have been sampled before S

49

Pick a cycle

F

A B C

G

D E

Figure 21: An execution tree on this graph.

is considered. Consider the graph G′ := G/V r S and let w be the contracted vertex representing
V r S. There are two possibilities for the structure of G′:

• Case 1: There are no proper min-cuts inside S. In this case, we call δ(S) a degree cut. In
Fig. 20, A, B, C, D, E are all degree cuts.11

• Case 2: There is a proper min-cut (S0, S0) such that S0 (S. In this case, it (and every other
proper min-cut inside S) is crossed by some other min-cut (or would be more minimal than
S).

It follows that in G′, every proper mincut is crossed by some other proper mincut and
therefore, by Fact 17.4, the graph is a cycle with two edges between each pair of adjacent
vertices in the cycle. In this case, we call δ(S) a cycle cut. For example, F and G in Fig. 20 are
cycle cuts.

We divide the 4 edges from w into two pairs, such that each pair share an endpoint inside S.
We call each such pair cycle partners with respect to δ(S). Every other pair of edges between
two adjacent vertices in the cycle are called companions.

For example, in Fig. 20, δ(F) is a cycle cut and a, g and b, h are cycle partners with respect to
δ(F). e and f are companions.

Cycle cuts correspond to cycles of length 3 or more in the cactus.

Note that every edge has at most one companion but possibly many partners depending on the
underlying cactus.

Definition 3.20 (Highest critical cuts). For a vertex u and an edge e = {u, v}, let Su,e be the highest
critical set S such that u ∈ S and v 6∈ S, and let Se be the lowest critical set such that both Su,e and Sv,e are
(contracted) nodes in Se. Then δ(Su,e) and δ(Sv,e) are the highest critical cuts containing e. If the edge e is
clear from context, we may drop e in the notation Su,e.

Definition 3.21 (Bottom Edge and Top Edges). For an edge e, if Se is a cycle cut, we say that e is a
bottom edge and otherwise it is a top edge.

For example, in Fig. 20, e, f , a, g, b, h are bottom edges (among the labeled edges) and t is a top
edge. The following fact is immediate:

Fact 3.22. Companion bottom edges e, f are in or out of T independently of every other edge of T.
11These cuts correspond to cycles of length two in the cactus.

50

Min-cuts containing a particular edge: The set of min-cuts an edge e = (u, v) is on are the
following:

(a) all critical degree cuts δ(S) such that e ∈ δ(S). (This includes the cuts (u, V r u) and
(v, V r v).)

(b) For any set S such that δ(S) is a critical cycle cut, and e is either in S or on δ(S), every cut of
the cycle that includes the edge e is a min-cut e is on.

It is easy to see that each of the above is a min-cut. To see that there are no others, it suffices to
observe by induction that whenever a set S is contracted, we have accounted for all min-cuts in
which nodes inside S are partitioned between the two sides of the cut.

Other facts: We end this part by recording the following basic facts about structure of min cuts,
and we will use them throughout our proofs.

Fact 3.23. Suppose that S is a critical set. If some (contracted) vertex v ∈ S has two edges to w := V r S,
then S is a cycle cut.

Proof. This is immediate if |S| = 2, so suppose that |S| > 2. Then v has two edges to w, which has
two edges to S r v which has two edges to w. Since S r v is therefore a proper min-cut but was
not selected in step 5, it must be crossed by some other set, which, by the earlier discussion of the
structure of critical cuts , means that δ(S) is a cycle cut.

Fact 3.24. Suppose that S and S′ are two distinct tight sets. Then |δ(S) ∩ δ(S′)| ≤ 2.

Proof. By contradiction. Suppose that S and S′ are both proper min-cuts and have δ(S)∩ δ(S′) ≥ 3.
Then by Fact 17.3, they do not cross. Therefore it must be that, say, S ⊂ S′. But in this case, if
δ(S) ∩ δ(S′) ≥ 3, since δ(S) and δ(S′) are both min-cuts, there can only be one edge from S to
S′ r S and at most one edge from S′ r S to V r (S ∪ S′) which contradicts δ(S′ r S) ≥ 4.

Fact 3.25. Suppose that S and S′ are two critical sets such that S ⊂ S′. Then if δ(S) ∩ δ(S′) = 2, then S′

is a cycle cut.

Proof. Once S is contracted, it has two edges to V r S′, and therefore by Fact 3.23 is a cycle cut.

Fact 3.26. Suppose that S ⊂ S′ are two critical cycle cuts. Then any two edges are cycle partners on at
most one of these (cycle) cuts.

Proof. Suppose not. Then there is a pair of edges e and f that are cycle partners on both. Suppose
that g and h are the other pair of cycle partners on δ(S) and that their endpoint inside S is node
u. Then (S′ r S) ∪ u is a min-cut that crosses S, which is a contradiction to the selection of S.
[Essentially this means that in fact there is a larger cycle here.]

Fact 3.27. Say S is a critical set and exactly two edges of δ(S) are bottom edges that do not go higher. Then
the other two edges of δ(S) must go higher.

Proof. Say δ(S) = {a, b, c, d} and suppose a, b are bottom edges that do not go higher. Say S′ is
the parent of S in the hierarchy of critical cuts. This implies that δ(S′) is a cycle cut. So, a, b
are companions in this cycle. This implies that either c, d are also companions or they are cycle
partners in δ(S′).

51

Lemma 3.28. Let S ⊆ E with |S| = 3. Furthermore, assume that P [δT(S) ≥ 1] = 1. Then,
P [δT(S) = 1] ≥ 1

2 and P [δT(S) = 2] ≥ 3
8 .

Proof. By Corollary 2.18, we can write the rank sequence of δT(S) as a sum of 3 independent
Bernoullis B1, B2, B3, and since P [δT(S) ≥ 1] = 1 we know that for one Bernoulli p = 1. Without
loss of generality let p1 = 1. Then by Theorem 2.17 we know that P [δT(S) = 1] and P [δT(S) = 2]
are minimized when p2 = p3 = 1

4 or p2 = 1
2 and p3 = 0. Therefore:

P [δT(S) = 1] ≥ min
{(

3
4

)2

,
1
2

}
=

1
2

P [|S ∩ T| = 2] ≥ min
{

2
(

1
4

)(
3
4

)
,

1
2

}
=

3
8

The following two lemmas are proved using a similar analysis.

Lemma 3.29. Let S ⊆ E with |S| = 2. Let 1
2 ≤ E [|S ∩ T|] ≤ 3

2 . Then P [δT(S) = 1] ≥ 3
8 .

This lemma was proved in the previous subsection (see Lemma 3.30, but we repeat it here.

Lemma 3.30. For a min-cut S, P [δT(S) even] ≥ 13/27.

Lemma 3.31. Let S1, S2 ⊆ E with |S1 ∩ S2| = ∅. Let |S1| = |S2| = 2, or equivalently E [δT(S1)] =
E [δT(S2)] = 1. Then P [δT(S1) = 1∧ δT(S2) = 1] ≥ 3

16 .

Proof. Let S1 = {e, f }. Then condition on e ∈ T: this occurs with probability 1
2 . By Fact 2.25 we

have
E [| f ∩ T| | e ∈ T] ≤ 1

2

Then condition on f 6∈ T. Given the above, this happens with probability at least 1
2 . Similarly

consider the event e 6∈ T and f ∈ T. One of these occurs with probability 1
2 . Therefore, in either

event we have:
1
2
≤ E [|S2 ∩ T|] ≤ 3

2
And now by Lemma 3.29 both events occur simultaneously with probability at least 3

16 .

3.3 Overview of Analysis

As already mentioned, our algorithm consists of two steps: sample a 1-tree T, and then construct
an optimal O-join for the odd degree vertices in the 1-tree.

Given a feasible LP solution x, the choice ye = xe/2 for each edge e ∈ E (which gives ye := 1/4
in the half integral case), yields an O-join solution of total cost at most OPT/2. However, this is
essentially Christofides’ algorithm and guarantees only a 3/2 approximation.

The key to improving on this is the observation that constraint (4) in the O-join LP is not
binding if the intersection of the cut δ(S) with the tree is even.

Definition 3.32 (Even cuts). A cut δ(S) is even in T (or simply “even” when T is understood) if δT(S)
is even.

52

Thus, for every edge e with the property that every min-cut that e is on is even, we can
reduce ye to 1/6, since every non-min-cut has at least 6 edges, and therefore this guarantees that
constraint (4) remains satisfied everywhere. This is the gist of the approach taken in [OSS11].

Suppose that there are multiple “good" edges e with the property that every min-cut they
are on is even, say with probability at least p (over the randomness in the selection of T). Then
for those outcomes T in which e has this property, we could set ye := 1/6 and satisfy the O-join
constraints. This would save us 1

12 c(e) on every such edge e (the reduction from 1/4 to 1/6) and
thereby guarantee a reduction in the cost of the O-join solution of ∑e "good"

p
12 c(e).

Unfortunately, in general, it is not possible to argue that every min-cut an edge is on is even
simultaneously in T with constant probability. So, we will use a careful charging scheme.

Definition 3.33 (Last Cuts). For an edge e, the last cuts of e are the only (two) min-cuts containing e and
edges going higher in the graph right before contracting Se.

Observe that the last cuts of a top edge are critical cuts, but the last cuts of bottom edges are
not critical.

Definition 3.34 (Even at Last). For an edge e we say e is even at last if the two last cuts of e are even.
Equivalently, if e is a bottom edge, we say e is even at last if all the min cuts containing e on the cycle

defined by the graph consisting of Se with V r Se contracted are even. Otherwise, if e = {u, v} is a top
edge, then it is even at last if the critical cuts Su, Sv are even simultaneously.

Fact 3.35. If a bottom edge e is even at last, then all (bottom) edges f where S f = Se are even at last.

Proof. Since δ(Se) is a cycle cut, the edges inside Se form a path, and thus, exactly one edge
between each pair of (possibly contracted) vertices inside Se is selected as part of the tree on Se
chosen in step 6 of the algorithm. If, e is even at last, we must have exactly one of each pair of
cycle partners on δ(S) is in T; therefore, every pair of adjacent nodes in the cycle have one edge
connecting them in the tree. So, all cuts on the cycle have exactly two edges in T. This implies
every bottom edge of this cycle is even at last.

Remark 3.36. By Fact 17.4, the companion of every bottom edge e has exactly the same pair of last
cuts as e.

Definition 3.37 (Good edges). An edge e = (u, v) is good if it is even at last with probability at least p
for some constant p > 0.

Instead of proving that all min-cuts that a single edge is on are even, we will instead prove that
every minimum cut contains at least one good edge. Each good edge e will then be responsible
for its last two cuts. This will allow edges to be reduced when they are even at last, as all cuts
lower in the hierarchy are handled by other edges.

Theorem 3.38. There is a universal constant p ≥ 1/27 such that every every min-cut has at least one
good edge.

We already proved this theorem for vertices in Lemma 3.1. Proving it for min-cuts is identical,
thus we omit the proof here.

As we hinted at, we will reduce the value of ye to 1/6 whenever an edge e is even at last.
However, since e may also be on many other lower min-cuts, if we reduce ye, the solution may

53

not be feasible ((4) may be violated) as the lower min-cuts may be odd. To handle any lower
min-cut C that e is on, we show that, conditioned on e being even at last, the probability that C
is also even is at least q for some q ≥ Ω(1). Therefore, we only need to worry about the lower
cuts with probability 1− q each. In the bad event that a lower cut C is odd, we will need to fix
the solution to guarantee that (4) still holds: our approach is to split the deficit introduced in the
O-Join constraint for C among the good edges that do not go higher (see Definition 3.19). We
then simply show that in expectation each edge gains. This part of the proof heavily exploits the
properties of cactus representation of the min-cuts that we discussed above.

We note that Theorem 3.38 on its own is not enough to run our charging argument; so, we
need a slightly stronger version. In particular, in some cuts we may need to have two or three
good edges.

3.4 Probabilistic lemmas

In this section, we present three probabilistic lemmas which show that in every min-cut there is at
least one good edge, (and in some there are even more). This immediately proves Theorem 3.38.

Note the last cycle that we choose in step 10 of the algorithm has all edges even at last so
we don’t need to address it in this section. Furthermore, by Fact 3.17, e+ does not belong to any
critical cut.

Lemma 3.39 (Bottom edge lemma). Suppose that e = (u, v) is a bottom edge. Then e is good (where
p ≥ 3/16).

Su,e

Sv,e

Se

e = (u, v)

a
b

c
d

Figure 22: Illustration of edges in Bottom Edge Lemma.

Proof. If e is a bottom edge then Se (= S(u,v)) is a cycle cut. By construction, when a tree on Se
is selected in step 8 of the algorithm, exactly one edge is chosen between every pair of adjacent
nodes in E(Se). So it suffices to consider the edges in δ(Se). These divide up into two pairs of
cycle partners connecting Se to V r Se, say {a, b} and {c, d}. (See Fig. 22.) Then by Lemma 3.31,
setting S1 := {a, b} and S2 := {c, d}, we have P [δT(S1) = 1 and δT(S2) = 1] ≥ 3/16.

Lemma 3.40 (Top edge lemma). In a critical cut δ(S) with one edge that goes higher, of the remaining
three edges in the cut, at least two are good with p ≥ 1

16 .

Proof. First, suppose that e is the edge that goes higher from δ(S), and f , g and h are the other
edges in δ(S).

54

e
a b c

f

g

h

δ(S)

Figure 23: Illustration of top lemma. The figure shows the case where all three of S f , Sg and Sh
have an edge that goes higher (a, b, c respectively). It may be that some number of these nodes do
not have an edge going higher.

If the other endpoint of one of these three edges, say Sh, has no edge that goes higher then h
is good. (See left side of Fig. 23.) To see this, observe that we can condition on δ(Sh) being even
which by Lemma 3.30 has probability at least 13/27. Given this event, |{ f , g, h} ∩ T| is either even
or odd. In either case, the event e ∈ T is an independent event that occurs with probability 1/2.
Therefore,

P [|δ(Sh) ∩ T| even] ·P [e makes δ(S) even | |δ(Sh) ∩ T| even] ≥ 13
27
· 1

2
.

Therefore, at least two of f ,g and h are good if at least two of S f , Sg and Sh do not have an
edge that goes higher.

Consider next the case that, say, S f and Sg both have an edge that goes higher, but Sh doesn’t.
As before, h is good. We claim that one of f and g is also good. To see this, since e ∈ T is
independent of f , g, h ∈ T, we observe using Lemma 3.28 that

P [e ∈ T and |{ f , g, h} ∩ T| = 1] ≥ 1
2
· 1

2
.

Next, note that for one of a and b, say a,

P [a ∈ T|e ∈ T] ≥ 1
4

.

Therefore, as before, regardless of the even/odd status of X ∪ f after conditioning e in and f , g, h
to 1, the cut can be fixed by a, meaning we have p ≥ 1

16 .
Finally, if all three of S f , Sg and Sh have an edge that goes higher, then again, condition e in

and { f , g, h} ∩ T| = 1. Then Among a, b and c, for two of them, say a and b, their probability of
being in T given that e ∈ T is at least 1/4. Therefore, each can fix their corresponding cut (δ(S f)
for a and δ(Sg) for b) and both f and g are good.

55

As mentioned, we proved this lemma for vertices in Lemma 3.1, and it can be easily extended
for any critical cut S and the fact that every bottom edge is good.

Lemma 3.41. For every critical cut S, there is an edge e ∈ δ(S) such that P [e even at last] ≥ 1/27.

3.5 Proof of Main Theorem

Recall that every good edge is even on top with probability at least p. The following statement is
the main technical result of this section.

Lemma 3.42. There is a (random) feasible O-join solution such that for every good edge e,

E [ye] ≤ 1/4− p/240,

and for every bad edge ye = 1/4 with probability 1.

Before, proving the above statement we use it to prove Theorem 3.13.

Proof of Theorem 3.13. Consider the trivial O-join solution y′ where y′e = 1/2 if e is good and y′e =
1/6 otherwise. Note that this is a valid O-join by Theorem 3.38. Now, define z = αy + (1− α)y′

for some α that we choose later. It follows that for any good edge e,

E [ze] ≤ α(
1
4
− p

240
) + (1− α)

1
2

,

and for a bad edge f :

E
[
z f
]
= α

1
4
+ (1− α)

1
6

So, for p = 1
27 and α = 2160

2161 we obtain E [ze] ≤ 0.249962. Since any edge e is chosen in T with
probability 1/2 (up to a 2−n) error), we pay at most 1/2 + E [ze] for any edge e whereas x pays
1/2. Therefore, we get a 0.749962/0.5 approximation algorithm.

So, in the rest of this section we prove Lemma 3.42.

O-join construction for good edges: For each good edge e, define Be to be an independent
Bernoulli random variable which is 1 with probability p/pe, where p is the lower bound on the
probability that any good edge is even on top, and pe is the actual probability that e is even on top.
If e, f are bottom edge companions, then we let B f = Be (with probability 1). Note that this still
makes selection of e, f independent of Be and any other edge of the graph.

We then construct an O-join solution for each 1-tree T using the following three step process:

1. Initialize ye := 1/4 for each edge e ∈ E.

2. Next, if e is even at last in T and Be = 1, reduce ye by re(T) where:

re(T) :=


β if e is a bottom edge.
τ2 if e = {u, v} is a good top edge and there are exactly 2 good top edges

in both δ(Su) and δ(Sv) that do not go higher.
τ3 if e is a good top edge that does not meet the previous criteria.

β, τ2, τ3 are parameters we will set later. For now, we just assume τ3 ≤ τ2 ≤ β ≤ 1/12. When
re(T) > 0, we say that e is reduced.

56

3. On each cut C that is odd, let ∆(C) := ∑e∈C re(T) be the amount by which edges on that cut
were reduced in step 2, and let GC be the set of good edges on C such that C is one of their
last cuts. Now, for an edge e ∈ GC, let C′ (and C) be the last cuts of e. Then increase ye by
max

{
∆(C)
|GC | ,

∆(C′)
|GC′ |

}
. Notice that in this case, since C is one of e’s top cuts, e is not even on top

in T and therefore is not reduced in step 2.

By construction, this is a valid O-join solution since on every min-cut we began with at least 4
edges crossing every cut with ye = 1/4 and then guaranteed that every reduction on an odd cut
in step 2 was compensated for by a matching increase on that cut in step 3. (The ultimate gain
of course will come from the fact that many cuts will be even and hence, there will not need to
be an increase.) All non-min-cuts have at least 6 edges on them, each of value at least 1/6 (after
reduction) and are therefore satisfied in (4).

In the rest of the proof, it is enough to show that for any good edge e, E [ye] ≤ 1/4− p/240.
We complete the proof using the following two lemmas.

Lemma 3.43. If β ≥ 5τ2/4, then for any good top edge e = {u, v},

E [ye] ≤
1
4
− p min{τ2 − β/2, τ3 − 5β/12}.

Proof. Let C := δ(Su) and C′ := δ(Sv). Recall that, since e is a top edge, C and C′ are critical cuts.
Let HC (resp. HC′) be the good edges in C (resp. C′) that go higher. Note that |HC| and |HC′ | is
either 0 or 1 by Fact 3.25. We consider 3 cases:

Case (i): |GC| = |GC′ | = 2. In the worst case, there is an edge, say f ∈ HC and an edge g ∈ HC′ .
If f is a bottom edge, then

E
[
r f (T)

]
= β · p and P [C is odd| f reduced] = 1/2

since
P [parity of | f ∩ T| = parity of |(δ(Su)r f) ∩ T|] = 1/2,

by Fact 3.22. Therefore, the expected reduction in step 2 on C is at most

E
[
r f (T)

]
· 1
|GC|

·P [C is odd| f reduced] = βp · 1
2
· 1

2
=

β · p
4

.

On the other hand, if f is a top edge, then the expected reduction in step 2 on C is at most

E
[
r f (T)

]
· 1
|GC|

·P [C is odd| f reduced] ≤ τ2 p · 1
2
· 5

8
≤ βp

4
,

where we use Lemma 3.28 and the fact that edge f is independent of the rest of edges in C
to infer that , P [C is odd| f reduced] ≤ 5/8. The same reasoning applies to g, so we get

E [ye] ≤
1
4
− τ2 p + 2 · βp

4
.

57

f g

e

δ(Se)

f g

e

δ(Se)

Figure 24: Cases (i) is on the left and case (ii) is on the right. Orange edges are good. On the
left, ye is reduced by τ2 with probability p and pays half the burden on both sides; on the right ye
is reduced by τ3 with probability p and pays half the burden on one side and one third of the
burden on the other.

Case (ii): |GC| ≥ 3 or |GC′ | ≥ 3 (or both). Again, in the worst case, there is an edge, say f ∈ HC
and an edge g ∈ HC′ . By the same reasoning as above, E [ye] is largest if f and g are bottom
edges. In this case, the same calculation as above gives,

E
[
r f (T)

]
· 1
|GC|

·P [C is odd| f reduced] ≤ βp · 1
|GC|

· 1
2

,

and similarly for g, so

E [ye] ≤
1
4
− τ3 p +

βp
2

(
1
2
+

1
3

)
.

Case (iii): |HC|+ |HC′ | ≤ 1. In the worst case, |HC| = 1 and |HC′ | = 0 and f ∈ HC is a bottom
edge. Note that in this case we may have GC′ = {e}. But the advantage is that we never
increase ye to fix C′ since HC′ = ∅. Then,

E [ye] =
1
4
− τ3 p + βp · 1

|GC|
· 1

2
≤ 1/4− τ3 p +

βp
4

.

Note that if case (iii) does not happen, then by Lemma 3.40 we have |GC|, |GC′ | ≥ 2. So, either (i)
or (ii) will happen.

Lemma 3.44. If 3τ3 ≤ 2τ2, then for any (good) bottom edge e,

E [ye] ≤ 1/4− p min{β/4, 3β/4− τ2, β− 4τ2/3}.

Proof. Say f is the companion of e. Let S = Se and S′ be the parent of S in the hierarchy of critical
cuts. Say the last cuts of e (and f) are C = {e, f , a, b} and C′ = {e, f , g, h}. In other words a, b are
partners and g, h are partners. Note that |GC| = |GC′ | = 2 because all edges {a, b, g, h} go to the
higher critical cut Se.

Case (i): a and g go higher than S. We have a, g ∈ δ(S′). So, by Fact 3.25, S′ is also a cycle cut.
This means that b and h are companions and a and g are cycle partner pairs on δ(S′). (See
Fig. 25). Edge e has to increase to fix the cuts C, C′ whenever a, b, g or h are decreased and
the corresponding cut is odd. The expected increase in ye due to reductions on a, b, g, h
divides into two types.

58

Su,e

Sv,e

S

S′

C

C′f

e = (u, v)

a b
g

h

Figure 25: Case (i) of Lemma 3.44.

We start with b, h: By Fact 3.22 and the fact that Bb = Bh, we know that b and h are always
reduced at the same time. Furthermore, conditioned on b (and h) being reduced, we have

parity of |T ∩ C| = parity of |T ∩ C′|.

This is simply because b (and h) are reduced only when they are even at last which implies
|T ∩ {a, g}| = 1. So, we can fix the reduction of b, h simultaneously when we increase e (or
f). In other words, it is enough to only take into account the expected increase of ye due to
b, i.e.,

E [rb(T)] ·
1
|GC|

·P [|C ∩ T| is odd|b reduced] = βp · 1
2
· 1

2
=

βp
4

.

Now, we calculate the expected increase due to a, g: We compute the charge due to a and
the same will hold for g. Again, by Fact 3.22, b and h are chosen independently of a, g, i.e.,
P [|T ∩ C| odd|a reduced] ≤ 1/2. Therefore, the expected increase due to a is

E [ra(T)] ·
1
|GC|

·P [|C ∩ T| odd|a reduced] ≤ βp · 1
2
· 1

2
=

βp
4

using τ3, τ2 ≤ β. Therefore, altogether,

E [ye] ≤
1
4
− βp + 3 · βp

4
.

Case (ii): Only one edge, say a, goes higher than S. In this case, by the same reasoning as above,
we have

E [ra(T)] ·
1
|GC|

·P [|C ∩ T| is odd|a reduced] ≤ βp · 1
2
· 1

2
,

since b is independent of a and it can be chosen to correct the parity.

59

For the remaining three edges {b, g, h}, by Lemma 3.40 either two or three of b, g and h are
good. If two are good, then each has an expected reduction of at most τ2 p or three are good
and each has an expected reduction of at most τ3 p.

Therefore, altogether,

E [ye] ≤
1
4
− βp +

βp
4

+
p
2
·max{2τ2, 3τ3} ≤

1
4
− 3βp

4
+ pτ2,

by the assumption of the lemma.

Case (iii): a, g are companions and b, h are companions (on the next critical cut). This case fol-
lows the same analysis as case (i) but gains because in this case a, g are also reduced
simultaneously.

Case (iv): No edge goes higher than S and all {a, b, g, h} are top edges. Some number of these
edges are good; if more than two are good we pay 4τ3 (at most) with probability p and
otherwise we pay 2τ2 (at most) with probability p . Then:

E [ye] ≤
1
4
− βp +

p
|GC|

max{2τ2, 4τ3} ≤
1
4
− βp +

4τ2 p
3

.

To finish the proof we just need to argue that we exhausted all cases. By Fact 3.24, among
{a, b, g, h} at most two go higher. By Fact 3.26, from each pair of cycle partners, i.e., {a, b} or
{g, h}, at most one goes higher. Therefore, if case (i) does not happen, we have at most one that
goes higher. If (i), (ii) do not happen, then no edge goes higher. So, by Fact 3.27 either all four
edges in {a, b, g, h} are bottom edges, i.e., case (iii), or none are bottom edges, i.e., case (iv).

To finish the proof of Lemma 3.42, let β = 1/12, τ2 = 7/120 and τ3 = 7/180 chosen to
satisfy τ3 ≤ τ2 ≤ β, β ≥ 5τ2/4 and 3τ3 ≤ 2τ2. Plugging in these numbers into Lemma 3.43 and
Lemma 3.44 we obtain that E [ye] ≤ 1/4− p/240 for any good edge e as desired.

3.6 Summary of special cases

This completes the proof for the half integral case. The key technical ideas to take away from the
degree cut case and the half integral case are as follows:

• The edges that end in different levels of the hierarchy of minimum cuts are independent.

• Many edges in every critical cut are good, i.e. their top two cuts are even simultaneously
with constant probability.

• We can define a matching between edges that end at level i and edges that end at level higher
than i in the hierarchy.

• Bottom edges are difficult to define this matching for since there are fewer edges ending at
level i per edge going higher. However, they are very well behaved: in the half integral case,
one of each pair of cycle partners is chosen independently of all other events.

While all of these notions may appear specialized to the half integral case, they are in fact all
robust enough to be generalized and each one appears in some form in what follows. For this
reason, we again highlight that understanding this section on special cases is an excellent window
into the proof in the general case.

60

4 Overview

In this section we will first describe three of the most important new theorems we proved that
allowed us to give an improvement in the general case, and then give a proof overview. This
section will focus on [KKO21], which shows that the cost of the max entropy algorithm is at most
(3

2 − ε) · c(OPT) instead of (3
2 − ε) · c(x) where x ∈ PSub (as is done in [KKO22]). In a later section

we discuss the tools necessary to obtain the stronger claim. The essential difference is here we use
the optimal cycle in our analysis, which dramatically simplifies a key part of our argument. Thus
the theorem we outline in this section is as follows:

Theorem 4.1. The max entropy is a randomized 3
2 − ε approximation for metric TSP for some ε > 10−36.

While this section is an overview, we do include some technically important material, in
particular a proof of Theorem 4.1 using the two main technical theorems in later sections.

4.1 Three New Techniques

4.1.1 Polygon Structure for Near Minimum Cuts Crossed on one Side.

It should be clear from the previous section that understanding the structure of the set of near
minimum cuts is key. We already know that if the only minimum cuts are the vertices, we can
obtain a better-than-3/2 algorithm. So we need to study what other structures can arise.

Let G = (V, E, x) be an undirected graph equipped with a weight function x : E→ R≥0 such
that for any cut (S, S) such that u0, v0 6∈ S, x(δ(S)) ≥ 2.

For some (small) η ≥ 0, consider the family of η-near min cuts of G. Let C be a connected
component of crossing η-near min cuts. Given C we can partition vertices of G into sets a0, . . . , am−1
(called atoms); this is the coarsest partition such that for each ai, and each (S, S) ∈ C, we have
ai ⊆ S or ai ⊆ S. Here a0 is the atom that contains u0, v0.

There have been several works studying the structure of edges between these atoms and the
structure of cuts in a connected component of cuts C w.r.t. the ai’s. The cactus structure (see
[DKL76]) shows that if η = 0, then we can arrange the ai’s of a connected component around a
cycle, say a1, . . . , am (after renaming), such that x(E(ai, ai+1)) = 1 for all i.

Benczúr and Goemans [Ben95; BG08] studied the case when η ≤ 6/5 and introduced the
notion of polygon representation, in which case atoms can be placed on the sides of an equilateral
polygon and some atoms placed inside the polygon, such that every cut in C can be represented
by a diagonal of this polygon. Later, [OSS11] studied the structure of edges of G in this polygon
when η < 1/100.

In this paper, we show it suffices to study the structure of edges in a special family of polygon
representations: Suppose we have a polygon representation for a connected component C of
η-near min cuts of G such that

• No atom is mapped inside,

• If we identify each cut (S, S) ∈ C with the interval along the polygon that does not contain
a0, then any interval is only crossed on one side (only on the left or only on the right).

Then, we have (i) For any atom ai, x(δ(ai)) ≤ 2 + O(η) and (ii) For any pair of atoms ai, ai+1,
x(E(ai, ai+1) ≥ 1−Ω(η) (see Theorem 5.9 for details).

We expect to see further applications of our theorem in studying variants of TSP.

61

4.1.2 Generalized Gurvits’ Lemma

Given a real stable polynomial p ∈ R≥0[z1, . . . , zn] (with non-negative coefficients), Gurvits proved
the following inequality [Gur06; Gur08]

e−n inf
z>0

p(z1, . . . , zn)

z1 . . . zn
≤ ∂z1 . . . ∂zn p|z=0 ≤ inf

z>0

p(z1, . . . , zn)

z1 . . . zn
. (7)

He defined infz>0
p(z1,...,zn)

z1...zn
as the capacity of the polynomial p at the all ones vector, 1.

As a consequence, one can prove the following theorem about strongly Rayleigh (SR) distribu-
tions by demonstrating that the capacity of the generating polynomial of such a distribution is at
least 1.

Theorem 4.2. Let µ : 2[n] → R≥0 be SR and A1, . . . , Am be random variables corresponding to the number
of elements sampled in m disjoint subsets of [n] such that E [Ai] = ni for all i. If ni = 1 for all 1 ≤ i ≤ n,
then P [∀i, Ai = 1] ≥ e−m.

One can ask what happens if the vector (n1, . . . , nm) in the above theorem is not equal but
close to 1. To answer this, we prove a generalization of the above statement, although with a
significantly weaker constant. Roughly speaking, we show that as long as ∑m

i=1 |ni − 1| < 1− ε
then P [∀i, Ai = 1] ≥ f (ε, m) where f (ε, m) has no dependence on n, the number of underlying
elements in the support of µ.

Theorem 4.3 (Informal version of Proposition 6.8). Let µ : 2[n] → R≥0 be SR and let A1, . . . , Am be
random variables corresponding to the number of elements sampled in m disjoint subsets of [n]. Suppose
that there are integers n1, . . . , nm such that for any set S ⊆ [m], P [∑i∈S Ai = ∑i∈S ni] ≥ ε. Then,

P [∀i, Ai = ni] ≥ f (ε, m).

If one only cares about bounding the probability by a constant, the above statement is even
stronger than Theorem 4.2 as we only require P [∑i∈S Ai = ∑i∈S ni] to be bounded away from
0 for any set S ⊆ [m] and we don’t need a bound on the expectation. Our proof of the above
theorem has doubly exponential dependence on ε. We leave it an open problem to find the
optimum dependency on ε. Furthermore, our proof of the above theorem is probabilistic in nature;
we expect that an algebraic proof based on the theory of real stable polynomials will provide a
significantly improved lower bound.

In an independent work, Gurvits and Leake [GL21] proved a variant of the above theorem
with a much better dependence on ε and m for a homogeneous strong Rayleigh distribution. This
was subsequently updated to a version of the above theorem that does not require homogeneity.
While the constant they obtain is much better, the statement is still slightly weaker in that it deals
with expectations and not probabilities. Thus it gives constant bounds for a strictly smaller set
of events. We reproduce it here, stated in the case in which we want all m sets to equal 1 for
simplicity (the theorem in [GL21] deals with a general vector κ in which we want Ai = κi for all i).

Theorem 4.4 (Corollary 8.1 in [GL21]). Let µ : 2[n]→ R≥0 be a strongly Rayleigh distribution and let
A1, . . . , Am be random variables corresponding to the number of elements sampled in m disjoint subsets of
[n]. Define βi = E [Ai]. Then if ||β− 1||1 ≤ 1− ε then

P [Ai = 1, ∀i] ≥
(ε

e

)m

62

This is proved by lower bounding the capacity of the generating polynomial of such an SR
distribution µ by εm and applying Gurvits’ bound (7). It is interesting to study how to further
bridge the gap between the two theorems: is it possible to bound the capacity for every regime in
which Theorem 4.3 gives us a constant?

4.1.3 Conditioning while Preserving Marginals

Consider a SR distribution µ : 2[n] → R≥0 and let x : [n]→ R≥0, where for all i, xi = PT∼µ [i ∈ T],
be the marginals.

Let A, B ⊆ [n] be two disjoint sets such that E [AT] , E [BT] ≈ 1. It follows from Theorem 4.3
that P [AT = BT = 1] ≥ Ω(1). Here, however, we are interested in a stronger event; let ν =
µ|AT = BT = 1 and let yi = PT∼µ [i ∈ T]. It turns out that the y vector can be very different from
the x vector, in particular, for some i’s we can have |yi − xi| bounded away from 0. We show that
there is an event of non-negligible probability that is a subset of AT = BT = 1 under which the
marginals of elements in A, B are almost preserved.

Theorem 4.5 (Informal version of Proposition 6.13). Let µ : 2[n] → R≥0 be a SR distribution and let
A, B ⊆ [n] be two disjoint subsets such that E [AT] , E [BT] ≈ 1. For any α � 1 there is an event EA,B
such that P [EA,B] ≥ Ω(α2) and

• P [AT = BT = 1|EA,B] = 1,

• ∑i∈A |P [i]−P [i|EA,B] | ≤ α,

• ∑i∈B |P [i]−P [i|EA,B] | ≤ α.

We remark that the quadratic lower bound on α is necessary in the above theorem for a
sufficiently small α > 0. The above theorem can be seen as a generalization of Theorem 4.2 in the
special case of two sets.

We leave it an open problem to extend the above theorem to arbitrary k disjoint sets. We
suspect that in such a case the ideal event EA1,...,Ak occurs with probability Ω(α)k and preserves all
marginals of elements in each of the sets A1, . . . , Ak up to a total variation distance of α.

4.2 Overview of Proof

As alluded to earlier, the crux of the proof of Theorem 4.1 is to show that the expected cost of the
minimum cost matching on the odd degree vertices of the sampled tree is at most OPT(1/2− ε).
We do this by showing the existence of a cheap feasible O-join solution to (4).

First, recall that if we only wanted to get an O-join solution of value at most OPT/2, to satisfy
all cuts, it is enough to set ye := xe/2 for each edge [Wol80]. To do better, we want to take
advantage of the fact that we only need to satisfy a constraint in the O-join for S when δ(S)T is
odd. Here, we are aided by the fact that the sampled tree is likely to have many even cuts because
it is drawn from a strongly Rayleigh distribution.

If an edge e is exclusively on even cuts then ye can be reduced below xe/2. This, more or
less, was the approach in [OSS11] for graphic TSP, where it was shown that a constant fraction of
LP edges will be exclusively on even near min cuts with constant probability. The difficulty in
implementing this approach in the metric case comes from the fact that a high cost edge can be
on many cuts and it may be exceedingly unlikely that all of these cuts will be even simultaneously.

63

Overall, our approach to addressing this is to start with ye := xe/2 and then modify it with a
random12 slack vector s : E → R: When certain special (few) cuts that e is on are even we let
se = −xeβ (for a carefully chosen constant β > 0); for other cuts that contain e, whenever they are
odd, we will increase the slack of other edges on that cut to satisfy them. The bulk of our effort is
to show that we can do this while guaranteeing that E [se] < −εβxe for some ε > 0.

By carefully choosing β smaller than η, we do not need to worry about the reduction breaking
a constraint for any cut S such that x(δ(S)) > 2(1 + η). In particular, if we choose β ≈ η/4, any
such cut is always satisfied, even if every edge in δ(S) is decreased and no edge is increased.

Let OPT be the optimum TSP tour, i.e., a Hamiltonian cycle, with set of edges E∗; throughout
the paper, we write e∗ to denote an edge in E∗. To bound the expected cost of the O-join for a
random spanning tree T ∼ µλ, we also construct a random slack vector s∗ : E∗ → R≥0 such that
(x + OPT)/4 + s + s∗ is a feasible for Eq. (4) with probability 1. In Section 4.2.1 we explain how
to use s∗ to satisfy all but a linear number of near mincuts.

Theorem 4.6 (Main Technical Theorem). Let x0 be a solution of (2) with support E0 = E ∪ {e0}, and x
be x0 restricted to E. Let z := (x +OPT)/2, η ≤ 10−12, β > 0, and let µ be the max-entropy distribution
with marginals x. Also, let E∗ denote the support of OPT. There are two functions s : E0 → R and
s∗ : E∗ → R≥0 (as functions of T ∼ µ), , such that

i) For each edge e ∈ E, se ≥ −xeβ.

ii) For each η-near-min-cut S of z, if δ(S)T is odd, then s(δ(S)) + s∗(δ(S)) ≥ 0.

iii) For every OPT edge e∗, E [s∗e∗] ≤ 218ηβ and for every LP edge e 6= e0, E [se] ≤ − 1
3 xeεPβ for

εP = 3.12 · 10−16 (defined in (38)).

In the next subsection, we explain the main ideas needed to prove this technical theorem. But
first, we show how our main theorem follows readily from Theorem 4.6.

Proof of Theorem 4.1. Let x0 be an extreme point solution of the 2, with support E0 and let x be
x0 restricted to E. By Fact 2.3 x is in the spanning tree polytope. For µ = µλ∗ the max entropy
distribution with marginals x and β > 0 a parameter we choose below, let s, s∗ be as defined in
Theorem 4.6. We will define y : E0 → R≥0 and y∗ : E∗ → R≥0. Let

ye =

{
xe/4 + se if e ∈ E
∞ if e = e0

we also let y∗e∗ = 1/4 + s∗e∗ for any edge e∗ ∈ E∗. We will show that y + y∗ is a feasible solution13

to (4). First, observe that for any S where e0 ∈ δ(S), we have y(δ(S)) + y∗(δ(S)) ≥ 1. Otherwise,
we assume u0, v0 /∈ S. If S is an η-near min cut w.r.t., z and δ(S)T is odd, then by property (ii) of
Theorem 4.6, we have

y(δ(S)) + y∗(δ(S)) =
z(δ(S))

2
+ s(δ(S)) + s∗(δ(S)) ≥ 1.

12where the randomness comes from the random sampling of the tree
13Recall that we merely need to prove the existence of a cheap O-join solution. The actual optimal O-join solution can

be found in polynomial time.

64

On the other hand, if S is not an η-near min cut (w.r.t., z).

y(δ(S)) + y∗(δ(S)) ≥ z(δ(S))
2

− βx(δ(S))

≥ z(δ(S))
2

− β2(z(δ(S))− 1)

≥ z(δ(S))(1/2− 2β) + 2β ≥ (2 + η)(1/2− 2β) + 2β

where in the first inequality we used property (i) of Theorem 4.6 which says that se ≥ xeβ with
probability 1 for all LP edges and that s∗e∗ ≥ 0 with probability 1. In the second inequality we used
that z = (x + OPT)/2, so, since OPT ≥ 2 across any cut, x(δ(S)) ≤ 2(z(δ(S))− 1). Finally, if we
choose

β = η/4.1 (8)

then the righthand side is at least 1, so y + y∗ is a feasible O-join solution.
Finally, using c(e0) = 0 and part (iii) of Theorem 4.6,

E [c(y) + c(y∗)] = OPT/4 + c(x)/4 + E [c(s) + c(s∗)]

≤ OPT/4 + c(x)/4 + 218ηβOPT − 1
3

εPβc(x) ≤ (1/2− 1
6

εPβ)OPT

choosing η such that

218η =
1
6

εP (9)

and using c(x) ≤ OPT.
Now, we are ready to bound the approximation factor of our algorithm. First, since x0 is an

extreme point solution of the 2, mine∈E0 x0
e ≥ 1

n! . So, by Theorem 2.6, in polynomial time we can
find λ : E→ R≥0 such that for any e ∈ E, Pµλ

[e] ≤ xe(1+ δ) for some δ that we fix later. It follows
that

∑
e∈E
|Pµ [e]−Pµλ

[e] | ≤ nδ.

By stability of maximum entropy distributions (see [SV19, Thm 4] and references therein), we
have that ‖µ− µλ‖1 ≤ O(n4δ) =: q. Therefore, for some δ � n−4 we get ‖µ− µλ‖1 = q ≤ εPβ

100 .
That means that

ET∼µλ
[min cost matching] ≤ ET∼µ [c(y) + c(y∗)] + q(OPT/2) ≤

(
1
2
− 1

6
εPβ +

εPβ

100

)
OPT,

where we used that for any spanning tree the cost of the minimum cost matching on odd degree
vertices is at most OPT/2. Finally, since ET∼µλ

[c(T)] ≤ OPT(1 + δ), εP = 3.12 · 10−16, and
β = η/4.1 = εp/5362.8 (from (62)) we get a 3/2− 3 · 10−36 approximation algorithm for TSP.

4.2.1 Ideas underlying proof of Theorem 4.6

The first step of the proof is to show that it suffices to construct a slack vector s for a “cactus-like”
structure of near min-cuts that we call a hierarchy. Informally, a hierarchy H is a laminar family of
mincuts14, consisting of two types of cuts: triangle cuts and degree cuts. A triangle S is the union of
two min-cuts X and Y in H such that x(E(X, Y)) = 1. See Fig. 52 for an example of a hierarchy
with three triangles.

14This is really a family of near-min-cuts, but for the purpose of this overview, assume η = 0

65

a

b

c

d

u1 u2

u3

a b

u1

c d

u2

u3

Figure 26: An example of part of a hierarchy with three triangles. The graph on the left shows
part of a feasible LP solution where dashed (and sometimes colored) edges have fraction 1/2
and solid edges have fraction 1. The dotted ellipses on the left show the min-cuts u1, u2, u3 in
the graph. (Each vertex is also a min-cut). On the right is a representation of the corresponding
hierarchy. Triangle u1 corresponds to the cut {a, b}, u2 corresponds to {c, d} and u3 corresponds
to {a, b, c, d}. Note that, for example, the edge (a, c), represented in green, is in δ(u1), δ(u3), and
inside u3. For triangle u1, we have A = δ(a)r (a, b) and B = δ(b)r (b, d).

We will refer to the set of edges E(X, S) (resp. E(Y, S)) as A (respectively B) for a triangle cut
S. In addition, we say a triangle cut S is happy if AT and BT are both odd. All non-triangle cuts
are called degree cuts. A degree cut S is happy if δ(S)T is even.

Theorem 4.7 (Main Payment Theorem (informal)). Let G = (V, E, x) for LP solution x and let µ be
the max-entropy distribution with marginals x and β > 0. Given a hierarchy H, there is a slack vector
s : E→ R such that

i) For each edge e ∈ E, se ≥ −xeβ.

ii) For each cut S ∈ H if S is not happy, then s(δ(S)) ≥ 0.

iii) For every LP edge e 6= e0, E [se] ≤ −βεPxe for εP > 0.

In the following subsection, we discuss how to prove this theorem. Here we explain at a high
level how to define the hierarchy and reduce Theorem 4.6 to this theorem. The details are in
Section 5.

First, observe that, given Theorem 4.7, cuts in H will automatically satisfy (ii) of Theorem 4.6.
The approach we take to satisfying all other cuts is to introduce additional slack, the vector s∗, on
OPT edges.

Consider the set of all near-min-cuts of z, where z := (x +OPT)/2. Starting with z rather than
x allows us to restrict attention to a significantly more structured collection of near-min-cuts. The
key observation here is that in OPT, all min-cuts have value 2, and any non-min-cut has value at
least 4. Therefore averaging x with OPT guarantees that every η-near min-cut of z must consist
of a contiguous sequence of vertices (an interval) along the OPT cycle. Moreover, each of these cuts
is a 2η-near min-cut of x. Arranging the vertices in the OPT cycle around a circle, we identify
every such cut with the interval of vertices that does not contain (u0, v0). Also, we say that a cut
is crossed on both sides if it is crossed on the left and on the right.

66

To ensure that any cut S that is crossed on both sides is satisfied, we first observe that S is odd
with probability O(η). To see this, let SL and SR be the cuts crossing S on the left and right
with minimum intersection with S and consider the two (bad) events {E(S ∩ SL, SL r S))T 6=
1} and {E(S ∩ SR, SR r S))T 6= 1}. Recall that if A, B and A ∪ B are all near-min-cuts, then
P [E(A, B)T 6= 1] = O(η) (see Corollary 2.29). Applying this fact to the two aforementioned bad
events implies that each of them has probability O(η). Therefore, we will let the two OPT edges
in δ(S) be responsible for these two events, i.e., we will increase the slack s∗ on these two OPT
edges by O(η) when the respective bad events happens. This gives E [s∗(e∗)] = O(η2) for each
OPT edge e∗. As we will see, this simple step will reduce the number of near-min-cuts of z that
we need to worry about satisfying to O(n).

Next, we consider the set of near-min-cuts of z that are crossed on at most one side. Partition
these into maximal connected components of crossing cuts. Each such component corresponds to
an interval along the OPT cycle and, by definition, these intervals form a laminar family.

A single connected component C of at least two crossing cuts is called a polygon. We prove the
following structural theorem about the polygons induced by z:

Theorem 4.8 (Polygons look like cycles (Informal version of Theorem 5.9)). Given a connected
component C of near-min-cuts of z that are crossed on one side, consider the coarsest partition of vertices of
the OPT cycle into a sequence a1, . . . , am−1 of sets called atoms (together with a0 which is the set of vertices
not contained in any cut of C). Then

• Every cut in C is the union of some number of consecutive atoms in a1, . . . , am−1.

• For each i such that 0 ≤ i < m− 1, x(E(ai, ai+1)) ≈ 1 and similarly x(E(am−1, a0)) ≈ 1.

• For each i > 0, x(δ(ai)) ≈ 2.

The main observation used to prove Theorem 4.8 is that the cuts in C crossed on one side can
be partitioned into two laminar families L and R, where L (resp. R) is the set of cuts crossed on
the left (resp. right). This immediately implies that |C| is linear in m. Since cuts in L cannot cross
each other (and similarly for R), the proof boils down to understanding the interaction between
L and R.

The approximations in Theorem 4.8 are correct up to O(η). Using additional slack in OPT,
at the cost of an additional O(η2) for edge, we can treat these approximate equations as if they
are exact. Observe that if x(E(ai, ai+1)) = 1, and x(δ(ai)) = x(δ(ai+1)) = 2 for 1 ≤ i ≤ m− 2,
then with probability 1, E(ai, ai+1)T = 1. Therefore, any cut in C which doesn’t include a1 or
am−1 is even with probability 1. The cuts in C that contain a1 are even precisely15 when E(a0, a1)T
is odd and similarly the cuts in C that contain am−1 are even when E(a0, am−1)T is odd. These
observations are what allow us to imagine that each polygon is a triangle, i.e., assume m = 3.
(Note that often it is convenient to look at the event in which E(a0, a1)T = 1 and E(a0, am−1)T = 1
since this is a simple criteria which implies that all cuts in C are even.)

The hierarchy H is the set of all η-near mincuts of z that are not crossed at all (these will be the
degree cuts), together with a triangle for every polygon. In particular, for a connected component
C of size more than 1, the corresponding triangle cut is a1 ∪ . . . ∪ am−1, with A = E(a0, a1) and
B = E(a0, am−1). Observe that from the discussion above, when a triangle cut is happy, then all of
the cuts in the corresponding polygon C are even.

15Roughly, this corresponds to the definition of the polygon being left-happy.

67

Summarizing, we show that if we can construct a good slack vector s for a hierarchy of degree
cuts and triangles, then there is a nonnegative slack vector s∗, that satisfies all near-minimum
cuts of z not represented in the hierarchy, while maintaining slack for each OPT edge e∗ such that
E [s∗(e∗)] = O(η2).

Remarks: The reduction that we sketched above only uses the fact that µ is an arbitrary distribu-
tion of spanning trees with marginals x and not necessarily a maximum-entropy distribution.

We also observe that to prove Theorem 4.1, we crucially used that 28η � ε. This forces us to
take η very small, which is why we get only a “very slightly” improved approximation algorithm
for TSP. Furthermore, since we use OPT edges in our construction, we don’t get a new upper
bound on the integrality gap. We leave it as an open problem to find a reduction to the “cactus”
case that doesn’t involve using a slack vector for OPT (or a completely different approach).

4.2.2 Proof ideas for Theorem 4.7

We now address the problem of constructing a good slack vector s for a hierarchy of degree cuts
and triangle cuts. For each LP edge f , consider the lowest cut in the hierarchy, that contains
both endpoints of f . We call this cut p(f). If p(f) is a degree cut, then we call f a top edge and
otherwise, it is a bottom edge16. We will see that bottom edges are easier to deal with, so we start
by discussing the slack vector s for top edges.

Let S be a degree cut and let e = (u, v) (where u and v are children of S in H) be the set of all
top edges f = (u′, v′) such that u′ ∈ u and v′ ∈ v. We call e a top edge bundle and say that u and v
are the top cuts of each f ∈ e. We will also sometimes say that e ∈ S.

Ideally, our plan is to reduce the slack of every edge f ∈ e when it is happy, that is, both of its
top cuts are even in T. Specifically, we will set s f := −ηx f when δ(u)T and δ(v)T are even. When
this happens, we say that f is reduced, and refer to the event {δ(u)T, δ(v)T even} as the reduction
event for f . Since this latter event doesn’t depend on the actual endpoints of f , we view this as a
simultaneous reduction of se.

Now consider the situation from the perspective of the degree cut u (where p(u) = S) and
consider any incident edge bundle in S, e.g., e = (u, v). Either its top cuts are both even and
se := −ηxe, or they aren’t even, because, for example, δ(u)T is odd. In this latter situation,
edges in δ↑(u) := δ(u) ∩ δ(S) might have been reduced (because their top two cuts are even),
which a priori could leave δ(u) unsatisfied. In such a case, we increase se for edge bundles in
δ→(u) := δ(u)r δ(S) to compensate for this reduction. Our main goal is then to prove is that for
any edge bundle its expected reduction is greater than its expected increase. The next example
shows this analysis in an ideal setting.

Example 4.9 (Simple case). Fix a top edge bundle e = (u, v) with p(e) = S. Let xu := x(δ↑(u)) and
let xv := x(δ↑(v)). Suppose we have constructed a (fractional) matching between edges whose top
two cuts are children of S in H and the edges in δ(S), and this matching satisfies the following
three conditions: (a) e = (u, v) ∈ S is matched (only) to edges going higher from its top two cuts
(i.e., to edges in δ↑(u) and δ↑(v)), (b) e is matched to an me,u fraction of every edge in δ↑(u) and
to an me,v fraction of each edge in δ↑(v), where

me,u + me,v = xe,

16For example, in Fig. 52, p(a, c) = u3, and (a, c) is a bottom edge.

68

and (c) the fractional value of edges in δ→(u) := δ(u)r δ↑(u) matched to edges in δ↑(u) is equal
to xu. That is, for each u ∈ S, ∑f∈δ→(u) mf,u = xu.

u ve

xu xv

S

The plan is for e ∈ S to be tasked with part of the responsibility for fixing the cuts δ(u) and δ(v)
when they are odd and edges going higher are reduced. Specifically, se is increased to compensate
for an me,u fraction of the reductions in edges in δ↑(u) when δ(u)T is odd. (And similarly for
reductions in v.) Thus,

E [se] = −P [e reduced] ηxe + me,u ∑
g∈δ↑(u)

P [δ(u)T odd|g reduced]P [g reduced] η
xg

x(δ↑(u))

+ me,v ∑
g∈δ↑(v)

P [δ(v)T odd|g reduced]P [g reduced] η
xg

x(δ↑(v))
(10)

We will lower bound P [δ(u)T even|g reduced]. We can write this as

P
[
δ→(u)T and δ↑(u)T have same parity |g reduced

]
.

Unfortunately, we do not currently have a good handle on the parity of δ↑(u)T conditioned on
g reduced. However, we can use the following simple but crucial property: Since x(δ(S)) = 2,
by Lemma 2.28, T consists of two independent trees, one on S and one on V r S, each with the
corresponding marginals of x. Therefore, we can write

P [δ(u)T even|g reduced] ≥ min(P [(δ→(u))T even] , P [(δ→(u))T odd]).

This gives us a reasonable bound when ε ≤ xu, xv ≤ 1− ε since, because x(δ(u)) = x(δ(v)) = 2,
by the SR property, (δ→(u))T (and similarly (δ→(v))T) is the sum of Bernoulis with expectation in
[1 + ε, 2− ε]. From this it follows that

min(P [(δ→(u))T even] , P [(δ→(u))T odd]) = Ω(ε).

We can therefore conclude that P [δ(u)T odd|g reduced] ≤ 1−O(ε).
The rest of the analysis of this special case follows from (a) the fact that our construction will

guarantee that for all edges g, the probability that g is reduced is exactly p, i.e., it is the same for
all edges, and (b) the fact that me,uxu + me,vxv = xe. Plugging these facts back into (10), gives

E [se] ≤ −pηxe + me,u(1− ε)pη + me,v(1− ε)pη

≤ −pηxe + (1− ε)pηxe = −εpηxe. (11)

If we could prove (11) for every edge f in the support of x, that would complete the proof that the
expected cost of the min O-join for a random spanning tree T ∼ µ is at most (1/2− ε)OPT.

69

Remark: Throughout this paper, we repeatedly use a mild generalization of the above "inde-
pendent trees fact": that if S is a cut with x(δ(S)) ≤ 2 + ε, then ST is very likely to be a tree.
Conditioned on this fact, marginals inside S and outside S are nearly preserved and the trees
inside S and outside S are sampled independently (see Lemma 2.28).

Ideal reduction: In the example, we were able to show that P [δ(u)T odd | g reduced] was
bounded away from 1 for every edge g ∈ δ↑(u), and this is how we proved that the expected
reduction for each edge was greater than the expected increase on each edge, yielding negative
expected slack.

This motivates the following definition: A reduction for an edge g is k-ideal if, conditioned on
g reduced, every cut S that is in the top k levels of cuts containing g is odd with probability that is
bounded away from 1.

Moving away from an idealized setting: In Example 4.9, we oversimplified in four ways:

(a) We assumed that it would be possible to show that each top edge is good. That is, that its
top two cuts are even simultaneously with constant probability.

(b) We considered only top edge bundles (i.e., edges whose top cuts were inside a degree cut).

(c) We assumed that xu, xv ∈ [ε, 1− ε].

(d) We assumed the existence of a nice matching between edges whose top two cuts were
children of S and the edges in δ(S).

Our proof needs to address all four anomalies that result from deviating from these assumptions.

a

u0

b

c

v0e0

d

Figure 27: An Example with Bad Edges. A feasible solution of the 2 is shown; dashed edges
have fraction 1/2 and solid edges have fraction 1. Writing E = E0 r {e0} as a maximum entropy
distribution µ we get the following: Edges (a, b), (c, d) must be completely negatively correlated
(and independent of all other edges). So, (b, u0), (a, u0) are also completely negatively correlated.
This implies (a, b) is a bad edge.

Bad edges. Consider first (a). Unfortunately, it is not the case that all top edges are good. Indeed,
some are bad. However, it turns out that bad edges are rare in the following senses: First, for an
edge to be bad, it must be a half edge, where we say that an edge e is a half edge if xe ∈ 1/2± ε1/2
for a suitably chosen constant ε1/2. Second, of any two half edge bundles sharing a common
endpoint in the hierarchy, at least one is good. For example, in Fig. 27, (a, u0) and (b, u0) are good
half-edge bundles. We advise the reader to ignore half edges in the first reading of the paper.
Correspondingly, we note that our proofs would be much simpler if half-edge bundles never

70

a1 a2
f

u

A B

a3 a4g

ve

A′ B′

Figure 28: In this representation of the cut hierarchy (as in Fig. 52), for the triangle u corresponding
to the cut δ(a1 ∪ a2), when AT and BT are odd, all 3 cuts (δ(a1)T, δ(a2)T and δ(a1 ∪ a2)T = δ(u)T
are odd (since fT is always 1). (Recall also that the edges in the bundle e must have one endpoint
in {a1 ∪ a2} and one endpoint in {a3 ∪ a4}, as was the case, e.g., for the edge (a, c) in Fig. 52.)

showed up in the hierarchy. It may not be a coincidence that half edges are hard to deal with, as it
is conjectured that TSP instances with half-integral LP solutions are the hardest to round [SWZ12;
SWZ13].

Our solution is to never reduce bad edges. But this in turn poses two problems. First, it
means that we need to address the possibility that the bad edges constitute most of the cost of
the LP solution. Second, our objective is to get negative expected slack on each good edge and
non-positive expected slack on bad edges. Therefore, if we never reduce bad edges, we can’t
increase them either, which means that the responsibility for fixing an odd cut with reduced edges
going higher will have to be split amongst fewer edges (the incident good ones).

We deal with the first problem by showing that in every cut u in the hierarchy at least 3/4
of the fractional mass in δ(u) is good and these edges suffice to compensate for reductions on
the edges going higher. Moreover, because there are sufficiently many good edges incident to
each cut, we can show that either using the slack vector {se} gives us a low-cost O-join, or we can
average it out with another O-join solution concentrated on bad edges to obtain a reduced cost
matching of odd degree vertices.

We deal with the second problem by proving Lemma 7.2, which guarantees a matching
between good edge bundles e = (u, v) and fractions me,u, me,v of edges in δ↑(u), δ↑(v) such that,
roughly, me,u + me,v = (1 + O(ε1/2))xe.

Dealing with triangles. Turning to (b), consider a triangle cut S, for example δ(a1 ∪ a2) in Fig. 28.
Recall that in a triangle, we can assume that there is an edge of fractional value 1 connecting a1
and a2 in the tree, and this is why we defined the cut to be happy when AT and BT are odd: this
guarantees that all 3 cuts defined by the triangle (δ(a1), δ(a2), δ(a1 ∪ a2) are even.

Now suppose that e = (u, v) is a top edge bundle, where u and v are both triangles, as shown
in Fig. 28. Then we’d like to reduce se when both cuts u and v are happy. But this would require
more than simply both cuts being even. This would require all of AT, BT, A′T, B′T to be odd. Note
that if, for whatever reason, e is reduced only when δ(u)T and δ(v)T are both even, then it could
be, for example, that this only happens when AT and BT are both even. In this case, both δ(a1)T
and δ(a2)T will be odd with probability 1 (recalling that fT = 1), which would then necessitate an
increase in sf whenever e is reduced. In other words, the reduction will not even be 1-ideal.

It turns out to be easier for us to get a 1-ideal reduction rule for e as follows: Say that e is 2-1-1
happy with respect to u if δ(u)T is even and both A′T, B′T are odd. We reduce e with probability p/2

71

when it is 2-1-1 happy with respect to u and with probability p/2 when it is 2-1-1 happy with
respect to v. This means that when e is reduced, half of the time no increase in sf is needed since
u is happy. Similarly for v.

The 2-1-1 criterion for reduction introduces a new kind of bad edge: a half edge that is good,
but not 2-1-1 good. We are able to show that non-half-edge bundles are 2-1-1 good (Lemmas 6.28
and 6.29), and that if there are two half edges which are both in A or are both in B, then at least
one of them is 2-1-1 good (Lemma 6.30). Finally, we show that if there are two half edges, where
one is in A and the other is in B, and neither is 2-1-1 good, then we can apply a different reduction
criterion that we call 2-2-2 good. When the latter applies, we are guaranteed to decrease both of
the half edge bundles simultaneously. All together, the various considerations discussed in this
paragraph force us to come up with a relatively more complicated set of rules under which we
reduce se for a top edge bundle e whose children are triangle cuts. Section 6 focuses on developing
the relevant probabilistic statements.

Bottom edge reduction. Next, consider a bottom edge bundle f = (a1, a2) where p(a1) = p(a2)
is a triangle. Our plan is to reduce sf (i.e., set it to −ηxf) when the triangle is happy, that is,
AT = BT = 1. The good news here is that every triangle is happy with constant probability.
However, when a triangle is not happy, sf may need to increase to make sure that the O-join
constraint for δ(a1) and δ(a2) are satisfied, if edges in A and B going higher are reduced. Since
xf = x(A) = x(B) = 1, this means that f may need to compensate at twice the rate at which it is
getting reduced. This would result in E [sf] > 0, which is the opposite of what we seek.

We use two key ideas to address this problem. First, we reduce top edges and bottom edges
by different amounts: Specifically, when the relevant reduction event occurs, we reduce a bottom
edge f by βxf and top edges e by τxe, where β > τ (and τ is a multiple of η).

Thus, the expected reduction in sf is pβxf = pβ, whereas the expected increase (due to
compensation of, say, top edges going higher) is pτ(x(A) + x(B))q = pτ2q, where

q = P [triangle not happy | reductions in A and B] .

Thus, so long as 2τq < β− ε, we get the expected reduction in sf that we seek.
The discussion so far suggests that we need to take τ smaller than β/2q, which is β/2 if q

is 1, for example. On the other hand, if τ = β/2, then when a top edge needs to fix a cut due
to reductions on bottom edges, we have the opposite problem – their expected increase will be
greater than their expected reduction, and we are back to square one.

Coming to our aid is the second key idea, already discussed in Section 4.1.3. We reduce
bottom edges only when AT = BT = 1 and the marginals of edges in A, B are approximately
preserved (conditioned on AT = BT = 1). This allows us to get much stronger upper bounds on
the probability that a lower cut a bottom edge is on is odd, given that the bottom edge is reduced,
and enables us to show that bottom edge reduction is ∞-ideal.

It turns out that the combined effects of (a) choosing τ = 0.571β, and (b) getting better bounds
on the probability that a lower cut is even given that a bottom edge is reduced, suffice to deal
with the interaction between the reductions and the increases in slack for top and bottom edges.

Example 4.10. [Bottom-bottom case] To see how preserving marginals helps us handle the inter-
action between bottom edges at consecutive levels, consider a triangle cut a′1 = {a1, a2} whose
parent cut Ŝ = {a′1, a′2} is also a triangle cut (as shown in Fig. 29). Let’s analyze E [sf] where
f = (a1, a2). Observe first that A→ ∪ B→ is a bottom edge bundle in the triangle Ŝ and all edges in

72

a1 a2
f

Ŝ

Â B̂

a′1
a′2

A→ 1− α

B→ α

A↑ α B↑ 1− α

Figure 29: Setting of Example 4.10. Note that the set A = δ(a1) ∩ δ(a′1) decomposes into two sets
of edges, A↑, those that are also in δ(S), and the rest, which we call A→. Similarly for B.

this bundle are reduced simultaneously when ÂT = B̂T = 1 and marginals of all edges in Â ∪ B̂
are approximately preserved. (For the purposes of this overview, we’ll assume they are preserved
exactly). Furthermore, since the tree inside Ŝ is picked independently of the tree on G/Ŝ (using
Lemma 2.28 and assuming ε = 0 for this overview), exactly one edge in A→ ∪ B→ is selected
independently of the reduction event ÂT = B̂T = 1. Let x(A↑) = α. Then since A = A↑ ∪ A→ and
x(A) = 1, we have x(A→) = 1− α. Moreover, since Â = A↑ ∪ B↑ and x(Â) = 1, we also have
x(B↑) = 1− α and x(B→) = α.

Therefore, using the fact that when A→ ∪ B→ is reduced, exactly one edge in A↑ ∪ B↑ is selected
(and also exactly one edge in A→ ∪ B→ is selected independently since it is a bottom edge bundle,
as mentioned above), and marginals are preserved given the reduction, we conclude that

P
[
a′1 happy | A→ ∪ B→ reduced

]
= P [AT = BT = 1 | A→ ∪ B→ reduced] = α2 + (1− α)2.

Now, we calculate E [sf]. First, note that f may have to increase to compensate either for reduced
edges in A↑ ∪ B ↑ or in A→ ∪ B→. For the sake of this discussion, suppose that A↑ ∪ B↑ is a set of
top edges. Then, in the worst case we need to increase f by pτ in expectation to fix the cuts a1, a2
due to the reduction in A↑ ∪ B↑. Now, we calculate the expected increase due to the reduction in
A→ ∪ B→. The crucial observation is that edges in A→ ∪ B→ are reduced simultaneously, so both
cuts δ(a1) and δ(a2) can be fixed simultaneously by an increase in sf. Therefore, when they are
both odd, it suffices for f to increase by

max{x(A→), x(B→)}β = max{α, 1− α}β,

to fix cuts a1, a2. Putting this together, we get

E [sf] = −pβ + E [increase due to A→ ∪ B→] + E
[
increase due to A↑ ∪ B↑

]
≤ −pβ + pβ max

α∈[1/2,1]
α[1− α2 − (1− α)2] + pτ

which, since maxα∈[1/2,1] α[1− α2 − (1− α)2] = 8/27 and τ = 0.571β is

= pβ(−1 +
8

27
+ 0.571) = −0.13pβ.

73

Dealing with xu close to 1. 17 Now, suppose that e = (u, v) is a top edge bundle with xu :=
x(δ↑(u)) is close to 1. Then, the analysis in Example 4.9, bounding r := P [δ(u)T odd|g reduced]
away from 1 for an edge g ∈ δ↑(u) doesn’t hold. To address this, we consider two cases: The
first case, is that the edges in δ↑(u) break up into many groups that end at different levels in
the hierarchy. In this case, we can analyze r separately for the edges that end at any given level,
taking advantage of the independence between the trees chosen at different levels of the hierarchy.

The second case is when nearly all of the edges in δ↑(u) end at the same level, for example,
they are all in δ→(u′) where p(u′) is a degree cut. In this case, we introduce a more complex (2-1-1)
reduction rule for these edges. The observation is that from the perspective of these edges u′ is a
"pseudo-triangle". That is, it looks like a triangle cut, with atoms u and u′ r u where δ(u) ∩ δ(u′)
corresponds to the “A”-side of the triangle.

Now, we define this more complex 2-1-1 reduction rule: Consider a top edge f = (u′, v′) ∈
δ→(u′). So far, we only considered the following reduction rule for f: If both u′, v′ are degree cuts,
f reduces when they are both even in the tree; otherwise if say u′ is a triangle cut, f reduces when it
is 2-1-1 good w.r.t., u′ (and similarly for v′). But clearly these rules ignore the pseudo triangle. The
simplest adjustment is, if u′ is a pseudo triangle with partition (u, u′ r u), to require f to reduce
when AT = BT = 1 and v′ is happy. However, as stated, it is not clear that the sets A and B are
well-defined. For example, u′ could be an actual triangle or there could be multiple ways to see u′

as a pseudo triangle only one of which is (u, u′ru). Our solution is to find the smallest disjoint pair
of cuts a, b ⊂ u′ in the hierarchy such that x(δ(a)∩ δ(u′)), x(δ(b)∩ δ(u′)) ≥ 1− ε1/1, where ε1/1 is
a fixed universal constant, and then let A = δ(a) ∩ δ(u′), B = δ(b) ∩ δ(u′) and C = δ(u′)r A r B
(see Fig. 30 for an example). Then, we say f is 2-1-1 happy w.r.t., u′ if AT = BT = 1 and CT = 0.

A few observations are in order:

• Since u is a candidate for, say a, it must be that a is a descendent of u in the hierarchy (or equal
to u). In addition, b cannot simultaneously be in u, since a ∩ b = ∅ and x(δ(u) ∩ δ(u′)) ≤ 1
by Lemma 2.38. So, when f is 2-1-1 happy w.r.t. u′ we get (δ(u) ∩ δ(u′))T = 1.

• If u′ = (X, Y) is a actual triangle cut, then we must have a ⊆ X, b ⊆ Y. So, when f is
2-1-1 happy w.r.t. u′, we know that u′ is a happy triangle, i.e., (δ(X) ∩ δ(u′))T = 1 and
(δ(Y) ∩ δ(u′))T = 1.

Now, suppose for simplicity that all top edges in δ(u′) are 2-1-1 good w.r.t. u′. Then, when an
edge g ∈ δ(u) ∩ δ(u′) is reduced, (δ(u) ∩ δ(u′))T = 1, so

P [δ(u)T odd|g reduced] ≤ P
[
E(u, u′ r u)T even|g reduced

]
≤ 0.57,

since edges in E(u, u′ r u) are in the tree independent of the reduction and E [E(u, u′ r u)T] ≈ 1.

Dealing with xu close to 0 and the matching. We already discussed how the matching is
modified to handle the existence of bad edges. We now observe that we can handle the case xu ≈ 0
by further modifying the matching. The key observation is that in this case, x(δ→(u))� x(δ↑(u)).
Roughly speaking, this enables us to find a matching in which each edge in δ→(u) has to increase
about half as much as would normally be expected to fix the cut of u. This eliminates the need to
prove a nontrivial bound on P [δ(u)T odd|g reduced]. The details of the matching are in Section 7.

17Some portions of this discussion might be easier to understand after reading the rest of the paper.

74

a1

a2

1
2 + ε

a3
1− 2ε

a4

1
2

b1

b2

1
2 + ε

b3
1− 2ε

b4

1
2

c1

c2

1
2 + ε

c3
1− 2ε

c4

1
2

1
6

2
3

2
3

1
2 − ε

ε

u2

u1

a1 a2 a3

u1 a4

u2

b1 b2 b3

v1 b4

v2

c1 c2 c3

w1 c4

w2

u

Figure 30: Part of the hierarchy of the graph is shown on top. Edges of the same color have the same
fraction and ε� η is a small constant. u1 corresponds to the degree cut {a1, a2, a3}, u2 corresponds to the
triangle cut {u1, a4} and u corresponds to the degree cut containing all of the vertices shown. Observe
that edges in δ↑(a1) are top edges in the degree cut u. If ε < 1

2 ε1/1 then the (A, B, C)-degree partitioning
of edges in δ(u2) is as follows: A = δ(a1) ∩ δ(u2) are the blue highlighted edges each of fractional value
1/2− ε, B = δ(a4) ∩ δ(u2) are the green highlighted edges of total fractional value 1, and C are the red
highlighted edges each of fractional value ε. The cuts that contain edge (a1, c1) are highlighted in the
hierarchy at the bottom.

75

5 Polygons and the Hierarchy of Near Minimum Cuts

This section, as detailed in Section 4 above, demonstrates that we can focus our attention on a
laminar family of cuts instead of every near minimum cut in the graph. This is an important
step in the analysis as it gives us a clean combinatorial object to analyze using properties of SR
distributions.

This section is modular up to Section 5.6, in which the results of this section are combined
with the main result from the remainder of the paper to demonstrate the main technical theorem,
Theorem 4.6. Thus readers wishing to skip this part may decide to only read Section 5.6 before
moving on and assuming that the set of near minimum cuts in the LP solution is laminar.

5.1 Notation

Let OPT be a minimum TSP solution, i.e., minimum cost Hamiltonian cycle and without loss of
generality assume it visits u0 and v0 consecutively (recall that c(u0, v0) = 0). We write E∗ to denote
the edges of OPT and we write e∗ to denote an edge of OPT. Analogously, we use s∗ : E∗ → R≥0
to denote the slack vector that we will construct for OPT edges.

Throughout this section we study η-near minimum cuts of G = (V, E, z) Note that these cuts
are 2η-near minimum cuts w.r.t., x. For every such near minimum cut, (S, S), we identify the cut
with the side, say S, such that u0, v0 /∈ S. Equivalently, we can identify these cuts with an interval
along the optimum cycle, OPT, that does not contain u0, v0.

We will use “left" synonymously with “clockwise" and “right" synonymously with “counter-
clockwise." We say a vertex is to the left of another vertex if it is to the left of that vertex and to
the right of edge e0 = (u0, v0). Otherwise, we say it is to the right (including the root itself in this
case).

Definition 5.1 (Crossed on the Left/Right, Crossed on Both Sides). For two crossing near minimum
cuts S, S′, we say S crosses S′ on the left if the leftmost endpoint of S on the optimal cycle is to the left of
the leftmost endpoint of S. Otherwise, we say S crosses S′ on the right.

A near minimum cut is crossed on both sides if it is crossed on both the left and the right. We also say
a a near minimum cut is crossed on one side if it is either crossed on the left or on the right, but not both.

5.2 Cuts Crossed on Both Sides

The following theorem is the main result of this section:

Theorem 5.2. Given OPT TSP tour with set of edges E∗, and a feasible LP solution x0 of (2) with support
E0 = E ∪ {e0} and let x be x0 restricted to E. For any distribution µ of spanning trees with marginals x
and β > 0, if η < 1/100, then there is a random vector s∗ : E∗ → R≥0 (the randomness in s∗ depends
exclusively on T ∼ µ) such that

• For any vector s : E → R where se ≥ −xeβ for all e and for any η-near minimum cut S w.r.t.,
z = (x + OPT)/2 crossed on both sides where δ(S)T is odd, we have s(δ(S)) + s∗(δ(S)) ≥ 0;

• For any e∗ ∈ E∗, E [s∗e∗] ≤ 37ηβ.

For an OPT edge e∗ = (u, v), let L(e∗) be the largest η-near minimum cut (w.r.t. z) containing
u and not v which is crossed on both sides. Let R(e∗) be the largest near minimum cut containing

76

L(e∗) R(e∗)
e∗u v

Figure 31: L and R for an OPT edge e∗.

v and not u which is crossed on both sides. (Note that L(e∗), R(e∗) do not necessarily exist). For
example, see Fig. 31.

SL

SR

S

Figure 32: S is crossed on the left by SL and on the right by SR. In green are edges in δ(S)L, in
blue edges in δ(S)R, and in red are edges in δ(S)O.

Definition 5.3. For a near minimum cut S that is crossed on both sides let SL be the near minimum cut
crossing S on the left which minimizes the intersection with S, and similarly for SR; if there are multiple
sets crossing S on the left with the same minimum intersection, choose the smallest one to be SL (and similar
do for SR).

We partition δ(S) into three sets δ(S)L, δ(S)R and δ(S)O as in Fig. 32 such that

δ(S)L = E(S ∩ SL, SL r S)
δ(S)R = E(S ∩ SR, SR r S)
δ(S)O = δ(S)r (δ(S)L ∪ δ(S)R)

For an OPT edge e∗ define an (increase) event (of second type) I2(e∗) as the event that at least
one of the following does not hold. (If L(e∗) does not exist, assume the first and third events always
hold; similarly if R(e∗) does not exist, assume the second and fourth events always hold.)

|T ∩ δ(L(e∗))R| = 1, |T ∩ δ(R(e∗))L| = 1, T ∩ δ(L(e∗))O = ∅, and T ∩ δ(R(e∗))O = ∅. (12)

77

In the proof of Theorem 5.2 we will increase an OPT edge e∗ whenever I2(e∗) occurs.

Lemma 5.4. For any OPT edge e∗, P [I2(e∗)] ≤ 18η.

Proof. Fix e∗. To simplify notation we abbreviate L(e∗), R(e∗) to L, R. Since L is crossed on
both sides, LL, LR are well defined. Since by Lemma 2.36 LL ∩ L, LL r L are 4η-near min cuts
and L is 2η-near mincut with respect to x, by Corollary 2.29, P [|T ∩ δ(L)L)| = 1] ≥ 1 − 5η.
Similarly, P [|T ∩ δ(R)L| = 1] ≥ 1− 5η. On the other hand, since L, LL, LR are 2η-near min cuts,
by Lemma 2.37, x(E(L ∩ LR, LR)), x(E(L ∩ LL, LL)) ≥ 1− η. Therefore

x(δ(L)O) ≤ 2 + 2η − x(E(L ∩ LR, LR))− x(E(L ∩ LL, LL)) ≤ 4η.

It follows that P [T ∩ δ(L)O = ∅] ≥ 1− 4η. Similarly, P [T ∩ δ(R)O = ∅] ≥ 1− 4η. Finally, by the
union bound, all events occur simultaneously with probability at least 1− 18η. So, P [I2(e∗)] ≤ 18η
as desired.

S

SL SR

e∗L e∗R

1 1

Figure 33: Setting of Lemma 11.3. Here we zoom in on a portion of the optimal cycle and assume
the root is not shown. If I2(e∗L) does not occur then E(S ∩ SL, SL r S)T = 1.

Lemma 5.5. Let S be a cut which is crossed on both sides and let e∗L, e∗R be the OPT edges on its interval
where e∗L is the edge further clockwise. Then, if δ(S)T 6= 2, at least one of I2(e∗L), I2(e∗R) occurs.

Proof. We prove by contradiction. Suppose none of I2(e∗L), I2(e∗R) occur; we will show that this
implies δ(S)T = 2.

Let R = R(e∗L); note that S is a candidate for R(e∗L), so S ⊆ R. Therefore, SL = RL and we have

δ(R)L = E(R ∩ RL, RL r R) = E(R ∩ SL, SL r R) = δ(S)L.

where we used S ∩ SL = R ∩ SL and that SL r S = SL r R. Similarly let L = L(e∗R), and, we have
δ(L)R = δ(S)R.

Now, since I2(e∗L) has not occurred, 1 = |T ∩ δ(R)L| = |T ∩ δ(S)L|, and since I2(e∗R) has not
occurred, 1 = |T ∩ δ(L)R| = |T ∩ δ(S)R|, where L = L(e∗R). So, to get δ(S)T = 2, it remains to show
that T ∩ δ(S)O = ∅. Consider any edge e = (u, v) ∈ δ(S)O where u ∈ S. We need to show e /∈ T.
Assume that v is to the left of S (the other case can be proven similarly). Then e ∈ δ(R). So, since
e goes to the left of R, either e ∈ E(R ∩ RL, RL r R) or e ∈ δ(R)O. But since e /∈ δ(S)L = δ(R)L, we
must have e ∈ δ(R)O. So, since I2(e∗L) has not occurred, e /∈ T as desired.

78

Proof of Theorem 5.2. For any OPT edge e∗ whenever I2(e∗) occurs, define s∗e∗ = 2.02β. Then, by
Lemma 11.5, E [se∗] ≤ 18 · 2.02β and for any 2η-near min cut S (w.r.t., x) that is crossed on both
sides if δ(S)T is odd, then at least one of I2(e∗L), Iw(e∗R) occurs, so

s(δ(S)) + s∗(δ(S)) ≥ −x(δ(S))β + s∗e∗L + s∗e∗R ≥ −(2 + 2η)β + 2.02β ≥ 0

for η < 1/100 as desired.

5.3 Proof of the Main Technical Theorem, Theorem 12.1

The following theorem is the main result of this section.

Theorem 5.6. Let x0 be a feasible solution of the 2 with support E0 = E ∪ {e0} and x be x0 restricted
to E. Let µ be the max entropy distribution with marginals x. For η ≤ 10−12, β > 0, there is a set
Eg ⊂ E r δ({u0, v0}) of good edges and two functions s : E0 → R and s∗ : E∗ → R≥0 (as functions of
T ∼ µ) such that

(i) For each edge e ∈ Eg, se ≥ −xeβ and for any e ∈ E r Eg, se = 0.

(ii) For each η-near-min-cut S w.r.t. z, if δ(S)T is odd, then s(δ(S)) + s∗(δ(S)) ≥ 0.

(iii) We have E [se] ≤ −εPβxe for all edges e ∈ Eg and E [s∗e∗] ≤ 218ηβ for all OPT edges e∗ ∈ E∗. for
εP defined in (38).

(iv) For every η-near minimum cut S of z crossed on (at most) one side such that S 6= V r {u0, v0},
x(δ(S) ∩ Eg) ≥ 3/4.

Before proving this theorem we use it to prove the main technical theorem as given in the
overview.

Theorem 4.6 (Main Technical Theorem). Let x0 be a solution of (2) with support E0 = E ∪ {e0}, and x
be x0 restricted to E. Let z := (x +OPT)/2, η ≤ 10−12, β > 0, and let µ be the max-entropy distribution
with marginals x. Also, let E∗ denote the support of OPT. There are two functions s : E0 → R and
s∗ : E∗ → R≥0 (as functions of T ∼ µ), , such that

i) For each edge e ∈ E, se ≥ −xeβ.

ii) For each η-near-min-cut S of z, if δ(S)T is odd, then s(δ(S)) + s∗(δ(S)) ≥ 0.

iii) For every OPT edge e∗, E [s∗e∗] ≤ 218ηβ and for every LP edge e 6= e0, E [se] ≤ − 1
3 xeεPβ for

εP = 3.12 · 10−16 (defined in (38)).

Proof of Theorem 4.6. Let Eg be the good edges defined in Theorem 5.6 and let Eb := E r Eg be the
set of bad edges; in particular, note all edges in δ({u0, v0}) are bad edges. We define a new vector
s̃ : E ∪ {e0} → R as follows:

s̃(e)←


∞ if e = e0

−xe(4β/5)(1− 2η) if e ∈ Eb,
xe(4β/3) otherwise.

(13)

79

Let s̃∗ be the vector s∗ from Theorem 5.2. We claim that for any η-near minimum cut S such that
δ(S)T is odd, we have

s̃(δ(S)) + s̃∗(δ(S)) ≥ 0.

To check this note by (iv) of Theorem 5.6 for every set S 6= V r {u0, v0} crossed on at most one
side, we have x(Eg ∩ δ(S)) ≥ 3

4 , so

s̃(δ(S)) + s̃∗(δ(S)) ≥ s̃(δ(S)) =
4β

3
x(Eg ∩ δ(S))− 4β

5
(1− 2η)x(Eb ∩ δ(S)) ≥ 0. (14)

For S = V r {u0, v0}, we have δ(S)T = δ(u0)T + δ(v0)T = 2 with probability 1, so condition
ii) is satisfied for these cuts as well. Finally, consider cuts S which are crossed on both sides. By
Theorem 5.2,

s̃(δ(S)) + s̃∗(δ(S)) ≥ 0 (15)

since s̃e ≥ − 4
5 βxe ≥ −βxe for all e.

Now, we are ready to define s, s∗. Let ŝ, ŝ∗ be the s, s∗ of Theorem 5.6 respectively. Define
s = γs̃ + (1− γ)ŝ and similarly define s∗ = γs̃∗ + (1− γ)ŝ∗ for some γ that we choose later. We
prove all three conclusions for s, s∗. (i) follows by (i) of Theorem 5.6 and Eq. (13). (ii) follows by (ii)
of Theorem 5.6 and Eq. (14) above. It remains to verify (iii). For any OPT edge e∗, E [s∗e∗] ≤ 218ηβ
by (iii) of Theorem 5.6 and the construction of s̃∗. On the other hand, by (iii) of Theorem 5.6 and
Eq. (13),

E [se]

{
≤ xe(γ

4
3 β− (1− γ)εPβ) ∀e ∈ Eg,

= −xeγ · (4
5 β)(1− 2η) ∀e ∈ Eb.

Setting γ = 15
32 εP we get E [se] ≤ − 1

3 εPβxe for e ∈ Eg and E [se] ≤ − 1
3 xeβεP for e ∈ Eb as

desired.

5.4 Structure of Polygons of Cuts Crossed on One Side

Definition 5.7 (Connected Component of Crossing Cuts). Given a family of cuts crossed on at most
one side, construct a graph where two cuts are connected by an edge if they cross. Partition this graph into
maximal connected components. We call a path in this graph, a path of crossing cuts.

In the rest of this section we will focus on a single connected component C of cuts crossed on
(at most) one side.

Definition 5.8 (Polygon). For a connected component C of crossing near min cuts that are crossed on one
side, let a0, . . . , am−1 be the coarsest partition of the vertices V , such that for all 0 ≤ i ≤ m− 1 and for
any A ∈ C either ai ⊆ A or ai ∩ A = ∅. These are called atoms. We assume a0 is the atom that contains
the special edge e0, and we call it the root. Note that for any A ∈ C, a0 ∩ A = ∅.

Since every cut A ∈ C corresponds to an interval of vertices in V in the optimum Hamiltonian cycle,
we can arrange a0, . . . , am−1 around a cycle (in the counter clockwise order). We label the arcs in this cycle
from 1 to m, where i + 1 is the arc connecting ai and ai+1 (and m is the name of the arc connecting am−1
and a0). Then every cut A ∈ C can be identified by the two arcs surrounding its atoms. Specifically, A is
identified with arcs i, j (where i < j) if A contains atoms ai, . . . , aj−1, and we write `(A) = i, r(A) = j.
Note that A does not contain the root a0.

80

By construction for every arc 1 ≤ i ≤ m, there exists a cut A such that `(A) = i or r(A) = i.
Furthermore, A, B ∈ C (with `(A) ≤ `(B)) cross iff `(A) < `(B) < r(A) < r(B).

See Fig. 34 for a visual example.

Notice that every atom of a polygon is an interval of the optimal cycle. In this section, we
prove the following structural theorem about polygons of near minimum cuts crossed on one side.

Theorem 5.9 (Polygon Structure). For εη ≥ 14η and any polygon of cuts crossed on one side with atoms
a0...am−1 (where a0 is the root) the following holds:

• For all adjacent atoms ai, ai+1 (also including a0, am−1), we have x(E(ai, ai+1)) ≥ 1− εη .

• All atoms ai (including the root) have x(δ(ai)) ≤ 2 + εη .

• x(E(a0, {a2, . . . , am−2})) ≤ εη .

The interpretation of this theorem is that the structure of a polygon of cuts crossed on one side
converges to the structure of an actual integral cycle as η → 0. The proof of the theorem follows
from the lemmas in the rest of this subsection.

L1

L2 L3

R1

R2

a1 a2 a3 a4 a5 a6

a1 a2 a3 a4 a5 a6

a0

A B

Figure 34: An example of a polygon with contracted atoms. In black are the cuts in the left
polygon hierarchy, in red the cuts in the right polygon hierarchy. OPT edges around the cycle are
shown in green. Here R1 is an ancestor of R2, however it is not a strict ancestor of R2 since they
have the same right endpoint. L1 is a strict ancestor and the strict parent of L3. By Theorem 5.9,
every edge in the bottom picture represents a set of LP edges of total fraction at least 1− εη .

81

Definition 5.10 (Left and Right Hierarchies). For a polygon u corresponding to a connected component
C of cuts crossed on one side, let L (the left hierarchy) be the set of all cuts A ∈ C that are not crossed on
the left. We call any cut in L open on the left. Similarly, we let R be the set of cuts that are open on the
right. So, L,R is a partitioning of all cuts in C.

For two distinct cuts A, B ∈ L we say A is an ancestor of B in the left polygon hierarchy if A ⊇ B.
We say A is a strict ancestor of B if, in addition, `(A) 6= `(B). We define the right hierarchy similarly: A
is a strict ancestor of B if A ⊇ B and r(A) 6= r(B).

We say B is a strict parent of A if among all strict ancestors of A in the (left or right) hierarchy, B is
the one closest to A.

See Fig. 34 for examples of sets and their parent/ancestor relationships.

Fact 5.11. If A, B are in the same hierarchy and they are not ancestors of each other, then A ∩ B = ∅.

Proof. If A ∩ B 6= ∅ then they cross. So, they cannot be open on the same side.

This lemma immediately implies that the cuts in each of the left (and right) hierarchies form a
laminar family.

Lemma 5.12. For A, B ∈ R where B is a strict parent of A, there exists a cut C ∈ L that crosses both
A, B. Similarly, if A, B ∈ L and B is a strict parent of A, there exists a cut C ∈ R that crosses A, B.

Proof. Since we have a connected component of near min cuts, there exists a path of crossing cuts
from A to B. Let P = (A = C0, C1, . . . , Ck = B) be the shortest such path. We need to show that
k = 2.

First, since C1 crosses C0 and C0 is open on right, we have

`(C1) < `(C0) < r(C1) < r(C0).

Let I be the closed interval [`(C1), r(C0)]. Note that Ck = B has an endpoint that does not belong
to I. Let Ci be the first cut in the path with an endpoint not in I (definitely i > 1). This means
Ci−1 ⊆ I; so, since Ci−1 crosses Ci, exactly one of the endpoints of Ci is strictly inside I. We
consider two cases:

Case 1: r(Ci) > r(C0). In this case, Ci must be crossed on the left (by Ci−1) and Ci ∈ R and it
does not cross C0. So, C0 (Ci and

`(C1) < `(Ci) ≤ `(C0)

where the first inequality uses that the left endpoint of Ci is strictly inside I. Therefore, C1 crosses
both of C0, Ci, and Ci is a strict ancestor of A = C0. If Ci = B we are done, otherwise, A ⊆ B ⊆ Ci,
but since C1 crosses both A and Ci, it also crosses B and we are done.

Case 2: `(Ci) < `(C1). In this case, Ci must be crossed on the right (by Ci−1) and Ci ∈ L and it
does not cross C1. So, we must have

r(C1) ≤ r(Ci) < r(C0),

where the second inequality uses that the right endpoint of Ci is strictly inside I. But, this implies
that Ci also crosses C0. So, we can obtain a shorter path by excluding all cuts C1, . . . , Ci−1 and that
is a contradiction.

82

Lemma 5.13. Let A, B ∈ R such that A ∩ B = ∅, i.e., they are not ancestors of each other. Then, they
have a common ancestor, i.e., there exists a set C ∈ R such that A, B ⊆ C.

Proof. WLOG assume r(A) ≤ `(B). Let C be the highest ancestor of A in the hierarchy, i.e., C
has no ancestor. For the sake of contradiction suppose B ∩ C = ∅ (otherwise, C is an ancestor
of B and we are done). So, r(C) ≤ `(B). Consider the path of crossing cuts from C to B, say
C = C0, . . . , Ck = B.

Let Ci be the first cut in this path such that r(Ci) > r(C0). Note that such a cut always exists as
r(B) > r(C). Since Ci−1 crosses Ci and r(Ci−1) ≤ r(C0), Ci−1 crosses Ci on the left and Ci is open
on the right. We show that Ci is an ancestor of C = C0 and we get a contradiction to C0 having no
ancestors (in R). If `(C0) < `(Ci), then Ci crosses C0 on the right and that is a contradiction. So,
we must have C0 ⊆ Ci, i.e., Ci is an ancestor of C0.

It follows from the above lemma that each of the left and right hierarchies have a unique cut
with no ancestors.

Lemma 5.14. If A is a cut in R such that r(A) < m, then A has a strict ancestor. And, similarly, if
A ∈ L satisfies `(A) > 1, then it has a strict ancestor.

Proof. Fix a cut A ∈ R. If there is a cut in B ∈ R such that r(B) > r(A), then either B is a strict
ancestor of A in which case we are done, or A ∩ B = ∅, but then by Lemma 5.13 A, B have a
common ancestor C, and C must be a strict ancestor of A and we are done.

Now, suppose for any R ∈ R, r(R) ≤ r(A). So, there must be a cut B ∈ L such that
r(B) > r(A) (otherwise we should have less than m atoms in our polygon). The cut B must be
crossed on the right by a cut C ∈ R. But then, we must have r(C) > r(B) > r(A) which is a
contradiction.

Corollary 5.15. If A ∈ C has no strict ancestor, then r(A) = m if A ∈ R and `(A) = 1 otherwise.

Lemma 5.16 (Polygons are Near Minimum Cuts). x(δ(a1 ∪ · · · ∪ am−1)) ≤ 2 + 4η.

Proof. Let A ∈ L and B ∈ R be the unique cuts in the left/right hierarchy with no ancestors.
Note that A and B are crossing (because there is a cut C that crosses A on the right, and B is an
ancestor of C). Therefore, since A, B are both 2η near min cuts (with respect to x), by Lemma 2.36,
A ∪ B is a 4η near min cut.

Lemma 5.17 (Root Neighbors). x(E(a0, a1)), x(E(a0, am−1)) ≥ 1− 2η.

Proof. Here we prove x(E(a0, a1)) ≥ 1− 2η. One can prove x(E(a0, am−1)) ≥ 1− 2η similarly. Let
A ∈ L and B ∈ R be the unique cuts in the left/right hierarchy with no ancestors. First, observe
that if `(B) = 2, then since A, B are crossing, by Lemma 2.37 we have

x(E(A r B, A ∪ B)) = x(E(a1, a0)) ≥ 1− η.

as desired.
By definition of atoms, there exists a cut C ∈ C such that either `(C) = 2 or r(C) = 2; but if

r(C) = 2 we must have `(C) = 1 in which case C cannot be crossed, so this does not happen. So,

83

we must have `(C) = 2. If C ∈ R, then since C is a descendent of B, we must have `(B) = 2, and
we are done by the previous paragraph.

Otherwise, suppose C ∈ L. We claim that B crosses C. This is because, C is crossed on the
right by some cut B′ and B is an ancestor of B′, so B∩C 6= ∅ and C 6⊆ B since `(B) > 2. Therefore,
by Lemma 2.36 B ∪ C is a 4η near min cut. Since A crosses B ∪ C, by Lemma 2.37 we have

x(E(A r (B ∪ C), A ∪ B ∪ C)) = x(E(a1, a0)) ≥ 1− 2η

as desired.

Lemma 5.18. For any pair of atoms ai, ai+1 where 1 ≤ i ≤ m− 2 we have x(δ({ai, ai+1})) ≤ 2 + 12η,
so x(E(ai, ai+1)) ≥ 1− 6η.

Proof. We prove the following claim: There exists j ≤ i such that x(δ({aj, . . . , ai+1})) ≤ 2 + 6η.
Then, by a similar argument we can find j′ ≥ i + 1 such that x(δ({ai, . . . , aj′})) ≤ 2 + 6η. By
Lemma 2.36 it follows that x(δ({ai, ai+1})) ≤ 2 + 12η. Since x(δ(ai)), x(δ(ai+1)) ≥ 2, we have

x(δ({ai, ai+1})) + 2x(E(ai, ai+1)) ≥ 4.

But due to the bound on x(δ({ai, ai+1})) we must have x(E(ai, ai+1)) ≥ 1− 6η as desired.
It remains to prove the claim. First, observe that there is a cut A separating ai+1, ai+2 (Note

that if i + 1 = m− 1 then ai+2 = a0); so, either `(A) = i + 2 or r(A) = i + 2. If r(A) = i + 2 then,
A is the cut we are looking for and we are done. So, assume `(A) = i + 2.

Case 1: A ∈ L. Let L ∈ L be the strict parent of A. If `(L) ≤ i then we are done (since there
is a cut R ∈ R crossing A, L on the right so L r (A ∪ R) is the cut that we want. If `(L) = i + 1,
then let L′ be the strict parent of L). Then, there is a cut R ∈ R crossing A, L and a cut R′ crossing
L, L′. First, since both R, R′ cross L (on the right) they have a non-empty intersection, so one of
them say R′ is an ancestor of the other (R) and therefore R′ must intersect A. On the other hand,
since R′ crosses L and `(L) = i + 1, `(R′) ≥ i + 2 = `(A). Since R′ intersect A, either they cross,
or A ⊆ R′, so we must have x(δ(A ∪ R)) ≤ 2 + 4η. Finally, since R′ crosses L′ (on the right) we
have x(δ(L′ r (A ∪ R))) ≤ 2 + 6η and L′ r (A ∪ R) is our desired set.

Case 2: A ∈ R. We know that A is crossed on the left by, say, L ∈ L. If `(L) ≤ i, we are done,
since then L r A is the cut that we seek and we get x(δ(L r A)) ≤ 2 + 4η.

Suppose then that `(L) = i + 1. Let L′ be the strict parent of L, which must have `(L′) ≤ i. If
L′ crosses A, then L′ r A is the cut we seek and we get x(δ(L r A)) ≤ 2 + 4η.

Finally, if L′ doesn’t cross A, i.e., r(A) ≤ r(L′), then consider the cut R ∈ R that crosses L and
L′ on the right. Since r(L) < r(A), and A is not crossed on the right, it must be that `(R) = i + 2.
In this case, L′ r R is the cut we want, and we get x(δ(L′ r R)) ≤ 2 + 4η.

Lemma 5.19 (Atoms are Near Minimum Cuts). For any 1 ≤ i ≤ m− 1, we have x(δ(ai)) ≤ 2 + 14η.

Proof. By Lemma 5.18, x(δ({ai, ai+1})) ≤ 2 + 12η (note that in the special case i = m − 1 we
take the pair ai−1, ai). There must be a 2η-near minimum cut C (w.r.t., x) separating ai from ai+1.
Then either ai = C ∩ {ai, ai+1} or ai = {ai, ai+1}r C. In either case, we get x(δ(ai)) ≤ 2 + 14η by
Lemma 2.36.

84

5.5 Happy Polygons

Definition 5.20 (A, B, C-Polygon Partition). Let u be a polygon with atoms a0, . . . , am−1 with root a0
where a1, am−1 are the atoms left and right of the root. The A, B, C-polygon partition of u is a partition of
edges of δ(u) into sets A = E(a1, a0) and B = E(am−1, a0), C = δ(u)r A r B.

Note that by Theorem 5.9, x(A), x(B) ≥ 1− εη and x(C) ≤ εη where we set

εη = 14η (16)

as needed for Theorem 5.9.

Definition 5.21 (Leftmost and Rightmost cuts). Let u be a polygon with atoms a0, . . . , am−1 and arcs
labelled 1, . . . , m corresponding to a connected component C of η-near minimum cuts (w.r.t., z). We call
any cut C ∈ C with `(C) = 1 a leftmost cut of u and any cut C ∈ C with r(C) = m a rightmost cut of
u. We also call a1 the leftmost atom of u (resp. am−1 the rightmost atom).

Observe that by Corollary 5.15, any cut that is not a leftmost or a rightmost cut has a strict
ancestor.

Definition 5.22 (Happy Polygon). Let u be a polygon with polygon partition A, B, C. For a spanning
tree T, we say that u is happy if

AT and BT odd, CT = 0.

We say that u is left-happy (respectively right-happy) if

AT odd, CT = 0,

(respectively BT odd, CT = 0).

Definition 5.23 (Relevant Cuts). Given a polygon u corresponding to a connected component C of cuts
crossed on one side with atoms a0, . . . , am−1, define a family of relevant cuts

C ′ = C ∪ {ai : 1 ≤ i ≤ m− 1, z(δ(ai)) ≤ 2 + η}.

Note that atoms of u are always εη/2-near minimum cuts w.r.t., z but not necessarily η-near
minimum cuts. The following theorem is the main result of this section.

Theorem 5.24 (Happy Polygons and Cuts Crossed on One Side). Let G = (V, E, x) for x be an
LP solution and z = (x + OPT)/2. For a connected component C of near minimum cuts of z, let u be
the polygon with atoms a0, a1...am−1 with polygon partition A, B, C. For µ an arbitrary distribution of
spanning trees with marginals x, β > 0, there is a random vector s∗ : E∗ → R≥0 (as a function of T ∼ µ)
such that for any vector s : E→ R where se ≥ −βxe for all e ∈ E the following holds:

• If u is happy then, for any cut S ∈ C ′ if δ(S)T is odd then we have s(δ(S)) + s∗(δ(S)) ≥ 0,

• For any S ∈ C ′ that is not a rightmost/leftmost cut or rightmost/leftmost atom, if δ(S)T is odd, then
we have s(δ(S)) + s∗(δ(S)) ≥ 0.

• For all OPT edges e∗2 , . . . , e∗m−1 with respect to the above polygon, E
[
s∗e∗i

]
≤ 181ηβ. E [s∗e∗] = 0 for

all other OPT edges.

85

Before proving the above theorem, we study a special case.

Lemma 5.25 (Triangles as Degenerate Polygons). Let S = X ∪Y where X, Y, S are εη-near min cuts
(w.r.t., x) and each of these sets is a contiguous interval around the OPT cycle. Then, viewing X as a1 and
Y as a2 (and a0 = X ∪Y) the above theorem holds viewing S as a degenerate polygon.

Proof. In this case A = E(a1, a0), B = E(a2, a0), C = ∅. For the OPT edge e∗ between X, Y we
define I1(e∗) to be the event that at least one of T ∩ E(X), T ∩ E(Y), T ∩ E(S) is not a tree.
Whenever this happens we define s∗e∗ = 2.05 · β. If S is left-happy we need to show when δ(X)T
is odd, then s(δ(X)) + s∗(δ(X)) ≥ 0. This is because when S is left-happy we have AT is odd
(and CT = 0), so either I1(e∗) does not happen and δ(X)T is even, or it happens in which
case s(δ(X)) + s∗(δ(X)) ≥ 0 as s(δ(X)) ≥ −(2 + 2η)β and s∗e∗ = 2.05β. Finally, observe that by
Corollary 2.29, P [I1(e∗)] ≤ 3εη , so E [s∗e∗] = 3εη · 2.05β ≤ 87ηβ using η < 1/100 and εη as defined
in Eq. (16).

Lemma 5.26. For every cut A ∈ C that is not a leftmost or a rightmost cut, P [δ(A)T = 2] ≥ 1− 22η.

Proof. Assume A ∈ R; the other case can be proven similarly. Let B be the strict parent of A. By
Lemma 5.12 there is a cut C ∈ L which crosses A, B on their left. It follows by Lemma 2.36 that Cr
A, C ∩ A are 4η near minimum cuts (w.r.t., x). So, by Corollary 2.29, P [E(A ∩ C, C r A)T = 1] ≥
1− 5η. On the other hand, B r (A ∪ C) is a 6η near minimum cut and A r C, B r C are 4η near
min cuts (w.r.t., x). So, by Corollary 2.29 P [E(A r C, B r (A ∪ C))T = 1] ≥ 1− 7η.

Finally, by Lemma 2.37, x(E(A ∩ C, C r A)), x(E(A r C, B r (A ∪ C))) ≥ 1− 3η. Since A
is a 2η near min cut (w.r.t., x), all remaining edges have fractional value at most 8η, so with
probability 1− 8η, T does not choose any of them. Taking a union bound over all of these events,
P [δ(A)T = 2] ≥ 1− 22η.

Lemma 5.27. For any atom ai ∈ C ′ that is not the leftmost or the rightmost atom we have

P [δ(ai)T = 2] ≥ 1− 42η.

Proof. By Lemma 5.18, x(δ({ai, ai+1})) ≤ 2 + 12η, and by Lemma 5.19, x(δ(ai+1)) ≤ 2 + 14η (also
recall by the assumption of lemma x(δ(ai)) ≤ 2 + 2η, Therefore, by Corollary 2.29,

P [E(ai, ai+1)T = 1] , P [E(ai−1, ai)T = 1] ≥ 1− 14η,

where the second inequality holds similarly. Also, by Lemma 5.18, x(E(ai−1, ai)), x(E(ai, ai+1)) ≥
1− 6η. Since x(δ(ai)) ≤ 2 + 2η, x(E(ai, ai−1 ∪ ai ∪ ai+1)) ≤ 14η. So,

P [T ∩ E(ai, ai−1 ∪ ai ∪ ai+1) = ∅] ≥ 1− 14η.

Finally, by the union bound all events occur with probability at least 1− 42η.

Let e∗1 , . . . , e∗m be the OPT edges mapped to the arcs 1, . . . , m of the component C respectively.

Lemma 5.28. There is a mapping18 of cuts in C ′ to OPT edges e∗2 , . . . e∗m−1 such that each OPT edge has
at most 4 cuts mapped to it, an OPT edge e∗ is mapped to a cut S only if e∗ ∈ δ(S), and every atom of the
polygon in C ′ gets mapped to two (not necessarily distinct) OPT edges.

18Each cut will be mapped to one or two OPT edges.

86

Proof. Consider first the set of cuts in C ′R := R ∪ {ai : 1 ≤ i ≤ m − 1, z(δ(ai)) ≤ 2 + η} and
similarly C ′L := L ∪ {ai : 1 ≤ i ≤ m− 1, z(δ(ai)) ≤ 2 + η}. Observe that this is also a laminar
family. Note that atoms are in both C ′R and C ′L. We define a map from cuts in C ′R to OPT edges
such that every OPT edge e∗2 , . . . , e∗m−1 gets at most 2 cuts mapped to it. A similar argument works
for cuts in C ′L.

For any 2 ≤ i ≤ m− 1, we map

argmaxA∈C ′R :`(A)=i|A| and argmaxA∈C ′R :r(A)=i|A|

to e∗i , where recall `(A) is the OPT edge leaving A on the left side and r(A) the OPT edge leaving
on the right. By construction, each OPT edge gets at most two cuts mapped to it.

Furthermore, we claim every cut A ∈ C ′R gets mapped to at least one OPT edge. For the
sake of contradiction let A ∈ C ′R be a cut that is not mapped to any OPT edge. First note that
a1 is mapped to edge e∗2 (in both hierarchies) and am−1 is mapped to edge e∗m−1. Otherwise, if
A ∈ R, `(A) 6= 1. Furthermore, if A ∈ R and r(A) = m, then A is definitely the largest cut with
left endpoint `(A). So assume, 1 < `(A) < r(A) < m. Let B = argmaxB∈C ′R :`(B)=`(A)|B| and let
C = argmaxB∈C ′R :r(C)=r(A)|C|. Since A is not mapped to any OPT edge but B, C are mapped by
above definition, we must have B, C 6= A. But that implies A (B, C. And this means B, C cross;
but this is a contradiction with R being a laminar family.

Definition 5.29 (Happy Cut). We say a leftmost cut L ∈ L is happy if

E(L, a0 ∪ L)T = 1

Similarly, the leftmost atom a1 is happy if E(a1, a0 ∪ a1)T = 1. Define rightmost cuts in u or the rightmost
atom in u to be happy, similarly.

Note that, by definition, if leftmost cut L is happy and u is left happy then L is even, i.e.,
δ(L)T = 2. Similarly, a1 is even if it is happy and u is left-happy.

Lemma 5.30. For every leftmost or rightmost cut A in u that is an η-near min cut w.r.t. z, P [A happy] ≥
1 − 10η, and for the leftmost atom a1 (resp. rightmost atom am−1), if it is an η-near min cut then
P [a1 happy] ≥ 1− 24η (resp. P [am−1 happy] ≥ 1− 24η).

Proof. Recall that if A is a η-near min cut w.r.t. z then it is a 2η-near min cut w.r.t. x. Also, recall
for a cut L ∈ L, LR is the near minimum cut crossing L on the right that minimizes the intersection
(see Definition 5.3). We prove this for the leftmost cuts and the leftmost atom; the other case
can be proven similarly. Consider a cut L ∈ L. Since by Lemma 2.36 LR ∩ L, LR r L are 4η near
min cuts (w.r.t., x) and LR is a 2η near min cut, by Corollary 2.29, P [E(LR ∩ L, LR r L)T = 1] ≥
1− 5η. On the other hand, by Lemma 2.37, x(E(LR ∩ L, LR r L)) ≥ 1− η, and by Lemma 5.17,
x(E(L, a0)) ≥ 1− 2η. It follows that

x(δ(L)r E(LR ∩ L, LR r L)r E(L, a0)) ≤ 5η

Therefore, by the union bound, P [L happy] ≥ 1 − 10η, since if (δ(L) r E(LR ∩ L, LR r L) r
E(L, a0))T = 0 and E(LR ∩ L, LR r L)T = 1 then E(L, a0 ∪ L)T = 1 and therefore L is happy.

Now consider the atom a1, and suppose it is an η near min cut. By Lemma 5.18, x(δ({a1, a2})) ≤
2+ 12η and by Lemma 5.19, x(δ(a2)) ≤ 2+ 14η. Therefore, by Corollary 2.29, P [E(a1, a2)T = 1] ≥

87

1 − 14η. On the other hand, by Lemma 5.18, x(E(a1, a2)) ≥ 1 − 6η and by Lemma 5.17,
x(E(a1, a0)) ≥ 1− 2η. Therefore,

x(E(a1, a3 ∪ · · · ∪ am−1)) ≤ 2 + 2η − (1− 6η)− (1− 2η)) ≤ 10η.

Observe, a1 is happy when both of these events occur; so, by the union bound, P [a1 happy] ≥
1− 24η as desired.

Proof of Theorem 5.24. Consider an OPT edge e∗i for 1 < i < m. For the at most four cuts mapped
to e∗i in Lemma 5.28, we define the following three events:

i) A leftmost cut assigned to e∗i is not happy. (Equivalently, a leftmost cut L ∈ L ∩ C ′ with
r(L) = i is not happy.)

ii) A rightmost cut assigned to e∗i is not happy. (Equivalently, a rightmost cut R ∈ R∩ C ′ with
l(R) = i is not happy.19)

iii) A cut which is not leftmost or rightmost assigned to e∗i is odd.

Observe that the cuts in (i) and (ii) are assigned to e∗i in Lemma 5.28. We say an atom a is
singly-mapped to e∗i if in the matching a is only mapped to e∗i once, otherwise we say it is
doubly-mapped to e∗i .

We say an event I1(e∗i) occurs if either (i), (ii), or (iii) occurs. If I1(e∗i) occurs then we set:

s∗e∗i =


2.05β If (i),(ii), or (iii) occurred for at least one non-atom cut in C ′, or for an atom

which is doubly-mapped to e∗i
2.05β/2 Otherwise.

If I1(e∗i) does not occur we set s∗e∗i = 0. First, observe that for any non-atom cut S ∈ C ′ that is not
a leftmost or a rightmost cut, if δ(S)T is odd, then if e∗i is the OPT edge that S is mapped to, it
satisfies s∗e∗i = 2.05β, so

s(δ(S)) + s∗(δ(S)) ≥ −x(δ(S))β + s∗(e∗i) ≥ −(2 + 2η)β + 2.05β ≥ 0,

for η < 1/100. The same inequality holds for non-leftmost/rightmost atom cuts a ∈ C ′ which are
doubly-mapped to e∗i . For non-leftmost/rightmost atom cuts a ∈ C ′ which are singly-mapped to
e∗i , a is mapped (possibly even twice) to another edge e∗j (note j = i− 1 or i + 1), and in this case
s∗(e∗i) + s∗(e∗j) ≥ 2.05β, and again the above inequality holds.

Now, suppose for a leftmost cut S ∈ L ∩ C ′ with r(S) = i has δ(S)T odd. If u is not left-happy
there is nothing to prove. If u is left-happy, then we must have S is not happy (as otherwise δ(S)T
would be even), so I1(e∗i) occurs, so similar to the above inequality s(δ(S)) + s∗(δ(S)) ≥ 0. The
same holds for rightmost cuts and the leftmost/rightmost atoms in C ′ (note leftmost/rightmost
atoms are always doubly-mapped: a1 to e∗2 and am−1 to e∗m−1).

It remains to upper bound E [s∗(e∗i)] for 1 < i < m. By Lemma 5.28 at most four cuts are
mapped to e∗i . Then, either there is an atom which is doubly-mapped to e∗i or there is not.

19Note in the special case that i = 2, L in (i) will be the leftmost atom if it is a near min cut, and similarly in (ii) when
i = m− 1, R will be the rightmost atom if it is a near min cut.

88

First suppose exactly one atom is doubly-mapped to e∗i . Then there are at most three cuts
mapped to e∗i , including that atom. The probability of an event of type (i) or (ii) occurring for
the leftmost or rightmost atom is at most 1− 24η by Lemma 5.30. Atoms which are not leftmost
or rightmost are even with probability at least 1− 42η by Lemma 5.27. Therefore, in the worst
case, the doubly-mapped atom is not leftmost or rightmost. For the remaining two cuts, leftmost
and rightmost cuts are happy with probability at least 1− 10η by Lemma 5.30, and (non-atom)
non leftmost/rightmost cuts are even with probability at least 1− 22η by Lemma 5.26. Therefore
in the worst case the remaining two (non-atom) cuts mapped to e∗i are not leftmost/rightmost.
Therefore, if an atom is doubly-mapped to e∗i ,

E [s∗(e∗i)] ≤ 42η · 2.05β + 2 · 22η · 2.05β ≤ 177ηβ

Note if two atoms are doubly-mapped to e∗i ,

E [s∗(e∗i)] ≤ 2 · 42η · 2.05β ≤ 173ηβ

Otherwise, any atoms mapped to e∗i are singly-mapped. In this case, if only an atom cut is
odd/unhappy, we set s∗(e∗i) = 2.05β/2. The probability of an event of type (i) or (ii) occurring
for the leftmost or rightmost atom is at most 1− 24η by Lemma 5.30, so we can bound the
contribution of this event to E [s∗(e∗i)] by 24η · 2.05β/2. Atoms which are not leftmost or rightmost
are even with probability at least 1− 42η by Lemma 5.27, and so we can bound their contribution
by 42η · 2.05β/2. Therefore, in the worst case four non-leftmost/rightmost non-atom cuts are
mapped to e∗i , in which case,

E [s∗(e∗i)] ≤ 4 · 22η · 2.05β = 181ηβ

as desired.

5.6 Hierarchy of Cuts and Proof of Theorem 5.6

Definition 5.31 (Hierarchy). For an LP solution x0 with support E0 = E∪ {e0} and x be x0 restricted to
E, a hierarchy H is a laminar family of εη-near min cuts of G = (V, E, x) with root V r {u0, v0}, where
every cut S ∈ H is either a polygon cut (including triangles) or a degree cut and u0, v0 /∈ S. Furthermore,
every cut S is a union of its children. For any (non-root) cut S ∈ H, define the parent of S, p(S), to be the
smallest cut S′ ∈ H such that S (S′.

For a cut S ∈ H, let A(S) := {u ∈ H : p(u) = S}. If S is a polygon cut, then we can order cuts in
A(S), u1, . . . , um−1 such that

• A = E(S, u1), B = E(um−1, S) satisfy x(A), x(B) ≥ 1− εη .

• For any 1 ≤ i < m− 1, x(E(ui, ui+1)) ≥ 1− εη .

• C = ∪m−2
i=2 E(ui, S) satisfies x(C) ≤ εη .

We call the sets A, B, C the polygon partition of edges in δ(S). We say S is left-happy when AT is odd
and CT = 0 and right happy when BT is odd and CT = 0 and happy when AT, BT are odd and CT = 0.

We abuse notation, and for an (LP) edge e = (u, v) that is not a neighbor of u0, v0, let p(e) denote the
smallest20 cut S′ ∈ H such that u, v ∈ S′. We say edge e is a bottom edge if p(e) is a polygon cut and we
say it is a top edge if p(e) is a degree cut.

20in the sense of the number of vertices that it contains

89

Note that when S is a polygon cut u1, . . . , um−1 will be the atoms a1, . . . , am−1 that we defined
in the previous section, but a reader should understand this definition independent of the polygon
definition that we discussed before; in particular, the reader no longer needs to worry about the
details of specific cuts C that make up a polygon. Also, note that since V r {u0, v0} is the root of
the hierarchy, for any edge e ∈ E that is not incident to u0 or v0, p(e) is well-defined; so all those
edges are either bottom or top, and edges which are incident to u0 or v0 are neither bottom edges
nor top edges.

The following observation is immediate from the above definition.

Observation 5.32. For any polygon cut S ∈ H, and any cut S′ ∈ H which is a descendant of S let
D = δ(S′) ∩ δ(S). If D 6= ∅, then exactly one of the following is true: D ⊆ A or D ⊆ B or D ⊆ C.

We now introduce the “main payment theorem" which is the other key technical piece of the
proof.

Theorem 5.33 (Main Payment Theorem). For an LP solution x0 and x be x0 restricted to E and a
hierarchy H for some εη ≤ 10−10 and any β > 0, the maximum entropy distribution µ with marginals x
satisfies the following:

i) There is a set of good edges Eg ⊆ E r δ({u0, v0}) such that any bottom edge e is in Eg and for any
(non-root) S ∈ H such that p(S) is a degree cut, we have x(Eg ∩ δ(S)) ≥ 3/4.

ii) There is a random vector s : Eg → R (as a function of T ∼ µ) such that for all e, se ≥ −xeβ (with
probability 1), and

iii) If a polygon cut u with polygon partition A, B, C is not left happy, then for any set F ⊆ E with
p(e) = u for all e ∈ F and x(F) ≥ 1− εη/2, we have

s(A) + s(F) + s−(C) ≥ 0,

where s−(C) = ∑e∈C min{se, 0}. A similar inequality holds if u is not right happy.

iv) For every cut S ∈ H such that p(S) is not a polygon cut, if δ(S)T is odd, then s(δ(S)) ≥ 0.

v) For a good edge e ∈ Eg, E [se] ≤ −εPβxe (see Eq. (38) for definition of εP) .

The above theorem is the main part of the paper in which we use that µ is a SR distribution. See
Section 8 for the proof. We use this theorem to construct a random vector s such that essentially
for all cuts S ∈ H in the hierarchy z/2 + s is feasible; furthermore for a large fraction of “good”
edges we have that E [se] is negative and bounded away from 0.

As we will see in the this subsection, using part (iii) of the theorem we will be able to show
that every leftmost and rightmost cut of any polygon is satisfied.

In the rest of this section we use the above theorem to prove Theorem 5.6. We start by
explaining how to construct H. Given the vector z = (x + OPT)/2 run the following procedure
on the OPT cycle with the family of η-near minimum cuts of z that are crossed on at most one
side:

For every connected component C of η near minimum cuts (w.r.t., z) crossed on at most one
side, if |C| = 1 then add the unique cut in C to the hierarchy. Otherwise, C corresponds to a

90

polygon u with atoms a0, . . . , am−1 (for some m > 3). Add a1, . . . , am−1
21 and ∪m−1

i=1 ai to H. Since
every vertex except u0, v0 has degree 2, they all appear in the hierarchy as singletons. Therefore,
every set in the hierarchy is the union of its children. Note that since z(δ({u0, v0})) = 2, the root
of the hierarchy is always V r {u0, v0}.

Now, we name every cut in the hierarchy. For a cut S if there is a connected component of at
least two cuts with union equal to S, then call S a polygon cut with the A, B, C partitioning as
defined in Definition C.4. If S is a cut with exactly two children X, Y in the hierarchy, then also
call S a polygon cut22, A = E(X, X rY), B = E(Y, Y r X) and C = ∅. Otherwise, call S a degree
cut.

Fact 5.34. The above procedure produces a valid hierarchy for εη ≥ 14η.

Proof. First observe that whenever |C| = 1 the unique cut in C is a 2η near min cut (w.r.t, x) which
is not crossed. For a polygon cut S in the hierarchy, by Lemma 5.16, the set S is a εη near min cut
w.r.t., x. If S is an atom of a polygon, then by Lemma 5.19 S is a εη near min cut.

Now, it remains to show that for a polygon cut S we have a valid ordering u1, . . . , uk of cuts
in A(S). If S is a non-triangle polygon cut, the u1, . . . , uk are exactly atoms of the polygon of S
and x(A), x(B) ≥ 1− εη and x(C) ≤ εη and x(E(ui, ui+1)) ≥ 1− εη follow by Theorem 5.9. For
a triangle cut S = X ∪ Y because S, X, Y are εη-near min cuts (by the previous paragraph), we
get x(A), x(B) ≥ 1− εη as desired, by Lemma 2.38. Finally, since x(δ(X)), x(δ(Y)) ≥ 2 we have
x(E(X, Y)) ≥ 1− εη .

The following observation is immediate:

Observation 5.35. Each cut S ∈ H corresponds to a contiguous interval around OPT cycle. For a
polygon u (or a triangle) with atoms a0, . . . , am−1 for m ≥ 3 we say an OPT edge e∗ is interior to u if
e∗ ∈ E∗(ai, ai+1) for some 1 ≤ i ≤ m− 2. Any OPT edge e∗ is interior to at most one polygon.

Theorem 5.6. Let x0 be a feasible solution of the 2 with support E0 = E ∪ {e0} and x be x0 restricted
to E. Let µ be the max entropy distribution with marginals x. For η ≤ 10−12, β > 0, there is a set
Eg ⊂ E r δ({u0, v0}) of good edges and two functions s : E0 → R and s∗ : E∗ → R≥0 (as functions of
T ∼ µ) such that

(i) For each edge e ∈ Eg, se ≥ −xeβ and for any e ∈ E r Eg, se = 0.

(ii) For each η-near-min-cut S w.r.t. z, if δ(S)T is odd, then s(δ(S)) + s∗(δ(S)) ≥ 0.

(iii) We have E [se] ≤ −εPβxe for all edges e ∈ Eg and E [s∗e∗] ≤ 218ηβ for all OPT edges e∗ ∈ E∗. for
εP defined in (38).

(iv) For every η-near minimum cut S of z crossed on (at most) one side such that S 6= V r {u0, v0},
x(δ(S) ∩ Eg) ≥ 3/4.

Proof. For εη as in Eq. (16), let Eg, s be as defined in Theorem D.2, and let se0 = ∞. Also, let s∗

be the sum of the s∗ vectors from Theorem 5.2 and Theorem 5.24. (i) follows (ii) of Theorem D.2.
E [s∗e∗] ≤ 218ηβ follows from Theorem 5.2 and Theorem 5.24 and the fact that every OPT edge

21Notice that an atom may already correspond to a connected component, in such a case we do not add it in this step.
22Think about such set as a degenerate polygon with atoms a1 := X, a2 := Y, a0 := X ∪Y. So, for the rest of this

section we call them triangles and in later section we just think of them as polygon cuts.

91

is interior to at most one polygon. Also, E [se] ≤ −εPβxe for edges e ∈ Eg follows from (v) of
Theorem D.2.

Now, we verify (iv): For any (non-root) cut S ∈ H such that p(S) is not a polygon cut
x(δ(S) ∩ Eg) ≥ 3/4 by (i) of Theorem 5.33. The only remaining η-near minimum cuts are sets S
which are either atoms or near minimum cuts in the component C corresponding to a polygon u.
So, by Lemma 2.38, x(δ(S) ∩ δ(u)) ≤ 1 + εη . By (i) of Theorem D.2 all edges in δ(S)r δ(u) are in
Eg. Therefore, x(δ(S) ∩ Eg)) ≥ 1− εη ≥ 3/4.

It remains to verify (ii): We consider 4 groups of cuts:
Type 1: Near minimum cuts S such that e0 ∈ δ(S). Then, since se0 = ∞, s(δ(S)) + s∗(δ(S)) ≥ 0.
Type 2: Near minimum cuts S ∈ H where p(S) is not a polygon cut. By (iv) of Theorem D.2

and that s∗ ≥ 0 the inequality follows.
Type 3: Near minimum cuts S crossed on both sides. Then, the inequality follows by

Theorem 5.2 and the fact that se ≥ −βxe for all e ∈ E.
Type 4: Near minimum cuts S that are crossed on one side (and not in H) or S ∈ H and p(S)

is a (non-triangle) polygon cut. In this case S must be an atom or a η-near minimum cut (w.r.t.,
z) in some polygon u ∈ H. If S is not a leftmost cut/atom or a rightmost cut/atom, then the
inequality follows by Theorem 5.24. Otherwise, say S is a leftmost cut. If u is left-happy then by
Theorem 5.24 the inequality is satisfied. Otherwise, for F = δ(S)r δ(u), by Lemma 2.38, we have
x(F) ≥ 1− εη/2. Therefore, by (iii) of Theorem D.2 we have

s(δ(S)) + s∗(δ(S)) ≥ s(A) + s(F) + s−(C) ≥ 0

as desired. Note that since S is a leftmost cut, we always have A ⊆ δ(S). But C may have an
unpredictable intersection with δ(S); in particular, in the worst case only edges of C with negative
slack belong to δ(S). A similar argument holds when S is the leftmost atom or a rightmost
cut/atom.

Type 5: Near min cut S is the leftmost atom or the rightmost atom of a triangle u. This is
similar to the previous case except we use Lemma C.13 to argue that the inequality is satisfied
when u is left happy.

5.7 Hierarchy Notation

In the rest of the paper we will not work with z, OPT edges, or the notion of polygons. So,
practically, by Definition 5.31, from now on, a reader can just think of every polygon as a triangle.
In the rest of the paper we adopt the following notation.

We abuse notation and call any u ∈ A(S) an atom of S.

Definition 5.36 (Edge Bundles, Top Edges, and Bottom Edges). For every degree cut S and every pair
of atoms u, v ∈ A(S), we define a top edge bundle f = (u, v) such that

f = {e = (u′, v′) ∈ E : p(e) = S, u′ ∈ u, v′ ∈ v}.

Note that in the above definition, u′, v′ are actual vertices of G.
For every polygon cut S, we define the bottom edge bundle f = {e : p(e) = S}.

We will always use bold letters to distinguish top edge bundles from actual LP edges. Also,
we abuse notation and write xe := ∑ f∈e x f to denote the total fractional value of all edges in this
bundle.

92

In the rest of the paper, unless otherwise specified, we work with edge bundles and sometimes
we just call them edges.

For any u ∈ H with p(u) = S we write

δ↑(u) := δ(u) ∩ δ(S),
δ→(u) := δ(u)r δ(S).
E→(S) := {e = (ui, uj) : ui, uj ∈ A(S), ui 6= uj}.

Also, for a set of edges A ⊆ δ(u) we write A→, A↑ to denote A ∩ δ→(u), A ∩ δ↑(u) respectively
(when u is clear in context). Note that E→(S) ⊆ E(S) includes only edges between atoms of S and
not all edges between vertices in S.

Finally, for a set of edges F and an edge bundle e, we define F−e = F r e, and similarly
F+e = F ∪ e.

93

6 Probabilistic statements

We first prove some useful properties of Bernoulli-Sum random variables and random spanning
trees. We then have three important sections: Section 6.3 provides a very general tool for proving
lower bounds on the probability of certain events in any SR distribution, Section 6.4 constructs
and proves bounds on the events in which bottom edges can reduce, and finally Section 6.5 and
Section 6.6 construct and prove bounds on the events in which top edges can reduce.

6.1 Properties of Bernoulli-Sum Random Variables

Lemma 6.1. Let p0, . . . , pn be a log-concave sequence. If for some i, γpi ≥ pi+1 for some γ < 1, then,

n

∑
j=k

pj ≤
pk

1− γ
, ∀k ≥ i

n

∑
j=i+1

pj · j ≤
pi+1

1− γ

(
i + 1 +

γ

1− γ

)
.

Proof. Since we have a log-concave sequence we can write

1
γ
≤ pi

pi+1
≤ pi+1

pi+2
≤ . . . (17)

Since all of the above ratios are at least 1/γ, for all l ≥ 1 we can write

pi+l ≤ γl−1 pi+1 ≤ γl pi.

Therefore, the first statement is immediate and the second one follows,

n

∑
j=i+1

pj j ≤
∞

∑
l=0

γl pi+1(i + l + 1) = pi+1

(
i + 1
1− γ

+
γ

(1− γ)2

)

Corollary 6.2. Let X be a BS(q) random variable such that P [X = k] ≥ 1− ε for some integer k ≥ 1,
ε < 1/10. Then, k(1− ε) ≤ q ≤ k(1 + ε) + 3ε.

Proof. The left inequality simply follows since X ≥ 0. Since P [X = k + 1] ≤ ε, we can apply
Lemma 6.1 with γ = ε/(1− ε) to get

E [X|X ≥ k + 1]P [X ≥ k + 1] ≤ ε(1− ε)

1− 2ε

(
k + 1 +

ε

1− 2ε

)
Therefore,

q = E [X] ≤ k(1− ε) +
ε(1− ε)

1− 2ε
(k + 1 +

ε

1− 2ε
) ≤ k(1 + ε) + 3ε

as desired.

94

Fact 6.3. For integers k < t and k− 1 ≤ p ≤ k,

k−1

∏
i=1

(1− i/t)(1− p/t)t−k ≥ e−p.

Proof. We show that the LHS is a decreasing function of t. Since ln is monotone, it is enough to
show

0 ≥ ∂t ln(LHS) = ∂t

(
k−1

∑
i=1

ln(1− i/t) + (t− k) ln(1− p/t)

)

=
1
t2

k−1

∑
i=1

1
1
i −

1
t

+ ln(1− p/t) +
(t− k)p
t(t− p)

Using ∑k−2
i=1

1
t2/i−t ≤

∫ k−1
0

dx
t2/x−t = −(k− 1)/t− ln(1− (k− 1)/t) it is enough to show

0 ≥ − k− 1
t
− ln(1− k− 1

t
) + ln(1− p/t) +

(t− k)p
t(t− p)

+
1

t2(1
k−1 −

1
t)

= ln
t− p

t− k + 1
+

p− k
t− p

+
1
t
+

k− 1
t(t− k + 1)

Rearranging, it is equivalent to show

ln(1 +
p− k + 1

t− p
) ≥ p− k

t− p
+

1
t− k + 1

Since p > k− 1, using taylor series of ln, to prove the above it is enough to show

p− k + 1
t− p

− (p− k + 1)2

2(t− p)2 ≥ p− k
t− p

+
1

t− k + 1
.

This is equivalent to show

p− k + 1
(t− p)(t− k + 1)

≥ (p− k + 1)2

2(t− p)2 ⇔ 1
t− k + 1

≥ p− k + 1
2(t− p)

Finally the latter holds because (t − k + 1)(p − k + 1) ≤ (t − k + 1) ≤ 2(t − p) where we use
t ≥ k + 1 and p ≤ k.

Let Poi(p, k) = e−p pk/k! be the probability that a Poisson random variable with rate p is
exactly k; similarly, define Poi(p,≤ k), Poi(p,≥ k) as the probability that a Poisson with rate p is
at most k or at least k.

Lemma 6.4. Let X be a Bernoulli sum BS(p) for some n. For any integer k ≥ 0 such that k− 1 < p <
k + 1, the following holds true

P [X = k] ≥ min
0≤`≤p,k

Poi(p− `, k− `)

(
1− p− `

k− `+ 1

)(p−k)+

where the minimum is over all nonnegative integers ` ≤ p, k, and for z ∈ R, z+ = max{z, 0}.

95

Proof. Let X = B1 + · · ·+ Bn where Bi is a Bernoulli. Applying Hoeffding’s theorem, if ` of them
have success probability 1, it suffices to prove a lower bound of Poi(p− `, k− `)(1− p−`

k−`+1)
(p−k)+ .

Since without loss of generality none have success probability 1, it follows that each has success
probability p/n. If k ≥ p,

P [X = k] =
(

n
k

)(p
n

)k
(1− p/n)n−k =

k−1

∏
i=1

(1− i/n)
pk

k!
(1− p/n)n−k ≥ pk

k!
e−p = Poi(p, k),

where in the inequality we used Fact 6.3 (also note if n = k the inequality follows from Stirling’s
formula and that p ≥ k− 1). If k < p < k + 1, then as above

P [X = k] =
k−1

∏
i=1

(1− i/n)
pk

k!
(1− p/n)n−p(1− p/n)p−k

≥
p≥k

k−1

∏
i=1

(1− i/n)
pk

k!
(1− p/n)n−k(1− p/n)p−k ≥ Poi(p, k)(1− p/n)p−k,

where we used Fact 6.3 in the last inequality.

Note that if we further know X ≥ a with probability 1 we can restrict ` in the statement to be
in the interval [a, min(p, k)].

Lemma 6.5. Let X be a Bernoulli sum BS(p), where for some integer k = dpe, Then,

P [X ≥ k] ≥ min
0≤`≤p

Poi(p− `,≥ k− `)

where the minimum is over all non-negative integers ` ≤ p.

Proof. Suppose that X is a BS(p) with n Bernoullis with probabilities p1, . . . , pn. If p− 1 < k− 1 <
p, by [Hoe56, Thm 4, (25)],

P [X ≤ k− 1] ≤ max
0≤`<p

k−1−`
∑
i=0

(
n− `

i

)
qi(1− q)n−`−i (18)

where q = p−`
n−` .

If Y is a BS(p) with m > n Bernoullis with probabilities q1, . . . , qm, the same upper bound
applies of course, with m replacing n. Also, note that

max
p1 ...pn

P [X ≤ k− 1] ≤ max
q1,...,qm

P [Y ≤ k− 1]

since it is always possible to set qi = pi for i ≤ n and qj = 0 for j > n.
Therefore, the upper bound in (18) obtained by taking the limit as n goes to infinity applies,

from which it follows that

P [X ≤ k− 1] ≤ max
0≤`<p

k−1−`
∑
i=0

Poi(p− `, i)

and therefore
P [X ≥ k] ≥ min

0≤`<p
Poi(p− `,≥ k− `).

96

6.2 Random Spanning Trees

Lemma 6.6. Let G = (V, E, x), and let µ be a λ-uniform random spanning tree distribution with marginals
x. For any edge e = (u, v) and any vertex w 6= u, v we have

E [WT|e 6∈ T] ≤ E [WT] + P [w ∈ Pu,v|e 6∈ T] ·P [e ∈ T] ,

where WT = |T ∩ δ(w)| and for a spanning tree T and vertices u, v ∈ V, Pu,v(T) is the set of vertices on
the path from u to v in T.

Proof. Define E′ = E r {e}. Let µ′ = µ|E′ be µ projected on all edges except e. Define µin = µ′n−2
(corresponding to e in the tree) and µout = µ′n−1 (corresponding to e out of the tree). Observe that
any tree T has positive measure in exactly one of these distributions.

By Theorem 2.24, µin � µout so there exists a coupling ρ : 2E′ × 2E′ between them such that
for any Tin, Tout such that ρ(Tin, Tout) > 0, the tree Tout has exactly one more edge than Tin. Also,
observe that Tout is always a spanning tree whereas Tin ∪ {e} is a spanning tree. The added edge
(i.e., the edge in Tout r Tin) is always along the unique path from u to v in Tout.

For intuition for the rest of the proof, observe that if w is not on the path from u to v in Tout,
then the same set of edges is incident to w in both Tin and Tout. So, if w is almost never on the path
from u to v, the distribution of WT is almost independent of e. On the other hand, whenever w is
on the path from u to v, then in the worst case, we may replace e with one of the edges incident to
w, so conditioned on e out, WT increases by at most the probability that e is in the tree.

Say xe is the marginal of e. Then,

E [WT] = E [WT|e /∈ T] (1− xe) + E [WT|e ∈ T] xe

= ∑
Tin,Tout

ρ(Tin, Tout)Wo(1− xe) + ∑
Tin,Tout

ρ(Tin, Tout)Wixe

= ∑
Tin,Tout

ρ(Tin, Tout)((1− xe)Wo + xeWi), (19)

where we write Wi/Wo instead of WTin /WTout

E [WT|e /∈ T] = ∑
Tin,Tout

ρ(Tin, Tout)Wo

= ∑
Tin,Tout :w∈Pu,v(Tout)

ρ(Tin, Tout)Wo + ∑
Tin,Tout :w/∈Pu,v(Tout)

ρ(Tin, Tout)Wo

≤ ∑
Tin,Tout :w∈Pu,v(Tout)

ρ(Tin, Tout)(xe(Wi + 1) + (1− xe)Wo)

+ ∑
Tin,Tout :w/∈Pu,v(Tout)

ρ(Tin, Tout)(xeWi + (1− xe)Wo)

= E [WT] + ∑
Tin,Tout :w∈Pu,v(Tout)

ρ(Tin, Tout)xe

= E [WT] + ∑
Tout :w∈Pu,v(Tout)

µout(Tout)xe

= E [WT] + P [w ∈ Pu,v|e out] ·P [e in]

where in the inequality we used the following: When w /∈ Pu,v(Tout) we have Wi = Wo and when
w ∈ Pu,v(Tout) we have Wo ≤Wi + 1. Finally, in the third to last equality we used (19).

97

u
U

w
W

v
e f

Figure 35: Setting of Lemma 6.7

Lemma 6.7. Let G = (V, E, x), and let µ be a λ-uniform spanning tree distribution with marginals x.
For any pair of edges e = (u, v), f = (v, w) such that |P [e]− 1/2|, |P [f]− 1/2| < ε (see Fig. 35), if
ε < 1/1000, then

E [WT|e 6∈ T] + E [UT| f 6∈ T] ≤ E [WT + UT] + 0.81,

where U = δ(u)−e and W = δ(w)− f .

Proof. All probabilistic statements are with respect to ν so we drop the subscript. First, by
Lemma 6.6, and negative association we can write,

E [WT|e 6∈ T] ≤ E [WT] + P [w ∈ Pu,v|e 6∈ T]P [e ∈ T]
≤ E [WT] + P [w ∈ Pu,v ∧ e /∈ T] + 2ε

Note that the lemma only implies E [δ(w)T|e /∈ T] ≤ E [δ(w)T] + P [w ∈ Pu,v|e /∈ T]P [e ∈ T]. To
derive the first inequality we also exploit negative association which asserts that the marginal of
every edge only goes up under e /∈ T, so any subset of δ(w) (in particular W) also goes up by at
most P [e /∈ T ∧ w ∈ Pu,v]. Also, the second inequality uses P [e ∈ T] ≤ P [e /∈ T] + 2ε. Using a
similar inequality for UT, to prove the lemma it is enough to show that

P [w ∈ Pu,v ∧ e 6∈ T] + P [u ∈ Pv,w ∧ f 6∈ T] ≤ 0.806

or that when this inequality fails, a different argument yields the lemma.
The main observation is that in any tree it cannot be that both u is on the v− w path and w is

on the u− v path. Therefore

P [u ∈ Pv,w | e, f 6∈ T] + P [w ∈ Pu,v | e, f 6∈ T] ≤ 1

So, we have

P [e 6∈ T ∧ w ∈ Pu,v] + P [f 6∈ T ∧ u ∈ Pv,w]

≤ P [e, f 6∈ T ∧ w ∈ Pu,v] + P [e /∈ T, f ∈ T] + Pν [e, f 6∈ T ∧ u ∈ Pv,w] + P [f /∈ T, e ∈ T]
≤ P [e, f /∈ T] + P [e /∈ T, f ∈ T] + P [f /∈ T, e ∈ T]
= 1−P [e, f ∈ T] .

It remains to upper bound the RHS. Let α = P [f ∈ T|e /∈ T]. Observe that

P [e, f ∈ T] = P [f ∈ T]−P [f ∈ T, e /∈ T] ≥ 1/2− ε− (1/2 + ε)α.

If α ≤ 0.6, then P [e, f ∈ T] ≥ 0.198 (using ε < 0.001) and the claim follows. Otherwise,
P [f |e /∈ T] ≥ 0.6. Similarly, P [e| f /∈ T] ≥ 0.6. But, by negative association,

E [WT|e /∈ T] ≤ E [WT] + P [e]− (P [f |e /∈ T]−P [f]) ≤ E [WT] + 2ε + 0.4 ≤ E [WT] + 0.405

and similarly, E [UT| f /∈ T] ≤ E [UT] + 0.405, so the claim follows.

98

6.3 Gurvits’ Machinery and Generalizations

The following is the main result of this subsection.

Proposition 6.8. Given a SR distribution µ : 2[n] → R+, let A1, . . . , Am be random variables correspond-
ing to the number of elements sampled from m disjoint sets, and let integers n1, . . . , nm ≥ 0 be such that
for any S ⊆ [m],

P

[
∑
i∈S

Ai ≥ ∑
i∈S

ni

]
≥ ε,

P

[
∑
i∈S

Ai ≤ ∑
i∈S

ni

]
≥ ε,

it follows that,
P [∀i : Ai = ni] ≥ f (ε)P [A1 + · · ·+ Am = n1 + · · ·+ nm] ,

where f (ε) ≥ ε2m
∏m

k=2
1

max{nk ,n1+···+nk−1}+1 .

We remark that in applications of the above statement, it is enough to know that for any set
S ⊆ [m], ∑i∈S ni − 1 < E [∑i∈S Ai] < ∑i∈S ni + 1. Because, then by Lemma 6.4 we can prove a
lower bound on the probability that ∑i∈S Ai = ∑i∈S ni.

We also remark the above lower bound of f (ε) is not tight; in particular, we expect the
dependency on m should only be exponential (not doubly exponential). We leave it as an open
problem to find a tight lower bound on f (ε).

Proof. Let E be the event A1 + · · ·+ Am = n1 + · · ·+ nm.

P [1 ≤ i ≤ m : Ai = ni] =P [E]P [Am = nm|E]P [Am−1 = nm−1|Am = nm, E]
. . . P [A2 = n2|A3 = n3, . . . , SAm = nm, E]

So, to prove the statement, it is enough to prove that for any 2 ≤ k ≤ n,

P [Ak = nk|Ak+1 = nk+1, . . . , Am = nm, E] ≥ ε2m−k+1 1
max{nk, n1 + · · ·+ nk−1}+ 1

(20)

By the following Claim 6.9,

P [Ak ≥ nk|Ak+1 = nk+1, . . . , Am = nm, E] ≥ ε2m−k+1
,

P [Ak ≤ nk|Ak+1 = nk+1, . . . , Am = nm, E] ≥ ε2m−k+1
.

So, (20) simply follows by Lemma 6.10. Now we prove this claim.

Claim 6.9. Let [k] := {1, . . . , k}. For any 2 ≤ k ≤ m, and any set S ([k],

P

[
∑
i∈S

Ai ≥ ∑
i∈S

ni|Ak+1 = nk+1, . . . , Am = nm, E
]
≥ ε2m−k+1

,

P

[
∑
i∈S

Ai ≤ ∑
i∈S

ni|Ak+1 = nk+1, . . . , Am = nm, E
]
≥ ε2m−k+1

99

Proof. We prove by induction. First, notice for k = m the statement holds just by lemma’s
assumption and Lemma 6.11. Now, suppose the statement holds for k + 1. Now, fix a set S ([k].
Let S = [k]r S. Define A = ∑i∈S Ai and B = ∑i∈S Ai, and similarly define nA, nB. By the induction
hypothesis,

ε2m−k ≤ P [A ≤ nA|Ak+2 = nk+2, . . . , Am = nm, E]
The same statement holds for events A ≥ nA, B ≤ nB, B ≥ nB, A + B ≥ nA + nB, A + B ≤ nA + nB.
Let Ek+1 be the event Ak+2 = nk+2, . . . , Am = nm, E . Note that conditioned on Ek+1, A + B =
nA + nB if and only if Ak+1 = nk+1. By Lemma 6.10, P [A + B = nA + nB|Ek+1] > 0. Therefore, by
Lemma 6.11,

P [A ≥ nA|A + B = nA + nB, Ek+1] , P [A ≤ nA|A + B = nA + nB, Ek+1] ≥ (ε2m−k
)2 = ε2m−k+1

as desired.

This finishes the proof of Proposition 6.8

Lemma 6.10. Let µ : 2[n] → R≥0 be a d-homogeneous SR distribution. If for an integer 0 ≤ k ≤ d,
PS∼µ [|S| ≥ k] ≥ ε and Pµ [|S| ≤ k] ≥ ε. Then,

P [|S| = k] ≥ min{ ε

k + 1
,

ε

d− k + 1
},

P [|S| = k] ≥ min

{
pm, ε

(
1−

(
ε

pm

)1/ max{k,d−k}
)}

.

where pm ≤ max0≤i≤d P [|S| = i] is a lower bound on the mode of |S|.

Proof. Since µ is SR, the sequence s0, s1, . . . , sd where si = P [|S| = i] is log-concave and unimodal.
So, either the mode is in the interval [0, k] or in [k, d]. We assume the former and prove the
lemma; the latter can be proven similarly. First, observe that since sk ≥ sk+1 ≥ · · · ≥ sd, we get
sk ≥ ε/(d− k + 1). In the rest of the proof, we show that sk ≥ ε(1− (ε/pm)1/k) or sk ≥ pm.

Suppose si is the mode. It follows that there is i ≤ j ≤ k− 1 such that sj
sj+1
≥
(

si
sk

)1/(k−i)
. So,

by Lemma 6.1,

ε ≤ sk + · · ·+ sd ≤
sk

1−
(

sk
si

)1/(k−i)

If sk ≥ pm or sk ≥ ε then we are done. Otherwise,

sk ≥ ε
(

1− (sk/pm)
1/(k−i)

)
≥ ε

(
1− (ε/pm)

1/k
)

where we used si ≥ pm and sk ≤ ε.

Lemma 6.11. Given a strongly Rayleigh distribution µ : 2[n] → R≥0, let A, B be two (nonnegative)
random variables corresponding to the number of elements sampled from two disjoint sets such that
P [A + B = n] > 0 where n = nA + nB. Then,

P [A ≥ nA|A + B = n] = P [B ≤ nB|A + B = n] ≥ P [A ≥ nA]P [B ≤ nB] , (21)
P [A ≤ nA|A + B = n] = P [B ≥ nB|A + B = n] ≥ P [A ≤ nA]P [B ≥ nB] . (22)

100

Proof. We prove the second statement. The first one can be proven similarly. First, notice

P [A ≤ nA, A + B ≥ n] + P [B ≥ nB, A + B < n]
=P [B ≥ nB, A ≤ nA, A + B ≥ n] + P [A ≤ nA, B ≥ nB, A + B < n]
=P [B ≥ nB, A ≤ nA] ≥ P [B ≥ nB]P [A ≤ nA] =: α,

where the last inequality follows by negative association. Say q = P [A + B ≥ n]. From above,
either P [A ≤ nA, A + B ≥ n] ≥ αq or P [B ≥ nB, A + B < n] ≥ α(1− q). In the former case, we
get P [A ≤ nA|A + B ≥ n] ≥ α and in the latter we get P [B ≥ nB|A + B < n] ≥ α. Now the
lemma follows by the stochastic dominance property

P [A ≤ nA|A + B = n] ≥ P [A ≤ nA|A + B ≥ n]
P [B ≥ nB|A + B = n] ≥ P [B ≥ nB|A + B < n]

Note that in the special case that A + B < n never happens, the lemma holds trivially.

Combining the previous two lemmas, we get

Corollary 6.12. Let µ : 2[n] → R≥0 be a SR distribution. Let A, B be two random variables corresponding
to the number of elements sampled from two disjoint sets of elements such that A ≥ kA with probability 1
and B ≥ kB with probability 1. If P [A ≥ nA] , P [B ≥ nB] ≥ ε1 and P [A ≤ nA] , P [B ≤ nB] ≥ ε2, then,
letting n′A = nA − kA, n′B = nB − kB,

P [A = nA|A + B = nA + nB] ≥ ε min{ 1
n′A + 1

,
1

n′B + 1
},

P [A = nA|A + B = nA + nB] ≥ min
{

pm, ε(1− (ε/pm)
1/ max{n′A,n′B})

}
where ε = ε1ε2 and pm ≤ maxkA≤k≤nA+nB−kB P [A = k|A + B = nA + nB] is a lower bound on the mode
of A.

In the special case that nA = 1, nB = 1, kA = 0, kB = 0, if P [A = 1|A + B = 2] ≤ ε, pm ≥ 1− 2ε.
If ε ≤ 1/3,

P [A = 1|A + B = 2] ≥ max
{

ε/2, ε

(
1− ε

1− 2ε

)}
.

To get the first statement, we construct a new SR distribution from µ as follows. First, we
symmetrize gµ by setting all xa ∈ A to x and all xb ∈ B to y; call the resulting polynomial qµ.
Then, notice q′µ = qµ/(xkA xkB) is real stable. Therefore, we can apply the above corollary to a
distribution with generating polynomial q′µ.23

To get the second statement, notice that since the distribution of A is unimodal,

min{P [A = 0] , P [A = 2]} ≤ ε

23To be precise, we apply the above corollary to the polarization of q′µ, where x, y are polarized by a disjoint set of
variables of size equal to their maximum degree.

101

6.4 Max Flow

This proposition and the max flow event are crucially used in the analysis of the bottom-bottom
case in the payment theorem (Theorem D.2). See Example 4.10 and the preceding discussion
for more high-level intuition. The main consequences of this section are Corollary 6.17 and
Corollary 6.18.

Proposition 6.13. Let µ : 2E → R≥0 be a homogeneous SR distribution. For any 330ε < ζ < 0.002 and
disjoint sets A, B ⊆ E such that E [AT] , E [BT] ∈ [1− ε, 1 + ε] (where T ∼ µ) there is an event EA,B(T)
such that P [EA,B(T)] ≥ 0.0246ζ2(1− ζ/2.1− ε) and it satisfies the following three properties.

i) P [AT = BT = 1|EA,B(T)] = 1,

ii) ∑e∈A |P [e]−P [e|EA,B(T)] | ≤ ζ, and

iii) ∑e∈B |P [e]−P [e|EA,B(T)] | ≤ ζ.

In other words, under event EA,B which has a constant probability, AT = BT = 1 and the
marginals of all edges in A, B are preserved up to total variation distance ζ. We also remark that
above statement holds for a much larger value of ζ at the expense of a smaller lower bound on
P [EA,B(T)].

Before, proving the above statement we prove the following lemma.

Lemma 6.14. Let µ : 2E → R≥0 be a homogeneous SR distribution. Let A, B ⊆ E be two disjoint sets
such that E [AT] , E [BT] ∈ [1− ε, 1 + ε] (where T ∼ µ), A′ ⊂ A and B′ ⊆ B and E [A′T ∪ B′T] ≥ 1 + α
for some α > 100ε. If α < 0.001, we have

P
[
A′T = B′T = AT = BT = 1

]
≥ 0.11α3.

Proof. First, condition on (A r A′)T = (B r B′)T = 0. This happens with probability at least
α− 2ε ≥ 0.98α because E [AT] + E [BT] ≤ 2 + 2ε and E [A′T] + E [B′T] ≥ 1 + α. Call this measure
ν. It follows by negative association that

Eν

[
A′T
]

, Eν

[
B′T
]
∈ [α− ε, 2 + 3ε− α]. (23)

• Case 1: Eν [A′T + B′T] > 1.5. Since Eν [A′T + B′T] ≤ 2+ 2ε, by Lemma 6.4, Pν [A′T + B′T = 2] ≥
0.25. Furthermore,

Pν

[
A′T ≥ 1

]
, Pν

[
B′T ≥ 1

]
≥ 1− e−(α−ε) ≥ 0.98α (Lemma 6.5, α < 0.001)

Pν

[
A′T ≤ 1

]
, Pν

[
B′T ≤ 1

]
≥ α/2− 1.5ε (Markov’s Inequality)

Therefore, by Corollary 6.12 and using α ≤ 0.001, P [A′T = 1|A′T + B′T = 2] ≥ 0.45α2. It
follows that

P
[
AT = BT = A′T = B′T = 1

]
≥ (0.98α)Pν

[
A′T = B′T = 1

]
≥ (0.98α)0.25(0.45α2) ≥ 0.11α3.

• Case 2: E [A′T + B′T] ≤ 1.5. Since Eν [A′T + B′T] ≥ 1 + α, by Lemma 6.4, P [A′T + B′T = 2] ≥
αe−α ≥ 0.99α. But now E [A′T] , E [B′T] ≤ 1.5 and therefore by Markov’s Inequality,

Pν

[
A′T ≤ 1

]
, Pν

[
B′T ≤ 1

]
≥ 0.25.

102

On the other hand, by Lemma 6.5 (similar to case 1) Pν [A′T ≥ 1] , Pν [B′T ≥ 1] ≥ 1− e−α+ε ≥
0.98α. It follows by Corollary 6.12 that P [A′T = 1|A′T + B′T = 2] ≥ 0.2α. Therefore,

P
[
AT = BT = A′T = B′T = 1

]
≥ (0.98α)Pν

[
A′T = B′T = 1

]
≥ (0.98α)(0.2α)(0.99α) ≥ 0.11α3

as desired.

It is worth noting that α3 dependency is necessary in the above example. For an explicit
Strongly Rayleigh distribution consider the following product distribution:

(αx1 + (1− α)y2)(αy1 + (1− α)z2)(αz1 + (1− α)x2),

and let A = {x1, x2}, B′ = B = {y1, y2}, and A′ = {x1}. Observe that

P
[
AT = BT = A′T = B′T = 1

]
= P [x1 = 1, y1 = 1, z1 = 1] = α3.

Proof of Proposition 6.13. To prove the lemma, we construct an instance of the max-flow, min-cut
problem. Consider the following graph with vertex set {s, A, B, t}. For any e ∈ A, f ∈ B connect
e to f with a directed edge of capacity ye, f = P [e, f ∈ T|AT = BT = 1]. For any e ∈ E, let
xe := P [e ∈ T]. Connect s to e ∈ A with an arc of capacity βxe and similarly connect f ∈ B to t
with arc of capacity βx f , where β is a parameter that we choose later. We claim that the min-cut
of this graph is at least β(1− ε− ζ/2.1). Assuming this, we can prove the lemma as follows:
let z be the maximum flow, where ze, f is the flow on the edge from e to f . We define the event
EA,B(T) = E(T) to be the union of events ze, f . More precisely, conditioned on AT = BT = 1 the
events e, f ∈ T|AT = BT = 1 are disjoint for different pairs e ∈ A, f ∈ B, so we know that we
have a specific e, f in the tree T with probability ye, f . And, of course, ∑e∈A, f∈B ye, f = 1. So, for
e ∈ A, f ∈ B we include a ze, f measure of trees, T, such that AT = BT = 1, e, f ∈ T. First, observe
that

P [E] = ∑
e∈A, f∈B

ze, f P [AT = BT = 1] ≥ β(1− ζ/2.1− ε)P [AT = BT = 1] . (24)

Part (i) of the proposition follows from the definition of E . Now, we check part (ii): Say z =

∑e∈A, f∈B ze, f , and the flow into e is ze. Then,

∑
e∈A
|xe −P [e ∈ T|E] | = ∑

e∈A

∣∣∣∣∣xe −∑
f

ze, f

z

∣∣∣∣∣ = ∑
e∈A
|xe −

ze

z
|

Note that both x and ze/z define a probability distribution on edges in A; so the RHS is just the
total variation distance between these two distributions. We can write

∑
e∈A
|xe −P [e ∈ T|E] | = 2 ∑

e∈A:ze/z>xe

(ze

z
− xe

)
≤ 2 ∑

e∈A:ze/z>xe

(
βxe

β(1− ζ/2.1− ε)
− xe

)
≤ 2 ·∑

e
xe

ζ/2.1 + ε

1− ζ/2.1− ε
≤ 2

(1 + ε)(ζ/2.1 + ε)

1− ζ/2.1− ε
≤ ζ.

103

The first inequality uses that the max-flow is at least β(1− ζ/2.1− ε) and that the incoming flow
of e is at most βxe, and the last inequality follows by ζ < 0.003 and ε < ζ/330. (iii) follows by the
same argument.

It remains to lower-bound the max-flow or equivalently the min-cut. Consider an s, t-cut S, S,
i.e., assume s ∈ S and t /∈ S. Define SA = A∩ S, SB = B∩ S, and similarly SA = A∩ S̄, SB = B∩ S.
We write

cap(S, S) = βx(SA) + βx(SB) + ∑
e∈SA, f∈SB

ye, f

= βx(SA ∪ SB) + P
[
(SA)T = (SB)T = 1|AT = BT = 1

]
If x(SB) ≥ x(SA)− ζ/2.1, then

cap(S, S) ≥ βx(SA ∪ SB) ≥ β(x(SA ∪ SA)− ζ/2.1) ≥ β(1− ε− ζ/2.1),

and we are done. Otherwise, say x(SB) + γ = x(SA), for some γ > ζ/2.1. So,

x(SB) + x(SA) = x(SB) + x(SB) + γ ≥ 1− ε + γ

So, by Lemma 6.14 with (α = γ− ε > ζ/2.1− ε > 100ε)

P
[
(SA)T = (SB)T = 1|AT = BT = 1

]
≥

P
[
(SA)T = (SB)T = AT = BT = 1

]
P [AT = BT = 1]

≥ 0.11(γ− ε)3

P [AT = BT = 1]
.

It follows that

cap(S, S) ≥ βx(SA ∪ SB) +
0.11(γ− ε)3

P [AT = BT = 1]

≥ β(x(SA ∪ SA)− γ) +
0.11(γ− ε)3

P [AT = BT = 1]

≥ β(1− ε− γ) +
0.11(γ− ε)3

P [AT = BT = 1]

To prove the lemma we just need to choose β such that RHS is at least β(1− ε− ζ/2.1). Or
equivalently,

0.11(γ− ε)3

P [AT = BT = 1]
≥ β(γ− ζ/2.1).

In other words, it is enough to choose β ≤ 0.11(γ−ε)3

P[AT=BT=1](γ−ζ/2.1) . Since γ > ζ/2.1 and ζ > 330ε, we

have γ− ε ≥ 0.473ζ. Therefore, we can set β = 0.11(0.473ζ)2

P[AT=BT=1] . Finally, this plus (24) gives

P [E] ≥ (1− ζ/2.1− ε)βP [AT = BT = 1] = 0.11(0.473ζ)2(1− ζ/2.1− ε) ≥ 0.0246ζ2(1− ζ/2.1− ε)

as desired.

Definition 6.15 (Max-flow Event). For a polygon cut S ∈ H with polygon partition A, B, C, let ν
be the max-entropy distribution conditioned on S is a tree and CT = 0. By Lemma 2.28, we can write
ν : νS × νG/S, where νS is supported on trees in E(S) and νG/S on trees in E(G/S). For a sample
(TS, TG/S) ∼ νS × νG/S, we say ES occurs if EA,B(TG/S) occurs, where EA,B(.) is the event defined in
Proposition 6.13 for sets A, B and ζ = εM := 1

4000 and ε = 2εη .

104

Corollary 6.16. For a polygon cut S ∈ H with polygon partition A, B, C, we have,

i) P [ES] ≥ 0.0245ε2
M.

ii) For any set F ⊆ δ(S) conditioned on ES marginals of edges in F are preserved up to εM + εη in total
variation distance.

iii) For any F ⊆ E(S) ∪ δ(S) where either F ∩ A = ∅ or F ∩ B = ∅, there is some q ∈ x(F)± (εM +
2εη) such that the law of FT|ES is the same as a BS(q).

Proof. Condition S to be a tree and CT = 0 and let ν be the resulting measure. It follows that

P [ES] = Pν [ES]P [CT = 0, S tree] ≥ 0.0246ε2
M(1− εM/2.1− ε)P [CT = 0, S tree] ≥ 0.0245ε2

M,

using ε = 2εη and εM = 1/4000, which proves (i).
Now, we prove (ii). By Proposition 6.13, the marginals of edges in δ(S) are preserved up to a

total variation distance of εM, so

Eν [(F ∩ δ(S))T|EA,B(TG/S)] = Eν [(F ∩ δ(S))T]± εM.

Since x(C) ≤ εη and x(δ(S)) ≤ 2 + εη , by negative association,

x(F ∩ δ(S))− εη/2 ≤ Eν [(F ∩ δ(S))T] ≤ x(F ∩ δ(S)) + εη .

This proves (ii). Also observe that since conditioned on ES, we choose at most one edge of F∩ δ(S),
(F ∩ δ(S))T is a BS(qG/S) for some qG/S = x(F ∩ δ(S))± (εM + εη).

On the other hand, observe that conditioned on ES, S is a tree, so

x(F ∩ E(S)) ≤ E [(F ∩ E(S))T|ES] ≤ x(F ∩ E(S)) + εη/2.

Since the distribution of (F ∩ E(S))T under ν|ES is SR, there is a random variable BS(qS) =
(F ∩ E(S))T where x(F ∩ E(S)) ≤ qS ≤ x(F ∩ E(S)) + εη/2.

Finally, FT|ES is exactly BS(qS) + BS(qG/S) = BS(q) for q = x(F)± (εM + 2εη).

Normally, conditioning on δ(S)T for a polygon S ∈ H may dramatically change the distribution
of any random variable δ(u)T for any u which is an ancestor of S and for which δ(u) ∩ δ(S) 6= ∅.
For example, it may essentially determine the parity of δ(u)T. On the other hand, the following
two corollaries show that after conditioning on ES the probability δ(u) is even remains a (large)
constant. So in some sense, conditioning on the max-flow event ES decouples the random variables
δ(S)T and δ(u)T.

Corollary 6.17. For u ∈ H and a polygon cut S ∈ H that is an ancestor of u,

P [δ(u)T odd|ES] ≤ 0.5678.

Proof. First, notice by Observation 5.32, δ(u) ∩ δ(S) is either a subset of A, B, or C. Therefore,
by (iii) of Corollary 6.16 we can write δ(u)T|ES as a BS(q) for q ∈ 2± [0.001] (where we use
that εM + 3εη < 0.001). Furthermore, since δ(u)T 6= 0 with probability 1, we can write this as a
1 + BS(q− 1). Therefore, by Lemma 2.21,

P [δ(u)T odd|ES] = P [BS(q− 1) even] ≤ 1
2
(1 + e−2(q−1)) ≤ 1

2
(1 + e−1.999) ≤ 0.5678

as desired.

105

Corollary 6.18. For a polygon cut u ∈ H and a polygon cut S ∈ H that is an ancestor of u,

P [u not left happy|ES] ≤ 0.56797.

and the same follows for right happy.

Proof. Let A, B, C be the polygon partition of u. Recall that for u to be left-happy, we need
CT = 0 and AT odd. Similar to the previous statement, we can write AT|ES as a BS(qA)
for qA ∈ 1± [0.00026] (where we used that εM = 1/4000 and εη ≤ εM/300). Therefore, by
Lemma 2.21,

P [AT even|ES] ≤
1
2
(1 + e−2qA) ≤ 1

2
(1 + e−1.99948) ≤ 0.56771

Finally, E [CT|ES] ≤ x(CT) + εM + 2εη ≤ 0.00026. Now using the union bound,

P [u not left happy | ES] ≤ 0.56771 + 0.00026 ≤ 0.56797

as desired.

6.5 Good Edges

Definition 6.19 (Half Edges). We say an edge bundle e = (u, v) in a degree cut S ∈ H, i.e., p(e) = S,
is a half edge if |xe − 1/2| ≤ ε1/2, where ε1/2 is defined in Global constants.

Definition 6.20 (Good Edges). We say a top edge bundle e = (u, v) in a degree cut S ∈ H is (2-2) good,
if one of the following holds:

1. e is not a half edge or

2. e is a half edge and P [δ(u)T = δ(v)T = 2|u, v trees] ≥ 3ε1/2.

We say a top edge e is bad otherwise. We say every bottom edge bundle is good (but generally do not refer to
bottom edges as good or bad). We say any edge e that is a neighbor of u0 or v0 is bad.

In the next subsection we will see that for any top edge bundle e = (u, v) which is not a half
edge, P [(δ(u))T = (δ(v))T = 2|u, v trees] = Ω(1). The following theorem is the main result of
this subsection:

Theorem 6.21. For ε1/2 ≤ 0.0002, εη ≤ ε2
1/2, a top edge bundle e = (u, v) is bad only if the following

three conditions hold simultaneously:

• e is a half edge,

• x(δ↑(u)), x(δ↑(v)) ≤ 1/2 + 9ε1/2,

• Every other half edge bundle incident to u or v is (2-2) good.

The proof of this theorem follows from Lemma 6.23 and Lemma 6.24 below.
In this subsection, we use repeatedly that for any atom u in a degree cut S, x(δ(u)) ≤ 2 + εη .

We also repeatedly use that for a half edge bundle e = (u, v) in a degree cut, conditioned on u, v
trees, e is in or out with probability at least 1/2− ε1/2 − 3εη > 0.49.

106

Lemma 6.22. Let e = (u, v) be a good half edge bundle in a degree cut S ∈ H. Let A = δ(u)−e and
B = δ(v)−e. If ε1/2 ≤ 0.001 and εη < ε1/2/100, then

P [AT + BT ≤ 2|u, v trees] , P [AT + BT ≥ 4|u, v trees] ≥ 0.4ε1/2

Proof. Throughout the proof all probabilistic statements are with respect to the measure µ condi-
tioned on u, v trees. Let p≤2 = P [AT + BT ≤ 2] and similarly define p≥4. Observe that whenever
δ(u)T = δ(v)T = 2, we must have AT + BT 6= 3. Since e is 2-2 good, this event happens with
probability at least 3ε1/2, i.e.,

p≤2 + p≥4 ≥ 3ε1/2 (25)

By Lemma 6.4, using the fact that p0 = 0, we get p=3 ≥ 1/4.
First, we show that p≤2 ≥ 0.4ε1/2. We have

3 + 2ε1/2 ≥ E [AT + BT] ≥ 4p≥4 + 2p=2 + 3(1− p≥4 − p≤2) = 3 + p≥4 − p=2 − 3p=1.

Again, we are using p0 = 0. By log-concavity p2
=2 ≥ p=3 p=1, so since p=3 ≥ 1/4, p=1 ≤ 4p2

=2 ≤
4p2
≤2. Therefore,

p≥4 − 2ε1/2 ≤ p=2 + 3p=1 = p≤2 + 2p=1 ≤ p≤2(1 + 8p≤2).

Finally, since ε1/2 < 0.001, plugging this upper bound on p≥4 into Eq. (25) we get p≤2 ≥ 0.4ε1/2.
Now, we show p≥4 ≥ 0.4ε1/2/2. Assume p≥4 < ε1/2/2 (otherwise we are done). Since

p=3 ≥ 1/4 by Lemma 6.1 with γ ≤ (ε1/2/2)/(1/4) = 2ε1/2

E [AT + BT|AT + BT ≥ 4] · p≥4 ≤
p≥4

1− 2ε1/2
(4 + 3ε1/2)

Therefore,

3− 2ε1/2 − 2εη ≤ E [AT + BT] ≤ 2p≤2 +
p≥4

1− 2ε1/2
(4 + 3ε1/2) + 3(1− p≤2 − p≥4)

So, 1.01p≥4 ≥ p≤2 − 2.02ε1/2 where we used ε1/2 ≤ 0.001 and εη < ε1/2/100. Now, p≥4 ≥ 0.4ε1/2
follows by Eq. (25).

S

u ve

W

δ↑(u)

Figure 36: Setting of Lemma 6.23

Lemma 6.23. Let e = (u, v) be a half edge bundle in a degree cut S ∈ H, and suppose x(δ↑(u)) ≥
1/2 + kε1/2. If k ≥ 9, ε1/2 ≤ 0.0002, and εη ≤ ε2

1/2, then, e is 2-2 good.

107

Proof. First, condition u, v, S to be trees. Let W = S r {u}. Since S is a near mincut,

x(δ(W)) = x(δ(S)) + x(δ(u))− 2x(δ↑(u)) ≤ 2(2 + εη)− 2(1/2 + kε1/2) = 3− 2kε1/2 + 2εη

So, by Lemma 2.28, P [W is tree] ≥ 1/2 + kε1/2 − εη − εη . Note that the extra −εη comes from the
fact that conditioning u be a tree can decrease marginals of edges in E(W) by at most εη .

Let ν be the resulting measure, namely the measure obtained by first conditioning u, v, S to be
trees and then W to be a tree. Note that ν is a strongly Rayleigh distribution on the set of edges in
E(W) ∪ E(u, W) ∪ E(G/S); this is because ν is a product of 3 SR distributions each supported on
one of the aforementioned sets.

Let X = δ↑(u)T and Y = δ(v)T − 1. Observe that, under ν, X = Y = 1 iff δ(u)T = δ(v)T = 2.
Furthermore, Y ≥ 0 with probability 1, since v is connected to the rest of the graph. So, we just
need to lower bound Pν [X = Y = 1] . First, notice

Eν [X] ∈ [0.5 + kε1/2 − εη , 1 + εη]

Eν [Y] ∈ [0.5 + kε1/2 − 4εη , 1.5− kε1/2 + 3εη]
(26)

We will give a brief explanation of this: first, note that 1
2 + kε1/2 ≤ E [X] ≤ 1 + εη before

conditioning. By conditioning u, v, S to be trees, we can increase E [|E(S)|T] by at most εη ,
therefore this may decrease E [X] by at most εη . Under this measure, E(S) is independent of X;
therefore conditioning on W to be a tree cannot change E [X]. Second, note that 1 ≤ E [Y] ≤ 1+ εη

before conditioning. Now, conditioning on u, v, S to be trees may decrease E [Y] by at most 2εη

and increase by at most εη . Conditioning on W to be a tree may increase or decrease E [Y] by a
most 1/2− kε1/2 + 2εη .

Note that using Proposition 6.8, we can immediately argue that Pν [X = Y = 1] ≥ Ω(ε1/2).
We do the following more refined analysis to make sure that this probability is at least 6ε1/2 (for
ε1/2 ≤ 0.0005) and k ≥ 9. Once we prove this, we obtain the lemma:

P [δ(u)T = δ(v)T = 2 | u, v trees] ≥ P [S, W trees | u, v trees]Pν [X = Y = 1] ≥ 0.5 · 6ε1/2

Case 1: Pν [X + Y = 2] ≥ 48ε1/2. By Lemma 6.5, Pν [X ≥ 1] , Pν [Y ≥ 1] ≥ 1− e−0.5. On the
other hand, by Theorem 2.17, Pν [X ≤ 1] , Pν [Y ≤ 1] ≥ 7/16. This is because if we have one
Bernoulli of value 1, Pν [X ≤ 1] ≥ (1 − 0.5

n)n is minimized at n = 1, whereas if we have no
Bernoullis of value 1, Pν [X ≤ 1] ≥ (1− 1.5

n)n + 1.5(1− 1.5
n)n−1 which is minimized at n = 2.

Therefore, by Corollary 6.12, Pν [X = 1|X + Y = 2] ≥ 0.1269. Therefore, we get

Pν [X = 1, Y = 1] ≥ 48ε1/2 · 0.1269 ≥ 6ε1/2

Case 2: Pν [X + Y = 2] < 48ε1/2 < 0.01. By Lemma 6.4, Pν [X + Y = 1] ≥ 0.25 (if Eν [X + Y] ≥
1.2 then the assumption of this case obviously fails). So, since Pν [X + Y = 2] < 0.01, by log
concavity, Pν [X + Y = 3] ≤ 0.01/25. Furthermore, by Lemma 6.1 (with γ = 1/25, i = 1, k = 3),
Pν [X + Y > 2] < 0.0005.

Now, assume that Pν [X ≥ 1] , Pν [Y ≥ 1] ≥ 0.47 (we will prove this shortly). Now, applying
stochastic dominance, we have

Pν [X ≥ 1|X + Y = 2] ≥ Pν [X ≥ 1|X + Y ≤ 2]
≥ Pν [X ≥ 1, X + Y ≤ 2]
≥ Pν [X ≥ 1]−Pν [X + Y > 2] ≥ Pν [X ≥ 1]− 0.0005 ≥ 0.469.

108

u
U

v
V

w
W

e f

Figure 37: Setting of Lemma 6.24

Similarly, Pν [X ≤ 1|X + Y = 2] = Pν [Y ≥ 1|X + Y = 2] ≥ Pν [Y ≥ 1]− 0.0005 ≥ 0.469. Finally
since the distribution of X conditioned on X + Y = 2 is the same as the number of successes
in 2 independent Bernoulli trials, with probabilities, say, p1 and p2, we can minimize p1(1−
p2) + (1− p1)p2 subject to 1− p1 p2 ≥ 0.469 and 1− (1− p1)(1− p2) ≥ 0.469. Solving this yields
Pν [X = 1|X + Y = 2] ≥ 0.395.

Lastly, observe that since by Eq. (26) 1.2 ≥ Eν [X + Y] ≥ 1 + (2k− 1)ε1/2, by Lemma 6.4 we
can write

Pν [X + Y = 2] ≥ (2k− 1)ε1/2e−(2k−1)ε1/2 ≥ (2k− 2)ε1/2.

Therefore,

Pν [X = Y = 1] = Pν [X = 1|X + Y = 2]Pν [X + Y = 2] ≥ 0.395(2k− 2)ε1/2

To get the RHS to be at least 6ε1/2 it suffices that k ≥ 9.
Now we prove that Pν [X ≥ 1] ≥ 0.47; Pν [Y ≥ 1] ≥ 0.47 follows similarly.

Pν [X = 2] ≤ Pν [X + Y ≥ 2] ≤ 0.01 + 0.00042 ≤ 0.0105

Also notice that Pν [X = 1] ≥ 0.3 by Lemma 6.4. Now, using Lemma 6.1 we can write, for
γ = 1/25 and i = 1,

Eν [X | X ≥ 2]Pν [X ≥ 2] ≤ 0.0224

Therefore, since X is integer valued,

Pν [X ≥ 1] ≥ Eν [X]−Eν [X | X ≥ 2]Pν [X ≥ 2] ≥ Eν [X]− 0.0224 ≥ 0.47,

as desired.

Lemma 6.24. Let e = (u, v), f = (v, w) be two half edge bundles in a degree cut S ∈ H. If ε1/2 < 0.0005
and εη ≤ ε2

1/2, then one of e or f is good.

Proof. We use the following notation V = δ(v)−e−f, U = δ(u)−e, W = δ(w)−f (see Fig. 37 for an
illustration). For a set A of edges and an edge bundle e we write A+e = A ∪ {e}. Furthermore,
for a measure ν we write ν−e to denote ν conditioned on e /∈ T.

Condition u, v, w to be trees. This occurs with probability at least 1− 3εη . Let ν be this measure.
By Lemma 6.7, without loss of generality, we can assume

Eν [WT|e /∈ T] ≤ Eν [WT] + 0.405. (27)

Now, if Eν [VT|e /∈ T] ≥ Eν [VT] + 0.03, then we will show e is 2-2 good. First,

Eν−e [(V+f)T] ∈ [1.53− ε1/2 − 3εη , 2 + εη],
Eν−e [UT] ∈ [1.5− ε1/2 − 3εη , 2 + εη],
Eν−e [(V+f)T + UT] ∈ [3.03− 2ε1/2 − 3εη , 3.5 + 2ε1/2 + 2εη],

109

where we may decrease the marginals by 3εη due to conditioning u, v, w to be trees.
Therefore, by Lemma 6.4, Pν−e [(V+f)T + UT = 4] ≥ 0.029, where we use the fact that UT ≥ 1

and (V+f)T ≥ 1 with probability 1 under ν−e and apply this and the remaining calculations to
UT − 1, (V+f)T − 1. In addition, we have

Pν−e [UT ≤ 2] , Pν−e [(V+f)T ≤ 2] ≥ 0.499 (Markov Inequality)
Pν−e [UT ≥ 2] , Pν−e [(V+f)T ≥ 2] ≥ 0.39 (Lemma 6.5)

It follows by Corollary 6.12 applied to UT − 1 and (V+f)T − 1 (with ε = 0.194 and pm = 0.6) that

Pν−e [UT = 2|UT + (V+f)T = 4] ≥ 0.13,

where we use that UT ≥ 1, (V+f)T ≥ 1 with probability 1 under ν−e because otherwise the tree
would be disconnected.

Therefore,

P [δ(u)T = δ(v)T = 2 | u, v trees] ≥ P [w is a tree, e /∈ T]Pν−e [UT = (V+f)T = 2]
≥ (0.49)(0.029)(0.13) ≥ 0.0018.

The lemma follows (i.e., e is 2-2 good) since 0.0018 ≥ 3ε1/2 for ε1/2 ≤ 0.0005.
Otherwise, if Eν [VT|e /∈ T] ≤ Eν [VT] + 0.03 then we will show that f is 2-2 good. We have,

Eν+f [(V+e)T] , Eν+f [WT] ∈ [1− 2ε1/2 − 3εη , 1.5 + 2ε1/2 + εη]

Pν+f [(V+e)T ≤ 1] , Pν+f [WT ≤ 1] ≥ 0.249 (Markov)
Pν+f [(V+e)T ≥ 1] , Pν+f [WT ≥ 1] ≥ 0.63 (Lemma 6.5)

So, by Corollary 6.12 (with ε = 0.15, pm = 0.7), we get Pν+f [WT = 1|(V+e)T + WT = 2] ≥ 0.11. On
the other hand,

Pν+f [(V+e)T + WT = 2] ≥ Pν+f [e /∈ T]Pν+f−e [(V+e)T + WT = 2] ≥ (0.49)(0.0582) ≥ 0.0285

To derive the last inequality, we show Pν+f−e [(V+e)T + WT = 2] ≥ 0.0582. This is because by
negative association and Eq. (27)

Eν+f−e [(V+e)T + WT] = Eν+f−e [VT + WT]

≤ Eν−e [VT + WT] ≤ Eν [WT] + 0.405 + Eν [VT] + 0.03 ≤ 2.94;

So, since (V+e)T +WT is always at least 1, so by Theorem 2.17, in the worst case, Pν−e+f [(V+e)T + WT = 2]
is the probability that the sum of two Bernoullis with success probability 1.94/2 is 1, which is
0.0582.

Therefore, similar to the previous case,

P [δ(v)T = δ(w)T = 2 | v, w trees] ≥ P [u is a tree, f ∈ T]Pν+f [(V+e)T + WT = 2]
·Pν+f [WT = 1|(V+e)T + WT = 2]

≥ (0.49)(0.0285)(0.11) ≥ 3ε1/2

for ε1/2 ≤ 0.0005 as desired.

110

6.6 2-1-1 and 2-2-2 Good Edges

Consider a cut u ∈ H, and recall that x(δ(u)) ≈ 2. Normally, it is sufficient to have δ(u)T = 2
when an edge e ∈ δ(u) is reduced. In the worst case, the edges of δ(u) essentially come from two
of its descendants u′, v′, i.e. x(δ(u′)∩ δ(u)) ≈ 1 and x(δ(v′)∩ δ(u)) ≈ 1. Let A = δ(u′)∩ δ(u), B =
δ(v′)∩ δ(u), C = δ(u)r (A∪ B). In such a case, if we condition on reducing an edge in A, we may
have AT to be even with probability close to 1, and it will be very expensive to fix the constraint
coming from δ(u′), as (δ(u′)r (δ(u)))T is 1, i.e. odd, with probability close to 1. Therefore, it is
crucial to make sure that when we reduce an edge in A (B), we have AT (BT) is odd with some
probability. Since when δ(u) is even and AT is odd, BT will be odd as well (discounting the
leftovers C, which have negligible expectation), a natural criteria is to ask for AT = BT = 1, hence
motivating the upcoming definition of 2-1-1 happy. To get a more high level understanding of
how we use these events, see the following two sections of the overview: dealing with xu close to
1 and dealing with triangles.

Definition 6.25 (A, B, C-Degree Partitioning). For u ∈ H and ε1/1 defined in Global constants, we
define a partitioning of edges in δ(u): Let a, b (u be minimal cuts in the hierarchy, i.e., a, b ∈ H, such
that a 6= b and x(δ(a) ∩ δ(u)), x(δ(b) ∩ δ(u)) ≥ 1− ε1/1. Note that since the hierarchy is laminar, a, b
cannot cross. Let A = δ(a) ∩ δ(u), B = δ(b) ∩ δ(u), C = δ(u)r A r B.

If there is no cut a (u (in the hierarchy) such that x(δ(a) ∩ δ(u)) ≥ 1− ε1/1, we just let A, B be two
arbitrary disjoint sets of edges in δ(u) for which x(A), x(B) ≥ 1− ε1/1. As above set C = δ(u)r A r B.
Note that this exists WLOG because we may split any edge into an arbitrary number of parallel copies.

If there is just one minimal cut a (u (in the hierarchy) with x(δ(a) ∩ δ(u)) ≥ 1− ε1/1, i.e., b does
not exist in the above definition, then we define A = δ(a) ∩ δ(u). Let a′ ∈ H be the unique child of u
such that a ⊆ a′, i.e., a is equal to a′ or a descendant of a′. Then we define C = δ(a′) ∩ δ(u)r δ(a) and
B = (δ(u)r A)rC. Note that in this case since x(δ↑(a′)) ≤ 1+ εη , we have x(B) ≥ 1− εη ≥ 1− ε1/1.

See Fig. 30 for an example. The following inequalities on A, B, C degree partitioning will be
used in this section:

x(A), x(B) ∈ [1− ε1,1, 1 + εη],
x(C) ≤ 2ε1/1 + εη .

(28)

In this section we will define a constant p > 0 which is the minimum probability that a good
edge bundle is happy.

Definition 6.26 (2-1-1 Happy/Good). Let e = (u, v) be a top edge bundle. Let A, B, C ⊆ δ(u) be a
Degree Partitioning of edges δ(u) as defined in Definition 15.5. We say that e is 2-1-1 happy with respect
to u if the event

AT = 1, BT = 1, CT = 0, δ(v)T = 2, and u and v are both trees

occurs.
We say e is 2-1-1 good with respect to u if

P [e is 2-1-1 happy wrt u] ≥ p.

Remark 6.27. Note we also use this A, B, C partitioning to help deal with the triangle cut case.
In the special case that u is a polygon cut with A, B, C-polygon partitioning, let A′, B′, C′ be the
degree partitioning of δ(u). Then, by Definition 5.31 we have A′ ⊆ A, B′ ⊆ B, C ⊆ C′. Therefore,
if an edge in δ(u) is reduced and is 2-1-1 happy with respect to u, the polygon u is also happy.
See the overview for an example.

111

Many of the lemmas in this section are proved in Appendix B. In the following, we assume
that εη ≤ ε2

1/2 and 12ε1/1 ≤ ε1/2.

Lemma 6.28. Let e = (u, v) be a top edge bundle such that xe ≤ 1/2− ε1/2. If ε1/2 ≤ 0.001 then, e is
2-1-1 happy with probability at least 0.005ε2

1/2.

Lemma 6.29. Let e = (u, v) be a top edge bundle such that xe ≥ 1/2 + ε1/2. If ε1/2 ≤ 0.001, then, e is
2-1-1 happy with respect to u with probability at least 0.006ε2

1/2.

Fix u in the hierarchy with degree partitioning A, B, C. The above two lemmas show that any
edge bundle e ∈ δ(u) which is not a half edge bundle is 2-1-1 good, so the difficult case is when
the majority of x(δ→(u)) comes from half edge bundles. In Theorem 6.21 we showed that δ(u)
can have at most one 2-2 bad edge. Oddly enough, one of the simplest cases of the reduction
argument is when there is a bad edge in δ(u). This is because we never reduce bad edges, and
therefore we never need to increase edges which are matched to them.24 So, the main problem is
good edges which are not 2-1-1 good. The following key statement, Lemma 6.32, shows that these
problematic edges are rare in the sense that there is at most one good half edge bundle in A (resp.
B) which is not 2-1-1 good.

To prove this we need the following two lemmas. In the first one we show that if e, f are two
half edge bundles which almost entirely land in A (or B), at least one of them is 2-1-1 good. In the
second, we show that if a good half edge bundle does not entirely land in A (or B), then it is 2-1-1
good. This is the main tool we use to upper bound the expected increase of good top edges in
Section 8.

For a set of edges D, and an edge bundle e, let e(D) := e∩ D. Note that e(D) is not really an
edge bundle.

Lemma 6.30. Let e = (v, u) and f = (v, w) be good half top edge bundles and let A, B, C be the degree
partitioning of δ(v) such that xe(B), xf(B) ≤ ε1/2. Then, one of e, f is 2-1-1 happy with probability at least
0.005ε2

1/2.

Lemma 6.31. Let e = (u, v) be a good half edge bundle and let A, B, C be the degree partitioning of δ(u)
(see Fig. 87). If ε1/2 ≤ 0.001 and xe(A), xe(B) ≥ ε1/2, then

P [e 2-1-1 happy w.r.t u] ≥ 0.02ε2
1/2.

Lemma 6.32. For a degree cut S ∈ H, and u ∈ A(S), let A, B, C be the degree partition of u. Then,
A ∩ δ→(u) =: A→ has fraction at most 1/2 + 4ε1/2 of good edges that are not 2-1-1 good (w.r.t., u).

Proof. Suppose by way of contradiction that there is a set D ⊆ A→ of good edges that are not
2-1-1 good w.r.t. u with x(D) ≥ 1

2 + 4ε1/2. By Lemma 6.28 and Lemma 6.29, every edge in D is
part of a half edge bundle.

There are at least two half edge bundles e, f such that x(D ∩ e), x(D ∩ f) ≥ ε1/2, as there are at
most four half edge bundles in δ→(u) (and using that for any half edge bundle e, xe ≤ 1

2 + ε1/2).
Since D ⊆ A→, we have

x(A ∩ e), x(A ∩ f) ≥ ε1/2.

24The main problem with bad edges is that we cannot match them to edges going higher in the matching lemma
7.2. So, in order to prove the matching lemma we need to justify that there are not too many bad edges in any cut.
Therefore we cannot simply “pretend" that one half edge bundle of δ(u) is bad.

112

Since x(A ∩ e) ≥ ε1/2, if x(B ∩ e) ≥ ε1/2 then, by Lemma 6.31 e is 2-1-1 good. But since every
edge in D is not 2-1-1 good w.r.t u, we must have x(B ∩ e) < ε1/2. The same also holds for f.
Finally, since x(B ∩ e) < ε1/2 and x(B ∩ f) < ε1/2 by Lemma 6.30 at least one of e, f is 2-1-1 good
w.r.t u. This is a contradiction.

2-2-2 Good Edges. While Lemma 6.32 is sufficient for bounding the increase of top edges, it is
not sufficient for bottom edges. Fix a polygon u with partition A, B, C and suppose p(u) = S is a
degree cut (recall that by Remark 6.27, the degree partitioning and polygon partitioning of u are
essentially the same). Roughly speaking, a bottom edge g ∈ E(u) is “matched" to all edges in δ(u),
and needs to increase for edges f ∈ A when f is reduced and AT is even, and for edges f ∈ B
when f is reduced and BT is even. Therefore, g is matched to essentially twice its fraction. If most
of the edges in δ(u) are 2-1-1 good, this is sufficient to bound the expected increase of g because
when such an edge is reduced and 2-1-1 happy with respect to u, g does not need to increase.

It turns out that the above lemmas are sufficient to bound the expected increase of g ∈ E(u)
except when A ∩ δ(S) ≈ B ∩ δ(S) ≈ 1/2 and e ≈ A ∩ δ→(u) and f ≈ B ∩ δ→(u) are both good
edge bundles which are not 2-1-1 good. In this extreme case, we employ a new strategy. In
Lemma 6.34 below, we prove that the two edge bundles e, f are 2-2 happy simultaneously with a
constant probability. We call such a pair 2-2-2 good. Later, in Section 8, we use this to ensure that
e and f are always reduced simultaneously. The point is that since e, f do not both come from A
(or B), no cut inside u contains e and f. Therefore, g only needs to increase by the maximum of
the decrease of e, f (not the sum), effectively saving a factor of 2.

Definition 6.33 (2-2-2 Happy/Good). Let e = (u, v), f = (v, w) be top half-edge bundles (with
p(e) = p(f)). We say e, f are 2-2-2 happy (with respect to v) if δ(u)T = δ(v)T = δ(w)T = 2 and u, v, w
are all trees.

We say e, f are 2-2-2 good with respect to v if P [e, f 2-2-2 happy] ≥ p.

Lemma 6.34. Let e = (u, v), f = (v, w) be two good top half edge bundles and let A, B, C be degree
partitioning of δ(v) such that xe(B), xf(A) ≤ ε1/2. If e, f are not 2-1-1 good with respect to v, and
ε1/2 ≤ 0.0002, then e, f are 2-2-2 happy with probability at least 0.01.

The following theorem summarizes the above results in a compact form. This is the main
result used in the analysis of the increase for bottom edges in Section 8.

Theorem 6.35. Let v, S ∈ H where p(v) = S, and let A, B, C be the degree partitioning of δ(v). For
p ≥ 0.005ε2

1/2, with ε1/2 ≤ 0.0002, ε1/1 ≤ ε1/2/12 and εη ≤ ε2
1/2, at least one of the following is true:

i) δ→(v) has at least 1/2− ε1/2 fraction of bad edges,

ii) δ→(v) has at least 1/2− ε1/2 − εη fraction of 2-1-1 good edges with respect to v.

iii) There are two (top) half edge bundles e, f ∈ δ→(v) such that xe(B) ≤ ε1/2, xf(A) ≤ ε1/2, and e, f are
2-2-2 good (with respect to v).

Proof. Suppose case (i) does not happen. Since every bad edge has fraction at least 1/2− ε1/2
this means that δ(v) has no bad edges. First, notice by Lemma 6.28 and Lemma 6.29 any non
half-edge in δ→(v) is 2-1-1 good (with respect to v). (Recall we define δ→(v) = δ(v)r δ(p(v)),
where p(v) is the immediate parent of v in the hierarchy). If there is only one half edge in δ→(v),

113

then we have at least fraction 1− εη − (1/2 + ε1/2) fraction of 2-1-1 good edges and we are done
with case (ii). Otherwise, there are two good half edges e, f ∈ δ→(v).

First, by Lemma 6.31 if xe(A), xe(B) ≥ ε1/2, then e is 2-1-1 good (w.r.t., v) and we are done.
Similarly, if xf(A), xf(B) ≥ ε1/2, then f is good. So assume none of these happens.

Furthermore by Lemma 6.30 if xe(B), xf(B) ≤ ε1/2 (or xe(A), xf(A) ≤ ε1/2) then one of e, f is 2-1-1
good.

So, the only remaining case is when e, f are not 2-1-1 good and xe(B), xf(A) ≤ ε1/2. But in this
case by Lemma 6.34, e, f are 2-2-2 good; so (iii) holds.

114

7 Matching

The main result of this section is to construct a matching that we use in order to decide which
edges will have positive slack to compensate for the negative slack of edges going higher. Refer to
Example 4.9 for a high-level motivation to construct a matching.

Definition 7.1 (εF fractional edge). For z ≥ 0 we say that z is εF-fractional if εF ≤ z ≤ 1− εF.

The following lemma is the main result of this section

Lemma 7.2 (Matching Lemma). For any S ∈ H, εF ≤ 1/10, εB ≥ 21ε1/2, α ≥ 2εη , ε1/2 ≤ 0.0002,
there is a matching from good edges (see Definition 6.20) in E→(S) to edges in δ(S) where every good edge
bundle e = (u, v) (where u, v ∈ A(S)) is matched to a fraction me,u of edges in δ↑(u) and a fraction me,v
of δ↑(v), and:

me,uFu + me,vFv ≤ xe(1 + α) (29)

∑
e∈δ→(u)

me,u = x(δ↑(u))Zu, (30)

where for every atom u ∈ A(S), define

Fu = 1− εBI
{

x(δ↑(u)) is εF fractional
}

, Zu :=
(

1 + I
{
|A(S)| ≥ 4, x(δ↑(u)) ≤ εF

})
.

Roughly speaking, the intention of the above lemma is to match good edges in E→(S) to a
similar fraction of edges that go higher (such that an edge bundle e adjacent to atoms u, v is only
matched to edges in δ↑(u), δ↑(v)). Since we never “reduce” bad edges in the proof of payment
theorem (Theorem 5.33), we don’t use them in the matching. That inherently can cause a problem,
as there could not be “enough” good edges in E→(S) to saturate the edges going higher in the
matching. The parameter Fu help us in this regard; in particular, it allows us to match some of the
(good) edges in E→(S) to more than their fraction in δ(S).

Next, we motivate the parameter Zu. If x(δ↑(u)) ≈ 0, when those edges are reduced the
conditional probability that δ(u)T is even could be very close to 0. The parameter Zu lets us match
twice as many edges to δ↑(u); so there will be only half a burden to fix the parity of δ(u)T. See
the discussion in overview section for more details.

Throughout this section we adopt the following notation: For a cut S ∈ H and a set W ⊆ A(S),
we write

E(W, S rW) := ∪u∈W,v∈A(S)rW E(u, v),

δ↑(W) := ∪u∈Wδ↑(u) = δ(W) ∩ δ(S),
δ→(W) := ∪u∈Wδ→(u).

Note that in δ→(W) 6⊆ δ(W) since it includes edge bundles between atoms in W.
Before proving the main lemma we record the following facts.

Lemma 7.3. For any S ∈ H and W (A(S) (recall A(S) is the set of u ∈ H with p(u) = S), we have

x(δ→(W)) ≥ 1
2 ∑

u∈W
x(δ(a))− ε/2 ≥ |W| − ε/2.

115

Proof. We have

x(δ→(W)) =
1
2

(
∑

u∈W
(x(δ(u)) + x(E(W, S rW))− x(δ↑(W))

)
.

Since x(δ(S rW)) ≥ 2 and x(δ(S)) ≤ 2 + ε, we have:

(a) x(E(W, S rW)) + x(δ↑(S rW))) ≥ 2 and (b) x(δ↑(W)) + x(δ↑(S rW)) ≤ 2 + ε.

Subtracting (b) from (a), we get

x(E(W, S rW))− x(δ↑(W)) ≥ −ε,

which after substituting into the above equation, completes the proof of the first inequality in the
lemma statement. The second inequality follows from the fact that δ(u) ≥ 2 for each atom u.

Lemma 7.4. For S ∈ H, if |A(S)| = 3 then there are no bad edges in E→(S).

Proof. Suppose A(S) = {u, v, w} and e = (u, v) is a bad edge bundle. Then |xe − 1
2 | ≤ ε1/2. In

addition, by Theorem 6.21, x(δ↑(u)), x(δ↑(v)) ≤ 1/2 + 9ε1/2. Therefore,

x(u,w) = x(δ(u))− xe − x(δ↑(u)) ≥ 1− 10ε1/2.

Similarly, x(v,w) ≥ 1− 10ε1/2. Finally, since x(δ(S)) ≥ 2, and x(δ↑(u)), x(δ↑(v)) ≤ 1/2 + 9ε1/2, we
must have x(δ↑(w)) ≥ 1− 18ε1/2. But, this contradicts the assumption that w ∈ H must satisfy
x(δ(w)) ≤ 2 + εη .

Proof of Lemma 7.2. We will prove this by setting up a max-flow min-cut problem. Construct a
graph with vertex set {s, X, Y, t}, where s, t are the source and sink. We identify X with the set of
good edge bundles in E→(S) and Y with the set of atoms in A(S). For every edge bundle e ∈ X,
add an arc from s to e of capacity c(s, e) := (1 + α)xe. For every u ∈ A(S), there is an arc (u, t)
with capacity

c(u, t) = x(δ↑(u))FuZu.

Finally, connect e = (u, v) ∈ X to nodes u and v ∈ Y with a directed edge of infinite capacity,
i.e., c(e, u) = c(e, v) = ∞. We will show below that there is a flow saturating t, i.e. there is a flow
of value

c(t) := ∑
u∈A(S)

c(u, t) = ∑
u∈A(S)

x(δ↑(u))FuZu.

Suppose that in the corresponding max-flow, there is a flow of value fe,u on the edge (e, u).
Define

me,u :=
fe,u

Fu
.

Then (29) follows from the fact that the flow leaving e is at most the capacity of the edge from s to
e, and (30) follows by conservation of flow on the node u (after cancelling out Fu from both sides).

We have left to show that for any s-t cut A, A where s ∈ A, t ∈ A that the capacity of this cut
is at least c(t).

Claim 7.5. If A = {s}, then capacity of (A, A) is at least c(t).

116

Proof. First, note that

c(t) = ∑
u∈A(S)

x(δ↑(u))FuZu ≤ ∑
u∈A(S)

x(δ↑(u))Zu

≤ I {|A(S)| ≥ 4} · |{u ∈ A(S) : x(δ↑(u)) ≤ εF}| · εF + x(δ(S))
≤ 2 + εη + εFI {|A(S)| ≥ 4} |A(S)| (31)

because Fu ≤ 1 and Zu = 1 + I
{
|A(S)| ≥ 4, x(δ↑(u)) ≤ εF

}
.

Second, note that

x(E→(S)) =
1
2 ∑

u∈A(S)
(x(δ(u))− x(δ↑(u))) ≥

2|A(S)| − (2 + εη)

2
= |A(S)| − 1− εη/2.

Therefore, if there are k bad edges in E→(S), then

xG ≥ |A(S)| − 1− εη/2− k(
1
2
+ ε1/2) (32)

Case 1: |A(S)| = 3. Then Zu = 1 for all u ∈ A(S) and by Lemma 7.4 all edges are good. So,
by Eq. (32), x(E→(S)) ≥ 2− εη/2. Thus, for α ≥ 2εη we have

c(s) = (1 + α)xG ≥ (2− εη/2)(1 + α) ≥ 2 + εη ≥
Eq. (31)

c(t)

as desired.
Case 2: |A(S)| ≥ 5. By Theorem 6.21 there is at most one bad half edge adjacent to every

vertex. Therefore there are at most |A(S)|/2 bad edges, so by Eq. (32),

(1 + α)xG ≥ (1 + α)

(
|A(S)| − 1− εη/2− 1

2
|A(S)|(1

2
+ ε1/2)

)
≥ 2 + εη + εF|A(S)| ≥

Eq. (31)
c(t)

where the second to last inequality holds, using α ≥ 2εη , |A(S)| ≥ 5, ε1/2 ≤ 0.01, and εF ≤ 0.1.
Case 3: |A(S)| = 4, and we have 0 or 1 bad edges. Then by Eq. (32), xG ≥ 2.5− εη/2− ε1/2,

so by Eq. (31), (1 + α)xG ≥ 2 + εη + 4εF ≥ c(t) for εF ≤ 0.1, α ≥ 2εη , ε1/2 ≤ 0.01.
Case 4: |A(S)| = 4, and there are 2 bad edges. Then they form a perfect matching inside S

and for each u ∈ A(S), x(δ↑(u)) ≤ 1/2 + 9ε1/2 (see Theorem 6.21).
Therefore it must also be the case that x(δ↑(u)) ≥ εF for each u ∈ A(S). If not, there

would have to be a node u′ ∈ A(S) such that x(δ↑(u′)) ≥ (2− εF)/3 > 1/2 + 9ε1/2, which is a
contradiction to u′ having an incident bad edge. Thus, for each u ∈ A(S), x(δ↑(u)) is εF-fractional,
i.e., Fu = 1− εB and Zu = 1 implying that c(t) ≤ (2 + εη)(1− εB). Therefore, by Eq. (32),

c(s) = (1 + α)xG ≥ (1 + α)(2− 2ε1/2 − εη/2,)

and the rightmost quantity is at least c(t) for εB ≥ 2ε1/2 and α ≥ 2εη .

From now on, we assume that the min s-t cut A 6= {s}. In the following we will prove that for
any set of atoms W (S, we have:

c(s, δ→(W)) = (1 + α)xG(δ
→(W)) ≥ c(δ↑(W), t) (33)

117

where for a set F of edges we write xG(F) to denote the total fractional value of good edges in F.
Let AX = A ∩ X, AY = A ∩ Y and so on. Assuming the above inequality, let us prove the

lemma: First, for the set of edges AX chosen from X, let Q be the set of endpoints of all edge
bundles in AX (in A(S)).

Observe that we must choose all atoms in Q inside AY due to the infinite capacity arcs, i.e.,
Q ⊆ AY. Let W = S r Q. Note that W 6= S. Then:

c(A, A) = c(AY, t) + c(s, AX)

≥ c(δ↑(Q), t) + c(s, δ→(W))

= c(δ↑(S), t)− c(δ↑(W)) + c(s, δ→(W)) ≥ c(δ↑(S), t),

where the last inequality follows by (33).
Finally, we prove (33). Suppose atoms in W are adjacent to k bad edges. Then

xG(δ
→(W)) = x(δ→(W))− xB(δ

→(W))

which by Lemma 7.3 and the fact that each bad edge has fraction at most 1/2 + ε1/2, is

≥ |W| − εη/2− k(1/2 + ε1/2). (34)

To upper bound c(δ↑(W), t), we observe that for any u ∈ A(S),

c(u, t) ≤


x(δ↑(u))Zu ≤ 1/5 if x(δ↑(u)) < εF

(1/2 + 9ε1/2)(1− εB) if x(δ↑(u)) > εF and u incident to bad edge
1 + εη otherwise, using Lemma 2.38.

Therefore, we can write,

c(δ↑(W), t) ≤ k(1/2 + 9ε1/2)(1− εB) + (|W| − k)(1 + εη).

Now, to prove (33), using (34), it is enough to choose α and εB such that,

(1 + α)
(
|W| − εη/2− k(1/2 + ε1/2)

)
≥ k(1/2 + 9ε1/2)(1− εB) + (|W| − k)(1 + εη),

or equivalently,

|W|(α− εη) ≥ k(α/2 + 10ε1/2 + αε1/2 − εB/2− 9εBε1/2 − εη) +
εη

2
(1 + α)

Since every atom is adjacent to at most one bad edge, k ≤ |W| and |W| ≥ 1, the inequality follows
using εB ≥ 21ε1/2 and α > 2εη and ε1/2 ≤ 0.0002 and εη ≤ ε2

1/2.

118

8 Reduction and payment

In this section we prove the main payment theorem, Theorem 5.33.
In Section 6 we defined a number of happy events, such as 2-1-1 happy or 2-2-2 happy and

showed that each of these events occurs with probability at least p. In this section, we will
subsample these events to define a corresponding decrease event that occurs with probability
exactly25 p.

Reduction Events.

• Bottom edges. For each polygon cut S ∈ H, let RS be the indicator of a uniformly random
subset of measure p of the max flow event ES. Note that when RS = 1 then in particular we
know that the polygon S is happy.

• Top edges. For a top edge bundle e = (u, v) define

He,u =


1 if e is 2-1-1 happy and good w.r.t. u
1 if e is 2-2 happy and good, but not 2-1-1 good with respect to u
0 otherwise.

and let He,v be defined similarly. Since p is a lower bound on the probability a good edge is
happy, we may now let Re,u and Re,v be indicators of subsets of measure p of He,u and He,v
respectively (note Re,u and Re,v may overlap). In this way every top edge bundle e = (u, v)
is associated with indicators Re,u and Re,v. In the special case that u is in case 3 (and not
case 1 or 2) of Theorem 6.35, fix two half edge bundles e, f that are neighbors of u which
satisfy the conditions of case 3. For these edges, by Theorem 6.35, He,u ∩Hf,u has measure
at least p. This is because He,u ∩Hf,u happens if and only if e, f are 2-2-2 happy with respect
to u. Here, we choose Re,u,Rf,u to be the same subset of measure p of He,u ∩Hf,u.

Define r : E→ R≥0 as follows: For any (non-bundle) edge e,

re =

{
βxeRS if p(e) = S for a polygon cut S ∈ H
1
2 τxe(Rf,u +Rf,v) if e ∈ f for a top edge bundle f = (u, v),

for β, the parameter of Theorem 5.33 and τ as defined in Global constants.

Increase Events Let E be the set of edge bundles, i.e., top/bottom edge bundles. Now, we define
the increase vector I : E→ R≥0 as follows:

25Suppose that under the distribution µ on spanning trees, some event D′ has probability q ≥ p and we seek to
define an event D ⊆ D′ that has probability exactly p. To this end, one can copy every tree T in the support of µ, exactly
b kq

p c times for some integer k > 0 and whenever we sample T we choose a copy uniformly at random. So, to get a
probability exactly p for an event, we say this event occurs if for a “feasible” tree T one of the first k copies are sampled.
Now, as k→ ∞ the probability that D occurs converges to p. Now, for a number of decreasing events, D1,D2, . . . , that
occur with probabilities q1, q2, . . . (respectively), we just need to let k be the least common multiple of p/q1, p/q2, . . .
and follow the above procedure. Another method is to choose an independent Bernoulli with success probability p/q
for any such event D.

119

• Bottom edges. For each polygon S ∈ H (and corresponding bottom edge bundle) with
polygon partition A, B, C, let r(A) := ∑ f∈A r f , r(B) := ∑ f∈B r f , and r(C) := ∑ f∈C r f . Then
set

IS := (1 + εη)
(

max{r(A) · I {S not left happy} , r(B) · I {S not right happy}}

+ r(C)I {S not happy}
)

. (35)

• Top edges. For every degree cut S ∈ H, invoke Lemma 7.2 with

α = 2εη , εB = 21ε1/2, εF = 1/10 (Matching parameters)

and let me,u be the resulting matching for every u ∈ A(S). For each top edge bundle
e = (u, v), let

Ie,u := ∑
g∈δ↑(u)

rg ·
me,u

∑f∈δ→(u) mf,u
I {u is odd} , (36)

and define Ie,v analogously. Let Ie = Ie,u + Ie,v.

The following theorem is the main technical result of this section.

Theorem 8.1. For any good top edge bundle e, E [Ie] ≤ (1− ε1/1
6)pτxe, and for any bottom edge bundle

S, E [IS] ≤ 0.99994βp.

Using this theorem, we can prove the desired theorem:

Theorem 5.33 (Main Payment Theorem). For an LP solution x0 and x be x0 restricted to E and a
hierarchy H for some εη ≤ 10−10 and any β > 0, the maximum entropy distribution µ with marginals x
satisfies the following:

i) There is a set of good edges Eg ⊆ E r δ({u0, v0}) such that any bottom edge e is in Eg and for any
(non-root) S ∈ H such that p(S) is a degree cut, we have x(Eg ∩ δ(S)) ≥ 3/4.

ii) There is a random vector s : Eg → R (as a function of T ∼ µ) such that for all e, se ≥ −xeβ (with
probability 1), and

iii) If a polygon cut u with polygon partition A, B, C is not left happy, then for any set F ⊆ E with
p(e) = u for all e ∈ F and x(F) ≥ 1− εη/2, we have

s(A) + s(F) + s−(C) ≥ 0,

where s−(C) = ∑e∈C min{se, 0}. A similar inequality holds if u is not right happy.

iv) For every cut S ∈ H such that p(S) is not a polygon cut, if δ(S)T is odd, then s(δ(S)) ≥ 0.

v) For a good edge e ∈ Eg, E [se] ≤ −εPβxe (see Eq. (38) for definition of εP) .

Proof of Theorem 5.33. First, we set the constants:

ε1/2 = 0.0002, ε1/1 =
ε1/2

12
, p = 0.005ε2

1/2, εM = 0.00025, τ = 0.571β (Global constants)

120

Define Eg to be the set of bottom edges together with any edge e which is part of a good
top edge bundle. Now, we verify (i): We show for any S ∈ H such that p(S) is a degree cut,
x(Eg ∩ δ(S)) ≥ 3/4. First, by Theorem 6.21, if x(δ↑(S)) ≥ 1/2 + 9ε1/2 then all edges in δ→(S)
are good, so the claim follows because by Lemma 2.38, x(δ→(S)) ≥ 1− εη ≥ 3/4. Otherwise,
x(δ↑(S)) ≤ 1/2 + 9ε1/2. Then, by Theorem 6.21 there is at most one bad edge in δ→(S). Therefore,
there is a fraction at least x(δ→(S))− (1/2 + ε1/2) ≥ 3/4 of good edges in δ→(S).

For any edge e ∈ E′ define

se = −re +

{
If

xe
xf

if e ∈ f for a top edge bundle f,

ISxe if p(e) = S for a polygon cut S ∈ H.
(37)

Now, we verify (ii): First, we observe that se = 0 (with probability 1) if e is part of a bad edge
bundle since we defined reduction events only for good edges and me,u is non-zero only for good
edge bundles. Since re ≤ βxe for bottom edges and re ≤ τxe for top edges, and τ ≤ β, it follows
that se ≥ −xeβ with probability 1.

Now, we verify (iii): Suppose a polygon cut u is not left-happy. Since u is not happy we must
have Ru = 0 and re = 0 for any e ∈ F. Therefore,

s(A) + s(F) + s−(C) = s(A) + ISx(F) + s−(C)
≥ −r(A) + (1 + εη)(r(A) + r(C))(1− εη/2)− r(C) ≥ 0.

where we used that x(F) ≥ 1− εη/2.
Now, we verify (iv): Let S ∈ H, where p(S) is a degree cut. If S is odd, then re = 0 for all

edges e ∈ δ→(S); so by Eq. (36)

s(δ(S)) ≥ − ∑
g∈δ↑(S)

rg + ∑
e∈δ→(S)

Ie,S

= − ∑
g∈δ↑(S)

rg + ∑
e∈δ→(S)

∑
g∈δ↑(S)

rg
me,S

∑f∈δ→(S) mf,S
= 0.

Finally, we verify (v): Here, we use Theorem 8.1. For a good top edge e that is part of a top
edge bundle f we have

E [se] = −E [re] + E [If]
xe

xf
≤ −τpxe + (1− ε1/1

6
)pτxe = −

ε1/1

6
pτxe.

On the other hand, for a bottom edge e with p(e) = S, then

E [se] = −E [re] + E [IS] xe ≤ −βpxe + 0.99994pβxe ≤ −0.00006pβxe.

Finally, we can let

εP :=
ε1/1

6
p

τ

β
=

ε1/2

72
0.005ε2

1/20.571 ≥ 0.000039ε3
1/2 ≥ 3.12 · 10−16 (38)

as desired.

121

Name Value Set In Explanation

ε1/2 0.0002 Global constants Half edge threshold, Definition 6.19

ε1/1
ε1/2
12 Global constants A, B, C partitioning threshold, Definition 15.5

p 0.005ε2
1/2 Global constants Min prob. of happiness for a (2-*) good edge

εM 0.00025 Global constants Marginal errors due to max flow, Definition 6.15

τ 0.571β Global constants Top edge decrease

εP
ε1/1

6 p τ
β (38) Expected decrease constant, Theorem 5.33

α 2εη Matching parameters Parameter of Lemma 7.2

εB 21ε1/2 Matching parameters Parameter of Lemma 7.2

εF 1/10 Matching parameters Parameter of Lemma 7.2

εη 14η (16) Definition 5.31

η 1
1308 εP (62) Near min cut constant

β η/4.1 (8) Slack shift constant e.g. Theorems 5.2, 5.33 and C.12

Table 3: A table of all constants used in the paper.

In the rest of this section we prove Theorem 8.1. Throughout the proof, we will repeatedly use
the following facts proved in Section 6: If a top edge e = (u, v) that is part of a bundle f is reduced
(equivalently Hf,u = 1 or Hf,v = 1), then u and v are trees, which means that tree sampling inside
u and v is independent of the reduction of e.

Note however, that conditioning on a near-min-cut or atom to be a tree increases marginals
inside and reduces marginals outside as specified by Lemma 2.28. Since for any S ∈ H, x(δ(S)) ≤
2 + εη , the overall change is ±εη/2.

The proof of Theorem 8.1 simply follows from Lemma 8.2 and Lemma 8.7 that we will prove
in the following two sections.

8.1 Increase for Good Top Edges

The following lemma is the main result of this subsection.

Lemma 8.2 (Top Edge Increase). Let S ∈ H be a degree cut and e = (u, v) a good edge bundle with
p(e) = S. If ε1/2 ≤ 0.0002, ε1/1 ≤ ε1/2/12 and εη ≤ ε1/1

100 , εF = 1/10 then

E [Ie,u] + E [Ie,v] ≤ pτxe

(
1− ε1/1

6

)
.

We will use the following technical lemma to prove the above lemma.

Lemma 8.3. Let S ∈ H be a degree cut with an atom u ∈ A(S). If x(δ↑(u)) > εF, ε1/2 ≤ 0.0002,

122

ε1/1 ≤ ε1/2/12, εη ≤ ε1/1
100 , then we have

∑
g∈δ↑(u),

g∈f=(u′,v′) good top

1
2

τxg · (P [δ(u)T odd|Rf,u′] + P [δ(u)T odd|Rf,v′]) (39)

+ ∑
g∈δ↑(u),p(g)=S′ polygon

βxg ·P [δ(u)T odd|RS′] ≤ τ(1− ε1/1

5
)x(δ↑(u))Fu,

where recall we set Fu := 1− εBI
{

x(δ↑(u)) is εF fractional
}

in Lemma 7.2, where εB := 21ε1/2 and
εF = 1/10 as in Matching parameters.

Proof of Lemma 8.2. By linearity of expectation and using Eq. (36):

E [Ie,u] =
me,u

∑f∈δ→(u) mf,u
E

 ∑
g∈δ↑(u)

rg · I {u is odd}


=

me,u

∑f∈δ→(u) mf,u

(
∑

g∈δ↑(u):
g∈f=(u′,v′) good top

1
2

τxg(P [Rf,u′ , δ(u)T odd] + P [Rf,v′ , δ(u)T odd]) (40)

+ ∑
g∈δ↑(u):p(g)=S′ polygon

βxgP [RS′ , δ(u)T odd]
)

A similar equation holds for E [Ie,v].
The case where x(δ↑(u)) ≤ εF or x(δ↑(v)) ≤ εF is dealt with in Lemma 8.6. So, consider the

case where x(δ↑(u)), x(δ↑(v)) > εF. Now recall that from (30),

∑
f∈δ→(u)

mf,u = Zux(δ↑(u)) (41)

where Zu = 1 + I
{
|S| ≥ 4, x(δ↑(u)) ≤ εF

}
. In this case, Zu = Zv = 1.

Using P [Rf,u′ , δ(u)T odd] = pP [δ(u)T odd|Rf,u′], and plugging (39) into (40) for u and v, we
get (and using Eq. (41)):

E [Ie,u] + E [Ie,v] ≤ pτ(1− ε1/1

5
)

(
x(δ↑(u))Fu

me,u

x(δ↑(u))
+ x(δ↑(v))Fv

me,v

x(δ↑(v))

)
(42)

= pτ(1− ε1/1

5
)(Fume,u + Fvme,v)

≤ pτ(1− ε1/1

5
)(1 + 2εη)xe < pτxe(1−

ε1/1

6
).

where on the final line we used (29) and εη <
ε1/1
100 .

Proof of Lemma 8.3. Suppose that Si ∈ H are the ancestors of S in the hierarchy (in order) such
S1 = S and for each i, Si+1 = p(Si). Let

δ≥i := δ(u) ∩ δ(Si) and δi := δ(u) ∩ δ→(Si).

123

Each group of edges δi is either entirely top edges or entirely bottom edges. First note that if
g ∈ δi and g is a bottom edge, i.e., Si+1 is a polygon cut, then by Corollary 6.17,

P
[
δ(u)T odd|RSi+1

]
= P

[
δ(u)T odd|ESi+1

]
≤ 0.5678

(see Definition 6.15 and Section 8 for definition of ESi+1 ,Ri+1) where in the equality we used that
RSi+1 is a uniformly random event chosen in ESi+1 . Therefore, to prove Eq. (39) it is enough to
show

∑
g∈δ↑good(u):

g∈f=(u′,v′) top,

1
2

τxg(P [δ(u)T odd|Rf,u′] + P [δ(u)T odd|Rf,v′])

≤ τ
(
(1− ε1/1

5
)Fu

(
x(δ↑good(u)) + x(δ↑bad(u))

)
+ 0.0014x(δ↑β(u))

)
(43)

where we write δβ(u), δgood(u), δbad(u) to denote the set of bottom edges, good top edges, and
bad (top) edges in δ(u) respectively and we used that

τ(1− ε1/1

5
)(1− εB)− 0.5678β ≥ 0.0014τ

since τ = 0.571β, ε1/1 ≤ ε1/2
12 , ε1/2 ≤ 0.0002, and εB = 21ε1/2 as defined in Matching parameters.

Since h(f) := 1
2 (P [δ(u)T odd|Rf,u′] + P [δ(u)T odd|Rf,v′]) ≤ 1 and (1− ε1/1

5)Fu is nearly 1, in
each of the following cases

x(δ↑β(u)) ≥
{

0.003 when Fu = 1
4
5 x(δ↑(u)) when Fu = 1− εB

or x(δ↑bad(u)) ≥ 0.006 when Fu ≥ 1− εB,

(44)
(43) holds. To see this, just plug in ε1/1 ≤ ε1/2

12 , ε1/2 ≤ 0.0002, εB = 21ε1/2, εη ≤ 10−10, x(δ↑(u)) ≤
1 + εη and any inequality from (44) into (43), using the upper bound h(f) = 1.

Alternatively, for δtop(u) = δgood(u) ∪ δbad(u) be the set of top edges in δ(u), if we can show
the existence of a set D ⊆ δ↑top(u) such that

x(D) · min
g∈D:

g∈f=(u′,v′) good

1− P [δ(u)T odd|Rf,u′] + P [δ(u)T odd|Rf,v′]

2
≥
(ε1/1

5
+ 1− Fu

)
x(δ↑top(u)),

(45)
then, again, (43) holds.

In the rest of the proof, we will consider a number of cases and show that in each of them,
either one of the inequalities in (44) or the inequality in (45) for some set D is true, which will
imply the lemma.

First, let

j = max{i : x(δ≥i) ≥ 1− ε1/1}
k = max{i : x(δ≥i) ≥ 2εη + εF/2},
` = max{i : x(δ≥i) ≥ 2εη + ε1/1}

Just note j ≤ k ≤ `. Note that levels ` and k exist since x(δ↑(u)) ≥ εF, whereas level j may not
exist (if x(δ↑(u)) < 1− ε1/1). We consider three cases:

124

u

S = S1

x(δ≥`) ≥ 2εη + ε1/1

Sj

Sk

S`

x(δ≥k) ≥ 2εη + εF
2

x(δ≥j) ≥ 1− ε1/1

δ1

δ2

δj

S2

S3

Case 1: x(δ↑(u)) ≥ 1− ε1/1: Then j exists and Sj has a valid A, B, C degree partitioning (Defi-
nition 15.5) where A = δ(v) ∩ δ(Sj) such that either u = v or v is a descendant of u in H. Note
that, x(δ(u) ∩ δ(Sj)) ≥ 1− ε1/1, and by Definition 15.5, B ∩ δ(u) = ∅. In addition, in this case,
x(δ↑(u)) is not εF fractional (see Lemma 7.2), so Fu = 1.

Case 1a: x(δj) ≥ 3/4. If δj are bottom edges then (44) holds. So, suppose that δj is a set of top
edges. By Lemma 6.32, at most 1/2 + 4ε1/2 fraction of edges in A ∩ δj are good but not 2-1-1
good (w.r.t., u). So, the rest of the edges in A ∩ δj are either bad or 2-1-1 good. Since

x(A ∩ δj) ≥ 3/4− x(C) ≥ 3/4− 2ε1/1 − εη ,

δj either has a mass of 1
2 (1/4− 2ε1/1 − εη − 4ε1/2) > 1/8− 3ε1/2 of bad edges or of 2-1-1

good edges.26 The former case implies that (44) holds. In the latter case, by Claim 8.4 for
any 2-1-1 good edge g ∈ δj with g ∈ f = (u′, v′) we have P [δ(u)T odd|Rf,u′] ≤ 2εη + ε1/1;
so (45) holds for D defined as the set of 2-1-1 good edges in δj.

Case 1b: x(δj) < 3/4. If x(δ↑β(u)) ≥ 0.003, then (44) holds. Otherwise, we apply Claim 8.5 with
ε = ε1/1 to all good top edge bundles f ∈ D = δ≥j+1 r δ≥`+1 and we get that

1
2
(P [δ(u)T odd|Rf,u′] + P [δ(u)T odd|Rf,v′]) ≤ 1− ε1/1 + ε2

1/1.

Since x(D) ≥ 1− ε1/1 − 3/4− 2εη − ε1/1 − 0.003 > 0.24, (45) holds.

Case 2: 1− εF < x(δ↑(u)) < 1− ε1/1. Again we have Fu = 1. So we can either show that
x(δ↑β(u)) ≥ 0.003 or take D to be the top edges in δ↑(u)r δ≥`+1 and use Claim 8.5 with ε = ε1/1.
This will enable us to show that (45) holds as in the previous case.

Case 3: εF < x(δ↑(u)) < 1− εF: In this case Fu = 1− εB. If at least 4/5 of the edges in δ↑(u)
are bottom edges, then we are done by (44).

Otherwise, let u′ = p(u). For any top edge e ∈ δ↑(u) where e ∈ f = (u′′, v′′) we have

P [δ(u)T odd|Rf,u′′] ≤ P
[
u′ tree|Rf,u′′

]
P
[
δ(u)T odd|u′ tree,Rf,u′′

]
+ P

[
u′ not tree|Rf,u′′

]
26We are using the fact that ε1/1 = ε1/2/12 and that εη is tiny by comparison to these.

125

Using that u′ ⊆ u′′ is a tree under |Rf,u′′ with probability at least 1− εη/2, and applying Claim 8.5
(to u and u′) with ε = εF we have P [δ(u)T odd|u′ tree,Rf,u′′] ≤ 1− εF + ε2

F we get

P [δ(u)T odd|Rf,u′′] ≤ 1− εF + ε2
F + εη/2.

Now, let D be all top edges in δ↑(u). Then, we apply Eq. (45) to this set of mass at least x(δ↑(u))/5,
and we are done, using that (εF − 2ε2

F)/5 ≥ (
ε1/1

5 + εB) which holds for εF ≥ 1/10, εB = 21ε1/2,
and ε1/2 ≤ 0.0002.

Claim 8.4. For u ∈ H and a top edge e ∈ f = (u′, v′) for some u′ ∈ H that is an ancestor of u, if
x(δ(u) ∩ δ(u′)) ≥ 1− ε1/1 and f is 2-1-1 good, then

P [δ(u)T odd|Rf,u′] ≤ 2εη + ε1/1.

Proof. Let A, B, C be the degree partitioning of δ(u′). By the assumption of the claim, without loss
of generality, assume A ⊆ δ(u)∩ δ(u′). Furthermore, by definition, B∩ δ(u) = ∅. This means that
if Rf,u′ = 1 then u′ is a tree and AT = 1 = (δ(u) ∩ δ(u′))T (also using CT = 0 and B ∩ δ(u) = ∅).
Therefore,

P [δ(u)T odd|Rf,u′] = P
[
(δ(u)r δ(u′))T even|Rf,u′

]
.

To upper bound the RHS first observe that

E
[
(δ(u)r δ(u′))T|Rf,u′

]
≤ εη/2 + x(δ(u)r δ(u′)) ≤ εη/2 + x(δ(u))− x(A) < 1 + 2εη + ε1/1.

Under the conditional measure |Rf,u′ , u′ is a tree , so u must be connected inside u′, i.e., (δ(u)r
δ(u′))T ≥ 1 with probability 1. Therefore,

P
[
(δ(u)r δ(u′))T even|Rf,u′

]
≤ P

[
(δ(u)r δ(u′))T − 1 6= 0|Rf,u′

]
≤ 2εη + ε1/1

as desired.

Claim 8.5. For u, u′ ∈ H such that u′ is an ancestor of u. Let ν = νu′ × νG/u′ be the measure resulting
from conditioning u′ to be a tree. if x(δ(u) ∩ δ(u′)) ∈ [ε, 1− ε], then

Pν

[
δ(u) odd|(δ(u) ∩ δ(u′))T

]
≤ 1− ε + max{2εη , ε2}. (46)

In other words, for any integer k ≥ 0, we have Pν [δ(u) odd|(δ(u) ∩ δ(u′))T = k] ≤ 1− ε+max{2εη , ε2}.
Proof. Let D = δ(u)r δ(u′). By assumption, u′ is a tree, so DT ≥ 1 with probability 1. Therefore,
since we have no control over the parity of (δ(u) ∩ δ(u′))T

Pν

[
δ(u)T even|(δ(u) ∩ δ(u′))T

]
≥ min{P

[
DT − 1 odd|u′ tree

]
, P
[
DT − 1 = 0|u′ tree

]
}

where we removed the conditioning by taking the worst case over (δ(u) ∩ δ(u′))T even, (δ(u) ∩
δ(u′))T odd. First, observe by the assumption of the claim and that x(δ↑(u)) ≤ 2 + εη we have

E
[
DT − 1|u′ tree

]
∈ [ε, 1− ε + 2εη].

Furthermore, since we have a SR distribution on G[u′], DT − 1 is a Bernoulli sum random variable.
Therefore,

P
[
DT − 1 = 0|u′ tree

]
≥ ε− 2εη

and by Lemma 2.21

P
[
DT − 1 odd|u′ tree

]
≥ 1− 1/2(1 + e−2ε) ≥ ε− ε2

as desired.

126

Lemma 8.6. Let S ∈ H be a degree cut and e = (u, v) a good edge bundle with p(e) = S. If
x(δ↑(u)) < εF, ε1/2 ≤ 0.0002, ε1/1 ≤ ε1/2/10, then,

E [Ie,u] + E [Ie,v] ≤ pτxe

(
1− ε1/1

6

)
Proof. First notice, by Corollary 6.17 for any bottom edge g ∈ δ↑(u) with p(g) = S′, we have

P [δ(u)T odd|RS′] = P [δ(u)T odd|ES′] ≤ 0.5678,

using 0.5678β ≤ τ and Fu = 1 (as x(δ↑(u)) ≤ εF) we can write,

E [Ie,u] ≤ ∑
h∈δ↑(u)

xh pτFu ·
me,u

Zux(δ↑(u))
. (47)

Secondly, if x(δ↑(v)) ≥ εF, applying (39) and (40) to Ie,v and using Zv ≥ 1 we get

E [Ie,v] ≤
me,v

∑f∈δ→(v) mf,v
pτ(1− ε1/1

5
)x(δ↑(v))Fv = me,v pτ

(
1− ε1/1

5

)
Fv (48)

Case 1: |A(S)| = 3, where A(S) = {u, v, w}. Let f = (u, w), g = (v, w) (and of course e = (u, v)).
We will use the following facts below:

u

v
e

w
f

g

δ↑(u)

δ↑(w) δ↑(v)

S

xe + xf ≥ 2− εF (x(δ(u)) ≥ 2 and x(δ↑(u)) ≤ εF)

x(δ↑(v)) + x(δ↑(w)) ≥ 2− εF (x(δ(S)) ≥ 2)

xf, x(δ↑(w)) ≤ 1 + εη , (Lemma 2.38)

so we have,
xe, x(δ↑(v)) ≥ 1− εF − εη . (49)

Now we bound E [Ie,u] +E [Ie,v]. By Eq. (47) and Eq. (48) (which we may apply to E [Ie,v] since
x(δ↑(v)) ≥ εF),

E [Ie,u] + E [Ie,v] ≤ ∑
h∈δ↑(u)

xh pτFu ·
me,u

Zux(δ↑(u))
+ pτ

(
1− ε1/1

5

)
Fvme,v

= pτFume,u + pτ
(

1− ε1/1

5

)
Fvme,v (Zu = 1 as |A(S)| = 3)

= pτ(Fume,u + Fvme,v)−
ε1/1

5
pτFvme,v

≤ pτ(1 + 2εη)xe −
ε1/1

5
pτFvme,v (50)

127

where the final inequality follows from (29). To complete the proof, we lower bound me,v.
Using (30) for v and w, we can write,

x(δ↑(v)) + x(δ↑(w)) = me,v + mg,v + mf,w + mg,w

≤ me,v +
(1 + 2εη)

(1− εB)
(xf + xg) (using (29))

= me,v +
(1 + 2εη)

(1− εB)

(
∑

a∈A(S)

x(δ(a))
2

− x(δ(S))
2

− xe

)

≤ me,v +
(1 + 2εη)

(1− εB)
(2 + 3εη − xe)

and using the fact that x(δ↑(v)) + x(δ↑(w)) ≥ 2− εF, we get

me,v ≥ xe − εF − 4εB ≥ (1− 1.2εF)xe,

where the second inequality follows from (49) and εB = 21ε1/2 and εη < ε2
1/2 and εF ≥ 1/10.

Plugging this back into (50) and using Fv ≥ 1− εB = 1− 21ε1/2 we get

E [Ie,u] + E [Ie,v] ≤ pτxe

(
1 + 2εη −

ε1/1

5
(1− 1.2εF)(1− 21ε1/2)

)
≤ pτxe(1−

ε1/1

6
)

as desired. In the last inequality we used εF ≤ 1/10 and ε1/2 ≤ 0.0002.
Case 2: |S| ≥ 4. In this case, Zu = 2. Therefore, by Eq. (47)

E [Ie,u] ≤ ∑
e∈δ↑(u)

xe pτFu
me,u

Zux(δ↑(u))
=

1
2

pτFume,u.

If x(δ↑(v)) < εF, we get the same inequality for Ie,v. Then,

E [Ie,u] + E [Ie,v] ≤
1
2

pτ(Fume,u + Fvme,v) ≤
(29)

1
2

pτxe(1 + 2εη),

which is clearly sufficient for the lemma statement.
Otherwise, x(δ↑(v)) ≥ εF in which case by (48) we get E [Ie,v] ≤ me,v pτFv(1− ε1/1/5). We

conclude the lemma similar to the previous case.

8.2 Increase for Bottom Edges

The following lemma is the main result of this subsection.

Lemma 8.7 (Bottom Edge Increase). If ε1/2 ≤ 0.0002, εη ≤ ε2
1/2, for any polygon cut S ∈ H,

E [IS] ≤ 0.99994βp.

Proof. For a set of edges D ⊆ δ(S) define the random variable.

IS(D) := (1 + εη)(max{r(A ∩ D)I {S not left happy} , r(B ∩ D)I {S not right happy}}
+ r(C ∩ D)I {S not happy}). (51)

128

Note that by definition IS(δ(S)) = IS and for any two disjoint sets D1, D2, IS(D1 ∪ D2) ≤ IS(D1) +

IS(D2). Also, define I↑S = IS(δ
↑(S)) and I→S = IS(δ

→(S)).

First, we upper bound E
[

I↑S
]
. Let f ∈ δ↑(S) and suppose that f with p(f) = S′ is a bottom

edge. Say we have f ∈ A↑(S) (f ∈ B↑(S) is similar). We write,

E [IS(f)] = (1 + εη)βx f P [RS′]P [S not left happy |RS′]

≤ 0.568x f pβ ≤ x f pτ

where in the inequality we used Corollary 6.18 and that

P [S not left happy|RS] = P [S not left happy|ES]

since RS is a uniformly random subset of ES. If f ∈ C↑(S), we use the trivial guarantee
E [IS(f)] ≤ (1 + εη)x f pβ.

On the other hand, if f is a top edge, then we use the trivial bound

E [IS(f)] ≤ (1 + εη)τpx f . (52)

Therefore,

E
[

I↑S
]
≤ (1 + εη)τpx(δ↑(S)) + (1 + εη)εη pβ ≤ (1 + εη)(0.571)βpx(δ↑(S)) + 2εη pβ (53)

since x(C) ≤ εη .
Now, we consider three cases:
Case 1: Ŝ = p(S) is a degree cut. Combining (53) and Lemma 8.8 below, we get

E [IS] ≤ (1 + εη)p(0.571)β(7/4 + 6ε1/2 + εη) + 2εη pβ ≤ 0.99994βp

using ε1/2 ≤ 0.0002 and εη ≤ ε2
1/2.

Case 2: Ŝ = p(S) is a polygon cut with ordering u1, . . . , uk of A(Ŝ), S = u1 or S = uk Then,
by Lemma 8.9 below,

E [IS] ≤ (1 + εη)βp(0.571x(δ↑(S)) + 0.31) + 2εη pβ ≤ 0.89βp

where we used x(δ↑(S)) ≤ 1 + εη .
Case 3: Ŝ = p(S) is a polygon cut with ordering u1, . . . , uk of A(Ŝ), S 6= u1, uk Then, by

Lemma 8.11 below

E [IS] ≤ (1 + εη)βp(0.571x(δ↑(S)) + 0.85) + 2εη pβ ≤ 0.86βp

where we use that x(δ↑(S)) ≤ εη since we have a hierarchy. This concludes the proof.

8.2.1 Case 1: Ŝ is a degree cut

Lemma 8.8. Let S ∈ H be a polygon cut with parent Ŝ which is a degree cut. Then

E [I→S] ≤ (1 + εη)pτ(x(δ→(S))− (1/4− 6ε1/2)).

129

Proof. Let A, B, C be the polygon partition of S. We will show that for a constant fraction of the
edges in δ→(S), we can improve over the trivial bound in (52). To this end, consider the cases
given by Theorem 6.35.

Case 1: There is a bad half edge e in δ→(S). Since bad edges never decrease, no corresponding
increase occurs, so by the trivial bound Eq. (52)

E [I→S] ≤ (1 + εη)pτ(x(δ→(S))− (1/2− ε1/2)).

This concludes the proof.
Case 2: There is a set of 2-1-1 good edges (w.r.t., S) D ⊆ δ→(S), such that xD ≥ 1/2− ε1/2− εη .

For any (top) edge e ∈ f = (S, u) such that e ∈ D, if Rf,S, then S is happy, that is AT = BT =
1, CT = 0 by Remark 6.27.

Therefore,

E [IS(D)] ≤ ∑
e∈D:e∈f=(S,u)

1 + εη

2
τxeP [S not happy|Rf,u]P [Rf,u]

≤
1 + εη

2
pτx(D).

Using the trivial inequality Eq. (52) for edges in δ→(S)r D we get

E [I→S] ≤ (1 + εη)pτ(
x(D)

2
+ x(δ→(S))− x(D)) ≤ (1 + εη)pτ(x(δ→(S))− (1/4− ε1/2))

as desired. In the last inequality we used x(D) ≥ 1/2− ε1/2 − εη .
Case 3: Cases 1 and 2 do not hold. Therefore, by Theorem 6.35 there are least two 2-2-

2 good top half edge bundles. In this case, S has chosen a fixed pair of 2-2-2 good edges
e = (S, v), f = (S, w) in δ→(S) (as defined in the reduction events) such that xe(B), xf(A) ≤ ε1/2
and Re,S = Rf,S with probability 1. (Recall that e(A) = e ∩ A.) Let D = e(A) ∪ f(B). In this
case, e and f are reduced simultaneously by τ when they are 2-2-2 happy (w.r.t., S), i.e., when
Re,S = Rf,S = 1. In such a case we have δ(S)T = δ(v)T = δ(w)T = 2. Therefore,

E [IS(D)] ≤ (1 + εη)E [max{r(A ∩ D), r(B ∩ D)}]

≤ (1 + εη)
τ

2
max{xe(A), xf(B)}(P [Re,S ∧Rf,S] + P [Re,v] + P [Rf,w])

≤ (1 + εη)τ
3p
2

x(D)

(
1
2
+ 3ε1/2

)
= (1 + εη)τpx(D)

(
3
4
+ 4.5ε1/2

)
where we used that 1/2− 2ε1/2 − x(C) ≤ xe(A), xf(B) ≤ 1/2 + ε1/2 and that x(C) ≤ εη . Using the
trivial inequality Eq. (52) for edges in δ→(S)r D we get

E [I→S] ≤ (1 + εη)pτ(x(D)(3/4 + 4.5ε1/2) + x(δ→(S))− x(D))

≤ (1 + εη)pτ(x(δ→(S))− (1/4− 6ε1/2))

where we used x(D) ≥ 1− 4ε1/2 − εη .

130

8.2.2 Case 2: S and its parent Ŝ are both polygon cuts

In this subsection we prove two lemmas: Lemma 8.9, which bounds E [I→S] when S is the leftmost
or rightmost atom of Ŝ, and Lemma 8.11, which bounds this quantity when S is not leftmost or
rightmost.

Lemma 8.9. Let S ∈ H be a polygon cut with p(S) = Ŝ also a polygon cut. Let u1, . . . , uk be the ordering
of cuts in A(Ŝ) (as defined in Definition 5.31). If εM ≤ 0.001, εη ≤ ε2

M, S = u1 or S = uk, then

E [I→S] ≤ 0.31βp.

Proof. Let S be the leftmost atom of Ŝ and let A, B, C be the polygon partition of δ(S). First, note

E [I→S] ≤ (1 + εη) (E [max(r(A→), r(B→)) · I {S not happy}] + E [r(C→)I {S not happy}]) . (54)

where recall that A→ = A ∩ δ→(S). WLOG assume x(A→) ≥ x(B→). Then,

E [max{r(A→), r(B→)}I {S not happy}] = βpx(A→) ·P
[
S not happy|RŜ

]
By Lemma 8.10 we have

x(A→) ·P
[
S not happy|RŜ

]
≤ x(A→)

(
1− ((1− x(A→))2 + (x(A→))2 − 2εM − 17εη)

)
≤
(
2x(A→)2 − 2x(A→)3 + 2εMx(A→) + 17εηx(A→)

)
≤ (8/27 + 2εM + 17εη),

where in the final inequality we used that the function x 7→ x2(1− x) is maximized at x = 2/3,
and using εM ≤ 0.001, εη < ε2

M.
Plugging this back into (54), and using x(C) ≤ εη , we get

E [I→S] ≤ (1 + εη)βp(
8
27

+ 2εM + 18εη) ≤ 0.31βp,

where the last inequality follows since εM ≤ 0.001 and εη < ε2
M.

Lemma 8.10. Let S ∈ H be a polygon cut with p(S) = Ŝ also a polygon cut. Let u1, . . . , uk be the ordering
of cuts in A(Ŝ). If S = u1, (or S = uk) then

P
[
S happy|RŜ

]
≥ (1− x(A→))2 + (x(A→))2 − 2εM − 17εη .

Proof. Let A, B, C, Â, B̂, Ĉ be the polygon partition of S, Ŝ respectively. Observe that since S = u1,
we have Â = E(u1, Ŝ) = A↑ ∪ B↑ ∪ C↑ and B̂, Ĉ ∩ (A ∪ B ∪ C) = ∅. Conditioned on RŜ, Ŝ is a tree,
and marginals of all edges in Â is changed by a total variation distance at most ε′M := εM + 2εη

from x (see Corollary 6.16) and they are independent of edges inside Ŝ. The tree conditioning
increases marginals inside by at most εη/2. Since after the changes just described

E [CT] ≤ xC + εη + ε′M ≤ 4εη + εM,

it follows that P
[
CT = 0|RŜ

]
≥ 1− 4εη − εM. So,

P
[
S happy | RŜ

]
≥ (1− 4εη − εM)P

[
AT = BT = 1|CT = 0,RŜ

]
. (55)

131

Let ν be the conditional measure CT = 0, RŜ. We see that

Pν [AT = BT = 1] = Pν

[
A↑T = 1, B↑T = 0, A→T = 0, B→T = 1

]
+ Pν

[
A↑T = 0, B↑T = 1, A→T = 1, B→T = 0

]
so using independence of (δ↑(S))T and (δ→(S))T.

= Pν

[
A↑T = 1, B↑T = 0

]
Pν [A→T = 0, B→T = 1] + Pν

[
A↑T = 0, B↑T = 1

]
Pν [A→T = 1, B→T = 0]

≥ (x(A↑)− ε′M)Pν [A→T = 0, B→T = 1] + (x(B↑)− ε′M)Pν [A→T = 1, B→T = 0] .

In the final inequality, we used the fact that conditioned on RŜ, Â = (A↑ ∪ B↑ ∪ C↑)T = 1 and
marginals in A↑ and B↑ are approximately preserved. Now, we lower bound Pν [A→T = 1, B→T = 0].
Let εA, εB be such that

Eν [A→T] = Pν [A→T = 1, B→T = 0] + εA, Eν [B→T] = Pν [A→T = 0, B→T = 1] + εB

First notice that Pν [A→T + B→T ≥ 1] = 1, and so Pν [A→T + B→T ≥ 2] ≤ Eν [A→T + B→T]− 1. So,

εA + εB = Eν [A→T + B→T]−Pν [A→T + B→T = 1] = Eν [A→T + B→T]− (1−Pν [A→T + B→T ≥ 2])
≤ 2(Eν [A→T + B→T]− 1) ≤ 5εη .

To see the last inequality, first, by Definition 5.31, x(δ↑(S)) ≥ 1− εη . Since x(δ(S)) ≤ 2 + εη , we
get that x(δ→(S)) ≤ 1 + 2εη . Therefore,

Eν [A→T + B→T] ≤ E
[
δ→(S) | RŜ

]
≤ x(δ→(S)) + εη/2 ≤ 1 + 2.5εη .

Therefore,

Pν [AT = BT = 1] ≥ (x(A↑)− ε′M)(Eν [B→T]− εB) + (x(B↑)− ε′M)(Eν [A→T]− εA)

≥ (x(A↑)− ε′M)(x(B→)− 5εη) + (x(B↑)− ε′M)(x(A→)− 5εη)

where the second inequality uses that the tree conditioning and C→T = 0 can only increase the
marginals of edges in A→ and B→. Simplify the above using x(A↑) + x(A→) ≥ 1− εη , and
similarly for B,

Pν [AT = BT = 1]
≥ (1− x(A→)− εη − ε′M)(x(B→)− 5εη) + (1− x(B→)− εη − ε′M)(x(A→)− 5εη)

and since x(A→) + x(B→) ≥ 1− 2εη (because x(A↑) + x(B↑) ≤ 1 + εη and xC ≤ εη), this is

≥ (1− x(A→)− εη − ε′M)(1− x(A→)− 7εη) + (x(A→)− 3εη − ε′M)(x(A→)− 5εη)

≥ (1− x(A→))2 + (x(A→))2 − ε′M − 8εη .

Plugging this into Eq. (55), we obtain

P
[
AT = BT = 1, CT = 0 | RŜ

]
≥ (1− 2εη − ε′M)P

[
AT = BT = 1|CT = 0,RŜ

]
≥ (1− 2εη − ε′M)((1− x(A→))2 + (x(A→))2 − ε′M − 8εη)

≥ (1− x(A→))2 + (x(A→))2 − 2ε′M − 10εη ,

which noting ε′M = εM + 2εη completes the proof of the lemma.

132

Lemma 8.11. Let S ∈ H be a polygon cut with p(S) = Ŝ also a polygon cut with u1, . . . , uk be the
ordering of cuts in A(Ŝ). If S 6= u1, uk, then

E [I→S] ≤ 0.85βp.

Proof. Let S = ui for some 2 ≤ i ≤ k− 1. Let A, B, C be the polygon partitioning of δ(ui) and
Â, B̂, Ĉ be the polygon partition of Ŝ. Since ui is in the hierarchy A↑ ∪ B↑ ∪C↑ ⊆ Ĉ. So, conditioned
on RŜ, A↑T = B↑T = C↑T = 0.

Once again, let ν be the conditional measure CT = 0, RŜ. Similar to the previous case, we will
lower-bound

P
[
S happy|RŜ

]
≥ (1− 2εη)P

[
A→T = 1, B→T = 1, |CT = 0,RŜ

]
= (1− 2εη)Pν [A→T = 1|A→T + B→T = 2]Pν [A→T + B→T = 2] (56)

where we used E
[
C→T |RŜ

]
≤ 2εη in the first inequality. So, it remains to lower-bound each of the

two terms in the RHS.
We start with the first one. Since x(A) ∈ [1− εη , 1 + εη] and x(A↑) ≤ εη we have

Eν [A→T] ∈ [1− 2εη , 1 + 3εη].

The same bounds hold for Eν [x(B→)].
Therefore,

Pν [A→T ≥ 1] , Pν [B→T ≥ 1] ≥ 1− e−1+2εη (Lemma 6.5)
Pν [A→T ≤ 1] , Pν [B→T ≤ 1] ≥ 0.495 (Markov)

Therefore, by Corollary 6.12 (with ε = 0.495(1− e−1+2εη) ≥ 0.31) we have

Pν [A→T = 1 | A→T + B→T = 2] ≥ 0.155.

By Corollary 2.29, Pν [E(ui−1, ui)T = 1] ≥ 1− 4εη . Similarly, Pν [E(ui, ui+1)T = 1] ≥ 1− 4εη . And,

Pν [δ
→(ui)T − E(ui−1, ui)T − E(ui, ui+1)T = 0] ≥ 1− 4εη

So, by a union bound all of these events happen simultaneously and we get Pν [δ→(ui)T = 2] ≥
1− 12εη . Therefore,

Pν [(A→)T = (B→)T = 1] ≥ 0.155(1− 12εη) ≥ 0.153.

Plugging this back into (56), we get

P
[
S happy|RŜ

]
≥ 0.153(1− 2εη) ≥ 0.152.

Plugging this in (54) we get

E [I→S] ≤ (1 + εη)βpP
[
S not happy|RŜ

]
(max{x(A→), x(B→)}+ x(C→))

≤ (1 + εη)βp(1− 0.152)(1 + εη + εη) ≤ 0.85βp

as desired.

133

9 Introduction to the Integrality Gap Result and a Proof Overview

While the above sections describe how to obtain a 3
2 − ε approximation for TSP, the result is not

with respect to the subtour LP. Thus, we have not yet established that the integrality gap of PSub is
less than 3

2 the purpose of the next few sections is to show that this is true.

9.1 New techniques and contributions

This result can be seen as a case study on how to reason about and deal with near minimum cuts.
One can deduce from the classical cactus representation of a graph G [DKL76] (i) the structure of
all min cuts of G and (ii) the structure of the edges of G in the sense that every edge {u, v} maps
to a unique path in the cactus between the images of u and v. Furthermore, such a path intersects
every cycle of the cactus on at most one cactus edge. The theory has found many application
from designing fast algorithms [Kar00; KP09] to the analysis of approximation algorithms for TSP
[KKO20] and connectivity augmentation [BGA20a; CTZ21].

Two decades later, the theory of min cuts was extended to near min cuts in works of Benczúr
and Goemans [Ben95; BG08] where they introduced the polygon representation which represents
all cuts of a graph with at most 6

5 k edges, where k is its edge connectivity. Although these works
completely classify the structure of all near min cuts of a given graph G, they do not characterize
the structure of the edges of G with respect to these cuts, which can be important in applications
(for example, in many of the recent applications of min cuts, one also needs to exploit the structure
of the edges in relation to the cactus). The structure on the edges turns out to be highly relevant
in this work as well, and as a byproduct of our analysis we make progress towards classifying the
way in which the edges of G relate to the structure of the polygon representation.

For motivation, consider a generic family of network design problems in which we want to
construct a network such that every pair u, v of vertices has connectivity at least cu,v. A natural
approach is to write an LP relaxation to find a (minimum cost) vector x : E→ R≥0 such that for
every cut S separating u and v, x(δ(S)) ≥ cu,v. We can round this LP using independent rounding
or a dependent rounding scheme such as sampling from max entropy distributions. Using classical
concentration bounds one can show that if x(δ(S))� cu,v then with high probability the rounded
solution has at least cu,v edges across this cut. So the main challenge is to “fix” near tight cuts,
i.e., cuts where x(δ(S)) ≈ cu,v. For an explicit instantiation of this scheme see [Kar+21]. A
better understanding of the global structure of the family of near tight cuts has the potential to
significantly simplify or even improve the approximation factor of such rounding algorithms. A
classical technique to design algorithms for such network design problems is to apply uncrossing
to extreme point solutions of the LP. One can view our contribution as an approximate uncrossing
technique that deals with all near tight cuts (instead of just tight cuts) as we explain next.

An Approximate Uncrossing Technique. A fundamental technique in the field of approximation
algorithms is the uncrossing technique27 of Jain [Jai01]. Given a graph G = (V, E), a weight vector
x : E → R≥0, and a function f : V → R, suppose that x(δ(S)) ≥ f (S) for all S ⊆ V. Let N be
the family of sets S such that x(δ(S)) = f (S), i.e., the family of tight sets with respect to f . The
uncrossing technique says that if f is (weakly) supermodular then we can refine N to a laminar
family of sets, H, such that if all sets of H are tight, then all sets of N are tight as well. For a

27See e.g. [LRS11] for a number of applications of this technique.

134

concrete example, suppose f is a constant function, say f (S) = 2 for all ∅ (S (V. Then, sets of
H can be constructed using the cactus representation [DKL76] of cuts in N . The significance of
this method is that if x is a basic feasible solution to a LP with constraints x(δ(S)) ≥ f (S) for all
S, one can use this machinery to argue that the support of x has size O(|V|).

Informally, we prove the following, which can be seen as an approximate uncrossing technique:

Theorem 9.1 (Informal). Suppose we have a vector x : E → R≥0 such that x(δ(S)) ≥ f (S) for all S;
define N to be sets S where x(δ(S)) ≤ f (S)(1 + ε) for some fixed ε > 0. If f (.) is constant, say f (S) = 2
for all S, then there is a set N ∗ ⊆ N and a collection of edge sets F1, . . . , Fm ⊆ E such that the following
hold:

• |N ∗| = O(|V|), m = O(|V|).

• x(Fi) ≥ 1− ε/2 for all 1 ≤ i ≤ m.

• Every edge e is in at most O(1) of the Fi’s.

• For every set S ∈ N rN ∗ there exists 1 ≤ i < j ≤ m such that Fi ∩ Fj = ∅ and Fi ∪ Fj ⊆ δ(S)
and for every S ∈ N ∗, there exists 1 ≤ i ≤ m such that Fi ⊆ δ(S).

In words, although we cannot simply refine N to a linear number of sets, we can refine the
edges in cuts of N to a linear number of sets F1, . . . , Fm such that we can essentially capture the
edges of δ(S) for any S ∈ N rN ∗ by a pair of disjoint Fi’s. We give a slightly weaker condition
for cuts in N ∗; namely we only capture half of their edges by Fi’s.

Example 9.2. For a simple example of the above theorem, suppose ε = 0, i.e. N is the set of min
cuts of a graph G. Furthermore, suppose that every proper cut in N is crossed (recall that S
is proper if 1 < |S| < |V| − 1) and that N has at least one proper cut. Then, one can use an
uncrossing technique, namely that if A, B ∈ N then A ∩ B ∈ N , to prove that G must be cycle,
namely we can order vertices of G, v0, . . . , vn−1 such that x{vi ,vi+1 mod n} = 1. In such a case we let
N ∗ = ∅ and Fi = E(vi, vi+1 mod n).

Example 9.3. For a second example, suppose again ε = 0 and N is the set of mincuts of a graph
G where N forms a laminar family (no two cuts cross). It turns out that we cannot decompose
edges of cuts of N into a linear sized collection of sets where every edge appears only a constant
number of times. The main reason is that some edges may appear in an unbounded number of
cuts. In this case we let N ∗ = N and for every A ∈ N (with immediate parent B ∈ N in the
laminar family) we add a set FA = δ(A)r δ(B) to our collection. It is straightforward to show,
using the structure of min cuts, that x(FA) ≥ 1; furthermore, since the size of a laminar family is
linear in V, this gives a valid decomposition in the sense of above theorem.

Lastly, if ε = 0 and N is the set of min cuts of an arbitrary graph, one can represent all min
cuts of N by a cactus [DKL76] which can be seen as a tree of cycles. In such a case, one can use
a construction similar to Example 9.2 for each cycle where instead of a vertex vi we have a set
ai ⊆ V and one similar to Example 9.3 for the tree part of the cactus. For a concrete application of
such a decomposition of min cuts see [KKO20].

One of the main challenges in dealing with near min cuts relative to min cuts is that if
x(δ(A)), x(δ(B)) ≤ 2 + ε then x(δ(A ∩ B)) ≤ 2 + 2ε. Therefore, if ε = 0, then min cuts are closed
under intersection, set difference and union, but this is no longer true when ε > 0. So, to employ
the classical uncrossing machinery one should be very careful to "uncross" only a constant number

135

of times (independent of ε) to make sure that every cut remains within 2 + O(ε). This is the main
reason that the polygon representation of near min cuts (see below) is more sophisticated, e.g., we
can no longer argue x(E(ai, ai+1)) ≈ 1, see Fig. 42.

Although we don’t study it here, we believe it may be worthwhile to find generalizations of
Theorem 9.1 which hold for any (weakly) supermodular function.

Remark 9.4. We do not explicitly prove Theorem 9.1 here, as it is not used to prove Theorem 1.2.
However it can be deduced from arguments in Section 11 and Appendix C.

Extensions to the Polygon Representation To obtain our uncrossing framework we prove new
properties of the polygon representation. Given a graph G = (V, E), let k be the edge-connectivity
of G, i.e. the number of edges in a minimum cut of G. For ε > 0, consider the set of (1 + ε)-
near minimum cuts of G: cuts (S, S) where |E(S, S)| < (1 + ε)k. Benczúr [Ben95] and Benczúr,
Goemans [BG08] proved that if ε ≤ 1/5 then the near minimum cuts of G admit a polygon
representation. Namely, every connected component C of crossing (1 + ε) near min cuts can be
represented by the diagonals of a convex polygon. In this polygon, the vertices of G are partitioned
into sets called atoms, and every atom is mapped to a cell of this polygon defined by the diagonals
and the boundary of the polygon itself (see ?? for more details).

The polygon representation can be seen as a generalization of the well-known cactus repre-
sentation [DKL76] of minimum cuts where a cycle of the cactus is replaced by a convex polygon.
Unlike a cycle, some vertices/atoms map to the interior of the polygon, which are called “inside”
atoms. The inside atoms at first look like a mystery and one can ask many questions about them
such as how many can exist and what structures they can exhibit.

Here, we explain two lemmas we proved which might find further applications beyond TSP in
the future. First, we give a necessary condition for a cell of a polygon to contain an inside atom:

Lemma 9.5 (Informal, see Lemma 10.27). Consider a polygon P for a connected component C of a family
of 1 + ε near min cuts for ε ≤ 1/5 (where representing diagonals correspond to cuts in C). Any cell of P
that has an inside atom must have at least Ω(1/ε) many sides.

This can be seen as a generalization of [BG08, Lem 22] to the case in which the cell is allowed
to be adjacent to vertices of the polygon P.

Now, we explain our second extension: it follows from the cactus representation of minimum
cuts that for a graph G and a min cut S one can partition the set of all min cuts that cross S into
two groups A = {A1, . . . , Ak} and B = {B1, . . . , Bl} for some k, l ≥ 0 such that S∩ A1 ⊆ S∩ A2 ⊆
. . . S ∩ Ak and, similarly, S ∩ B1 ⊆ · · · ⊆ S ∩ Bl . We prove a generalization of this fact for near min
cuts:

Lemma 9.6 (Informal, see Lemma 10.26). Consider the set of 1 + ε near min cuts of a graph G for
ε ≤ 1/10; for any such near min cut S, one can partition the 1 + ε near min cuts crossing S into two
groups A = {A1, . . . , Ak} and B = {B1, . . . , Bl} such that S ∩ A1 ⊆ S ∩ A2 ⊆ · · · ⊆ S ∩ Ak and
similarly for cuts in B.

9.2 Proof Overview

Algorithm 1 consists of two steps: sampling a tree whose marginals match x (and hence has
expected cost equal to c(x)), and then augmenting this with a minimum cost matching on the

136

odd degree vertices of the tree. The goal of this section (the content of [KKO22]) is to show that
the expected cost of the minimum cost matching on the odd degree vertices of the sampled tree
is at most (1/2− ε)c(x) instead of (1/2− ε)c(OPT). This is done by showing the existence of a
cheap feasible O-join solution to (4). Note that as before we merely need to prove the existence of
a cheap O-join solution. The actual optimal O-join solution can be found in polynomial time.

Recall that if we only wanted to get an O-join solution of value at most c(x)/2, to satisfy
all cuts, it is enough to set ye := 0.5xe for each edge28 [Wol80]. If all of the near min cuts of x
containing e are even, then we can reduce ye strictly below 0.5xe. The difficulty in implementing
this approach comes from the fact that a high cost edge can be on many near min cuts and it may
be exceedingly unlikely that all of these cuts will be even simultaneously. Our overall approach
is exactly as before: initialize ye := 0.5xe and then modify it by adding to it a random29 slack
vector s : E→ R: For each edge e, when certain special (few) η-near-mincuts that e is on are even
in the tree, se is set to −xeβ where β ≈ η/4; for other cuts that contain e, whenever they are
odd, the slack of other edges on that cut is increased to satisfy them (i.e., maintain feasibility of y
for that cut). The bulk of the effort was to show that this can be done while guaranteeing that
E [se] < −εxe for some ε > 0, and therefore E [ye] = 0.5xe + E [se] < (0.5− ε)xe.

To help the reader understand both the big picture as well as the ideas and contribution of
this section, it is useful to describe the approach taken in the previous section at a high level. Let
Nη be the set of all η-near min cuts of x. A key idea there was to partition Nη into three types: a
set of near min cuts H that form a hierarchy (which is a laminar family of cuts), a set of cuts Nη,1
that are "crossed on one side" and a set of cuts Nη,2 that are "crossed on both sides." [KKO21] (the
section above) showed that if we only need to satisfy the O-Join constraints coming from H, then
we can find such a vector s.

However, this vector s (which is negative in expectation) might "break" O-join constraints on
cuts that are not in the hierarchy (i.e., cuts in Nη,1 and Nη,2). To resolve this, we showed how a
negligible increase in the slack of certain edges (a slack component they called s∗) can be used to
restore the feasibility of the O-join solution on all cuts, including those that are not in the hierarchy.
See Section 12 for more on this.

Concretely, because the cuts in Nη,2 have a rather complex structure, to simplify their handling,
we changed the plan: Instead of starting with ye = 0.5xe, they started with ye = (xe + OPTe)/2,
where OPTe is an indicator for edge e being in the optimal integral TSP solution. They then
constructed slack vectors relative to the near min cuts of (OPT + x)/2. The advantage of doing so
is that it guarantees that all near mincuts correspond to intervals of vertices along the optimal
cycle, greatly simplifying the structure of the family of near min cuts under consideration. Slack
on the edges in the optimal cycle was then used to handle the cuts in Nη,1 and Nη,2.

Unfortunately, this meant that the bound on the expected cost of the minimum cost matching
from [KKO21] is at most (1/2− ε)((c(x) + c(OPT))/2, which is insufficient to prove that the
integrality gap of the LP is strictly below 3/2.

In the present section, we return to the plan of initializing ye := 0.5xe and then construct a slack
vector for each edge with the desired properties. Our starting point is the polygon decomposition D

28This is because x satisfies x(δ(S)) ≥ 2 for all S, whereas y must satisfy y(δ(S)) ≥ 1 just for those cuts that have
odd intersection with the tree T.

29where the randomness comes from the random sampling of the tree

137

of the η-near min cuts of x [BG08]30. As stated previously, a polygon31 is a connected component
of crossing 2 + η near minimum cuts, where two cuts are connected if they cross each other. It
turns out that the way the polygon representation D is constructed, each cut in Nη,2 is in exactly
one polygon, and each edge on such a cut will have its slack increase in at most one polygon.
Thus, cuts in Nη,2 can be handled independently for each polygon.

The main result of this paper is to show how to handle the cuts in Nη,2 (polygon by polygon)
without resorting to the use of the OPT vector. Specifically, we prove the following:

Theorem 9.7 (Informal main theorem). For any connected component C of Nη (i.e. a polygon), let C2 be
the cuts in C that are crossed on both sides. For any α > 0, there is a vector s∗ : E→ R depending on T s.t.

(i) ∀e ∈ E, s∗e ≥ 0;

(ii) E [s∗e] = O(ηαxe), where the expectation is over the choice of tree T.

(iii) If S ∈ C2 is a cut such that δ(S)T is odd, then s∗T(δ(S)) := ∑e∈δ(S) s∗e ≥ α(1− η).

Once cuts in Nη,2 are handled, the remaining cut structure becomes significantly simpler in
that the polygons start to look very much like cycles: they contain only "outside atoms"32 and the
fractional mass x(ai, ai+1) between adjacent atoms is 1±Θ(η), as we have discussed in previous
sections. This enables us, with minor modification to the way in which cuts crossed on one side
are handled (see Theorem C.12), to adapt one of the main results on handling cuts crossed on one
side.

Theorem 9.8 (Informal Theorem adapted from Theorem C.12 and Theorem D.2). Given a family
Nη,≤1 of near-min cuts containing no cuts crossed on both sides, for any β > 0, there is a vector s : E→ R

depending on T such that

(i) ∀e ∈ E, se ≥ −βxe

(ii) E [se] < −εβxe for some absolute constant ε > 0, independent of η, where the expectations are over
the choice of T.

(iii) If S ∈ Nη,≤1 is a cut such that δ(S)T is odd, then sT(δ(S)) = ∑e∈δ(S) se ≥ 0.

Note that Theorem D.2 (used to prove the above theorem) crucially relies on the fact that the
tree is sampled from a max-entropy distribution, whereas Theorem 9.7 does not.

Before we explain the ideas underlying the proof of Theorem 9.7, we quickly show how by
setting

ye(T) := 0.5xe + s∗e + se ∀e,

these two theorems together imply the main result of this paper.
First, we show that E [c(y)] ≤ c(x)(0.5− ε) To see this, observe that Theorem 9.7(ii) together

with Theorem 9.8(ii) imply that for every edge e ∈ E,

E [ye] = 0.5xe + E [se] + E [s∗e] ≤ xe (0.5 + O(ηα)− εβ) ≤ xe
(
0.5− ηε′

)
,

30See ?? for a formal introduction to polygons. In particular, a reader unfamiliar with polygons will likely need to
read ?? to understand this section, though we provide a very brief overview now and again in Section 9.3.

31 One difference between a cycle on m nodes and a polygon with m "outside atoms" is that in a cycle all of the (m
2)

simple cuts are min-cuts, whereas in a polygon only some of the (m
2) simple cuts are η-near min cuts. Indeed a cycle is

the "simplest" kind of polygon. Another major difference is that polygons may also have "inside" atoms. See ??.
32See ??.

138

for α, β as chosen below and η sufficiently smaller than ε. Summing over all edges, this gives

E [c(y)] ≤
(

1
2
− ε′

)
c(x).

Note that since s∗e is always nonnegative, it does not help us in our quest to reduce ye strictly
below 0.5xe. That reduction comes only from se being negative. Indeed, the raison d’etre of the
slack vector s∗ is to repair the feasibility of cuts which are odd in the tree but which have se
negative on some edges in δ(S). This is why it is crucial that E [se] is much smaller than −E [s∗e].

Next, we show that y(T) is feasible for every tree T. For this, we need to consider three types
of cuts:

Case 1: δ(S)T is odd and x(δ(S)) > 2 + η. Since s∗T(δ(S)) ≥ 0 and sT(δ(S)) ≥ −βx(δ(S), we
have

yT(δ(S)) = 0.5x(δ(S)) + s∗T(δ(S)) + sT(δ(S)) ≥ (0.5− β)x(δ(S)) ≥ (0.5− β)(2 + η) ≥ 1,

for β ≈ η/4.

Case 2: δ(S)T is odd, S ∈ Nη,≤1. In this case sT(δ(S)), s∗T(δ(S)) ≥ 0 so yT(δ(S) ≥ 0.5x(δ(S)) ≥ 1.

Case 3: δ(S)T is odd, x(δ(S)) ≤ 2 + η, and S ∈ Nη,2. In this case, s∗T(δ(S)) ≥ α(1− η) and
sT(δ(S)) ≥ −βx(δ(S)), so we have

yT(δ(S)) = 0.5x(δ(S)) + s∗T(δ(S) + sT(δ(S)) ≥ (0.5− β)x(δ(S)) + α(1− η) ≥ 1,

for α ≈ 2β using x(δ(S)) ≥ 2.

9.3 Overview of proof of Theorem 9.7 – no inside atoms

Given a connected component C of cuts in Nη , we can partition vertices of G into sets a0, . . . , am−1

(called atoms); this is the coarsest partition such that for each ai, and each (S, S) ∈ C, we have
ai ⊆ S or ai ⊆ S. One of these atoms, a0 is the atom that contains u0, v0. We call a0 the root. In the
following, we will often identify an atom with the set of vertices that it represents33.

If η = 0, then [DKL76]) shows that the structure of cuts in C can be represented by a cycle;
namely we can arrange these atoms around a cycle such that, perhaps after renaming, for any
0 ≤ i ≤ m− 1, x(E(ai, ai+1 mod m)) = 1 and cuts of C are just the mincuts of this cycle.

As mentioned, [Ben95; BG08] studied the case when 0 < η ≤ 2/5 and introduced the notion
of polygon representation, in which case atoms can be placed on the sides of an equilateral polygon
P and some atoms placed inside the polygon, such that every cut in C can be represented by a
diagonal of this polygon. See Figure 18.

In the rest of this section, we fix C and we outline the ideas behind the proof of Theorem 9.7 in the
special case that the polygon P representing the connected component of cuts C contains no inside atoms.
This latter assumption simplifies the argument but still illustrates many of the main ideas.

33For example, it will be convenient to write cuts as subsets of atoms. In this case the cut is the union of the vertices
in those atoms.

139

pl pr

S

SL SR

SL r S

S∩L S∩R

SR r S

Figure 38: (Note that to simplify the pictures, we usually draw a polygon as a circle.) The figure shows a cut S that is
crossed on both sides. The cut S consists of all atoms below the green line. The cut SR is the cut crossing S on the right
which minimizes the number of outside atoms in the intersection, i.e., it minimizes the number of red atoms. Similarly,
SL crosses S on the left and minimizes the number of blue atoms. While not shown in the picture, it’s possible for the
red and blue atoms to overlap. (SR might cross SL.) Edges between red atoms and green atoms are in E→(S) and edges
between blue atoms and orange atoms are in E←(S). Edges in E◦(S) are all remaining edges in δ(S). Claim 9.9 shows
that with probability 1−O(η), in the randomly sampled tree T, there is exactly one (red,green) edge (i.e., B→(S) does
not occur) and exactly one (blue, orange) edge (i.e., B←(S) does not occur) and those are the only edges in δ(S) ∩ T
(i.e., also B◦(S) does not occur).

a0

ai−1aiai+1

ak+1

pi−1 pi pi+1

pk

a0

ai−1aiai+1

aj

pi−1 pi pi+1

pj

Figure 39: Of all cuts crossed on both sides, L(pi), the blue set, extends farthest to the left from pi.
Similarly, R(pi), the green set, is the one that extends farthest to the right from pi. (For reference when we
later include inside atoms: if the root is not an outside atom, L(pi) can wrap around past a0 and there may
be atoms in the interior of the blue region, aka inside atoms. However, the outside atoms of L(pi) ∪ R(pi)
form a contiguous interval around the cycle and don’t include all outside atoms. Even in the case in which
the root is not an outside atom, the shaded region is the side of the diagonal which does not contain the
root.)

We assume that the atoms of P are labelled counterclockwise from a0 to am−1. We associate to
each diagonal (defining a cut) the side which does not contain a0.34 Thus, we will refer to a cut
by the set of outside atoms it contains, say [ai, aj], i < j. (This denotes the side of the diagonal
containing the atoms ai, ai+1, . . . , aj.) We equivalently refer to this cut by giving the left and right
polygon points of its diagonal [pi−1, pj].

As mentioned above, the raison d’etre for the slack vector s∗ that we construct here is to
34The reason we do this is that it is crucial for subsequent arguments to be able to condition on near min cuts being

trees using Lemma 2.28, i.e., that for S a near min cut, E(S) ∩ T is very likely to be a tree. However, this lemma can
only be used on sets which do not contain u0, v0.

140

am−1a0a1

ai

ai+1

L(p)
l

L(p)R

S

q

p

Figure 40: Since S is crossed on the right and any cut that crosses S on the right also crosses L(p) on the right,
the cut SR, which contains the fewest number of atoms in S (green atoms), is the same as L(p)R. The edges in
E→(L(p)) = E→(S) are those that go between green atoms and brown atoms. Note also that any edge in δ(S) with
one endpoint to the right of p that is not in E→(L(p)) is in E◦(L(p)). (It can’t be in E←(L(p)) since those edges have
one endpoint to the left of l.) Note also that since the green + yellow region as well as the brown region are each the
difference of two crossing η near min cuts, each is a 2η near min cut. So by Lemma 2.35, the fraction of edges with one
endpoint in each of these regions is 1−O(η). (To extend this to the case where polygon P may have inside atoms we
show that there are no atoms in the yellow region see Lemma 11.1, or Lemma 10.27 for a more general statement.)

restore the feasibility of cuts S in C2 which are odd in the tree but which have se negative on some
edges in δ(S). The high level approach in the proof is the following. Initialize s∗e := 0 for all e.
Now define a set of bad events whose occurrence signifies that some of these near min cuts are
potentially in need of such a repair. These bad events should satisfy the follow desiderata:

(a) Each bad event occurs with probability O(η), where the probability is taken over the choice
of tree T.

(b) The occurrence of a bad event B in a tree T triggers a slack increase on an associated set of
edges E(B). Specifically, when B occurs, each edge e ∈ E(B) has its slack s∗e increased by
αxe.

(c) Each edge e is in E(B) for a constant number of bad events B. Combining (a) and (b), this
implies that E [s∗e] = O(ηαxe) (condition 2 of Theorem 9.7).

(d) Each η-near-min cut S is associated with a constant number of bad events B(S), such that
when δ(S)T is odd, at least one of the bad events B ∈ B(S) occurs. We will ensure that
the edges in E(B) (on which slack increases are triggered) are a subset of δ(S) of fractional
value at least Ω(1). Therefore, if S is odd in the tree, s∗T(δ(S)) ≥ αx(E(B)) ≥ Ω(α) implying
condition (iii) of Theorem 9.7 (once the constant are chosen appropriately).

9.4 Satisfying the above desiderata

Consider any near min cut S in P, which is crossed on the left and on the right (see Definition 10.14
for the definition of being crossed on left/right) . Let SL and SR be the cuts crossing S on the left
and right with minimum sized intersection with S. See Figure 38.

One of the very nice things about cuts crossed on both sides is the following:

141

a0

p1

p2
p3

e

aj

ak

L(pi)R for all iL(p1)

L(p2)

L(p3)

Figure 41: Edge e = {aj, ak} is in E→(L(pi)) for all i.

Claim 9.9. For any near min cut S ∈ C2, P [δ(S)T = 2] ≥ 1−O(η).

Proof sketch. To see this, for a set S crossed on both sides, let

E←(S) := E(S ∩ SL, SL r S), E→(S) := E(S ∩ SR, SR r S), E◦(S) := δ(S)r E←(S)r E→(S)

and consider the bad events

B←(S) := 1{E←(S)T 6= 1} B→(S) = 1{E→(S)T 6= 1} B◦(S) := 1{E◦(S)T 6= 0}. (57)

See Figure 38.
Clearly if none of these bad events occur, then S is even in the tree (i.e., δ(S)T = 2). Now,

note that S, SR, SL are all η-near min cuts and so by Lemma 2.37 and Corollary 2.29, we have
x(E←(S)) ≥ 1− η/2, x(E→(S)) ≥ 1− η/2, x(E◦(S)) = x(δ(S)r E←(S)r E→(S)) = O(η) and
P [B←(S)] , P [B→(S)] , P [B◦(S)] = O(η).

The next step in our plan is to decide what slack increases are triggered by these bad events.
The first thing one might think of is to have the above bad events (57) trigger a slack increase on
E←(S) ∪ E→(S). Namely, for each set S crossed on both sides:

∀e ∈ E←(S) ∪ E→(S) set s∗e := αxe · 1{at least one of B←(S), B→(S) or B◦(S) occurs}.

In addition to desiderata (a) and (b), this approach satisfies (d) since x(E←(S) ∪ E→(S)) ≥ 2− η.
Unfortunately though, this does not satisfy desiderata (c), since if e ∈ E(ai, aj), it could be that

e ∈ E←(S) ∪ E→(S) for many near min cuts S in which case

E [s∗e] = αxe ·P [∃S odd in T s.t. e ∈ E←(S) ∪ E→(S))]

could be way too large (say, around αxe).
So, rather than defining a bad event for every cut S crossed on both sides individually (i.e., up

to O(m2) events), we instead define a constant number of bad events for each polygon point p,
hence at most O(m) events.

142

Figure 42: Suppose that there are exactly 1/η (black) vertices between any two vertices in the above figure,
where each edge has fractional value η. Also, any two consecutive vertices (if both of them are not blue)
have exactly 1/η parallel edges between them. Then, it is easy to check that the above graph is fractionally
2 edge connected. Furthermore, the set of 2 + O(η)-near minimum cuts comprises a single connected
component and every vertex will become an (outside) atom of the corresponding polygon. This is because
every diagonal which separates two blue vertices on both sides is a near min cut. In addition, every interval
with O(1) many consecutive vertices where at most one of vertex is blue is also a near mincut. In such a
case, for every pair of adjacent blue vertices, we have E(ai, ai+1) = ∅.

9.4.1 Defining bad events for each polygon point

For a fixed polygon point p, let L := L(p) be the set crossed on both sides that extends farthest
clockwise from p and as above, let LR be the cut that crosses it on the right with the minimum
number of outside atoms in the intersection. Analogously define R := R(p) and RL. See Figure 39.

Now we consider two bad events:

B→(p) = 1{E→(L(p))T 6= 1 or E◦(L(p))T 6= 0}
B←(p) = 1{E←(R(p))T 6= 1 or E◦(R(p))T 6= 0}.

(58)

For these events, we have the following two claims:

Claim 9.10. For any near min cut S = [p, q], E→(L(q)) = E→(S) and E←(R(p)) = E←(S). Moreover,
E◦(S) ⊂ E◦(L(p)) ∪ E0(R(p). See Figure 40. Therefore, if neither B→(q) or B←(p) occur, then δ(S)T is
even.

In addition we have

Claim 9.11. For any polygon point p, P [B→(p)] , P [B←(p)] = O(η).

This follows arguments similar to those used in Claim 9.9, using that x(E→(L(p))) ≥ 1− η/2,
and x(E◦(L(p)) = O(η) (and similarly for R(p)).

These bad events satisfy the desiderata (a) and (d) (assuming we define E(B) such that
x(E(B)) ∈ Ω(1)).

9.4.2 Defining the slack increase sets for bad events

It remains to determine the sets E(B→(p)), E(B←(p)) for which slack increases are triggered when
the bad events occur. In particular, we will let E(B→(p)) ⊆ E→(L(p)) and E(B←(p)) ⊆ E←(R(p))
such that:

143

E(B→(q))E(B←(p))

a0

Sp q

R(p)L L(q)R

L(q)R(p)

R∗(p) L∗(q)

Figure 43: This figure illustrates the definitions in (59). The near min cut S contains all atoms below the
blue line. L(q)R crosses L(q) on the right and R(p)L crosses R(p) on the left. L(q)∩R is the set of atoms in
the blue + pink region on the right. L∗(q) is the near min cut crossing L(q)∩R on the left that maximizes
the number of outside atoms in the pink region. Similarly R∗(p) is the near min cut crossing R(p)∩L on the
right that maximizes the number of outside atoms in the grey region. The edges in E(B→(q)) are those
edges from the blue region to the orange region and the edges in E(B←(p)) are those edges from the green
region to the yellow region. Note that the figure is misleading in that sets that are shown as disjoint here
may not in fact be disjoint.

(*) x(E(B→(p))) ≥ Ω(1) and x(E(B←(p))) ≥ Ω(1) (to guarantee (d)),

(**) All edges e are in at most a constant number of sets E(B) (to guarantee (c)).

Assuming we can satisfy (*) and (**), we can set s∗e = αxe for all e ∈ E(B) when B occurs to satisfy
all four desiderata.

First try: The most natural choice is to simply let E(B→(p)) = E→(L(p)). Here, (*) obviously
holds but unfortunately (**) fails. Indeed, there are examples (see Figure 41) for which there
exist edges e ∈ E(ai, aj) with |j− i| = Ω(m) that belong to E→(L(pk)) for Ω(m) many values of
i ≤ k ≤ j.

Second try: Let ai be the atom immediately to the left of p and ai+1 the atom immediately to the
right of p (i.e. p = pi). Note that all edges with one endpoint in ai and one in ai+1 are in E→(L(p)).
Now if it was always the case that x(E(ai, ai+1)) ≥ γ for some universal constant γ > 0, then,
when one of these bad events occurs, say B→(p), we could simply increase the slack of every edge
e in E(ai, ai+1) by αxe. This approach is analogous to the method employed in [KKO21] where
slack was increased on OPT edges. One might have some hope that this is true since it holds with
γ = 1 for the cactus representation of min cuts (i.e. when η = 0).

Unfortunately, as observed in [OSS11] there is a family of near minimum cuts such that the
polygon representation has no inside atoms, yet E(ai, ai+1) = ∅ for some consecutive pairs of
(outside) atoms (see Figure 42) (even though there are cuts whose diagonals end between those
atoms). So, this method is doomed even if inside atoms are not present.

144

L(q)∩R

L(q)R

r′ in brown

l′ in purple

a0

L(q)
q

p

b

al

r

Figure 44: Setup for proof of Claim 9.13: Let L(q)R = (l, r) and L(p)R = (l′, r′) (where l, r, l′, r′ are
polygon points). The grey region is L(q)∩R := L(q) ∩ L(q)R. Note that neither L(p) or L(p)R are shown
in this figure, since our proof in fact will need to argue about how these cuts are situated relative to
those shown. WLOG (as shown in the figure) p is to the left of q. Now, for contradiction, suppose that
e = {a, b} ∈ E(B→(p)) ∩ E(B→(q)). Then a, b ∈ L(p)R ∩ L(q)R. So, in the above, since no cut contains a0, it
must be that l′ is to the left of a and r′ is to the right of b.

Our method: The first try works if there are no “long” edges. So, to rectify that attempt we
essentially “ignore” long edges (edges between distant atoms) in our charging argument and
argue that they only contribute minimally to E→(L(p)) and E←(R(p)).

To this end, define L(p)∩R := L(p) ∩ L(p)R, and let L∗(p) be the cut crossing L(p)∩R on the
left that maximizes the number of outside atoms in the intersection of L∗(p) and L(p)∩R (and
similarly R∗(p) to maximize the intersection with R(p)∩L on the right). If L∗(p) does not exist, i.e.
no cut crosses L(p)∩R on the left, set L∗(p) = ∅, and similarly for R∗(p). See Figure 43. We let:

E(B→(p)) := E(L(p)∩R r L∗(p), L(p)R r L(p)∩R)

E(B←(p)) := E(R(p)∩L r R∗(p), R(p)L r R(p)∩L).
(59)

The following claim establishes (*) for Eq. (59). It can be proved using methods similar to
Claim 9.9; see Figure 40.

Claim 9.12. For all polygon points p, x(E(B→(p))), x(E(B→(p))) ≥ 1−O(η).

And finally, the following claim establishes (**):

Claim 9.13. For any edge e, we have e ∈ E(B→(p)) for at most one polygon point p and similarly
e ∈ E(B←(q)) for at most one polygon point q.

The proof of Claim 9.13 is more involved. For an outline of the arguments used, see Figures
44, 45, 46, 47, 48.

9.5 Extending to polygons with inside atoms

For the general case, we still follow the same proof outline satisfying the four desiderata using the
same definition of bad events given in (58) and the same definition of edges on which slack is
increased in response to bad events given in (59).

145

L(q)∩R

range of l′ range of r′

L(q) L(q)R

root rootl a p q b r

Figure 45: Proof of Claim 9.13 continued: Because we are dealing with outside atoms only and no cuts
contain the root a0, we may as well visualize the polygon as a line (with wraparound) and each cut as an
interval along the line. The above figure repeats Fig. 44 when viewed as a line segment.

L(p)Rl′ r′

L(q) L(q)R

root rootl a p q b r

Figure 46: Claim: l′ can not be to the right of l. If it is, as in the figure above, then L(p)R crosses L(q) on
the right and has a smaller intersection with L(q). Contradiction to choice of L(q)R!

L(p)R

L(p)
l′ r′

L(q) L(q)R

root rootl a p q b r

Figure 47: Claim: l′ can not be to the left of l. If so, as in the figure above, then L(q)R crosses L(p) on the
right and has a smaller intersection with L(p). Contradiction to choice of L(p)R! Therefore l′ = l.

L(q)∩R

L(p)

L(q) L(q)R

root rootl a p q b r

Figure 48: Since the left endpoint of L(p)R is l, the left endpoint of L(p) is to the left of l. Therefore, L(p)
crosses L(q)∩R on left and it is a candidate for L∗(q). Therefore, L(p) ∩ L(q)∩R ⊆ L∗(q) ∩ L(q)∩R and we
have a ∈ L∗(q) ∩ L(q)∩R. But then, e /∈ E(B→(q)). Contradiction!.

We need to address the following challenges when generalizing the above proof:

(1) Edges may have endpoints adjacent to inside atoms. The proof outline above crucially used
that both endpoints of every edge were outside atoms.

(2) Regions of the polygon we could previously assume were empty may now contain inside
atoms.

(3) While the sets are still defined such that they do not contain the root, the root (i.e., the
atom containing {u0, v0}) is no longer necessarily an outside atom. Therefore we can have a
sequence of cuts not containing the root wrapping around the polygon such that each cut

146

crosses the one before it. In this case, the notion of “left" and “right" becomes unclear. One
can still define “left" and “right" synonymously with clockwise and counterclockwise, but
we can no longer say that an outside atom is to the left (and not to the right of) another
outside atom, nor can we collapse the diagonals of the polygon to intervals of a line.

To handle these complexities, we introduce additional structural properties of polygons with
inside atoms. These are presented in subsection 10.3.

147

10 Polygon Representation: Redux

We previously utilized the optimal Hamiltonian cycle to drastically simplify the polygon represen-
tation. In this section we gain a more in-depth understanding of the polygon representation to
avoid this trick, thereby allowing us to bound the integrality gap of the subtour polytope.

We invite the reader to look at Section 2.9 for a basic review of polygons. We present an
example polygon here for reference, and provide a few additional facts not present in the earlier
section.

1

2

34

5

6

7

8

9

10 11

12

13

14

15

16

1

2
3

4

5

6

7
8

9

10
11

12

13

14

15

16

Figure 49: Consider the graph on the left, with minimum cut 7 (or, consider setting xe =
2
7 for

all edges and a min cut of 2 as in the support graph of a solution to PSub). On the right is the
polygon representation of the connected component of all proper cuts with at most 8 edges (or
x(δ(S)) ≤ 2 + 1/7). This component consists of all proper near minimum cuts of the graph
excluding the cut {7, 8}, which is in its own connected component of size 1. 15 and 16 are inside
atoms, the others are outside atoms. Note {7, 8} is a single atom.

The following observation follows from the fact that cuts correspond to straight diagonals in
the plane and the polygon P is regular:

Observation 10.1 ([BG08, Prop 19]). If S, S′ ∈ C cross then O(S) and O(S′) cross, and O(S ∪ S′) 6=
O(P).

Lemma 10.3 is used in the proof of Lemma 10.20, and depends on the following:

Theorem 10.2 ([Ben97, Lem 4.1.7]). Let C, C ′ be two (distinct) connected components of crossing cuts for
a family of cuts of G = (V, E). Then, there exists an atom a ∈ A(C) and a′ ∈ A(C ′) such that a∪ a′ = V.

Lemma 10.3. Consider the set of η-near minimum cuts (NMCs) of G and let C be a connected component.
Let B ⊂ A(C) be an η-NMC such that 1 < |B| < |A(C)| − 1. Then, B ∈ C.

Proof. For the sake of contradiction, suppose B /∈ C. Since B is an η-NMC, it is in some connected
component of cuts, say B ∈ C ′, where C 6= C ′. Then, by Theorem 10.2 there exist atoms

148

a ∈ A(C), a′ ∈ A(C ′) such that a ∪ a′ = V. Observe that by the definition of atoms, each of a, a′ is
contained in either B or B. Without loss of generality assume a ⊆ B and a′ ⊆ B. But then, a 6= B
since |B| > 1. So, a ∪ a′ 6= V which is a contradiction.

10.1 Our polygon notation and the root

All statements in the previous section do not depend on which side of each diagonal we consider.
The ambiguity on the sides of the cut considered makes it difficult to define a consistent orientation
on the polygon, for example to say whether a cut A, A crosses B, B “on the left" or “on the right."
Motivated by this, we identify every cut with the side that does not contain u0, v0. This has the
added benefit of allowing us to apply Lemma 2.28 to every cut considered. For every polygon P,
we call the unique atom r containing u0, v0 the root.

Recall that, for η > 0, we write Nη ⊆ 2Vr{u0,v0} to denote the family of all η-NMCs of G/e0 . If
η is clear in context, we drop the subscript of Nη . Throughout the paper, we will need to show
that various sets A, B ⊆ V r {u0, v0} cross. Since u0, v0 ∈ A ∪ B to verify that a pair of sets A and
B cross, it suffices to check the three conditions in the following fact.

Fact 10.4. For A, B ⊆ V r {u0, v0}, A, B cross iff

A ∩ B, A r B, B r A 6= ∅.

As above, unless otherwise specified, we let C be a connected component of cuts in Nη with
corresponding polygon P for η ≤ 1/10. Again, call the outside atoms (of P) a0, . . . , am−1, ordered
counter-clockwise though these are not necessarily all the atoms in P. Note that the root r is not
necessarily an outside atom, but if it is, it is the atom labelled a0.

We use the existence of the root to prove the following two facts. The first fact is a consequence
of Observation 10.1:

Fact 10.5. Let S, S′ ∈ C. Then, O(S ∪ S′) 6= O(A(C)).

Proof sketch. If S, S′ are (the non-root) sides of two diagonals of a polygon and there is an atom r
which is in neither of them, then there must be a polygon point which is in neither of them.

The following lemma is the main reason why we can treat each polygon separately in con-
structing the slack vector mentioned in Section 9. In Section 11, we are careful to only define
positive slack on edges of a polygon that do not have an endpoint in its root.

Fact 10.6. For any edge e = {u, v}, there is at most one polygon in which the endpoints of e lie in two
different atoms which are not the root of their respective polygons.

Proof. Suppose not, and let P, P′ be two polygons in which u and v lie in different atoms that do
not contain r. By Theorem 10.2, there exists an atom a ∈ P, a′ ∈ P′ such that a ∪ a′ = V. Since
u, v lie in different atoms (and the atoms of a polygon partition V) in both P, P′ it must be that
(WLOG) u ∈ a, v ∈ a′. However, since a ∪ a′ = V, u0, v0 lies in a or a′, so either a is the root of P
or a′ is the root of P′, which is a contradiction.

We will use “left" synonymously with “clockwise" and “right" synonymously with “counter-
clockwise."

149

Definition 10.7 (Near min cut notation). We will interchangeably refer to a set S ∈ Nη by specifying
the extreme outside atoms it contains or by specifying the polygon points defining its diagonal. For the
former, if S = (al , ar), then al is the leftmost outside atom in S and ar is the rightmost outside atom in S.
For the latter, if S = (pl , pr), then pl is the polygon point immediately to the left of al and pr is the polygon
point immediately to the right of ar.

Definition 10.8 (L(p), R(p)). For a polygon point pi, let L(pi) be the largest cut in Nη containing ai
and not ai+1 which is crossed on both sides. Let R(pi) be the largest cut in Nη containing ai+1 and not ai
which is crossed on both sides. (Note that L(pi), R(pi) do not necessarily exist). See Figure 39.

The following definitions make formal the notion of “crossed on one side" and “crossed on
both sides" (introduced in Section 9) for polygons with inside atoms.

Definition 10.9 (Left, Right Crossing). Let S, S′ ∈ C such that S′ crosses S. For such a pair, we say S′

crosses S on the left if the leftmost (clockwise-most) outside atom of O(S′ ∪ S) is in S′. Otherwise, we say
that S′ crosses S on the right. Note that by Observation 10.1, O(S), O(S′) cross.

Definition 10.10 (Crossed on one, both sides). We say a cut S is crossed on both sides if it is crossed by
a cut (in C) on the left and a cut (in C) on the right and we say S is crossed on one side if it is crossed
only on the left or only on the right.

Definition 10.11 (Nη,≤1,Nη,1,Nη,2). Let Nη,2 ⊆ Nη be the set of cuts which are crossed on both sides in
their respective polygons. Let Nη,1 ⊆ Nη be the set of cuts that are crossed on one side in their respective
polygons and finally let Nη,≤1 = Nη rNη,2 (i.e. the set of cuts which are crossed on one side or not crossed
at all).

Here we give an alternate set-theoretic characterization of Nη,2.

Lemma 10.12. Let C ∈ Nη . Then, C ∈ Nη,2 if and only if there exist two cuts A, B ∈ Nη which cross C
such that (A r C) ∩ (B r C) = ∅.

Proof. The only if follows from Lemma 10.24. So, assume there exist two cuts A, B ∈ Nη which
cross C such that (A r C) ∩ (B r C) = ∅. We will show C ∈ Nη,2.

Since A and B both cross C, it must be that C, A, B are in the same connected component of
cuts C ⊆ Nη (i.e. including all cuts in Nη,2). Let P be the corresponding polygon.

Suppose by way of contradiction that A, B both crossed C on the left (if they both cross on the
right the argument is similar). Then A, B must both contain the outside atom immediately to the
left of the leftmost atom of C, which contradicts (A r C) ∩ (B r C) = ∅.

Consequently, we can give an alternate characterization of Nη,1 as the sets which are crossed
but are not in Nη,2. This will be relevant in Appendix C.

Definition 10.13 (C2). For a connected component of cuts C ⊆ Nη , let C2 = C ∩N2.

The following definition is quite important throughout our paper as it is used to specify the
set of bad events we use to construct our slack vector (see Section 9 for a gentle introduction):

Definition 10.14 (SL, SR). For S ∈ C2 let SL be the near minimum cut crossing S on the left which
minimizes |O(S∩ SL)|. If there are multiple sets crossing S on the left with the same minimum intersection,
choose the smallest one to be SL. Similarly, let SR be the near min cut crossing S on the right which
minimizes |O(S ∩ SR)|, and again choose the smallest set to break ties. See Figure 38.

150

10.2 Properties of inside atoms

Before proving some new properties of the polygon representation we recall some basic properties
of inside atoms from [BG08]:

Definition 10.15 ([BG08, Definition 3]). A family of sets C1, . . . , Ck ⊆ V, for some k ≥ 3, forms a
k-cycle if

• Ci crosses both Ci−1 and Ci+1 (we treat Ck+1 as C1 and C0 as Ck);

• Ci ∩ Cj = ∅ for j 6= i− 1, i or i + 1; and

•
⋃

1≤i≤k Ci 6= V.

• If k = 3, we have the additional condition (Ci ∩ Ci+1) 6⊆ Ci−1 for i ∈ {1, 2, 3}.

Lemma 10.16 ([BG08, Lemma 22]). Any k-cycle formed by cuts in a connected component C of η-near
min cuts satisfies k ≥ 2/η. (Note if η = 0 then no k-cycle exists.)

Therefore, for all 2/5-near min cuts, there are no cycles with length less than 5.

Lemma 10.17 ([BG08, Def 4]). An atom a ∈ A(C) is an inside atom (in the representation defined above)
if and only if there is a k-cycle C1, . . . , Ck ∈ C, such that a ∩ Ci = ∅ for all 1 ≤ i ≤ k.

See Figure 18 for an example of an inside atom and a cycle.

Fact 10.18. Let C1, . . . , Ck be a k-cycle for a connected component C with polygon representation P and
k ≥ 5. For any adjacent pair of outside atoms a, b ∈ O(A(C)), there is a 1 ≤ j ≤ k such that a, b ∈ Cj.

Proof. Since a is an outside atom, there is a cut Ci for some 1 ≤ i ≤ k such that a ∈ Ci (otherwise a
would be an inside atom). If b ∈ Ci we are done. Otherwise, a is a rightmost or leftmost outside
atom in Ci. But then, since Ci is crossed by Ci−1 and Ci+1 and Ci−1 ∩ Ci+1 = ∅, it follows from
Observation 10.1 (and the fact that both Ci−1, Ci+1 contain at least two outside atoms) that either
a, b ∈ Ci−1 or a, b ∈ Ci+1.

10.3 New properties of polygon representations

The following lemmas build on [Ben95; BG08]. Proposition 10.19 is a key property of polygons
which Lemma 10.20 extends:

Proposition 10.19 ([BG08, Proposition 20]). For any connected component C of η-near min cuts with
η ≤ 2/5 with polygon representation P, and any S1, S2 ∈ C with S1 6= S2 we have OP(S1) 6= OP(S2).

Lemma 10.20. Let P be the polygon representation for a connected component |C| > 1 of η-NMCs of a
(fractionally) 2-edge connected graph G with atom set A(C). If A, B (A(C) are two 2/5-NMCs with
OP(A) = OP(B) 6= ∅ and there is an atom r ∈ A(C) such that r /∈ A, B, then A = B 35.

35As indicated earlier, r is called the root of the polygon P

151

Proof. Take the graph G and contract each atom of A(C) to a single node. Call the resulting
graph G′. Clearly, G′ is still 2-edge connected since G is 2-edge-connected and all cuts in C are
represented in G′. Now, consider the set of non-singleton 2/5-near-min-cuts of G′. This set has
a unique connected component of crossing cuts because any new (non-singleton) cut S /∈ C is
crossed by a cut in C. (Suppose not: then, no cut on the atoms of S crosses a cut on the atoms of S,
which contradicts that C forms a connected component.) Call this component of cuts C ′ and the
corresponding polygon P′. It follows that A(C) = A(C ′) (more precisely, a set S ⊆ V is an atom
in A(C) if and only if it is an atom in A(C ′)): no two atoms from P can be merged in P′ because
we have not deleted any cuts, and no atoms in P can be split in P′ because we have contracted
them. While some outside atoms of P may become inside atoms in P′, it follows by Lemma 10.17
that any inside atom of P remains an inside atom in P′ (as any k-cycle of C is also a k-cycle of C ′).
Therefore,

OP′(A) = OP′(B).

Therefore, if A, B ∈ C ′, by Proposition 10.19, A = B. So it remains to show that A, B ∈ C ′. First,
assume 2 ≤ |A| ≤ |A(C ′)| − 2 and 2 ≤ |B| ≤ |A(C ′)| − 2. Then, by Lemma 10.3, A, B ∈ C ′ and we
are done.

Now, we claim that 2 ≤ |A| ≤ |A(C ′)| − 2 and 2 ≤ |B| ≤ |A(C ′)| − 2, which by the above
would complete the proof. For contradiction, assume A 6= B and |A| = 1 or |A| = |A(C ′)| − 1.
First assume |A| = 1. Since B 6= A, OP(A) = OP(B) 6= ∅, and every polygon has at least three
outside atoms, 2 ≤ |B| ≤ A(C)− 2. By Lemma 10.3, B ∈ C ′. Yet this implies that B has at least
two outside atoms in P′ (and therefore in P), which contradicts OP′(A) = OP′(B). Otherwise,
|A| = |A(C ′)| − 1. Using that A 6= B and r 6∈ A, B, it follows that B has at most |A(C ′)| − 2
atoms. Again using that every polygon has at least three outside atoms, this implies |B| ≥ 2.
So similarly to above, we have B ∈ C ′. Therefore, |OP′(B)| ≤ |O(P′)| − 2 which contradicts that
|A| = |A(C ′)| − 1 using OP′(A) = OP′(B).

We generalize Observation 10.1 in the next lemma.

Lemma 10.21. Let P be a polygon representation of a connected component C of η NMCs of a (fractionally)
2-edge-connected graph G for some η ≤ 2/5. For any 2/5 NMCs A, B ⊆ A(C) with O(A), O(B) 6= ∅,
if A, B cross, then O(A), O(B) cross and O(A ∪ B) 6= O(A(C)).

Proof. Similar to the previous lemma, consider the graph G′ arising from contracting all atoms of
A(C) and let C ′ be the (unique) connected component of non-singleton 2/5-near-min-cuts of G′

with corresponding polygon P′. As before, A(C ′) = A(C) and O(A(C ′)) ⊆ O(A(C)).
Notice that since A, B cross (in P), each of them contains at least two atoms of P. Therefore,

since A, B are 2/5 NMCs and A, B are not singletons, we must have A, B ∈ C ′. Since A, B cross
in P and A(C ′) = A(C), they also cross in P′. By Observation 10.1, it follows that OP′(A) and
OP′(B) cross. Recall that outside atoms of A(C) may become inside atoms of A(C ′), but inside
atoms of A(C) remain inside atoms in A(C ′). So, OP(A) and OP(B) cross as well (in particular it
also follows that O(A ∪ B) 6= O(A(C))).

10.3.1 Almost diagonal cuts and the chain lemma

In some cases, we will need to refer to cuts which are generated by intersections of diagonals in C.
Such cuts are a subset of the following class:

152

Definition 10.22 (Almost Diagonal Cuts). Let C be a connected component of cuts in Nη . We say a set
of atoms S ⊆ A(C)r {r} is an almost diagonal cut if:

1. S is a 2η-near min cut,

2. ∅ 6= O(S) (O(A(C)),

3. O(S) forms a contiguous interval in the polygon.

Notice that by definition any cut in C is an almost diagonal cut.

When we reference almost diagonal cuts in the rest of the paper, we will always assume
η ≤ 1/5. Notice that given any two A, B ∈ Nη , A ∩ B, A r B, B r A are almost diagonal cuts.

The following fact implies that one can naturally define left/right crossing analogous to
Definition 10.14 for almost diagonal cuts. The following is a consequence of Lemma 10.21:

Fact 10.23. Let A, B be two crossing almost diagonal cuts. Then, O(A) and O(B) cross. In addition,
neither O(A ∪ B) nor O(A ∩ B) contain all outside atoms and each of O(A ∪ B) and O(A ∩ B) form a
contiguous interval of outside atoms.

Lemma 10.24. For an almost diagonal cut S with leftmost atom al and rightmost atom ar, let L ∈ C cross
S on the left and R ∈ C cross S on the right. Then, if η ≤ 1/5, (L r S) ∩ (R r S) = ∅.

Proof. Suppose (L r S) ∩ (R r S) 6= ∅. We will show that L, R, S form a 3-cycle (Definition 10.15)
which cannot exist. To show this (using that the root atom r 6∈ S ∪ L ∪ R), it is enough to prove
that all pairs cross and none of the three sets is a superset of the intersection of the two others.
First, by assumption L and R cross S. L and R cross because ar ∈ R r L, al ∈ L r R, so neither is a
subset of the other, and because we assumed (L r S)∩ (R r S) 6= ∅ their intersection is nonempty.

In addition, we have S ∩ L 6⊆ R because al ∈ S ∩ L but not in R. Similarly S ∩ R 6⊆ L. Finally,
L ∩ R 6⊆ S by the assumption (L r S) ∩ (R r S) 6= ∅. Therefore S, L, R form a 3-cycle which is a
contradiction as S, L, R are all 2/5-near min cuts.

A fundamental property of the cactus representation is that the set of min cuts A1, . . . , Ak
crossing a min cut S form two laminar families inside S. In other words, perhaps after renaming
we may assume A1 ∩ S ⊆ A2 ∩ S · · · ⊆ Aj ∩ S and Aj+1 ∩ S ⊆ · · · ⊆ Ak ∩ S.

It is not immediately obvious that such a property extends to polygons because of the existence
of inside atoms. Nonetheless, the following lemma demonstrates that this property is also true of
near min cuts provided that η is small enough. It is an immediate corollary of Lemma 10.26.

Lemma 10.25 (Chain Lemma). Let S be an almost diagonal cut where O(S) contains all outside atoms
from a to b. In addition, let A1, . . . , Ak ∈ C be the collection of η-near-min cuts crossing S on the left.
Then there is a permutation, π : [k]→ [k] such that

S ∩ SL = S ∩ Aπ(1) ⊆ · · · ⊆ S ∩ Aπ(k)

i.e., their intersections with S form a chain. The same statements also hold for cuts crossing S on the right.

Lemma 10.26. Let S be a near diagonal cut with leftmost outside atom a and rightmost outside atom b.
Furthermore, let A = [a1, a2], B = [b1, b2] ∈ C be cuts which cross S on the right. If η ≤ 1/10 and in the
interval of the outside atoms of O(S), a1 is to the left of b1, then B ∩ S ⊆ A ∩ S. In the special case that
a1 = b1, we have S ∩ A = S ∩ B.

153

Proof. First assume b1 6= a1. Since b1 is to the right of a1, and A, B cross S on the right, O(A ∩ S ∩
B) = O(S ∩ B) 6= ∅ (as both sets have all outside atoms between b1 and b). Note that B crosses
A ∩ S. This is because B has an atom outside of S (as it crosses S itself), a1 ∈ A ∩ S r B, and
b1 ∈ A ∩ S ∩ B. So by Lemma 2.36 A ∩ S ∩ B is a 4η near min cut. In addition, S ∩ B is a 3η near
min cut since B crosses S. Therefore, since 4η ≤ 2/5, by Lemma 10.20 A ∩ S ∩ B = S ∩ B.

In the special case that a1 = b1, O(A ∩ S) = O(B ∩ S) 6= ∅ has all outside atoms between a1 =
b1 and b. Since A ∩ S, B ∩ S are 3η near min-cuts, by Lemma 10.20, we must have A ∩ S = B ∩ S
as desired.

10.4 Another structural property of inside atoms

The following lemma is not explicitly used in the proof of the main theorem, but the statement
may be useful to guide the reader’s intuition (or in other settings where near min cuts arise). For
example, it implies that the yellow region is empty in Fig. 40.

Lemma 10.27. Let η ≤ 2/5 and let P be the polygon representation for a connected component |C| > 1
of η-NMCs of a (fractionally) 2-edge-connected graph. Suppose H is the intersection of half-planes36

H0, . . . , H`−1 corresponding to diagonals D0, . . . , D`−1 of P that has a positive area. If H does not contain
any side of P (equivalently, it does not any contain any outside atom) and ` < 1/η then H does not have
any inside atoms.

Proof. Define C0, . . . , C`−1 ⊆ V such that Ci = A(C) ∩ Hi, i.e. all atoms which are not in the
halfplane Hi. Without loss of generality assume there are no two sets Ci, Cj such that Ci ⊆ Cj

37.
First observe that H is a 2-dimensional polytope and therefore without loss of generality we

can assume each Di defines a side of H and D0, . . . , D`−1 are ordered such that the vertices of the
polytope v0, . . . , v`−1 are arranged cyclically counterclockwise where vi is the intersection of Di
and Di+1 (where for the rest of the proof we take all indices mod `). We will call a vertex external
if it is a polygon point of P and internal otherwise.

We prove the claim by induction over r that if H has r external vertices and `+ r < 2/η, then
H is empty. Note that if ` < 1/η, since r ≤ `, we have `+ r < 2/η which proves the theorem.

First assume r = 0. Then, Ci crosses Ci+1 for all i. By way of contradiction suppose H contains
an (inside) atom a. Without loss of generality, assume that H0, . . . , Hk−1 ⊆ H0, . . . , H`−1 (perhaps
after renaming) is the minimal set of half-planes that contain H and have no external vertices. We
claim that there are no indices i, j and j 6= i− 1, i, or i + 1 such that Ci ∩ Cj 6= ∅. Since Ci 6⊆ Cj,
Cj 6⊆ Ci, a 6∈ Ci, Cj, it follows that Ci, Cj cross and therefore the diagonals Di, Dj intersect in the
interior of P. Now D0, . . . , Di, Dj, . . . , Dk−1 contains H and has no external vertices and thus
contradicts the minimality of H0, . . . , Hk−1.

Therefore by minimality, Ci ∩ Cj = ∅ if j 6= i− 1, i or i + 1. So, C0, . . . , Ck−1 is a k-cycle for a:
since there are no external vertices, Ci crosses Ci+1 for all i, and

⋃`−1
i=0 Ci 6= V since a 6∈ Ci for all i.

By Lemma 10.16, k ≥ 2/η, which is a contradiction, because k ≤ ` < 1/η.
Now, suppose the claim is true when the number of external vertices is at most r; we will

prove it holds when the number is r + 1.
Again, by way of contradiction suppose there is an inside atom a in H. Then there is a

k-cycle for a, L1, . . . , Lk ∈ C. Now pick an arbitrary external vertex vi = pj of H for some

36Technically, half-polygons.
37This is because if Ci ⊆ Cj then Hj ∩ P ⊆ Hi ∩ P which means Hi is redundant in defining H.

154

j. Let aj−1, aj ∈ O(A(C)) be the adjacent outside atoms immediately to the clockwise and
counterclockwise of pj. Therefore, by Fact 10.18, there exists some j such that aj−1, aj ∈ Lj. Let H`

be the halfspace corresponding to the side of Lj containing a. Now consider the set of halfspaces
H0, . . . , H`−1, H`. Note that H′ =

⋂`
i=0 Hi (H because vi = pj 6∈ H`. Therefore, H′ has at least one

fewer external vertex and no sides of the polygon. Since `+ 1 + (r− 1) ≤ 2/η, by the induction
hypothesis, H′ has no inside atoms which is a contradiction with the existence of a.

155

11 Using the Polygon Representation for Cuts Crossed on Both Sides

11.1 Notation and a preliminary lemma

We will use the same set of definitions for bad events and increase sets that we did in Section 9
for polygons without inside atoms. For the benefit of the reader we repeat them here. Recalling
the definitions from Section 10.1, partition each set δ(S) into three sets E←(S), E→(S) and E◦(S)
such that

E←(S) = E(S ∩ SL, SL r S)
E→(S) = E(S ∩ SR, SR r S)
E◦(S) = δ(S)r (E←(S) ∪ E→(S))

In addition we define the left and right bad events:

B→(p) = 1{|E→(L(p)) ∩ T| 6= 1 or |E◦(L(p)) ∩ T| 6= 0}
B←(p) = 1{|E←(R(p)) ∩ T| 6= 1 or |E◦(R(p)) ∩ T| 6= 0}. (60)

If L(p) does not exist, simply assume the left bad event never occurs, and similarly if R(p) does
not exist assume the right bad event never occurs.

Define L(p)∩R := L(p) ∩ L(p)R, and let L∗(p) ∈ C be the cut crossing L(p)∩R on the left that
maximizes |O(L∗(p) ∩ L(p)∩R)| (and similarly R∗(p) to maximize the intersection with O(R(p)∩L)
on the right). If L∗(p) does not exist, i.e. no cut crosses L(p)∩R on the left, set L∗(p) = ∅, and
similarly for R∗(p). We let:

L(p)R
L(p)

L∗(p)

pb

Figure 50: Recap of some basic definitions: L(p) is the cut crossed on both sides with rightmost polygon
point p (and contains all atoms below the red diagonal. L(p)R is the cut crossing L(p) on the right that
minimizes the number of outside atoms in L(p)∩R = L(p) ∩ L(p)R, i.e., in yellow + blue. Note that the cut
L(p)∩R contains all atoms in the yellow and blue regions (which may include inside atoms). Since this
region is the set difference of two η near min cuts, it is a 2η near min cut. L∗(p) is the cut crossing L(p)∩R

on the left that maximizes the number of outside atoms in the intersection, i.e., maximizes the number of
outside atoms in the blue region. E→(L(p)) are the edges between atoms in the yellow region and atoms in
the orange region. There is one edge in the tree that is in E→(L(p)) with probability 1−O(η) and when
this event does not occur, B→(p) occurs. (B→(p) also occurs if |E◦(L(p)) ∩ T| 6= 0.)

156

E(B→(p)) := E(L(p)∩R r L∗(p), L(p)R r L(p)∩R)

E(B←(p)) := E(R(p)∩L r R∗(p), R(p)L r R(p)∩L). (61)

The following important lemma is the generalization of Claim 9.10 from Section 9 to the case
in which there may be inside atoms. It uses that by Lemma 10.20 many regions of the polygon do
not contain inside atoms.

Lemma 11.1. Let A, B ∈ C2 such that A = (a1, ar) and B = (a2, ar) share a rightmost polygon point pr.
Then, AR = BR and E→(A) = E→(B).

Proof. WLOG assume A ⊆ B. First, we will prove that if a cut R crosses A on the right, it also
crosses B on the right. So, let R be a set crossing A on the right. Then, since R contains ar,
R ∩ B 6= ∅. Furthermore, R contains atom ar+1, so R 6⊆ B. Finally, B contains a1 since A ⊆ B yet
R does not. Therefore, R crosses B on the right.

Therefore, by Definition 10.14 AR = BR since the set of cuts crossing B on the right is a superset
of cuts crossing A on the right and any cut which crosses B but not A contains all atoms of A, so
would have a larger intersection with O(B). (If two sets have the same intersection with O(A) we
use the same tie-breaking rule for both AR and BR.)

Now we prove that E→(A) = E→(B). Let R = AR = BR. It suffices to show that R∩ A = R∩ B
and R r A = R r B because any edge e ∈ E→(A) has one endpoint in R ∩ A and one in R r A.
To obtain R ∩ A = R ∩ B notice that O(R ∩ A) = O(R ∩ B) 6= ∅ and by Lemma 2.36 R ∩ A, R ∩ B
are 2η near minimum cuts (since R crosses both A and B), so by Lemma 10.20, R ∩ A = R ∩ B.
Similarly to obtain R r A = R r B notice that O(R r A) = O(R r B) 6= ∅ and R r A, R r B are
2η near min cuts so by Lemma 10.20 we have R r A = R r B.

11.2 Main theorem

The following is the main technical result of the paper:

Theorem 11.2 (Main theorem). Let x0 be a feasible LP solution of (2) with support E0 = E ∪ {e0} and
let x be x0 restricted to E. For any distribution µ of spanning trees with marginals x, 0 < η ≤ 1/10 and
α > 0, there is a random vector s∗ : E→ R≥0 (the randomness in s∗ depends exclusively on T ∼ µ) such
that

• For any η-near minimum cut S which is crossed on both sides, if δ(S)T is odd then s∗(δ(S)) ≥
α(1− η);

• For any e ∈ E, E [s∗e] ≤ 18αηxe.

Our slack vector for the above theorem will be exactly as in Section 9. In particular, for every
bad event B which occurs among those defined in Eq. (64), we will set s∗(e) = αxe for all e ∈ E(B),
where E(B) is defined as in Eq. (61). In order to extend the argument from Section 9 to prove
this theorem in the case in which the polygon contains inside atoms, we prove the following two
lemmas from which the theorem follows easily:

Lemma 11.3 (All cuts are satisfied). Let S = (pl , pr) be a cut which is crossed on both sides. Then, if
δ(S)T 6= 2, at least one of B←(pl), B→(pr) occurs.

157

Lemma 11.4 (Every edge is mapped to a constant number of bad events). Let p, q be two polygon
points such that e = {a, b} and a ∈ L(p) ∩ L(q). Then, e 6∈ E(B→(p)) ∩ E(B→(q)).

Before proving these statements, we will show how they imply our main theorem. First we
gives proofs for Claim 9.11 and Claim 9.12 (as the formal proofs were omitted in the overview):

Lemma 11.5. For any polygon point p, P [B→(p)] ≤ 4.5η and P [B←(p)] ≤ 4.5η.

Proof. We will prove this for B→(p), B←(p) follows similarly. To simplify notation we abbreviate
L(p) to L. Since L is crossed on both sides, LL, LR are well defined. Since by Lemma 2.36
LR ∩ L, LR r L are 2η-near min cuts and LR is an η-near mincut with respect to x, by Corollary 2.29,
P [E→(L)T = 1] ≥ 1− 2.5η.

On the other hand, since L, LL, LR are η-near min cuts, by Lemma 2.37, x(E→(L)), x(E←(L)) ≥
1− η/2. Therefore

x(E◦(L)) ≤ 2 + η − x(E←(L))− x(E→(L)) ≤ 2η.

It follows that P [E◦(L)T = 0] ≥ 1− 2η. Finally, by the union bound, all events occur simultane-
ously with probability at least 1− 4.5η, which gives the lemma.

Lemma 11.6. For any polygon point p, x(E(B←(p))), x(E(B→(p))) ≥ 1− η

Proof. First, observe that L∗(p) crosses L(p)R. Notice (where we use] to denote disjoint union):

L(p)∩R r L∗(p)
⊎

L(p)R r L(p) = L(p)R r L∗(p).

Therefore, by Lemma 2.36 L(p)∩R r L∗(p)
⊎

L(p)R r L(p) is a 2η near mincut. So, by Lemma 2.35,
x(E(B←(p)) ≥ 1− η.

The proof for x(E(B→(p))) is similar.

Proof of Theorem 11.2. Our slack vector is defined as follows. Initialize s∗(e) = 0 for all edges e.
Then for each polygon P, for each polygon point p ∈ P, whenever B←(p) occurs, let s∗e = αxe for
each e ∈ E(B←(p)). Whenever B→(p) occurs, let s∗e = αxe for each e ∈ E(B→(p)).

Now we show the first condition of the theorem. Let S = [p, q] ∈ C2 and suppose that δ(S)T is
odd. It appears in some polygon P. Then by Lemma 11.3, either B←(p) or B→(q) has occurred.
Assume the former, the other case is similar. In this event, we set s∗(e) = αxe for all e ∈ E(B←(p)).
However, using Lemma 11.1, we have

E(B←(p)) ⊆ E←(p) = E←(S)

Therefore, by Lemma 11.6 s∗(S) ≥ α(1− η) as desired.
Now we verify the second condition of the theorem. First note that by Fact 10.6, for any edge e,

there is at most one polygon P such that e does not have the root as one of its endpoints. Therefore,
there is at most one polygon P for which s∗e may be increased since if e is adjacent to the root,
e 6∈ E→(S), E←(S) for any set S in its connected component.

Now let e = {a, b} for some polygon P such that a, b 6= r. We show that there are at most two
polygon points p for which e ∈ E(B→(p)). Suppose otherwise and there are at least three such
polygon points p. Since E(B→(p)) ⊆ δ(L(p)) for each such point p, we have e ∈ δ(L(p)), which
implies that there are two polygon points p, q such that one of a or b, WLOG a, is in both L(p)
and L(q) and e ∈ E(B→(p)) ∩ E(B→(q)). However this contradicts Lemma 11.4 since e is in at

158

most one such set. One can similarly show that there are at most two polygon points p such that
e ∈ E(B←(p)). Therefore, any edge e is in E(B) for at most four bad events B.

By Lemma 11.5, each bad event occurs with probability at most 4.5η. Therefore, by the union
bound:

E [s∗(e)] ≤ 4 · 4.5ηαxe = 18αηxe,

which gives the second condition and completes the proof.

11.3 All cuts are satisfied

In this section we first prove the following from which Lemma 11.3 will easily follow:

Lemma 11.7. For S = (pl , pr) ∈ C2, E◦(S) ⊆ E◦(L(pr)) ∪ E◦(R(pl)).

Note that if S = (pl , pr) ∈ C2 then L(pr) and R(pl) exist, because S is a candidate for both.
Before giving the proof of this we show how it implies Lemma 11.3.

Lemma 11.3 (All cuts are satisfied). Let S = (pl , pr) be a cut which is crossed on both sides. Then, if
δ(S)T 6= 2, at least one of B←(pl), B→(pr) occurs.

Proof. We prove by contradiction. Suppose none of B←(pl), B→(pr) occur; we will show that this
implies δ(S)T = 2.

Let R = R(pl). By Lemma 11.1 we have SL = RL and E←(R) = E←(S). Similarly for L = L(pr)
we have E→(L) = E→(S).

Now, since B←(pl) has not occurred,

1 = E←(R)T = E←(S)T and E◦(R)T = 0

and since B→(pr) has not occurred,

1 = E→(L)T = E→(S)T and E◦(L)T = 0

So, to get δ(S)T = 2, it remains to show that T ∩ E◦(S) = ∅. By Lemma 11.7, we have E◦(S) ⊆
E◦(L) ∪ E◦(R), which gives the claim.

To prove Lemma 11.7 we first need the following:

Corollary 11.8. For all sets S ∈ C2, we have E←(S) ∩ E→(S) = ∅. Similarly, for all sets A, B ∈ C2 such
that B crosses A on the right, E←(A) ∩ E→(B) = ∅.

Proof. To see the first claim, suppose SL crosses S on the left and SR crosses S on the right, by
Lemma 10.24 (SL r S) ∩ (SR r S) = ∅. Since every edge in E←(S) has an endpoint in SL r S and
every edge in E→(S) has an endpoint in SR r S, this proves the claim.

A similar argument using Lemma 10.24 proves the second claim.

Now we can prove the main lemma:

Lemma 11.7. For S = (pl , pr) ∈ C2, E◦(S) ⊆ E◦(L(pr)) ∪ E◦(R(pl)).

159

S

L(pr) R(pl)

R(pl)L L(pr)R

pl pra b

Figure 51: Here we have a set S which is crossed on both sides. We use in Lemma 11.7 that
L(pr) ∩ R(pl) = S; in other words, the yellow region is empty.

Proof. For convenience, let L = L(pr) and R = R(pl). First suppose we had L = S or R = S.
In this case, by definition E◦(S) = E◦(L) or E◦(R), and we are done. So assume that S (L, R.
Therefore, L and R cross.

Now, notice that since O(L ∩ R) = O(S), by Lemma 10.20, we have L ∩ R = S. This implies
δ(S) ⊆ δ(L) ∪ δ(R). To see this, let e be an edge in δ(S). Then, it has an endpoint in both L and
R. However, its other endpoint is in S = L ∩ R, and therefore cannot be in both L and R which
implies it is in δ(L) or δ(R).

Now, by way of contradiction, suppose there exists an edge e ∈ E◦(S) such that e 6∈ E◦(L) ∪
E◦(R). Since E←(S) = E←(R), E→(S) = E→(L), and e ∈ δ(L) ∪ δ(R), it must be that e ∈
E←(L) ∪ E→(R). Since L and R cross, by Corollary 11.8 e is in exactly one of E←(L), E→(R);
assume that e ∈ E←(L) but not in E→(R), the other case is similar. Therefore e 6∈ δ(R), since it is
not in E←(R), E◦(R) or E→(R).

However, LL crosses L on the left and R crosses L on the right. Therefore, by Lemma 10.24,
we have (LL r L) ∩ (R r L) = ∅. However e has one endpoint in L ∩ R = S, one in R r L (since
e 6∈ δ(R), e ∈ δ(L)), and one in LL r L, which is a contradiction since all three sets are disjoint.

11.4 Every cut is mapped to a constant number of bad events

In this section we prove Lemma 11.4.

Lemma 11.4 (Every edge is mapped to a constant number of bad events). Let p, q be two polygon
points such that e = {a, b} and a ∈ L(p) ∩ L(q). Then, e 6∈ E(B→(p)) ∩ E(B→(q)).

Proof. First note that by Fact 10.5, O(L(p) ∪ L(q)) 6= O(A(C)), so it forms a contiguous interval.
WLOG assume that q is the rightmost point in this interval.

Suppose by way of contradiction that e ∈ E(B→(p)) ∩ E(B→(q)) . In the below claim, we
will show that L(p)R crosses L(q) on the right. Now we will show that L(p) crosses L(q)∩R on
the left, which would complete the proof. This is because L(p) is a candidate for L∗(q), and by
Lemma 10.26, L(p) ∩ L(q)∩R ⊆ L∗(q) ∩ L(q)∩R, which implies a ∈ L∗(q) and therefore we could
not have e ∈ E(B→(q)).

160

It remains to show that L(p) crosses L(q)∩R on the left. By assumption, a ∈ L(p)∩ L(q)∩R 6= ∅.
L(q)’s rightmost atom is in L(q)∩R r L(p). So it remains to show that L(p) 6⊆ L(q)∩R. By way
of contradiction suppose L(p) ⊆ L(q)∩R = L(q) ∩ L(q)R. Since by the following claim, L(p)R
crosses L(q) on the right, L(p)R is a candidate for L(q)R. We will show that |O(L(p)R ∩ L(q))| <
|O(L(q)R ∩ L(q))| which contradicts Definition 10.14. Since L(p)R and L(q)R both cross L(q) on
the right, to prove the inequality it’s enough to show that the leftmost outside atom of L(q)R is
not in L(p)R. However, this is immediate because L(p)R does not have the leftmost outside atom
of L(p), yet L(p) ⊆ L(q)∩R.

Claim 11.9. L(p)R crosses L(q) on the right.

Proof. First we show that L(p)R crosses L(q). Note b ∈ L(p)R r L(q) 6= ∅, and a ∈ L(p)R ∩ L(q) 6=
∅. So, L(p)R crosses L(q) unless L(q) ⊆ L(p)R. For contradiction, assume L(q) ⊆ L(p)R.

Now we claim that L(p) crosses L(q). By assumption, a ∈ L(p) ∩ L(q). L(q) ⊆ L(p)R implies
L(p) 6⊆ L(q). Since q is the rightmost point of the interval O(L(p) ∪ L(q)), the rightmost atom of
L(q) is in L(q)r L(p), giving L(q) 6⊆ L(p). Therefore, L(q) crosses L(p) on the right.

Therefore, L(q) is a candidate set for L(p)R, but since L(q) ⊆ L(p)R, we must have L(q) =
L(p)R. Yet b ∈ L(p)R r L(q) which contradicts this.

Now we establish that L(p)R crosses L(q) on the right. For contradiction, suppose it crosses
on the left. Then, by Lemma 10.24, we must have (L(p)R r L(q)) ∩ (L(q)R r L(q)) = ∅, which
contradicts the fact that b lies in both sets.

161

12 Putting everything together for the integrality gap

In this section we use the following theorem to demonstrate Theorem 1.2, bounding the integrality
gap of the subtour polytope. While the proof of Theorem 12.1 is non-trivial, using Theorem 11.2
it follows from statements in [KKO21] and does not require any new ideas. For this reason, we
sketch the proof in this section, leaving the formal proof to Appendix D.

It turns out not to be useful to prove Theorem 9.8 directly, but is an immediate corollary of the
following theorem (we stated Theorem 9.8 in the overview to improve readability and highlight
the importance of Theorem 11.2).

Theorem 12.1 (Combination of Theorem 9.8 and Theorem 11.2). Let x0 be a solution of LP (2) with
support E0 = E ∪ {e0}, and x be x0 restricted to E. Let η ≤ 10−12, β > 0 and let µ be the max-entropy
distribution with marginals x. Then there are two functions s : E0 → R and s∗ : E→ R≥0 (as functions
of T ∼ µ), such that

i) For each edge e ∈ E, se ≥ −xeβ (with probability 1).

ii) For each S ∈ Nη , if δ(S)T is odd, then s(δ(S)) + s∗(δ(S)) ≥ 0.

iii) For every edge e, E [s∗e] ≤ 125ηβxe and E [se] ≤ − 1
3 xeεPβ, where εP is defined in Theorem D.2.

In Section 12.2 we show how this theorem implies Theorem 1.2, which is very similar to the
proof of Theorem 4.1 using Theorem 4.6 (although with the crucial difference that OPT is not
used). Now we sketch the ideas underlying the proof of Theorem 12.1. To make this section as
accessible as possible, we oversimplify and ignore the details of how parameters are set.

In the above theorem, the role of s is to generate gain over 3/2. Roughly speaking, we follow
the lead of [KKO21] and divide Nη into three categories: cuts crossed on both sides, cuts crossed
on one side, and the remainder, which form a laminar family H defined below. We define an s∗

vector to provide significant positive slack on each odd cut that is crossed; in particular, we start
with the vector defined in Theorem 11.2 and augment it to handle cuts crossed on one side. We
will ensure that the expected cost of s∗ is negligible38. Now in H, there are only a linear number of
cuts and they have a simple structure (for example, most edges are only in a constant number of
cuts of H), so it is manageable to design a vector s which generates negative slack in expectation
while still satisfying every cut in H.

First, we explain how to augment s∗ from Theorem 11.2 to handle cuts crossed on one side.
Observe that any polygon associated to a connected component in Nη,≤1 contains no inside atoms.
This follows from the fact that the existence of an inside atom is predicated on the existence of a
k-cycle, which by its very definition contains cuts crossed on both sides. Thus, each connected
component C of Nη,≤1 consists only of outside atoms, where a0 is the root.

A key structure needed for the construction of the slack vector s is a laminar family of cuts H
that we call a hierarchy. This hierarchy H includes the following set of cuts:

• The set of cuts in Nη,≤1 that are not crossed by any other cut in Nη,≤1;

• The cut consisting of the union of the non-root atoms {a1, . . . , am−1} of each connected
component C of Nη,≤1, which (in this section) we call the outer polygon cut for C, and

38i.e., E [s∗e] ≤ 18αηxe, which will ultimately be O(ηβxe). In the end, this increase is dwarfed by a decrease in se of
Ω(βxe) since η is a minuscule constant.

162

• The atoms ai, 1 ≤ i ≤ m− 1 of each connected component C of Nη,≤1.

Notice that H excludes some cuts in Nη,≤1, namely all the near min cuts in any polygon P
of Nη,≤1 that are not outer polygon cuts. It also includes some cuts that are not in Nη,≤1. For
example, the outer polygon cut itself may not be an η near min cut, and there may be atoms in
some polygon that are not η near min cuts. However, one of the consequences of the following
theorem is that these extra cuts are εη near min cuts where εη = 7η:

Theorem 12.2 (Structure of Polygons of Nη,1 (Theorem 4.9 from [KKO21])). For εη ≥ 7η and any
polygon of η near min cuts C crossed on one side with atoms a0...am−1 (where a0 is the root) the following
holds:

• For all adjacent atoms ai, ai+1 (also including a0, am−1), we have x(E(ai, ai+1)) ≥ 1− εη .

• All atoms ai (including the root) have x(δ(ai)) ≤ 2 + εη .

• x(E(a0, {a2, . . . , am−2})) ≤ εη .

Theorem 12.2 shows that polygons of cuts crossed on one side nearly look like cycles. Now, if
magically it was the case that x(E(ai, ai+1 (mod m))) = 1, and x(δ(ai)) = 2 for 1 ≤ i ≤ m− 1, then
with probability 1 (see Corollary 2.29), we would have E(ai, ai+1)T = 1 and we would be able to
claim that:

(i) any cut in C which does not include either a1 or am−1 (and is therefore not in H) is even in
the tree with probability 1;

(ii) The cuts in C that contain a1 but not am−1, i.e., the so-called "leftmost cuts" (also not
represented in H) are even precisely when E(a0, a1)T is odd and

(iii) the cuts in C that contain am−1 but not a1 i.e., the "rightmost cuts", are even when E(a0, am−1)T
is odd.

Theorem 12.2 can be used to show that this approximation is correct up to O(η). In other words,
we augment s∗e as needed on each edge between adjacent non-root atoms in each connected
component C, at the cost of increasing E [s∗e] by an additional (again negligible) O(ηβxe). This
allows us to pretend our magical thinking is correct. Thus, all of the η near min cuts in the
polygon that are not represented in the hierarchy are satisfied so long as the outer polygon cut is
happy, that is, E(a0, a1)T = E(a0, am−1)T = 1 and E(a0, {a2, . . . , am−2})T = 0.

12.1 Constructing the slack vector s

Our main remaining task is to explain how to use the hierarchy H to choose a slack vector s that
has negative expected value, specifically, has E [se] = −Ω(βxe) for each edge, while ensuring that
all O-Join constraints coming from H are satisfied.

As mentioned in Section 9, the approach taken is to set se to be negative (i.e. reduce it) when
certain special cuts e is on are even in the tree and therefore induce no O-join constraint. Roughly
speaking, it works as follows: For each LP edge f , consider the lowest cut S in the hierarchy that
contains both endpoints of f . We call this cut p(f) (for "parent of f "). Let e = {u, v} (where u and
v are children of S in H; recall u, v are subsets of vertices) be the set of all edges f = {u′, v′} such
that u′ ∈ u and v′ ∈ v.

163

a

b

c

d

u1 u2

u3

a b

u1

c d

u2

u3

Figure 52: An example of part of a hierarchy with three "triangles". The graph on the left shows part of a
feasible LP solution where dashed (and sometimes colored) edges have fraction 1/2 and solid edges have
fraction 1. The dotted ellipses on the left show the min-cuts u1, u2, u3 in the graph. (Each vertex is also a
min-cut). On the right is a representation of the corresponding hierarchy. Triangle u1 corresponds to the cut
{a, b}, u2 corresponds to {c, d} and u3 corresponds to {a, b, c, d}. Note that, for example, the edge {a, c},
represented in green, is in δ(u1), δ(u3), and inside u3. In this example, p({a, b}) = u1 and p({a, c}) = u2.
Triangle u1 is happy if (δ(a)r {a, b})T = (δ(b)r {a, b})T = 1.

Cuts in H are separated into three types. If S ∈ H has at least three children and it is not
an outer polygon cut, call it a degree cut. If it has exactly two children, call it a triangle cut. The
remaining cuts, as defined above, are outer polygon cuts.

If p(f) is a degree cut, then set s f := −0.57βx f for all f ∈ e whenever the event that δ(u)T and
δ(v)T are both even in the tree occurs. Call f “good" if this event occurs with constant probability.
Furthermore, it is shown that every cut u with p(u) a degree cut contains a Ω(1) fraction of good
edges.

On the other hand, when p(f) is an outer polygon cut or a "triangle" cut (see Fig. 52), set
s f = −βx f for all f ∈ e whenever p(f) is happy (as defined above). Thus, when a polygon is
happy, all edges e whose parent is that cut have their slack se reduced simultaneously. Moreover,
the event that p(f) is happy for a polygon cut (or triangle cut) occurs with constant probability.

However, regardless of the type of cut p(f) is, setting s f to a negative value can be problematic
for the feasibility of other cuts lower down in the hierarchy that contain f . Therefore, when a cut
S′ lower down in the hierarchy such that f ∈ δ(S′) is odd in the tree, the slack of other edges in
δ(S′) are increased to compensate for the reduction in s f , (i.e., to maintain feasibility of y for the
cut S′).

The challenge is to do all of this in a way that still guarantees that overall E [se] < −εβxe,
while simultaneously ensuring that for any cut S ∈ H if δ(S)T is odd, ∑e∈δ(S) se ≥ 0. Showing
this is involved and requires careful probabilistic arguments that rely on the fact that the tree is
sampled from a max-entropy distribution. We refer the reader to [KKO21] for the details.

12.2 Proof of Theorem 1.2 using Theorem 12.1

Theorem 12.1 (Combination of Theorem 9.8 and Theorem 11.2). Let x0 be a solution of LP (2) with
support E0 = E ∪ {e0}, and x be x0 restricted to E. Let η ≤ 10−12, β > 0 and let µ be the max-entropy
distribution with marginals x. Then there are two functions s : E0 → R and s∗ : E→ R≥0 (as functions
of T ∼ µ), such that

164

i) For each edge e ∈ E, se ≥ −xeβ (with probability 1).

ii) For each S ∈ Nη , if δ(S)T is odd, then s(δ(S)) + s∗(δ(S)) ≥ 0.

iii) For every edge e, E [s∗e] ≤ 125ηβxe and E [se] ≤ − 1
3 xeεPβ, where εP is defined in Theorem D.2.

Proof of Theorem 1.2. Let x0 be an extreme point solution of LP (2), with support E0 and let x
be x0 restricted to E. By Fact 2.3 x is in the spanning tree polytope. Let µ = µλ∗ be the max
entropy distribution with marginals x, and let s, s∗ be as defined in Theorem 12.1. We will define
y : E0 → R≥0 such that:

ye =

{
xe/2 + se + s∗e if e ∈ E
∞ if e = e0

We will show that y is a feasible solution to (4). First, observe that for any S where e0 ∈ δ(S), we
have y(δ(S)) ≥ 1. Otherwise, we assume u0, v0 /∈ S. If S is an η-near min cut and δ(S)T is odd,
then by property (ii) of Theorem 12.1, we have

y(δ(S)) =
x(δ(S))

2
+ s(δ(S)) + s∗(δ(S)) ≥ 1.

On the other hand, if S is not an η-near min cut, then

y(δ(S)) ≥ (
1
2
− β)x(δ(S)) ≥ (

1
2
− β) · (2 + η) = 1 +

η

2
− 2β− βη

where in the first inequality we used property (i) of Theorem 12.1 which gives se ≥ −xeβ with
probability 1 along with the fact that s∗ is non-negative. Therefore, choosing β = η

4+2η ensures
that y is a feasible O-join solution.

Finally, using c(e0) = 0 and part (iii) of Theorem 12.1,

E [c(y)] = c(x)/2 + E [c(s)] + E [c(s∗)]

≤ c(x)/2− εPβ · 1
3

c(x) + 125η · β · c(x)

≤ (1/2− 1
6

εPβ) · c(x)

choosing η such that

125η =
1
6

εP (62)

Now, we are ready to bound the approximation factor of our algorithm. First, since x0 is an
extreme point solution of (2), mine∈E0 x0

e ≥ 1
n! . So, by Theorem 2.6, in polynomial time39 we can

find λ : E→ R≥0 such that for any e ∈ E, Pµλ
[e] ≤ xe(1+ δ) for some δ that we fix later. It follows

that
∑
e∈E
|Pµ [e]−Pµλ

[e] | ≤ nδ.

39Since the claim that the integrality gap is bounded below 3/2 does not depend on the running time, it may appear
that this step is unnecessary. However, we need to discuss the running time here because we are giving a stronger
result that the max entropy algorithm returns a solution of expected cost at most (3/2− ε)c(x) in polynomial time.

165

By stability of maximum entropy distributions (see [SV19, Thm 4] and references therein), we
have that ‖µ− µλ‖1 ≤ O(n4δ) =: q. Therefore, for some δ � n−4 we get ‖µ− µλ‖1 = q ≤ εPη

100 .
That means that

ET∼µλ
[min cost matching] ≤ ET∼µ [c(y)] + q(c(x)/2) ≤

(
1
2
− 1

6
εPβ +

εPη

100

)
c(x),

where we used that for any spanning tree the cost of the minimum cost matching on odd
degree vertices is at most c(x)/2. Finally, since ET∼µλ

[c(T)] ≤ c(x)(1 + δ), εP = 3.12 · 10−16, and
η = 4.16 · 10−19 (from (62)) and β = η/(4 + 2η), we get a 3/2− 10−36 approximation algorithm
(compared to c(x)).

166

13 Derandomizing the Max Entropy Algorithm

As we have discussed, the first result on the general case [KKO21] had two shortcomings. First,
it did not show that the integrality gap of the subtour elimination polytope is bounded below
3
2 . Second, it was randomized, and the analysis in that work was by nature “non-constructive"
in the sense that it used the optimal solution; thus it was not clear how to to derandomize it
using the method of conditional expectation. Other methods of derandomization seem at the
moment out of reach and may require algorithmic breakthroughs. As we mentioned, the followup
work [KKO22] remedied the first shortcoming by showing an improved integrality gap using the
polygon representation. While it did not address the question of derandomization, a byproduct of
that work is an analysis of the max entropy algorithm which is in principle polynomially-time
computable as it avoids looking at the optimal solution. The purpose of this section is to show that
this analysis can indeed be done in polynomial-time, from which the following can be deduced:

Theorem 13.1. Let x be a solution to LP (2) for a TSP instance. For some absolute constant ε > 10−36,
there is a deterministic algorithm (in particular, a derandomized version of max entropy) which outputs a
TSP tour with cost at most 3

2 − ε times the cost of x.

Thus, this section in some sense completes the exploratory program concerning whether the
max entropy algorithm for TSP beats 3/2 (initiated by [OSS11] in 2011), as now the above two
weaknesses of [KKO21] have been addressed. Of course, much work remains in determining the
true approximation factor of the algorithm; in this regard we are only at the tip of the iceburg.

As mentioned, this implies a 3
2 − ε approximation for 2-ECSM, and using the recent exciting

work of Traub, Vygen, and Zenklusen reducing path TSP to TSP [TVZ20] this theorem also implies
that there is a deterministic 3

2 − ε approximation algorithm for path TSP.
Now that we have completed the proof of the main result of the thesis, the remaining sections

(including this one) will mostly stand alone from previous ones without significant integration.

13.1 High level proof overview

The high level strategy for derandomizing the max entropy algorithm is to use the method of
conditional expectation on an objective function given by the analysis in [KKO22].

As discussed, the max entropy algorithm, similar to Christofides’ algorithm, first selects a
spanning tree and then adds a minimum cost matching on the odd vertices of the tree. While
Christofides selects a minimum cost spanning tree, here the spanning tree is sampled from a
distribution. In particular, after solving the natural LP relaxation for the problem to obtain a
fractional solution x, a tree is sampled from the distribution µ which has maximal entropy subject
to the constraint PT∼µ [e ∈ T] = xe for all e ∈ E (with possibly some exponentially small error in
these constraints). [KKO21; KKO22] construct a so-called “slack" vector which is used to show the
expected cost of the matching (over the randomness of the trees) is at most 1

2 − ε times the cost
of an optimal solution to the LP. Given a solution x to LP (2) these works imply that there is a
random vector m as a function of the tree T ∼ µ such that:

(1) The cost of the minimum cost matching on the odd vertices of tree T is at most c(m) (with
probability 1), and

(2) ET∼µ [c(m)] ≤ (1
2 − ε)c(x).

167

Let C = ET∼µ [c(T) + c(m)]. This will be the objective function to which we will apply the method
of conditional expectation. Since the expected cost of the tree T is c(x), as PT∼µ [e ∈ T] = xe, by
(2) C is at most (3

2 − ε)c(x). Since by (1) for a given tree T, c(T) + c(m) is an upper bound on the
cost of the output of the algorithm (with probability 1), this shows that the expected cost of the
algorithm is bounded strictly below 3/2.

Ideally, one would like µ to have polynomial sized support. Then one could simply check the
cost of the output of the algorithm on every tree in the support, and the above would guarantee
that some tree gives a better-than-3/2 approximation. However, the max entropy distribution can
have exponential sized support, and it’s not clear how to find a similarly behaved distribution
with polynomial sized support.

Instead, let Tpartial be the family of all partial settings of the edges of the graph to 0 or 1 where
the edges set to 1 are acyclic. For Set = {Xe1 , . . . , Xei} ∈ Tpartial , and 1 ≤ j ≤ i, we use Xej to
indicate whether ej is set to 1 or 0.

The method of conditional expectations is then used as follows: Process the edges in an
arbitrary order e1, . . . , em and for each edge ei:

(1) Assume we inductively have chosen a valid assignment Set ∈ Tpartial to edges e1, . . . , ei−1.

(2) Let Set+ = Set ∪ {Xei = 1}. Compute C+ = ET∼µ [c(T) + c(m) | Set+]. Similarly, let
Set− = Set ∪ {Xei = 0} and compute
C− = ET∼µ [c(T) + c(m) | Set−].

(3) Let Set← Set+ or Set← Set− depending on which quantity is smaller.

After a tree is obtained, add the minimum cost matching on the odd vertices of T. The resulting
algorithm is shown in Algorithm 4 (see Algorithm 3 for its instantiation in a simple case).

As C ≤ (3
2 − ε)c(x), this algorithm succeeds with probability 1. We only need to show it can be

made to run in polynomial time. Since we can compute the expected cost of the tree conditioned
on Set using linearity of expectation and the matrix tree theorem (Theorem 13.2), it remains to
show that ET∼µ [c(m)|Set] can be computed deterministically and efficiently for any Set ∈ Tpartial .

Key Contributions. The key contribution of this section is to show how to do this computation
efficiently, which is based on two observations:

(1) The first is that the vector m (whose cost upper bounds the cost of the minimum cost
matching on the odd vertices of the tree) can be written as the (weighted) sum of indicators
of events that depend on the sampled tree T, and each of these events happens only when a
constant number of (not necessarily disjoint) sets of edges have certain parities or certain
sizes.

(2) The second is that the probability of any such event can be deterministically computed in
polynomial time by evaluating the generating polynomial of all spanning trees at certain
points in CE, see Lemma 13.12.

Structure of the section. In Section 13.2 we review the matrix tree theorem (in a slightly more
compact form compared to as stated in Theorem 13.2) and show as a warmup how to compute
the probability two (not necessarily disjoint) sets of edges both have an even number of edges in
the sampled tree. In Section 13.4, we then give a complete description and proof of a deterministic
algorithm for the special “degree cut" case of TSP. Section 13.4 is self-contained and thus directed

168

towards readers looking for more high-level intuition about the derandomization. In Section 13.5
we show (2) from above and give the deterministic algorithm in the general case. The remainder
then involves proving (1) for the general definition of m from [KKO21; KKO22].

13.2 Computing probabilities

The deterministic algorithm depends on the computation of various probabilities and condi-
tional expectations. In this section (and additionally later in Section 13.5), we show to do these
calculations efficiently.

13.2.1 Notation

Let BE be the set of all probability measures on the Boolean algebra 2|E|. Let µ ∈ BE. The
generating polynomial gµ : R[{ze}e∈E] of µ is defined as follows:

gµ(z) := ∑
S

µ(S)∏
e∈S

ze.

13.2.2 Matrix tree theorem

Let G = (V, E) with |V| = n. For e = (u, v) we let Le = (1u − 1v)(1u − 1v)T be the Laplacian of e.
Recall Kirchhoff’s matrix tree theorem:

Theorem 13.2 (Matrix tree theorem). For a graph G = (V, E) let gT ∈ R[ze1 , . . . , zem]
= ∑T∈T zT be the generating polynomial of the spanning trees of G.

Then, we have

gT ({ze}e∈E) =
1
n

det(∑
e∈E

zeLe + 11T/n).

Given a vector λ ∈ R|E| and a set S ⊆ E, let λS := ∏i∈S λi. Recall that the λ-uniform
distribution µλ is the probability distribution over spanning trees where the probability of every
tree T is λT. Then the generating polynomial of µλ is

gµλ
(z) = ∑

T∈T
λTzT = gT ({λeze}e∈E) =

1
n

det

(
∑
e∈E

zeλeLe + 11T/n

)

and can be evaluated at any z ∈ CE efficiently using a determinant computation.
Thus we can compute PT∼µ [e ∈ T] by computing the sum of the probabilities of trees in the

graph G/{e}, i.e. the graph with e contracted, as follows:

PT∼µ [e ∈ T] = 1−PT∼µ [e /∈ T] = 1− ∑
T∈T :e/∈T

λT

where to compute the sum in the RHS we evaluate gµλ
at ze = 0, z f = 1 for all f 6= e. Thus,

Lemma 13.3. Given a λ-uniform distribution µλ over spanning trees, for every edge e, we can compute
PT∼µλ

[e ∈ T] in polynomial time.

169

Given some Set ∈ Tpartial , we contract each edge e with Xe = 1 in Set and delete each edge e
with Xe = 0 in Set. Let G′ be the resulting graph with n′ vertices, with corresponding λ′e ∝ λe for
all e ∈ G′ normalized such that ∑T′∈G′ λ

′T = 1.

Remark 13.4. A vector λ ∈ R|E| is normalized by setting λ′e = λe/
(
∑T λT)1/n−1 i.e., λ′e =

λe/gT ({λe}e∈E)
1/n−1. Thus at the cost of another application of the matrix-tree theorem, we

assume without loss of generality that we are always dealing with λ values that are normalized.

Putting the previous facts together, we obtain

Lemma 13.5. Given a λ-uniform distribution µλ and some Set ∈ Tpartial , we can compute a vector λ′

such that µλ′ = µλ|Set.

13.3 Computing parities in a simple case

Lemma 13.6. Let A, B ⊆ E and µλ be a λ-uniform distribution over spanning trees. Then, we can compute
PT∼µλ

[AT, BT even] in polynomial time.

Proof. First observe that

I {AT, BT even} = 1
4
(1 + (−1)AT + (−1)BT + (−1)((ArB)∪(BrA))T)

One can easily check that if AT and BT are even, this is 1, and otherwise it is 0.
To compute PT∼µλ

[A and B even in T] it is enough to compute the expected value of this
indicator. By linearity of expectation it is therefore enough to compute the expectation of (−1)FT

for any set F ⊆ E. We can do this using Theorem 13.2. Setting zF
e = −1 if e ∈ F and zF

e = +1
otherwise, we exactly have:

gµλ
(zF) = ∑

T∈T
(−1)FT λT = ET∼µλ

[
(−1)FT

]
.

The lemma follows.

Remark 13.7. We can use the same approach to compute PT∼µλ
[AT odd, BT even] or the probability

that both are odd. All we need to do is to multiply (−1)AT with a −1 if AT needs to be odd
(and similarly for BT), and (−1)((ArB)∪(BrA))T with a −1 if we are looking for different parities in
AT, BT.

Given some Set ∈ Tpartial , by Lemma 13.5 we can compute µλ′ = µλ|Set. Applying the above
lemma to µλ′ , it follows (after appropriately updating the parities to account for edges set to 1 in
Set):

Corollary 13.8. Let A, B ⊆ E. We can compute PT∼µ [A and B even in T | Set] in polynomial time.

13.4 A deterministic algorithm in the degree cut case

As a warmup, in this section we show how to implement the deterministic algorithm for the
so-called “degree cut case," i.e., when for every set of vertices S with 2 ≤ |S| ≤ n− 2 we have
x(δ(S)) ≥ 2 + η for some absolute constant η > 0. See Algorithm 3.

170

Algorithm 3 A Deterministic Approximation Algorithm for Metric TSP in the Degree Cut Case

1: Given a solution x0 of the LP (2), with an edge e0 with xe0 = 1.
2: Let G be the support graph of x.
3: Find a vector λ : E→ R≥0 such that for any e ∈ E, PT∼µλ

[e ∈ T] = xe(1± 2−n) (see ??).
4: Initialize Set := ∅
5: while there exists e 6= e0 not set in Set do
6: Let Set+ := Set ∪ {Xe = 1} and let Set− := Set ∪ {Xe = 0};
7: if ET∼µλ

[c(T) + c(m) | Set+] ≤ ET∼µλ
[c(T) + c(m) | Set−] (m from Definition 13.9) then

8: Set := Set+;
9: else

10: Set := Set−;
11: end if
12: end while
13: Return T = {e : Xe = 1 in Set} together with min cost matching on odd degree vertices of T.

Construction of the matching vector. We will use the vector m : T → R|E| for the degree
cut case exactly as defined in Section 3.1.3. It will ensure that for a tree T, m is in the O(T)-Join
polyhedron where O(T) is the set of odd vertices of T (we emphasize that m is a function of T).
Therefore, c(m) is an upper bound on the cost of the minimum cost matching on the odd vertices
of T as desired.

Let p = 2 · 10−10 (note that we have not optimized this constant and in the degree cut case it
can be greatly improved). Per usual, we say that an edge e = (u, v) is good if
PT∼µ [u, v both even in T] ≥ p, where we say a vertex v is even in a tree T if δ(v)T is even. As
before, the vector m will consist of the convex combination of two feasible points in the O(T)-Join
polyhedron, g and b (where g is for “good" edges and b is for “bad" edges).

For a tree T and an edge e = (u, v) we let:

ge =

{
1

2+η xe If u and v are both even in T
1
2 xe Otherwise

be =

{ 1+η
2+η xe If e is good

1
2+η xe If e is bad

Note b does not depend on T but g does. We proved in Section 3.1.3 that g, b ∈ POJ.

Definition 13.9 (Matching vector m in the degree cut case). Let m = αb + (1 − α)g, for some
0 < α < 1 we choose shortly. Since b and g are both in the O(T)-Join polyhedron, so is m.

Setting α = p
2+p , as in Section 3.1.3,

E [me] ≤
(

p/(2 + p)
2 + η

+
1− p/(2 + p)

2

)
xe <

(
1
2
− pη

9

)
xe

for all edges e. Since η, p are absolute constants, this is at most (1
2 − ε)xe for some absolute

constant ε > 0. Therefore the randomized algorithm has expected cost at most (3
2 − ε)c(x), which

is enough to prove that Algorithm 3 deterministically finds a tree plus a matching whose cost
is at most (3

2 − ε)c(x). Thus the only remaining question is the computational complexity of
Algorithm 3, which we address now.

171

Computing E [c(T) + c(m) | Set]. Now that we have explained the construction of m, we observe
that there is a simple deterministic algorithm to compute E [c(T) + c(m) | Set] in polynomial time.

First, compute E [c(T) | Set]. By linearity of expectation it is enough to compute P [e ∈ T | Set]
for all e ∈ E. To do this, we first apply Lemma 13.5 to find λ′ such that µλ′ = µλ|Set and then
apply Lemma 13.3.

Now to compute E [c(m) | Set], it suffices to compute E [me | Set] for any Set ∈ Tpartial ,
P [e ∈ T | Set] and any e = (u, v). Given the definition of m, the only event depending on
the tree is the event P [u, v even | Set]. This can be computed with Corollary 13.8.

13.5 A deterministic algorithm in the general case

Algorithm 4 A Deterministic Approximation Algorithm for Metric TSP

1: Given a solution x0 of the LP (2), with an edge e0 with xe0 = 1.
2: Let G be the support graph of x.
3: Find a vector λ : E→ R≥0 such that for any e ∈ E, PT∼µλ

[e ∈ T] = xe(1± 2−n)
4: Perform Preprocessing Steps 1, 2, 3, 4, 5, and 6
5: Initialize Set := ∅.
6: while there exists e 6= e0 not set in Set do
7: Let Set+ := Set ∪ {Xe = 1} and let Set− := Set ∪ {Xe = 0};
8: Compute S+ = ET∼µλ

[c(T) | Set+] + ∑e∈E Ec(s∗)(e, Set+) + Ec(s)(e, Set+).
9: Compute S− = ET∼µλ

[c(T) | Set−] + ∑e∈E Ec(s∗)(e, Set−) + Ec(s)(e, Set−).
10: If S+ ≤ S−, let Set := Set+. Otherwise let Set := Set−.
11: end while
12: Return T = {e : Xe = 1 in Set} together with min cost matching on odd degree vertices of T.

The matching vector m in the general case can be written as s+ s∗+ 1
2 x where s, s∗ are functions

of the tree T ∼ µλ and some independent Bernoullis B. Roughly speaking, the (slack) vector
s∗ : E→ R≥0 takes care of matching constraints for near minimum cuts that are crossed and the
(slack) vector s : E→ R takes care of the constraints corresponding to cuts which are not crossed.
Most importantly, the guarantee is that for a fixed tree T the expectation of c(s) + c(s∗) + 1

2 c(x)
over the Bernoullis is at least c(M) where M is the minimum cost matching on the odd vertices of
T. Furthermore, E [c(s) + c(s∗)] ≤ −εc(x) which is the necessary bound to begin applying the
method of conditional expectation in Algorithm 4.

Remark 13.10. The definitions of s and s∗, the proof that E [c(s) + c(s∗)] ≤ −εc(x), and the proof
that x/2 + E [s + s∗ | T] is in the O(T)-join polyhedron come from [KKO21; KKO22]. Here, we
will review how to construct the random slack vectors s, s∗ for a given spanning tree T and then
explain how to efficiently compute E [c(s) + c(s∗) | Set] deterministically for any Set ∈ Tpartial .

Unfortunately, a reader who has not read the previous sections may not be able to understand
the motivation behind the details of the construction of s, s∗. However, Section 14 and Section 15
are self-contained in the sense that a reader should be able to verify that E [c(s) + c(s∗) | Set] can
be computed efficiently and deterministically.

Our theorem boils down to showing the following two lemmas:

Lemma 13.11. For any Set ∈ Tpartial , there is a polynomial time deterministic algorithm that computes:

172

(1) ET∼µλ
[c(s∗) | Set] (shown in Ec(s∗)(e, Set))

(2) ET∼µλ
[c(s) | Set] (shown in Ec(s)(e, Set))

The crux of proving the above lemma is to show that for a given edge e and any Set, each of
E [s∗e | Set] and E [se | Set] can be written as the (weighted) sum of indicators of events that depend
on the sampled tree T, and each of these events happens only when a constant number of (not
necessarily disjoint) sets of edges have certain parities or certain sizes. Technically speaking, these
weighted sums are non-trivial for some of the events defined in [KKO21; KKO22]. Given that,
the following is enough to prove Lemma 13.11, as it gives a deterministic algorithm to compute
the probability that a collection of (not necessarily disjoint) sets of edges have certain parities or
certain sizes.

(1) of Lemma 13.11 is proved in Section 14, and (2) in Section 15. The algorithm for each part
requires a series of preprocessing steps and function definitions that we have marked with gray
boxes. In each section, the final procedure to calculate the expected cost of the slack vector is
given in a yellow box at the end of the corresponding section.

Lemma 13.12. Given a probability distribution µ : 2[n] → R≥0 and an oracle O that can evaluate
gµ(z1, . . . , zn) at any z1, . . . , zn ∈ C. Let E1, . . . , Ek be a collection of (not necessarily disjoint) subsets of
[n] and (σ1, . . . , σk) ∈ Fm1 × · · · ×Fmk . Then, we can compute,

PT∼µ [(Ei)T = σi(mod mi), ∀1 ≤ i ≤ k] .

in N := m1 . . . mk-many calls to the oracle.40

Proof. For each of the sets Ei, define a variable xi, and substitute ∏j x
I{e∈Ej}
j for ze into the

polynomial gµ and call the resulting polynomial g. Then

g(x1, . . . , xk) = ∑
S∈supp(µ)

P [S]
k

∏
i=1

x(Ei)S
i

Where recall (Ei)S = |Ei ∩ S|. Now, let ωi := e
2π
√
−1

mi . We claim that

1
m1 · · ·mk

∑
(e1,...,ek)∈Fr1×···×Frk

k

∏
i=1

ω−eiσi
i g(ωe1

1 , . . . , ωek
k)

= PS∼µ [(Ei)S ≡ σi mod mi, ∀1 ≤ i ≤ k]

So the algorithm only needs to call the oracle N many times to compute the sum in the LHS.

40Note that since we are dealing with irrational numbers, we will not be able to compute this probability exactly.
However by doing all calculations with poly(n, N) bits of precision we can ensure our estimate has exponentially small
error which will suffice to get the bounds we need later.

173

To see this identity, notice that we can write the LHS as

1
m1 · · ·mk

∑
(e1,...,ek)∈Fm1×···×Fmk

∑
S∈supp(µ)

P [S]
k

∏
i=1

ω
−eiσi+ei(Ei)S
i

= ∑
S∈supp(µ)

P [S]
k

∏
i=1

 1
mi

∑
ei∈Fmi

ω
((Ei)S−σi)ei
i


= ∑

S∈supp(µ)
P [S]

k

∏
i=1

I {(Ei)S − σi ≡ 0 mod σi}

where the last equality uses that ωi is the mi’th root of unity. The RHS is exactly equal to the
probability that (Ei)S ≡ σi mod mi for all i.

Remark 13.13. When we apply this lemma in this paper, we will always let k be a constant and
mi ≤ |V| for all i. Thus, it will always use a polynomial number of calls to an oracle evaluating
the generating polynomial of a spanning tree distribution µλ. By Theorem 13.2, for any z ∈ C|E|:

gµλ
({ze}e∈E) =

1
n

det(∑
e∈E

λezeLe + 11T/n),

which can be computed in polynomial time.

Corollary 13.14. Let µλ be a λ-uniform spanning tree distribution and let Set ∈ Tpartial . Then, let
E1, . . . , Ek be a collection of (not necessarily disjoint) subsets of [n] and (σ1, . . . , σk) ∈ Fm1 × · · · ×Fmk .
Then, we can compute,

PT∼µλ
[(Ei)T = σi (mod mi), ∀1 ≤ i ≤ k | Set] .

in N := m1 . . . mk-many calls to the oracle.

Proof. Construct a new graph G′ by contracting all edges with Xe = 1 in Set and deleting all edges
with Xe = 0. We then update all σi by subtracting the number of edges that are set to 1 in Ei by
Set. Then we apply Lemma 13.12 to the λ-uniform spanning tree distribution over G′ with the
updated~σ and the same ~m.

14 Computation for c(s∗)

We interleave the definitions of s and s∗ with our method of computing the expected value of
these vectors. While the definitions of s, s∗ are essentially copied from the above, in some places
we modify the notation and make the construction slightly more algorithmic to improve the
presentation. To differentiate these two we put computations in boxes.

For two sets A, B ⊆ V, we say A crosses B if all of the following sets are non-empty:

A ∩ B, A r B, B r A, A ∪ B.

Definition 14.1 (Near Min Cut). For G = (V, E, x), we say a cut S ⊆ V is an η-near min cut if
x(δ(S)) < 2 + η.41

41Note this differs slightly from the notation in [Ben95; BG08] in which an η near min cut is said to be within a 1 + η
factor of the edge connectivity of the graph.

174

14.1 Polygon representation preprocessing

We recall some of the key definitions for constructing the vector s∗. We refer the reader to
Section 2.9 and Section 5 for additional information about polygons.

Definition 14.2 (Left, Right Crossing). Let S, S′ ∈ C such that S′ crosses S. For such a pair, we say S′

crosses S on the left if the leftmost (clockwise-most) outside atom of O(S′ ∪ S) is in S′. Otherwise, we say
that S′ crosses S on the right. Note that by Observation 10.1, O(S), O(S′) cross.

Definition 14.3 (Crossed on one, both sides). We say a cut S is crossed on both sides if it is crossed by
a cut (in C) on the left and a cut (in C) on the right and we say S is crossed on one side if it is crossed
only on the left or only on the right.

Definition 14.4 (Root node). Recall G/e0 is the graph with e0 contracted. Let r ∈ V(G/e0) be the result
of contracting the nodes {u0, v0}. We will call r the root node.

Definition 14.5 (Nη ,Nη,0,Nη,1,Nη,2,Nη,≤1). Given an LP solution x, let Nη ⊆ 2Vr{r} be the set of all
η-near min cuts of x where we identify each cut with the side that does not contain the root node r.

Let Nη,0 ⊆ Nη be the set of cuts that are not crossed. Let Nη,1 ⊆ Nη be the set of cuts that are crossed
on one side in their respective polygons. Let Nη,2 ⊆ Nη be the set of cuts which are crossed on both sides in
their respective polygons. Finally let Nη,≤1 = Nη,0 ∪Nη,1.

Preprocessing Step 1: Compute the polygon representations

• Find all η-near min cuts of the support graph G/e0 , which can be done in deterministic
polynomial time (for example see [NNI94]).

• For each connected component of cuts C, compute its polygon representation P. By
[Ben95] this can be done in deterministic polynomial time.

• Given the collection of η-near min cuts and polygons, let r be the root node and
compute Nη ,Nη,0,Nη,1,Nη,2, and Nη,≤1 (see Definition 14.5).

14.1.1 Computation for cuts crossed on both sides

Definition 14.6 (Internal). We say an edge is internal to a polygon P (of a connected component of cuts)
if its endpoints fall into two different atoms of P, both of which are not the root atom of P.

Note by definition each edge is internal to at most one polygon P.
We iterate through each connected component of cuts C in Nη with polygon P and do as

follows. First, we define and compute:

Definition 14.7 (SL, SR). For each cut S ∈ C which is crossed on both sides, let SL be the near minimum
cut crossing S on the left which minimizes |O(S ∩ SL)|. If there are multiple sets crossing S on the left
with the same minimum intersection, choose the smallest one to be SL. Similarly, let SR be the near min cut
crossing S on the right which minimizes |O(S ∩ SR)|, and again choose the smallest set to break ties.

175

For each cut S ∈ C, we define:

E←(S) = E(S ∩ SL, SL r S)
E→(S) = E(S ∩ SR, SR r S)
E◦(S) = δ(S)r (E←(S) ∪ E→(S))

(63)

In addition we define the left and right bad events for each polygon point p.

B→(p) = 1{|E→(L(p)) ∩ T| 6= 1 or |E◦(L(p)) ∩ T| 6= 0}
B←(p) = 1{|E←(R(p)) ∩ T| 6= 1 or |E◦(R(p)) ∩ T| 6= 0}.

(64)

If L(p) does not exist, simply assume the left bad event never occurs, and similarly if R(p) does
not exist assume the right bad event never occurs.

Define L(p)∩R := L(p) ∩ L(p)R, and let L∗(p) ∈ C be the cut crossing L(p)∩R on the left that
maximizes |O(L∗(p) ∩ L(p)∩R)| (and similarly R∗(p) to maximize the intersection with O(R(p)∩L)
on the right). If L∗(p) does not exist, i.e. no cut crosses L(p)∩R on the left, set L∗(p) = ∅, and
similarly for R∗(p). We let:

E(B→(p)) := E(L(p)∩R r L∗(p), L(p)R r L(p)∩R)

E(B←(p)) := E(R(p)∩L r R∗(p), R(p)L r R(p)∩L)
(65)

Definition 14.8 (Increase event for cuts crossed on both sides). For each edge e internal to polygon P,
we define a random variable Ie : T → {0, 1} which indicates if there exists a pi for which e ∈ E(B→(pi))
and B→(pi) occurs or e ∈ E(B←(pi)) and B←(pi) occurs.

In this way, Ie has been defined for every edge internal to some polygon. For all edges e which
are not internal to any polygon, we simply let Ie = 0 for every tree.

Lemma 14.9. We can compute
P [Ie | Set]

in polynomial time for any edge e.

Proof. If e is not internal to any polygon, P [Ie | Set] = 0 and we are done. Otherwise, it is internal
to some polygon P. By Lemma 5.4 in [KKO22] (also see the proof of Theorem 5.2), there are at
most two indices i in this polygon P for which e ∈ E(B→(pi)) and at most two indices i for which
e ∈ E(B←(pi)). Therefore, we are interested in at most four events B→(pi) or B←(pi).

Using Corollary 13.14 it is straightforward to compute the probability that any collection
of these (at most four) events occurs. For each event i (say, some B→(pi)) we use the two sets
E→(L(pi)) and E0(L(p)) and set their σ values to be 1 and 0 respectively and both of their m
values to be |V|, and return 1 minus the computed probability.

Therefore, we can compute the probability that at least one event occurs, which is sufficient to
prove the lemma.

Let Ie : Tpartial → R≥0 be the function from the above lemma which given Set returns
P [Ie | Set].

176

Preprocessing Step 2: Compute polygon edge sets

For each polygon P with connected component of cuts C:

• For each cut S ∈ C, compute E←(S), E→(S), E◦(S) (see Eq. (63)).

• For each polygon point p in P, compute E(B→(p)) and E(B←(p)) (see Eq. (65)).

Increase-Both-Sides(e, Set)

Given an edge e and Set ∈ Tpartial compute P [Ie | Set] using Lemma 14.9.

14.2 Preprocessing for cuts crossed on one side

Now partition the cuts in Nη,1 into connected components. For each connected component of cuts
C and for each cut C ∈ Nη,0 that can be written as the union of two other cuts a1, a2 ∈ Nη,0 which
are not crossed, let P be its (possibly degenerate)42 polygon P. Similar to above, each edge is
internal (see Definition 14.6) to at most one such polygon P. By Lemma A.1 from [KKO22], P has
no inside atoms. Label its outside atoms a0, . . . , am−1, in counterclockwise order, where WLOG a0
is the root atom.

We call a1 the leftmost atom and am−1 the rightmost atom. Finally, for 1 ≤ i ≤ m let
Ei(P) = E(ai−1, ai (mod m)) be the edges between atom ai−1 and ai (mod m) in P.

Now we define the following:

Definition 14.10 (A, B, C-Polygon Partition). The A, B, C-polygon partition of a polygon P is a partition
of edges of δ(a0) into sets A = E1(P), B = Em(P), and C = δ(a0)r A r B.

Definition 14.11 (Relevant Atoms and Relevant Cuts). Define the family of relevant atoms of C to be

A = {ai : 1 ≤ i ≤ m− 1, x(δ(ai)) ≤ 2 + η},

and define the relevant cuts to be
C+ = C ∪ A.

Definition 14.12 (Left and Right Hierarchies). Let L (the left hierarchy) be the set of all cuts A ∈ C
that are not crossed on the left. Similarly, we let R be the set of cuts that are not crossed on the right. In
this way L,R partition all cuts in C.

Given this, define CR+ = R∪ A and CL+ = L ∪ A.

Definition 14.13 (Map(Ei(P))). We define a mapping from cuts in CR+ to the edges E(a1, a2), . . . , E(am−2, am−1).
For any 2 ≤ i ≤ m− 1, we map

argmaxA∈CR+ :`(A)=i|A| and argmaxA∈CR+ :r(A)=i|A| (66)

to Ei−1(P), where `(A) is the index of the leftmost atom of A and r(A) is the index of the rightmost atom
of A. We then compute a similar mapping for CL+. For each edge group Ei(P) we record the set of cuts
mapped to it by these two processes as a multiset Map(Ei(P)) (since every atom is in both CR

+ and CL+,
some atoms may appear twice).

42In the case that C ∈ Nη,0, we simply let P be the three atoms a0 = G r C, a1, and a2.

177

We now introduce the following notion:

Definition 14.14 (Happy Cut). We say a leftmost cut L ∈ C is happy if

E(L, L ∪ a0)T = 1.

Similarly, the leftmost atom a1 is happy if E(a1, a0 ∪ a1)T = 1. Define rightmost cuts in C or the rightmost
atom in P to be happy in a similar manner.

We now define an “unhappy" event UC for each cut in C ∈ C+ such that

UC :=

{
I {C is not happy} If C is a leftmost or rightmost cut
I {C is odd} If C is not a leftmost or rightmost cut

This allows us to define an increase random variable for each edge e ∈ Ei(P) for 1 ≤ i ≤ m
called I ′e : T → {0, 1

2 , 1}. In particular for e ∈ Ei(P) we let:

I ′e := min{1, ∑
C∈(Map(Ei(P))rA)

I {UC}+
1
2 ∑

C∈(Map(Ei(P))∩A)

I {UC}}

where notice that an atom may contribute twice to the sum since Map(Ei(P)) may be a multiset.
In this way, every edge which is internal to some polygon of Nη,≤1 constructed in this section

has an associated random variable I ′e. For every edge which is internal to no polygon constructed
in this section, we say I ′e never occurs.

Lemma 14.15. We can compute
P
[
I ′e | Set

]
in polynomial time for any edge e internal to a polygon P of Nη,1.

Proof. If e is not internal to any polygon of Nη,1 then P [I ′e | Set] = 0 and we are done. Otherwise,
it is internal to some polygon P with root a0. Since by Eq. (66), |Map(Ei(P))| ≤ 4, by linearity
of expectation it is enough enough to compute P [UC] for (at most four) cuts in Map(Ei(P).
We use Corollary 13.14. Say C is a leftmost cut (it is similar if it is a rightmost cut). Then,
compute P [UC] = 1− P [C is happy]; so it is enough to compute P [C is happy | Set]. We use
Corollary 13.14 with the set of edges E(C, C ∪ a0) and with corresponding σ value of 1 and m
value of |V|. If C is not a leftmost or a rightmost cut we use Corollary 13.14 with the set δ(C), σ
value of 1 and m = 2.

Preprocessing Step 3: Compute polygons of Nη,1 and the maps

Partition the cuts in Nη,1 into connected components. For each connected component of cuts
C compute its (possibly degenerate) polygon P. Now, for each polygon P corresponding to
a connected component C of cuts in Nη,1 with atoms a0, . . . , am−1:

• Let Ei(P) be the set of edges between ai−1, ai mod m

• Let C+ be the set of relevant cuts as defined in Definition 14.11.

• For each i ∈ 0, . . . , m− 1 construct the multiset Map(Ei(P)) of cuts mapped to Ei(P)
in C+.

178

Increase-One-Side(e, Set)

Given an edge e and Set ∈ Tpartial compute P [I ′e | Set] using Lemma 14.15.

14.3 Computation of E [c(s∗) | Set]

Following Theorem 6.1 of [KKO22] we define s∗e : T → R≥0:

s∗e = (1− γ)
2 + η

1− εη
βxe(Ie + I ′e) + γ2βxeIe, (67)

where γ = 15
32 εP. By the above two lemmas, we can compute E [c(s∗) | Set] in polynomial time.

Thus the fact that the following function can be computed efficiently is the main result of this
section:

Ec(s∗)(e, Set)

Given an edge e and Set ∈ Tpartial , call functions Increase-One-Side(e, Set) and
Increase-Both-Sides(e, Set) to compute P [I′e | Set] and P [Ie | Set] respectively. Then use
(67) to compute and return E [c(s∗e) | Set].

This concludes the proof of (1) of Lemma 13.11.

15 Computation for c(s)

Here we will compute some parameters which are fixed throughout the course of the algorithm.
We also classify edges based on the probability of some events. In all computations we use the
(unconditional) measure µλ.

We begin by setting the constants as in Table 4.

15.1 Hierarchy definition and computation

Here we recall notation from [KKO22]. The following is key to defining the slack vector.

Definition 15.1 (Hierarchy, [KKO22]). For an LP solution x0 with support E0 = E ∪ {e0} where x is x0

restricted to E, a hierarchy H ⊆ Nεη is a laminar family with root V r {u0, v0}, where every cut S ∈ H
is called either a “near-cycle" cut or a degree cut. In the special case that S has exactly two children we
call it a triangle cut. Furthermore, every cut S is the union of its children. For any (non-root) cut S ∈ H,
define the parent of S, p(S), to be the smallest cut S′ ∈ H such that S (S′.

For a cut S ∈ H, let A(S) := {a ∈ H : p(a) = S}; we will call these the atoms of S. If S is called a
“near-cycle" cut, then we can order cuts in A(S), a1, . . . , am−1 such that

• x(E(S, a1)), x(E(am−1, S)) ≥ 1− εη .

• For any 1 ≤ i < m− 1, x(E(ai, ai+1)) ≥ 1− εη .

• ∪m−2
i=2 E(ai, S) ≤ εη .

179

Name Value Explanation

ε1/2 0.0002 Half edge threshold

ε1/1
ε1/2
12 A, B, C partitioning threshold, Definition 15.5

p 0.005ε2
1/2 Min prob. of happiness for a (2-*) good edge

εM 0.00025 Marginal errors due to max flow

τ 0.571β Top edge decrease

εP 750η Expected decrease constant

α 2εη Parameter of the matching

εB 21ε1/2 Parameter of the matching

εF 1/10 Parameter of the matching

εη 7η Definition 15.1

η 4.16 · 10−19 Near min cut constant

β
η

4+2η Slack shift constant

Table 4: A table of all constants used in the algorithm.

We abuse notation and for an edge e = (u, v) that is not a neighbor of u0, v0, we write p(e) to denote
the smallest43 cut S′ ∈ H such that u, v ∈ S′.

Definition 15.2 (A, B, C near-cycle partition, left-happy, right-happy, and happy). Let H be a
hierarchy and let S ∈ H be a near-cycle cut with cuts in A(S) ordered a1, . . . , am−1. Then let A =
x(E(S, a1)), B = x(E(am−1, S)), and C = ∪m−2

i=2 E(ai, S). We call the sets A, B, C the near-cycle
partition of δ(S).

We say S is left-happy when AT is odd and CT = 0, right happy when BT is odd and CT = 0, and
happy when AT, BT are odd and CT = 0.

By Definition 15.1, we have x(A), x(B) ≥ 1− εη and x(C) ≤ εη .

Now we will define a hierarchy H as the cuts in Nη which are not crossed, plus some extra
cuts in Hεη .

43in the sense of the number of vertices that it contains

180

Preprocessing Step 4: Constructing the hierarchy

Let Nη,≤1 ⊆ 2Vr{u0,v0} be the set of cuts crossed on at most one side: this was computed in
Section 14. Now we construct H as follows. For every connected component C of Nη,≤1,
if |C| = 1 then add the unique cut in C to the hierarchy. Otherwise, C corresponds to a
connected component of cuts crossed on one side u with atoms a0, . . . , am−1 (for some
m > 3). Add a1, . . . , am−1

a and ∪m−1
i=1 ai to H. Note that since x(δ({u0, v0})) = 2, the root of

the hierarchy is always V r {u0, v0}.

Now, partition the cuts in H into degree cuts and near-cycle cuts. For a cut S ∈ H, if there
is a connected component of at least two cuts with union equal to S, then call S a near-cycle
cut and compute its near-cycle A, B, C partitioning as defined in Definition 15.2. If S is a
cut with exactly two children X, Y in the hierarchy, then also call S a near-cycle cutb, with
A, B, C partitioning A = E(X, X r Y), B = E(Y, Y r X) and C = ∅. Otherwise, call S a
degree cut.

Finally, compute the A, B, C degree partitioning for all S ∈ H as described below in
Definition 15.5.

aNotice that an atom may already correspond to a connected component, in such a case we do not add it in
this step.

bThink about such a set as a degenerate polygon with atoms a1 := X, a2 := Y, a0 := X ∪Y.

Remark 15.3. Since |Nη,≤1| has polynomial size in n this can be done in polynomial time.
Also note that since every vertex has degree 2, they all appear in the hierarchy as singletons.

Therefore, every set in the hierarchy is the union of its children.

15.2 Edge bundles, A, B, C degree partition, and edge classification

Definition 15.4 (Edge Bundles, Top Edges, and Bottom Edges). For every degree cut S and every pair
of atoms u, v ∈ A(S), we define a top edge bundle f = (u, v) such that

f = {e = (u′, v′) ∈ E : p(e) = S, u′ ∈ u, v′ ∈ v}.

Note that in the above definition, u′, v′ are actual vertices of G.
For every polygon cut S, we define the bottom edge bundle f = {e : p(e) = S}.
Note in this way every edge e is in a unique edge bundle e. We say e is a bottom edge if its edge bundle

is a bottom edge bundle and otherwise e is a top edge.

We will always use bold letters to distinguish top edge bundles from actual LP edges. Also,
we abuse notation and write xe := ∑ f∈e x f to denote the total fractional value of all edges in this
bundle.

For any u ∈ H with p(u) = S we write

δ↑(u) := δ(u) ∩ δ(S),
δ→(u) := δ(u)r δ(S). (68)

E→(S) :=
⋃

v∈H:p(v)=S

δ→(v).

181

Variable Name Event

He 2-2 happy P [u, v trees, δ(u)T = δ(v)T = 2]

He,u 2-1-1 happy w.r.t u P [u, v trees, AT = BT = 1, CT = 0, δ(v)T = 2]

H{e,f} 2-2-2 happy w.r.t u with f = (u, w) P [u, v, w trees, δ(u)T = δ(v)T = δ(w)T = 2]

Table 5: For a top edge bundle e = (u, v) where A, B, C is the degree partitioning of u, we define
the following “happy" events.

Also, for a set of edges A ⊆ δ(u) we write A→, A↑ to denote A ∩ δ→(u), A ∩ δ↑(u) respectively
(when u is clear in context). Note that E→(S) ⊆ E(S) includes only edges between atoms of S and
not all edges between vertices in S.

Now we compute the so-called A, B, C degree partitioning of each cut S ∈ H for which p(S) is
a degree cut. It can easily be implemented in polynomial time.

Definition 15.5 (A, B, C-Degree Partitioning). For u ∈ H and ε1/1 as in Table 4, we define a partitioning
of edges in δ(u): Let a, b (u be minimal cuts in the hierarchy, i.e., a, b ∈ H, such that a 6= b and
x(δ(a) ∩ δ(u)), x(δ(b) ∩ δ(u)) ≥ 1− ε1/1. Note that since the hierarchy is laminar, a, b cannot cross. Let
A = δ(a) ∩ δ(u), B = δ(b) ∩ δ(u), C = δ(u)r A r B.

If there is no cut a (u (in the hierarchy) such that x(δ(a) ∩ δ(u)) ≥ 1− ε1/1, we just let A, B
partition δ(u) such that x(A), x(B) ∈ [1− ε1,1, 1 + εη], and set C = ∅. Note that this exists WLOG
because we may split any edge into an arbitrary number of parallel copies.

If there is just one minimal cut a (u (in the hierarchy) with x(δ(a)∩ δ(u)) ≥ 1− ε1/1, i.e., b does not
exist in the above definition, then we define A = δ(a)∩ δ(u). Let a′ ∈ H be the unique child of u such that
a ⊆ a′, i.e., a is equal to a′ or a descendant of a′. Then we define B to be an arbitrary subset of δ(u)r δ(a′)
such that x(B) ∈ [1− ε1,1, 1 + εη]. Finally let C = δ(u)r (A ∪ B). Note C ⊇ δ(a′) ∩ δ(u)r δ(a).

Note we may have to divide a single edge e between the sets A, B, C to ensure such partitions
exist.

Let p be as in Table 4. For a top edge bundles e = (u, v), we say e is 2-2 happy, or He occurs,
if u, v are trees and δ(u)T = δ(v)T = 2. Recall that u, v ∈ H are sets of vertices.

p2-2(e, Set)

To compute P [e 2-2 happy], use Corollary 13.14 with

E1 = E(u), E2 = E(v), E3 = δ(u), E4 = δ(v),

~σ = (|u| − 1, |v| − 1, 2, 2), ~m = (|V|, |V|, |V|, |V|),

Definition 15.6 (Good and bad edges). A top edge e in edge bundle f is good (sometimes just “good")
if p2−2(f, ∅) ≥ p and bad otherwise. We say every bottom edge is good, and edges in δ({u0, v0}) are bad
(because they do not have both of their endpoints in the hierarchy).

• 2-1-1 happy w.r.t. u: Let A, B, C be the A, B, C degree partition of u computed in the previous
section. We say e is 2-1-1 happy w.r.t. u, or He,u occurs, if u, v are trees, AT = BT = 1, CT = 0,
and δ(v)T = 2.

182

p2-1-1(e, u, Set)

Let A, B, C be the degree partition of u. To compute P [e 2-1-1 happy w.r.t u], use
Corollary 13.14 with E1 = E(u), E2 = E(v), E3 = A, E4 = B, E5 = C, E6 = δ(v),
~σ = (|u| − 1, |v| − 1, 1, 1, 0, 2), and ~m = (|V|, |V|, |V|, |V|, |V|, |V|).

• 2-2-2 happy (w.r.t. common endpoint u, with partner f): We say the edge bundles e = (u, v)
and f = (u, w) (where p(u) = p(v) = p(w)) are 2-2-2 happy w.r.t. u, or H{e,f} occurs, if
u, v, w are trees and δ(u)T = δ(v)T = δ(w)T = 2.

p2-2-2(e, f, Set)

Assume e, f have a common endpoint u and v, w are the other endpoints of e, f.
To compute P [e 2-2-2 happy w.r.t u with f], use Corollary 13.14 with E1 = E(u), E2 =
E(v), E3 = E(w), E4 = δ(u), E5 = δ(v), E6 = δ(w),~σ = (|u| − 1, |v| − 1, |w| − 1, 2, 2, 2),
and ~m = (|V|, |V|, |V|, |V|, |V|, |V|).

For each edge bundle e = (u, v), we define its type with respect to each endpoint as follows:

type(u) returns type(e, u) for all edge bundles e ∈ δ(u)

For every edge bundle e ∈ δ(u):
If p2-1-1(e, u, ∅) ≥ p, then type(e, u) = 2-1-1.

Let A, B, C be the degree partitioning of δ(u). Let F ⊆ δ(u) be the set of edge bundles
adjacent to u with type(e, u) = 2-1-1. Let J ⊆ δ(u) be the set of edges adjacent to u such
that p2-2(e, ∅) < p. Now, if x(F) ≤ 1

2 − ε1/2 − εη and x(J) ≤ 1
2 − ε1/2, then, by Theorem

5.28 of [KKO21], there exists two edges e = (u, v), f = (u, w) such that: (i) p2-2-2(e, f, ∅) ≥ p,
and (ii) x(e∩ B) ≤ ε1/2, x(f∩ A) ≤ ε1/2. Let type(e, u) = type(f, u) = 2-2-2.

For every edge bundle e ∈ δ(u) such that type(e, u) is not set:
If p2-2(e, ∅) ≥ p, then type(e, u) = 2-2. Otherwise type(e, u) = bad.

Finally, for each edge bundle e = (u, v), we define the following Re,u event with respect to
each endpoint u:

• If type(e, u) = 2-1-1, we define an independent Bernoulli Be,u with success probability
p/p2−1−1(e, u, ∅) and we define

Re,u := I {He,u = Be,u = 1}

We emphasize that this reduction indicator is purely a function of a tree T and an indepen-
dent Bernoulli. The same will apply to all future reduction indicators.

• If type(e, u) = 2-2-2, there exists an edge bundle f such that type(f, u) = 2-2-2. In this case,
define an independent Bernoulli B{e,f} with success probability p/p2−2−2(e, f, ∅). Define

Re,u := Rf,u := R{e,f} := I
{

H{e,f} = B{e,f} = 1
}

183

Note we use brackets to emphasize that R{e,f} is the same event as R{f,e}.

• If type(e, u) = 2-2. We define an independent Bernoulli Be with success probability
p/p2−2(e, ∅) and we define

Re,u := I {He = Be = 1} .

• Otherwise type(e, u) = bad. Define Re,u = 0.

The following allows us to compute the expected value of Re,u for all edge bundles and
each of their endpoints conditioned on Set. Note that P [Re,u] = p for all good edges. However,
P [Re,u | Set] can be any number between 0 and the success probability of its Bernoulli (defined
above).

ER(e, u, Set)

Call type(u) to determine type(e, u). If type(e, u) = 2-1-1, return

p2-1-1(e, u, Set) ·
(

p
p2-1-1(e, u, ∅)

)
Otherwise if type(e, u) = type(f, u) = 2-2-2 for some edge bundle f, return

p2-2-2(e, f, Set) ·
(

p
p2-2-2(e, f, ∅)

)
Otherwise, if type(e, u) = 2-2, return

p2-2(e, Set) ·
(

p
p2-2(e, ∅)

)
Otherwise, type(e, u) = bad. Return 0.

15.3 Max Flow

For each near-cycle cut S ∈ H with polygon partition A, B, C, we compute parameters αe, f for all
edges e ∈ A, f ∈ B as well as pS, which we define next. Let HS be the event:

HS := AT = BT = 1, CT = 0, S is a tree.

184

Preprocessing Step 5: Max Flow

For every near-cycle cut S ∈ H with polygon partition A, B, C, do the following.

Construct and solve an instance of the max-flow, min-cut problem. Consider the following
graph with vertex set {s, A, B, t}. For any edge e ∈ A, f ∈ B connect e to f with a directed
edge of capacity ye, f = P [e, f ∈ T | HS] =

P[HS∧e, f∈T]
P[HS]

. To compute the numerator (the
denominator is similar), apply Corollary 13.14 to

E1 = {e}, E2 = { f }, E3 = δ(S)r {e, f }, E4 = E(S)
~σ = (1, 1, 0, |S| − 1), ~m = (2, 2, |V|, |V|)

(69)

For any e ∈ E, let xe := P [e ∈ T | CT = 0, S is a tree]. Connect s to e ∈ A with an
arc of capacity qxe and similarly connect f ∈ B to t with arc of capacity qx f , where

q = 0.1ζ2/62

P[AT=BT=1|CT=0,S is a tree] and ζ = 1/4000, computed using Corollary 13.14. Then
compute the maximum flow of this graph. Let z be the maximum flow, where ze, f is the
flow on the edge from e to f .

Now return
αe, f :=

ze, f

ye, f
, pS := ∑

e∈A, f∈B
P [HS] ze, f (70)

Note that it follows by Proposition 5.6 from [KKO21] that pS ≥ p. Define an independent
Bernoulli BS with success probability p/pS as well as independent Bernoullis Be, f for all e ∈ A, f ∈
B with success probability αe, f . For a tree T, we define the event:

RS :=
⋃

e∈A, f∈B

I
{

A ∩ T = {e}, B ∩ T = { f }, HS = BS = Be, f = 1
}

(71)

ER(S, Set)

To compute E [RS | Set], note by definition:

E [RS | Set] = ∑
f∈A,g∈B

P
[
A ∩ T = { f }, B ∩ T = {g}, HS = BS = Be, f = 1 | Set

]
= (p/pS)αe, f ∑

f∈A,g∈B
P [A ∩ T = { f }, B ∩ T = {g}, HS | Set] , (72)

Compute the inner probability using Corollary 13.14 similarly to (69). Return the result.

15.4 Matching

Next we compute a matching from the good edges in E→(S) to the edges in δ(S) for every degree
cut S ∈ H. The output of this procedure will be values me,u which indicate that the good edge
bundle e = (u, v) (where u, v ∈ A(S)) is matched to a fraction me,u of edges in δ↑(u) and a fraction
me,v of δ↑(v). In the following, εF, εB, and α are set in Table 4.

185

Preprocessing Step 6: Matching

For every S ∈ H which is a degree cut, do the following. For every u ∈ A(S), set:

Fu = 1− εBI
{

εF ≤ x(δ↑(u)) ≤ 1− εF

}
, Zu :=

(
1 + I

{
|A(S)| ≥ 4, x(δ↑(u)) ≤ εF

})
.

Set up and solve a polynomial size max-flow min-cut problem. Construct a graph with
vertex set {s, X, Y, t} with source s and sink t. We identify X with the set of good edge
bundles in E→(S) and Y with the set of atoms in A(S).

For every (good) edge bundle e ∈ X, add an arc from s to e of capacity c(s, e) := (1 + α)xe.
For every u ∈ A(S), add an arc (u, t) with capacity c(u, t) = x(δ↑(u))FuZu. Finally,
connect e = (u, v) ∈ X to each of u, v ∈ Y with a directed edge of infinite capacity, i.e.,
c(e, u) = c(e, v) = ∞.

Let f be the max flow and return

me,u :=
fe,u

Fu
. (73)

15.5 Reductions

In the following we compute the probability of events R, corresponding to the probability of
“decrease events" for every edge bundle. These then are used to compute values re for every edge,
corresponding to the actual decrease amounts. For a set F ⊆ E, we let r(F) = ∑e∈F re.

If e is a top edge (see Definition 15.4), then e ∈ f for some top edge bundle f = (u, v). Define

re =
1
2

τxe(I {Rf,u}+ I {Rf,v})

If e is a bottom edge with near-cycle parent S, then define

re = βxeI {RS}

Where τ, β are given in Table 4.

Er(e, Set)

If e is a top edge in top edge bundle f = (u, v) return

E [re | Set] =
1
2

τxe(ER(f, u, Set) + ER(f, v, Set))

Otherwise, e is a bottom edge with near-cycle parent S. Return

E [re | Set] = βxeER(S, Set).

186

15.6 Increases

We now recall the definition of increase vectors in [KKO21] (over all edges) with the purpose of
guaranteeing that every odd cut in H is satisfied and then show how to compute its expectation.
In the following subsection, the slack vectors are defined as the sum of the decrease vector and (a
scaled version of) the increase vector.

15.6.1 Increases for bottom edges

Here we define the increase needed for bottom edges in each near-cycle cut S with near-cycle
partition A, B, C. We let IS = I↑S + I→S . We define:

I↑S = (1 + εη)(r(A↑)I {S not left happy}+ r(B↑) · I {S not right happy}+ r(C)) (74)

EI↑(S, Set)

Assume S is a near-cycle cut with near-cycle partition A, B, C. To compute the expected
value of the first term in (74), note by linearity of expectation it suffices to compute the
following for each e ∈ A↑.

• If e is a top edge in top edge bundle f = (u, v), compute:

E [re · I {S not left happy} | Set] =
1
2

xeτE [(Rf,u +Rf,v) · I {S not left happy} | Set] ,

The expectation is equivalent to ER(f, u, Set)−E [Rf,u ∧ I {S left happy} | Set] (plus
the analogous quantity for v). To compute the second term, first recall the definition
of left happy (see Definition 15.2): AT is odd and CT = 0. Now apply Corollary 13.14
using the necessary sets Ei and vectors ~m,~σ for Rf,u (as given in ER(f, u, Set)) and
add two additional sets EA = A and EC = C and coordinates σA = 1, σC = 0, mA =
2, mC = |V|. (Note if f is bad then the whole expectation is 0 and there is nothing to
compute.)

• If instead e is a bottom edge in near-cycle cut Ŝ, similarly compute:

E [re · I {S not left happy} | Set] = xeβE
[
(RŜ · I {S not left happy} | Set

]
.

Here to apply Corollary 13.14, sum over the events for RŜ as in (72) (used by
ER(S, Set)), to each one adding EA = A, EC = C with σA = 1, σC = 0, mA = 2, mC =
|V| (similar to above).

Compute the remaining terms in the expectation of E
[

I↑S | Set
]

analogously.

For an edge bundle e and a set A ⊆ E we use the shorthand e(A) to denote the set of edges in
A and e. We now define I→(S) for a near-cycle cut S. There are three cases:

• Case 1: The parent Ŝ of S is a polygon cut. Then define

I→(S) := (1 + εη)β (max{x(A→), x(B→)}+ x(C→)) · I
{
RŜ = 1, S not happy

}
187

• Case 2: The parent u of S is a degree cut with degree partition A′, B′, C′ and has a pair e =
(v, S), f = (w, S) edges with type(e, S)= type(f, S)= 2-2-2. WLOG, let xe(B′), xf(A′) ≤ ε1/2.
Then define:

I→(S) := (1 + εη)
τ

2
max{xe(A′), xf(B′)}

(
I
{
R{e,f}

}
+ I {Re,v}+ I {Rf,w}

)
+(1 + εη) ∑

g∈δ→(S)re(A′)rf(B′)
rg · I {S not happy} .

• Case 3: Otherwise the parent u of S is a degree cut with no pair of 2-2-2 edges. Define:

I→(S) := (1 + εη) ∑
g∈δ→(S)

E
[
rg · I {S not happy} | Set

]
.

EI→(S, Set)

Assume S is a near-cycle cut. This function computes E [I→(S) | Set] for the above three
cases as follows (using the notation from above):

• Case 1: Return

(1 + εη)β (max{x(A→), x(B→)}+ x(C→)) ·E
[
RŜ · I {S not happy} | Set

]
Here to apply Corollary 13.14 we sum over the events for RŜ as in (72) (used by
ER(S, Set)), to each one adding EA = A, EB = B, EC = C and σA = 1, σB = 1, σC =
0, mA = 2, mB = 2, mC = |V|.a

• Case 2: Return

(1 + εη)
τ

2
max{xe(A′), xf(B′)}

(
P
[
R{e,f} | Set

]
+ P [Re,v | Set] + P [Rf,w | Set]

)
+(1 + εη) ∑

g∈δ→(S)re(A′)rf(B′)
E
[
rg · I {S not happy} | Set

]
.

Recall E
[
R{e,f} | Set

]
can be computed by ER(e, S, Set). To calculate

E
[
rg · I {S not happy} | Set

]
we use techniques similar to EI↑(S, Set).

• Case 3: Return
(1 + εη) ∑

g∈δ→(S)
E
[
rg · I {S not happy} | Set

]
.

aNote that the sets A, B, C written here are from the near-cycle partition of S, however the event RŜ uses the
near-cycle partition of Ŝ.

EI(S, Set)

Return EI↑(S, Set) + EI→(S, Set).

188

15.6.2 Increases for top edges

For each top edge bundle e = (u, v), using the values me,u, me,v from Section 15.4, define for a tree
T:

Ie,u := ∑
g∈δ↑(u)

rg · I {δ(u)T is odd} · me,u

∑f∈δ→(u) mf,u
(75)

and define Ie,v analogously. We then let

Ie := Ie,u + Ie,v.

EI(e, Set)

Let e = (u, v). Compute:

E [Ie,u | Set] := ∑
g∈δ↑(u)

E
[
rg · I {δ(u)T is odd} | Set

]
· me,u

∑f∈δ→(u) mf,u
(76)

and compute E [Ie,v | Set] analogously, using the values me,u computed previously in Step
6. To compute the above, we apply Corollary 13.14 for sets Ei coming from Er(g, Set) and
add an extra set Eu = δ(u) and coordinates σu = 1, mu = 2.
Return

E [Ie | Set] := E [Ie,u + Ie,v | Set] .

15.7 Computation of E [c(s) | Set]

First we define sH:

sHe := −re +

{
If

xe
xf

if e ∈ f for a top edge bundle f,

ISxe if p(e) = S for a polygon cut S ∈ H, i.e. e is a bottom edge.
(77)

Finally, we construct s. Note that sHe = 0 with probability 1 for a bad edge bundle e. Therefore
in [KKO22] a second slack vector was defined to allow bad edges to reduce. In particular, let Eg
be the set of good edges and let Eb := E r Eg be the set of bad edges. Note all edges in δ({u0, v0})
are bad edges as they are not edge bundles in the hierarchy. Define the vector sbad : E ∪ {e0} → R

as follows:

sbad
e ←


∞ if e = e0

−xe(4β/5)(1− 2η) if e ∈ Eb,
xe(4β/3) otherwise.

(78)

Finally, where γ = 15
32 εP, let s = γsbad + (1− γ)sH. This is now exactly the vector s from Theorem

6.1 of [KKO22].

189

Ec(s)(e, Set)

We have E [c(se) | Set] = γc(sbad
e) + (1− γ)E

[
sHe | Set

]
. c(sbad

e) is a constant which can be
computed by (78).

Thus, it is sufficient to compute E
[
c(sHe) | Set

]
. From (77), we just need E [re | Set], com-

puted by Er(e, Set), and E [If | Set] if e ∈ f is a top edge (computed by EI(f, Set)) and
E [IS | Set] if it is a bottom edge with near-cycle parent S (computed by EI(S, Set)).

This concludes the proof of (2) of Lemma 13.11.

190

16 A Lower Bound for Max Entropy: k-Donuts

The main goal of this section is to lower bound the expected cost of the Eulerian tour output by
the max entropy algorithm (although not the Hamiltonian tour if one uses shortcutting). We first
describe the construction of a graphic k-donut instance, which will consist of 4k vertices. The cost
function c{u,v} is given by the shortest path distance in the following graph.

Figure 53: Our variant on the k-donut for k = 4, where k indicates the number of squares of dotted
edges. There are n = 4k vertices. The dotted edges have xe =

1
2 and the solid edges have xe = 1 in

the LP solution. All edges have cost 1, as this is a graphic instance.

Definition 16.1 (k-Donut Graph). For k ∈ Z+, k ≥ 3, the k-donut is a 3-regular graph consisting of 2k
"outer" vertices u0, . . . , u2k−1 and 2k "inner" vertices v0, . . . , v2k−1. For each 0 ≤ i ≤ 2k− 1, the graph
has edges {ui, ui+1 (mod 2k)}, {vi, vi+1 (mod 2k)}, and {ui, vi}. See Fig. 53.

As noted by [BS21], there is a half-integral extreme point solution x of value 4k as follows,
which we will work with throughout this note. Let x{ui ,vi} = 1/2 for all 0 ≤ i ≤ 2k − 1,
x{ui ,ui+1} = x{vi ,vi+1} = 1/2 for all even i and x{ui ,ui+1 (mod 2k)} = x{vi ,vi+1 (mod k)} = 1 for all odd
i.44 In the rest of the paper, we will say a set S ⊆ V is tight if x(δ(S)) = 2, and S is proper if
2 ≤ |S| ≤ |V| − 2. For a set of edges M, we’ll use c(M) = ∑e∈M ce.

16.1 The Max Entropy Algorithm on the k-Donut

We now describe the max entropy algorithm, and in particular discuss what it does when
specialized to the k-donut. We will work with a description of the max entropy algorithm which
is very similar to the one used for half-integral TSP in [KKO20]. In [KKO20], the authors show
that without loss of generality there exists an edge e+ with xe+ = 1. To sample a 1-tree45 T, their
algorithm iteratively chooses a minimal proper tight set S not containing e+ which is not crossed
by any other tight set, picks a tree from the max entropy distribution on the induced graph G[S],

44By slightly perturbing the metric, one could ensure that x is the only optimal solution to the LP and thus the
solution the max entropy algorithm works with. (Of course then the instance is no longer strictly graphic.)

45A spanning tree plus an edge.

191

adds its edges to T, and contracts S. [KKO20] shows that if no such set remains, the graph is a
cycle, possibly with multiple edges between (contracted) vertices. The algorithm then randomly
samples a cycle and adds its edges to T. Finally the algorithm picks a minimum-cost perfect
matching M on the odd vertices of T. Note that one can of course shortcut T]M to obtain a
Hamiltonian cycle, however as discussed we will not consider the impact of this step. We also
remark that this algorithm from [KKO20] is equivalent to the one used in [KKO21] as one lets the
error measuring the difference between the marginals of the max entropy distribution and the
subtour LP solution x go to 0 (see [KKO20; KKO21] for more details).

For ease of exposition, we work with the variant in which we do not use an edge e+ and
instead contract any minimal proper tight set which is not crossed. The two distributions over
trees are essentially identical, perhaps with the exception of the edges adjacent to the vertices
adjacent to e+. The performance of the two algorithms on graphic k-donuts can easily be seen to
be the same as k → ∞ since one can adjust the matching M with an additional cost of O(1) to
simulate any discrepancy between the two tree distributions.

Algorithm 5 Max Entropy Algorithm (Slight Variant of [KKO20])

1: Solve for an optimal solution x of the Subtour LP (2).
2: Let G be the support graph of x.
3: Set T = ∅. . T will be a 1-tree
4: while there exists a proper tight set of G that is not crossed by a proper tight set do
5: Let S be a minimal such set.
6: Compute the maximum entropy distribution µ of E(S) with marginals x|E(S).
7: Sample a tree from µ and add its edges to T.
8: Set G = G/S.
9: end while

10: . At this point G consists of a single cycle of length at least three, or two vertices with two
fractional units of edges between them.

11: if G consists of two vertices then
12: Randomly sample two edges with replacement, choosing each edge each time with

probability xe/2.
13: else
14: Independently sample one edge between each adjacent pair, choosing each edge with

probability xe.
15: end if
16: Compute the minimum-cost perfect matching M on the odd vertices of T. Return T]M.

The reason we use this description of the algorithm is that when specialized to k-donuts,
Algorithm 5 is very simple and its behavior can be easily understood without using any non-trivial
properties of the max entropy algorithm. It first adds the edges with xe = 1 to the 1-tree. Then,
it contracts the vertices {ui, ui+1 (mod 2k)} to a single vertex for all even i, and does the same for
{vi, vi+1 (mod 2k)}. After that, the the minimal proper tight sets consist of pairs of newly contracted
vertices {ui, ui+1 (mod 2k)}, {vi, vi+1 (mod 2k)} for even i. Since each of these pairs have two edges
set to 1/2 between them, the algorithm will simply choose one at random for each independently.
After contracting these pairs the graph is a cycle. It follows that:

192

Claim 16.2. On the k-donut, the max entropy algorithm will independently put exactly one edge among
every pair {{ui, vi}, {ui+1 (mod 2k), vi+1 (mod 2k)}} in T for every odd i and exactly one edge among every
pair {{ui, ui+1}, {vi, vi+1}} in T for every even i.

We visualize these pairs in Figure 54.

u0

v0

u1

v1

u2v2

u3

v3

u4

v4

u5

v5

u6 v6

u7

v7

Figure 54: One edge among the pair of dotted edges inside each red cut will be chosen indepen-
dently. Then one edge among each pair of dotted edges in the cycle resulting from contracting the
red sets will be chosen independently.

The following claim is the only property we need in the remainder of the proof:

Claim 16.3. For every pair of vertices (ui, vi), 0 ≤ i ≤ 2k− 1, exactly one of ui or vi will have odd degree
in T, each with probability 1

2 . Let Oi indicate if ui and ui+1 have the same parity. Then if i 6= j and both
are even or both are odd, Oi and Oj are pairwise independent.

Proof. We will only do the case that both are odd as the other case is similar. To slightly simplify
the notation we assume i = 1 perhaps after a cyclic shift of the indices.

Here the event O1 depends only on the choice of the edges among the pairs {{u0, u1}, {v0, v1}}
and {{u2, u3}, {v2, v3}}. Similarly, Oj only depends on the independent choices among {{uj−1, uj},
{vj−1, vj}} and {{uj+1 (mod 2k), uj+2 (mod 2k)}, {vj+1 (mod 2k), vj+2 (mod 2k)}}. The first choice for O1
is independent of Oj if j 6= 2k− 1, and the second is independent of Oj if j 6= 3. Since k ≥ 3 by
definition of the k-donut, at most one of the independent choices is shared among the two events
O1, Oj. The proof follows by noticing that even after fixing one of the pairs, O1 remains equally
likely to be 0 or 1.

16.2 Analyzing the Performance of Max Entropy on the k-Donut

We now analyze the performance of the max entropy algorithm on graphic k-donuts. We first
characterize the structure of the min-cost perfect matching on the odd vertices of T. We then use

193

this structure to show that in the limit as k → ∞, the approximation ratio of the max entropy
algorithm approaches 1.375 from below.

Claim 16.4. Let T be any tree with the property that for every pair of vertices (ui, vi) for 0 ≤ i ≤ 2k− 1,
exactly one of ui or vi has odd degree in T. (This is Claim 16.3).

Let o0, . . . , o2k−1 indicate the odd vertices in T where oi is the odd vertex in the pair (ui, vi). Let M be
a minimum-cost perfect matching on the odd vertices of T. Define:

M1 = {(o0, o1), (o2, o3), . . . , (o2k−2, o2k−1)}

M2 = {(o2k−1, o0), (o1, o2), . . . , (o2k−3, o2k−2)}

Then,
c(M) = min{c(M1), c(M2)}.

Proof. We will show a transformation from M to a matching in which every odd vertex oi is either
matched to oi−1 (mod 2k) or oi+1 (mod 2k). This completes the proof, since then after fixing (o0, o1) or
(o2k−1, o0) the rest of the matching is uniquely determined as M1 or M2. During the process, we
will ensure the cost of the matching never increases, and to ensure it terminates we will argue
that the (non-negative) potential function ∑e=(oi ,oj)∈M min{|i− j|, 2k− |i− j|} decreases at every
step. Note that this potential function is invariant under any renaming corresponding to a cyclic
shift of the indices.

So, suppose M is not yet equal to M1 or M2. Then there is some edge (oi, oj) ∈ M such
that j 6∈ {i − 1, i + 1 (mod 2k)}. Without loss of generality (by switching the role of i and j if
necessary), suppose j ∈ {i + 2, i + 3, . . . , i + k (mod 2k)}. Possibly after a cyclic shift of the indices,
we can further assume i = 0 and 2 ≤ j ≤ k. Let ol be the vertex that o1 is matched to. We consider
two cases depending on if l ≤ k + 1 or l > k + 1.

Case 1: l ≤ k + 1. In this case, replace the edges {{o0, oj}, {o1, ol}} with {{o0, o1}, {oj, ol}}.
This decreases the potential function, as the edges previously contributed j + l − 1 and now
contribute 1 + |j− l|, which is a smaller quantity since j, l ≥ 2. Moreover this does not increase
the cost of the matching: We have c{o0,o1} ≤ 2 and c{ol ,oj} ≤ |j− l|+ 1, so the two new edges cost
at most |j− l|+ 3. On the other hand, the two old edges cost at least c{o0,oj} + c{o1,ol} ≥ j + l − 1,
which is at least |j− l|+ 3 since j, l ≥ 2.

Case 2: l > k + 1. In this case, we replace the edges {{o0, oj}, {o1, ol}} with {{o0, ol}, {o1, oj}}.
This decreases the potential function, as the edges previously contributed j + (2k− l + 1) and
now they contribute (2k− l) + (j− 1). Also, the edges previously cost at least j + (2k− l + 1),
and now cost at most (2k− l + 1) + j. Thus the cost of the matching did not increase.

We now analyze the approximation ratio of the max entropy algorithm.

Lemma 16.5. If A is the output of the max entropy algorithm on the k-donut (i.e. T]M), then

lim
k→∞

E [c(A)]

c(OPT)
= lim

k→∞

E [c(A)]

c(x)
= 1.375,

where c(x) is the cost of the extreme point solution to the subtour LP.

194

Proof. We know that the LP value is 4k. Since the k-donut is Hamiltonian, we also have that
the optimal tour has length 4k. On the other hand, c(A) = c(T) + c(M), where T is the 1-tree
and M is the matching. Note that the cost of the 1-tree is always 4k. On the other hand, we
know that c(M) = min{c(M1), c(M2)} from the previous claim. Thus, it suffices to reason about
the cost of M1 and M2. We know that for every i, c{oi ,oi+1 (mod 2k)} = 2 with probability 1/2 and 1
otherwise, using Claim 16.3. Thus, the expected cost of each edge in M1 and M2 is 1.5. Since
each matching consists of k edges, by linearity of expectation, E [c(M1)] = E [c(M2)] = 1.5k. By
Jensen’s inequality, this implies E [c(M)] ≤ 1.5k. This immediately gives an upper bound on the
approximation ratio of 4k+1.5k

4k = 1.375. In the remainder we prove the lower bound.
For each i, construct a random variable Xi indicating if c{oi ,oi+1 (mod 2k)} = 2. By Claim 16.3, these

variables are pairwise independent. Thus, for M1, we have Var(∑k−1
i=0 X2i) = ∑k−1

i=0 Var(X2i) = k/4,
so σ(∑k−1

i=0 X2i) =
√

k/2.
Therefore, applying Chebyshev’s inequality for M1,

P

[
c(M1) ≥

(
3
2
− ε

)
k
]
= P

[
k−1

∑
i=0

X2i ≥
(

1
2
− ε

)
k

]
≥ 1−P

[∣∣∣∣ k−1

∑
i=0

X2i − µ

∣∣∣∣ ≥ εk

]
≥ 1− 1

4ε2k
.

Choosing ε = k−1/4 and applying a union bound (the same bound applies to M2), we obtain the
chance that both matchings cost at least 3

2 k− k3/4 occurs with probability at least 1− 1
2
√

k
. Even if

the matching has cost 0 on the remaining instances, the expected cost of the matching is therefore
at least (1− 1

2
√

k
)(3

2 k− k3/4) ≥ 3
2 k− 2k3/4. Since the cost of the 1-tree is always 4k, we obtain an

expected cost of 11
2 k− 2k3/4 with a ratio of

E [c(T]M)] =
11
2 k− 2k3/4

OPT
=

11
2 k− 2k3/4

4k
≥ 11

8
− k−1/4,

which goes to 11
8 as k→ ∞.

195

k

Figure 55: Illustration of a known worst-case example for the integrality gap for the symmetric
TSP with triangle inequality. The figure on the left gives a graph, and costs cij are the shortest path
distances in the graph. The figure in the center gives the LP solution, in which the dotted edges
have value 1/2, and the solid edges have value 1. The figure on the right gives the optimal tour.
The ratio of the cost of the optimal tour to the value of the LP solution tends to 4/3 as k increases.

17 4/3 for Cycle Cut Instances

It is known that the integrality gap of the Subtour LP is at least 4/3, due to a set of graph TSP
instances shown in Figure 55, and another set of weighted instances due to Boyd and Sebő [BS21]
known as k-donuts. These instances are half-integral instances. Schalekamp, Williamson, and van
Zuylen [SWZ13] have conjectured that half-integral instances are the worst-case instances for the
integrality gap. It has long been conjectured46 that the integrality gap is exactly 4/3, but until the
work of Karlin et al. there had been no progress on that conjecture for several decades. Goemans
[Goe95b] and Benoit and Boyd [BB08] give evidence that the 4/3 conjecture is correct.

In the case of half-integral instances, some results are known. Mömke and Svensson [MS16]
have shown a 4/3-approximation algorithm for half-integral graph TSP, also yielding an integrality
gap of 4/3 for such instances; because of the worst-case examples of Figure 55, their result is tight.
Boyd and Carr [BC11b] give a 4/3-approximation algorithm (and an integrality gap of 4/3) for a
subclass of half-integer solutions they call triangle points (in which the half-integer edges form
disjoint triangles); the examples of Figure 55 show that their result is tight also. Haddadan and
Newman [HN19] prove interesting results for the half-integral case with symmetric and metric
costs. Boyd and Sebő [BS21] give an upper bound of 10/7 for a subclass of half-integral solutions
they call square points (in which the half-integer edges form disjoint 4-cycles). In a paper released
just prior to their general improvement, Karlin, Klein, and Oveis Gharan [KKO20] (KKO) gave
a 1.49993-approximation algorithm in the half-integral case; in particular, they show that given
a half-integral solution, they can produce a tour of cost at most 1.49993 times the value of the
corresponding objective function. Gupta, Lee, Li, Mucha, Newman, and Sarkar [Gup+22] improve
this factor to 1.4983.

With the improvements on the 3/2 bound remaining very incremental for weighted instances

46The first place that the authors are aware of a published statement of the conjecture is in a 1995 paper of Goemans
[Goe95b], but the conjecture was in circulation earlier than that.

196

of the TSP, even in the half-integral case, we turn the question around and look for a large class
of weighted half-integral instances for which we can prove that the 4/3 conjecture is correct,
preferably one containing the known worst-case instances.

To define our instances, we turn to some terminology from the half integral case. There, we
used induction on a hierarchy of critical tight sets of the half-integral LP solution x. A set S ⊂ V
is tight if the corresponding LP constraint is met with equality; that is, x(δ(S)) = 2. A set S is
critical if it does not cross any other tight set; that is, for any other tight set T, either S ∩ T = ∅
or S ⊆ T or T ⊆ S. The critical tight sets then give rise to a natural tree-like hierarchy based on
subset inclusion.

The algorithm constructs a tour on the hierarchy by sampling a random spanning tree on the
child nodes for each critical tight set, starting with the minimal sets in the hierarchy and working
bottom up. Following Christofides-Serdyukov, we then computed a minimum-cost T-join on the
odd degree vertices of the resulting tree. In this algorithm, we differentiated between cycle cuts (in
which the child nodes of a parent are linked by pairs of edges in a chain) and degree cuts (in which
the child nodes of a parent form a 4-regular graph; more detail is given in subsequent sections).

Here, we will consider half-integral instances in which there are only cycle cuts, which we
will refer to as half-integral cycle cut instances. Our contribution is to give a randomized 4

3 -
approximation algorithm for these instances; it generates a distribution over connected Eulerian
subgraphs with expected cost at most 4/3 the value of the LP solution. More precisely, we give a
distribution over connected Eulerian subgraphs such that each edge e is used with expectation
at most 4

3 xe, which implies the result (note that edges are sometimes doubled in the Eulerian
graph). It is not hard to show that both the bad examples in Figure 55 and the k-donut instances
of Boyd and Sebő [BS21] are cycle cut instances (Boyd and Carr’s result for triangle points works
for the examples of Figure 1, but not for k-donuts). Thus our bound of 4/3 is tight and cannot be
improved; furthermore, our result works for the known worst-case instances.

Our approach to the problem is novel and does not use the same Christofides-Serdyukov
framework as employed above. Instead, we perform a top-down induction on the hierarchy of
critical tight sets. For each set in the hierarchy, we define a set of “patterns” of edges incident on
it such that the set has even degree.

For each pattern, we give a distribution of edges connecting the chain of child nodes in the
cycle cut, which induces a distribution of patterns on each child. Crucially, we then show that
there is a feasible region R of distributions over patterns, such that if the distribution of patterns on
the parent node belongs to R, then the induced distribution on patterns on each child node also
belong to R.

Our result leads to several interesting open questions. The first is whether it is possible to
extend the 4/3-approximation algorithm to the general half-integral case. We believe it should be
possible to improve modestly on the 1.4983-approximation of Gupta et al. [Gup+22] by combining
our result for cycle cuts with some additional ideas. We do not elaborate on this potential
improvement because both the improvement and the additional ideas are incremental relative to
the ideas introduced in this paper. The second open question is whether our result extends to the
case of cycle cuts for non-half-integral solutions. We believe this to be possible through a more
refined understanding of the patterns that result from considering non-half-integral solutions. A
third open question is whether we can unify our result and that of Boyd and Carr on triangle
points. Triangle points need not be cycle cut instances, and it would be interesting to know of a
single class of half-integral solutions that have an integrality gap of 4/3 and which captures both

197

cycle cut instances and triangle points.
One major implication of our result is to focus attention on the half-integral degree cut case, in

which every vertex has degree four, all edges have LP value 1/2, and every non-trivial cut has at
least six edges in it. While it is not clear whether a 4

3 -approximation algorithm working on just
these instances can be combined with our result for an overall 4

3 -approximation algorithm for
half-integral solutions, it is clear that understanding the degree cut case is a necessary next step to
obtain any significant improvement in the approximation factor. We believe that giving a feasible
region on the distribution of patterns as described above will be useful in obtaining an improved
approximation that integrates both degree and cycle cuts.

17.1 Technical Overview

We now give a more in-depth overview of our algorithm and proof techniques.
Given a half-integral LP solution x, we construct a 4-regular 4-edge-connected multigraph

G by including every edge with xe = 1/2 once and every edge with xe = 1 twice. Therefore, in
G the tight sets S have |δ(S)| = 4. For the remainder of this paper we will refer to this graph G
instead of a half integral solution x.

Our strategy is to exhibit a convex combination of Eulerian tours that uses every edge at most
2
3 = 4

3 xe of the time. Using each edge of the graph at most 2
3 of the time immediately implies that

when we sample a tour from this distribution, its expected cost will be at most 4
3 times the cost of

x. This allows us to prove our main theorem.

Theorem 17.1. There is a randomized 4/3-approximation algorithm for half-integral cycle cut instances of
the TSP that produces an Eulerian tour with expected cost at most 4

3 ∑e∈E cexe.

To construct our distribution of tours, we work on the cycle cut hierarchy from the top down.
Each cut in the hierarchy is either a singleton vertex, or a cycle cut that contains two or more tight
cuts inside. At the root of the hierarchy is a cycle cut S such that V − S is a single vertex. For
every cycle cut, its child cuts are linked together in a chain, each cut connected to the next by a
pair of edges.

Our construction begins by specifying a distribution of patterns entering the root cycle cut,
where a "pattern" refers to a given multiset of edges that enter the cycle cut. We then work
down the hierarchy to determine the distribution of patterns entering every cycle cut. Inductively,
consider a cut C in the hierarchy, and suppose we have already determined the distribution of
patterns that enter C. We describe rules that dictate how to connect the child cuts in the chain
inside of C, as a function of the pattern that enters C. This in turn determines the distribution of
patterns entering each child of C.

The crux of the argument is to show a feasible region R of distributions over patterns, such that:
1) If the distribution of patterns on the parent node belongs to R, then the induced distribution on
patterns on each child node also belong to R, and 2) the distributions in the region use each edge
e at most 4

3 xe of the time. We are able to impose any distribution we want on the root, thus this is
sufficient to give the result.

Conceptually key to our analysis is a visualization of the process through the lens of Markov
chains. Each pattern corresponds to a state in the Markov chain. Given a distribution over patterns
entering some cut C, applying the transition matrix gives the distribution of patterns entering the
children of C. Using this language, the region R will satisfy the property that PR ⊆ R, where P is

198

the transition matrix of the Markov chain. In fact, there will turn out to be two Markov chains,
depending on if the parity of the number of cuts inside C is even or odd; letting Peven and Podd be
the transition matrices of these two chains, our proof will show that Peven R ⊆ R and Podd R ⊆ R.

From the construction, one can easily sample an Eulerian tour in a top-down manner. To do
so, we first choose an arbitrary distribution of patterns p ∈ R from the feasible region. Then, we
sample from p a pattern entering the topmost cycle cut. Next, supposing that we are at a cycle cut
C and have determined the pattern entering it, we follow the (randomized) rules to sample a set
of edges to connect the children of C. Applying this procedure all the way down the hierarchy
gives an Eulerian tour. By design, this (random) tour satisfies the property that the distribution of
edges entering each cut in the hierarchy belongs to R, and that each edge is used at most 4

3 xe of
the time in expectation.

17.2 Preliminaries

Given a half-integral LP solution x, we construct a 4-regular 4-edge-connected multigraph G =
(V, E) by including a single copy of every edge e for which xe =

1
2 and two copies of every edge e

for which xe = 1. See Fig. 57 and Fig. 59 for examples.

17.2.1 The structure of minimum cuts

We state the following for general k-edge-connected multigraphs. In our setting, k = 4.

X Y

Figure 56: An example of two crossing sets.

Definition 17.2. For a k-edge-connected multigraph G = (V, E), we say:

• Any set S ⊆ V such that |δ(S)| = k (i.e., its boundary is a minimum cut) is a tight set.

• A set S ⊆ V is proper if 2 ≤ |S| ≤ n− 2 and a singleton if |S| = 1.

• Two sets S, S′ ⊆ V cross if all of S r S′, S′ r S, S ∩ S′, and V r (S ∪ S′) 6= ∅ are non-empty (see
Fig. 56).

The following are two standard facts about minimum cuts; for proofs see [FF09].

Fact 17.3. If two tight sets S and S′ cross, then each of Sr S′, S′r S, S∩ S′ and S ∪ S′ are tight. Moreover,
there are no edges from S r S′ to S′ r S, and there are no edges from S ∩ S′ to S ∪ S′.

Fact 17.4. Let G = (V, E) be a k-regular k-edge-connected graph. Suppose either |V| = 3 or G has at least
one proper min cut, and every proper min cut is crossed by some other proper min cut. Then, k is even and
G forms a cycle, with k/2 parallel edges between each adjacent pair of vertices.

199

t

a

h

e

g

f

b

Figure 57: An example of a half integral instance, where the rightmost vertex is the root. The
dotted lines circle (one side of) each minimum cut of the graph. The red cuts are "degree cuts" and
the green cuts are the "cycle cuts." The blue cuts cross one another and therefore do not appear in
the hierarchy of critical cuts.

17.3 Cycle cut instances and the hierarchy of critical tight sets

We first define our class of instances.

Definition 17.5 (Cycle cut instance). We say a graph G is a cycle cut instance if every non-singleton
tight set S can be written as the union of two tight sets A, B 6= S.

Note that this definition includes complements of singletons, i.e. sets of size n − 1. As
mentioned in the introduction this condition captures the two known integrality gap examples
of the subtour LP. See Fig. 59 for a cycle cut instance. Due to the following fact, an equivalent
definition of a cycle cut instance is that all non-singleton tight sets which are not crossed by any
other tight set can be written as the union of two tight sets.

Fact 17.6. In any graph G, every tight set which is crossed by another tight set can be written as the union
of two tight sets.

Proof. Let S be a tight set crossed by T. Then by Fact 17.3, S r T and S ∩ T are tight sets; the claim
follows.

Thus, the condition in Definition 17.5 is met trivially by all crossed sets. So, it is enough to
ensure all sets that are not crossed can be written as the union of two tight sets.

We now show a third equivalent definition of cycle cut instances matching what is described
in the introduction. First, fix an arbitrary root vertex r ∈ V, and for all cuts we consider we will
take the side which does not contain r.

Definition 17.7 (Critical cuts). A critical cut is any tight set S ⊆ V r {r} which does not cross any
other tight set.

200

Definition 17.8 (Hierarchy of critical cuts, H). Let H ⊆ 2Vrr be the set of all critical cuts.

For an example, see Fig. 57. The hierarchy naturally gives rise to a parent-child relationship
between sets as follows:

Definition 17.9 (Child, parent, E→(S)). Let S ∈ H such that |S| ≥ 2. Call the maximal sets C ∈ H for
which C ⊂ S the children of S, and call S their parent. Finally, define E→(S) to be the set of edges with
endpoints in two different children of S.

Definition 17.10 (Cycle cut, degree cut). Let S ∈ H with |S| ≥ 2. Then we call S a cycle cut if when
G r S and all of the children of S are contracted, the resulting graph forms a cycle of length at least three
with two parallel edges between each adjacent node. Otherwise, we call it a degree cut.

While this definition of a cycle cut may sound specialized, due to Fact 17.4, cycle cuts arise
very naturally from collections of crossing min cuts. See Fig. 57 for a general example whose
hierarchy of critical tight sets contains both degree cuts and cycle cuts.

S

G r S

Figure 58: S is an example of a cycle cut with three children. In blue are contracted critical tight
sets. In gray is the rest of the graph with S contracted. As in Fact 17.4, we can see that when G r S
is contracted into a single vertex, the resulting graph is a cycle with 2 edges between each adjacent
vertex. In our recursive proof of our main theorem in Section 17.5, we are given a distribution of
Eulerian tours over G/S, so in particular on the red edges here, and will then extend it to G with
the blue critical sets contracted it by picking a distribution over the black edges.

Fact 17.11. If G is a cycle cut instance, then for any choice of r, H is composed only of cycle cuts (and
singletons).

Proof. Let H be the hierarchy of critical cuts for an arbitrary choice of r and let S ∈ H with |S| ≥ 2
(note H 6= ∅ since V r {r} ∈ H). We will show that S is a cycle cut.

Contract G r S and all of the children of S; call the resulting graph G′. By definition of H,
G′ contains no proper tight sets which are not crossed. If S contains a proper tight set which is
crossed, then by Fact 17.4, it is a cycle cut and we are done.

Otherwise, G′ contains no proper tight sets. Since G is a cycle cut instance and S is a tight set,
there exist tight sets A, B such that A ∪ B = S. Since the contracted children of S are not crossed

201

Figure 59: An example of a cycle cut instance, which is also the canonical integrality gap example
for the Subtour LP. The non-singleton critical cycle cuts are shown in blue. The topmost vertex is
the root.

and there are no proper tight sets in G′, A and B must be vertices of this graph. Therefore, G′

must have exactly three vertices. Since it is 4-regular, it is a cycle of length three, and thus is a
cycle cut.

Thus, in the remainder of the paper, we assume H is a collection of cycle cuts. We remark that
the following is also true:

Fact 17.12. If for some choice of r, H is composed only of cycle cuts, then G is a cycle cut instance.

Proof. Fix any tight set S with |S| ≥ 2. We will show it can be written as the union of two tight
sets not equal to S. If it is crossed by another tight set, by Fact 17.6 we are done. If r 6∈ S, then
S appears in H. Then, the graph in which the children of S and G r S are contracted is a cycle
with vertices a0, . . . , ak. Then S is the union of the vertices contained in tight sets {a1, . . . , ak−1}
and {ak}.

Otherwise r ∈ S, and S ∈ H. Furthermore, since |S| ≥ 2, S 6= S r {r}. Thus, S has a parent S′.
Consider the graph a0 = G r S′, a1, . . . , ak induced by contracting the children of S′ and G r S′.
We have S = ai for some i 6= 0. Then, S can be written as (V r {ai, ai−1}) ∪ {ai−1} as desired.

17.4 Structure of cycle cuts

Given S ∈ H, let a0 = G r S and let a1, . . . , ak be its children in H (which are either vertices or
cycle cuts). By Fact 17.4 a0, . . . , ak can be arranged into a cycle such that two edges go between
each adjacent vertex. WLOG let a1, . . . , ak be in counterclockwise order starting from a0. We call
a1 the leftmost child of S and ak the rightmost child.

Definition 17.13 (External and internal cycles cuts). Let S ∈ H be a cut with parent S′. We call S
external if in the ordering a0, . . . , ak of S′ (as given above), S = a1 or S = ak. Otherwise, call S internal.

202

For example, if the blue nodes in Fig. 58 are contracted cycle cuts, the left and right nodes
are external, while the middle one is internal. Note that for an cycle cut S with parent S′, if S is
external then |δ(S) ∩ δ(S′)| = 2, and if S is internal then |δ(S) ∩ δ(S′)| = 0.

Using the following simple fact, we will now describe our convention for drawing and
describing cycle cuts:

Fact 17.14. Let A, B, C ∈ H be three distinct critical cuts such that A (B and B ∩ C = ∅ or B ⊆ C.
Then |δ(A) ∩ δ(C)| ≤ 1.

Proof. Suppose otherwise, and A shares two edges with C.
First, suppose B ∩ C = ∅. Then, A ∪ C is a minimum cut, contradicting that B was a critical

cut since it is crossed by A ∪ C. Note A ∪ C crosses B since i) B r (A ∪ C) 6= ∅ since A (B, ii)
(A∪C)r B 6= ∅ since C∩ B = ∅, iii) (A∪C)∩ B 6= ∅ since A ⊆ B and finally iv) (A∪C)∪ B 6= V
since neither contains the root.

Otherwise, suppose B ⊆ C. But then B r A has two edges to A and two edges to C r B,
implying that C r A was a minimum cut. This contradicts that B is a critical tight set, as it is
crossed by C r A. We can verify B crosses C r A as follows: i) B r (C r A) 6= ∅ as it contains
A 6= ∅, ii) (C r A)r B 6= ∅ as B (C and A ⊆ B, iii) (C r A) ∩ B 6= ∅ since B r A 6= ∅, and
finally iv) the union is not everything since neither contains the root.

Definition 17.15 (δL(S), δR(S)). Let S ∈ H be a cycle cut. We will define a partition of δ(S) into two
sets δL(S), δR(S) each consisting of two edges.

If S 6= V r {r}, then it has a parent S′. S′ has children a1, . . . , ak such that S = ai for i 6= 0. Let
δL(S) = δ(S) ∩ δ(ai−1) and δR(S) = δ(ai+1 (mod k+1)) ∩ δ(S). In other words, we partition the edges of
S into the two edges going to the left neighbor of S in the cycle defined by S′’s children and the two edges
going to the right neighbor.

Otherwise S = V r {r}. Then if a1, . . . , ak are the children of S, let δL(S) consist of an arbitrary edge
from δ(S) ∩ δ(a1) and an arbitrary edge from δ(S) ∩ δ(ak). Let δR(S) = δ(S)r δL(S).

By Fact 17.14 and the definition of δL(S), δR(S) for S = V r {r}, if S′ is an external child of
a cycle cut S, then |δL(S′) ∩ δ(S)| = |δR(S′) ∩ δ(S)| = 1. This allows us to adopt the following
convention for drawing cycle cuts which we will call the caterpillar drawing of S: for an example,
see Fig. 60. Formally, let S ∈ H be a cycle cut with children a1, . . . , ak ∈ H. Arrange a1, . . . , ak in a
horizontal line. First, expand the children of a1 vertically (if it is not a singleton) such that the
unique edge in δL(S) ∩ δ(a1) is pointing up (if it is a singleton, simply draw this edge pointing
up. Then, expand a2, . . . , ak one by one into their respective children (if they exist), placing the
children vertically in increasing or decreasing order of their index so that the edges from ai to ai+1
do not cross. If ak is a singleton, arbitrarily choose which edge to draw pointing up. Otherwise,
let a′ be the topmost child of ak. Draw the unique edge in δ(S) ∩ δ(a′) pointing up.

There are two distinct types of cycle cuts:

Definition 17.16 (Straight and twisted cycle cuts). Let S ∈ H be a cycle cut. caterpillar drawing of S.
If δL(S) has both edges pointing up, then call it a straight cycle cut. Otherwise, call it a twisted cycle cut.
See Fig. 60 for examples.

In future sections, we abbreviate the caterpillar drawing by contracting the non-singleton
children of S. We do so partially for cleaner pictures but also to emphasize that all the relevant

203

S S

Figure 60: Two caterpillar drawing of two different cycle cuts S with three children. The red edges
are in the δL(S) partition, and the blue edges are in the δR(S) partition. The left drawing is a
straight cycle cut, and the right is a twisted cycle cut as per Definition 17.16.

S S

Figure 61: On the left is a shorthand caterpillar drawing for the straight cycle cut on the left in
Fig. 60, the style of picture we will use in future sections. To obtain this picture we contract the
children of the cut. These are the shorthand drawings of Fig. 60, so the left is a straight cycle cut
and the right is twisted. We also label the edges as described below.

204

information used by our construction in the following section is contained in the abbreviated
pictures.

To help the reader’s understanding, we suggest looking at Fig. 59. The largest critical cut is
arbitrarily chosen to be straight or twisted. The second largest critical cut is a straight cut. The
smallest non-singleton critical cuts are arbitrarily chosen to be straight or twisted.

In the following, we will need to distinguish between the straight and twisted types of cuts as
well as those with an even versus an odd number of children.

17.5 Proof of Theorem 17.1

We now present the proof of our main result, a 4
3 -approximation for half-integral cycle-cut instances

of the TSP. To prove Theorem 17.1, we construct a distribution of Eulerian tours such that every
edge is used at most 2

3 of the time. Since xe =
1
2 for every edge in the graph, this immediately

implies that when we sample a tour from this distribution, its expected cost is at most 4
3 times the

value of the LP. We work on the cycle cut hierarchy from the top down, and inductively specify
the distribution of edges that enter every cut.

Figure 61 depicts our convention for visualizing a cycle cut as described in Section 17.2. We
say that a cycle cut is even if it contains an even number of children, and odd otherwise. Figure 63
illustrates the patterns we use, where "pattern" refers to a multiset of edges that enter a cycle cut.
For each pattern entering a parent cycle cut, we give (randomized) rules which describe how
to connect up its children – this induces a distribution of patterns for each child. We represent
this process using a Markov chain with 4 states, illustrated in Figure 63. The figure shows the
mapping from patterns to states; the transitions will come from the rules for connecting up the
children, which we describe later. In the figure, each state contains two pictures, which represent
the parity of the edges in the patterns that are mapped to the state. Specifically, an edge that is
present is used exactly once, whereas an edge that is not present may be either unused or doubled.
For example, Figure 64 illustrates all possible patterns that are captured by the top picture of
state 1. Finally, we maintain the invariant that if a cycle cut is in a given state, then each of the
two pictures are equally likely. (When we later give the rules for connecting up the children,
we will ensure this invariant is preserved.) Thus, when we say a cycle cut is in a given state
with probability p, this means the parity of the pattern entering it follows the top picture in the
state with probability p

2 , and the bottom picture with probability p
2 . We will use the phrase "the

distribution of patterns entering a cycle cut C is (p1, p2, p3, p4)" to mean that for all i ∈ {1, 2, 3, 4},
C is in state i with probability pi.

To prove our main result, we give a feasible region R of distributions over the states of the
Markov chain, and show that: 1) If the distribution of patterns entering a cycle cut C belongs to
R, there is a way to connect up the children of C such that the distribution on each child also
belongs to R, and 2) for each p ∈ R, the corresponding rule for connecting the children of C uses
each edge in E→(C) at most 2

3 = 4
3 xe of the time in expectation. The feasible region is given in

Definition 17.17. Since R is nonempty, 1) and 2) are sufficient to give the result since we can
induce any distribution on the topmost cycle cut V r {r}.

Definition 17.17 (The Feasible Region). Let

R =

{
(p1, p2, p3, p4) ∈ R4

+ : p1 + p2 + p3 + p4 = 1, p1 + p2 =
2
3

, p2 + p4 ≥
1
3

}
.

205

See Figure 62 for a visualization of R in a 2-dimensional space.

(0, 1
3) (2

3 , 1
3)

Z
p

q

Figure 62: The feasible region of distributions is R = {(p, 2
3 − p, 1

3 − q, q) : (p, q) ∈ Z}, where Z is
the polytope above.

S1

S3

S2

S4

Figure 63: The patterns and how they map to states of a Markov chain. The states are unchanged
regardless of the number of children: they are defined only with respect to which of the edges are
used by the tour. Note that we ignore doubled edges.

To describe the transitions of the Markov chain, we give (randomized) rules that dictate, for
a cycle cut C and a pattern entering it, how to connect up its children. These rules depend on
whether C is even or odd. The final form of the Markov chains is illustrated in Figure 65.47 The
meaning of taking one transition is as follows. Suppose the distribution of patterns entering C
is (p1, p2, p3, p4), and suppose (q1, q2, q3, q4) is the resulting distribution after one transition of a
Markov chain. What this means is that for each child of C, the distribution of patterns entering
it will be either (q1, q2, q3, q4) or (q2, q1, q3, q4) depending on if the child is straight or twisted,
respectively (see Definition 17.16 and Fig. 60). In particular, it can be shown that if (q1, q2, q3, q4) is
the distribution induced on a child which is a straight cycle cut, then (q2, q1, q3, q4) would be the

47In the figure, if there is a variable on an arc, it means that any transition probability in the range of that variable is
possible. For example, in Peven, we can transition from S2 to S1 with probability z for any z ∈ [0, 1]; the transition from
S2 to S3 then happens with probability 1− z.

206

Figure 64: In our illustrations of the patterns entering a given cycle cut, any edge that is not
present may either be unused or doubled. Therefore, all four of the given edge configurations are
represented by the upper left most state, S1.

distribution induced on a child which is a twisted cycle cut. Thus, it is sufficient to check that:
i) the distributions induced on straight children lie in the feasible region and ii) if (q1, q2, q3, q4)
is a distribution induced on straight children, then (q2, q1, q3, q4) is also in the feasible region.
This corresponds to the set of distributions induced on the children being symmetric under this
transformation.48

We ensure that in all cases, each edge in E→(C) is used 1
2 , 1

2 , 1, 1 times in expectation if the
pattern entering C belongs to state 1, 2, 3, 4, respectively. (We do not explicitly prove this, but it
is straightforward to check when we give the rules from connecting the children.) Therefore, if
(p1, p2, p3, p4) are the probabilities that we are in states 1, 2, 3, 4 respectively, then each edge in
E→(C) is used exactly

1
2

p1 +
1
2

p2 + p3 + p4 = 1− 1
2
(p1 + p2)

of the time in expectation. Thus, requiring that each edge be used at most 2
3 = 4

3 xe of the time is
equivalent to requiring that p1 + p2 ≥ 2

3 . Note that if p ∈ R, then p1 + p2 = 2
3 (i.e. each edge is

used exactly 2
3 of the time).

In Section 17.6, we illustrate the rules for connecting the children, and show why this leads
to the Markov chains in Figure 65. Then in Section 17.7, we give a specific example of how to
maintain feasible distributions on all the cuts in the hierarchy by choosing appropriate transition
probabilities on the Markov chains in Figure 65. This already gives a 4

3 -approximation algorithm
for half-integral cycle cut TSP, which we describe in Algorithm 6. Finally in Section 17.8, we
complete the picture by proving that R (as given in Definition 17.17), is the maximal feasible
region of distributions achievable through these chains.

17.6 The Markov Chains

We describe the rules to connect the child cuts (given the edges entering the parent), which will
allow us to transition according to the Markov chains depicted in Figure 65.49

48Note that the feasible region itself is not symmetric under this transformation. The distribution induced on the
children is thus a symmetric subset of the feasible region.

49In the figure, if there is a variable on an arc, it means that any transition probability in the range of that variable is
possible. For example, in Peven, we can transition from S2 to S1 with probability z for any z ∈ [0, 1]; the transition from
S2 to S3 then happens with probability 1− z.

207

S1 S2

S3 S4

1/2

1/2

z

1− z

1/2

1/2
1− w

w

z ∈ [0, 1], w ∈ [0, 1]

S1 S2

S3 S4

x

1− x

z

1− z
y

1− y
1− w

w

Peven Podd

x ∈ [1
3 , 1], y ∈ [1

3 , 1], z ∈ [0, 2
3], w ∈ [0, 2

3]

Figure 65: The variables on the arcs indicate that one can feasibly transition according any
probability in the range. The ranges are given for the cases where the number of children is 2 (in
the even case), and 3 (in the odd case), since these are the most restrictive. In general, when there
are k children, the ranges are a superset of those given here, and depend on k.

Proposition 17.18. For any cycle cut C ∈ H and any distribution of patterns entering C, there is a way to
connect its children so that the induced distribution on each child is given by 1) applying the corresponding
Markov chain in Figure 65, and then 2) swapping the first two coordinates if the child is twisted.

Proof. To show that we can always feasibly transition according to the Markov chains in Figure 65,
we give rules for connecting the children that result in these transitions. Consider a cycle cut C.
We consider two cases, depending on whether C is even or odd.

Case 1: C is even. We consider the states one by one, and argue that the transitions depicted
in Figure 65 are achievable.

1. State 1. The transitions out of state 1 are depicted in Figure 66. For each pair of edges
inside the cycle cut, we pick one out of the two uniformly at random. This has the effect of
transitioning each child to state 3 with probability 1

2 , and to state 1 with probability 1
2 .

Figure 66: Transition for state 1 in the even case.

2. State 2. The way we transition out of this state is depicted in Figure 67. With probability
α ∈ [0, 1], we alternate taking the top and bottom edges of each pair of edges such that
each child transitions back to state 1 with probability 1. (Note that this rule maximizes the
probability of transitioning back to state 1.) Otherwise, with probability 1− α, we make all
the children transition to state 3, by always picking the top edge of each pair or the bottom
edge of each pair. Thus, the net transition probabilities out of state 2 can be made to be
(α, 0, (1− α), 0), for any α ∈ [0, 1].

208

α + (1− α)

Figure 67: Transition for state 2 in the even case.

3. State 3. The transitions out of this state are depicted in Figure 68. To connect up the children
in this state, we consider each pair of edges in E→(C) independently. Let e, f be such a pair.
Then with probability 1

2 , we use both e and f (one copy each), as is illustrated by the solid
orange edges. Otherwise, we either double e or double f , with equal probability, shown
using the dotted black edges. The net effect is that each child transitions to state 2 with
probability 1

2 , and to state 4 with probability 1
2 .

Figure 68: Transition for state 3 in the even case.

4. State 4. The transitions out of this state are depicted in Figure 69. With probability α, we
make all children transition to state 2 with probability 1. To do this, first suppose C has all 4
single edges entering it (the top picture in the left box). In this case, we consider the pairs of
edges in E→(C) from left to right, and alternate 1) doubling one of the two edges with equal
probability (shown by the dotted black edges), and 2) using both edges (shown by the solid
black edges). Because C is even, the rightmost pair of edges ends up falling in case 1) of
the alternating rule, and so all children transition to state 2. The case where all the edges
entering C are used an even number of times (the bottom picture in the left box) is quite
similar, except we begin the alternating rule by using both edges.

On the other hand, with probability 1− α, we transition back to state 4 with probability 1.
This is accomplished by using each pair of edges in the top case of state 4, and by doubling
one edge from each pair uniformly at random in the bottom case of state 4. The net transition
probabilities are then (0, α, 0, 1− α), where α can be any number from 0 to 1.

This shows that the general form of the even chains, as depicted in Figure 65, are achievable.50

50Actually, note that slightly more general transitions out of states 2 and 3 are possible as a function of k, the number
of children. For example, one can show (similarly to the odd case) there are rules for connecting the children that allow
the transition from state 3 to state 2 to be any value in the range [1

k , k−1
k]. However, the transitions are most restricted

when k = 2, which results in the Markov chains we presented in Figure 65. (e.g. Note that 1
k = k−1

k = 1
2 if k = 2.)

209

α + (1− α)

Figure 69: Transition for state 4 in the even case.

Case 2: C is odd. To show that we can feasibly transition according to the Markov chain Podd

in Figure 65, we consider each state one by one.

1. State 1. The way we transition out of this state is depicted in Figure 70. With probability
α ∈ [0, 1], we alternate taking the top and bottom edges of each pair of edges such that
each child transitions back to state 1 with probability 1. (Note that this rule maximizes the
probability of transitioning back to state 1.) Otherwise, with probability 1− α, we choose
one of the children uniformly at random to transition to state 1 (the rightmost child in the
figure), and make all other children transition to state 3. Note that once we have chosen
which child to transition to state 1, there is a unique choice of edges that makes that child
transition to state 1 and all other children transition to state 3. The net effect is that the
children transition to state 1 with probability 1

k , and to state 3 with probability 1− 1
k , where

k is the number of children. (This rule minimizes the probability of transitioning back to state
1.) Thus, the net transition probabilities out of state 1 are (α + 1−α

k , 0, (1− α) · k−1
k , 0). As α

ranges from 0 to 1, the probability of transitioning back to state 1 ranges from 1
k to 1. Since

this range is most restricted when k = 3, we conclude that it is always feasible to transition
out of state 1 according to the probabilities (x, 0, 1− x, 0), for any x ∈ [1

3 , 1].

α + (1− α)

Figure 70: Transitions out of state 1 in the Podd chain. On the left, each child transitions back to
state 1. On the right, we pick one of the children uniformly at random to transition back to state 1
(we visualize this to be the rightmost child in the picture), and the remaining children transition
to state 3.

2. State 2. The way we transition out of state 2 is depicted in Figure 71. With probability α, the
net transition probabilities out of state 2 are (k−1

k , 0, 1
k , 0), where k is the number of children.

210

This is accomplished by choosing one of the children uniformly at random to transition to
state 3, and the having the remaining children transition to state 1. In more detail, suppose
the children are a1, . . . , ak from left to right, and suppose we chose ai to transition to state
3. In the case where the two edges enter C from the top (the top left picture in Figure 71),
we go through a1, a2, . . . , ai, alternatingly using the bottom edge from a1 to a2, the top edge
from a2 to a3, and so on, until we reach ai. We then go through ak, ak−1, . . . , ai, using the
bottom edge from ak to ak−1, then the top edge from ak−1 to ak−2, and so on, until we reach
ai. Since C is odd, ai will end up either having two edges incident to it from the top or two
edges incident to it from the bottom. Thus, ai transitions to state 3, and all the children
except for ai transition to state 1. The case where the two edges enter C from the bottom
(the bottom left picture in Figure 71) is the mirror image of this. Finally, since the child ai
which transitions to state 3 is chosen uniformly at random, the net transition probabilities
are (k−1

k , 0, 1
k , 0).

On the other hand, with probability 1− α we always transition to state 3, by either always
taking the top edge of each pair or the bottom edge of each pair, depending on if the two
edges incident to C enter from the top or the bottom, respectively. The overall transition
probabilities are therefore (α · k−1

k , 0, α
k + (1− α), 0). Since the range of transition probabilities

is most constrained when k = 3; we conclude it is feasible to transition out of state 2 with
probabilities (z, 0, 1− z, 0) for any z ∈ [0, 2

3].

α + (1− α)

Figure 71: Transitions out of state 2 in the Podd chain. On the left, we pick one of the children
uniformly at random to transition to state 3 (we visualize this to be the rightmost child in the
picture), and the remaining children transition to state 1. On the right, each child transitions to
state 3.

3. State 3. The transition out of state 3 is depicted in Figure 72. With probability α, every child
transitions to state 2. To do this, we start at the child with two edges entering it (i.e. the
leftmost child in the top left picture of Figure 72, and the rightmost child in the bottom left
picture of Figure 72), and for each pair of edges in E→(C), we alternate 1) doubling one of
the two edges with equal probability (shown by the dotted black edges), and 2) using both
edges once (shown by the solid black edges).

On the other hand, with probability 1− α, we choose one child uniformly at random to
transition to state 2, and the remaining children transition to state 4. The way we accomplish
this is as follows: Suppose the children are a1, . . . , ak from left to right, and suppose we chose
ai to transition to state 2. Then in the case where the two edges enter C from the left (the top
right picture in Figure 72), we use both edges in each pair going from a1, a2, . . . , all the way

211

to ai. Then from ai to ak, we double one edge uniformly at random between each pair. The
case where the two edges enter C from the left (the bottom right picture in Figure 72) is the
mirror image of this; we double one edge uniformly at random between each pair between
a1 and ai, and then use both edges in each pair going from ai to ak. Since the child which
transitions to state 2 is chosen uniformly at random, the transition probabilities are then
(0, 1

k , 0, k−1
k). Taking the convex combination of this with the earlier rule which transitions to

state 2 deterministically, the net transition probabilities are then (0, α + 1−α
k , 0, (1− α) · k−1

k).
As α ranges from 0 to 1, the transition probability to state 2 ranges from 1

k to 1. Since this
range is most restricted when k = 3, we conclude that it is always feasible to transition with
probabilities (0, y, 0, 1− y), for any y ∈ [1

3 , 1].

α + (1− α)

Figure 72: Transitions out of state 3 in the general Podd chain. On the left, every child transitions to
state 2. On the right, we pick one child uniformly at random to transition to state 2 (we visualize
this to be the right child in the figure), and the remaining children transition to state 4.

4. State 4. The transition out of state 4 is depicted in Figure 73. With probability α, we choose
one child uniformly at random to transition to state 4, and make the other children transition
to state 2. The way we accomplish this is as follows: Suppose the children are a1, . . . , ak from
left to right, and suppose ai is chosen to transition to state 4. Then in the case where C has 4
edges entering it (the top left picture in Figure 73), we go through a1, a2, . . . , ai from left to
right, and alternating 1) double an edge from each pair of edges uniformly at random and
2) use both edges once, until we reach ai. We do the same on the other side from ak, ak−1, . . .,
until ai. This will cause every child except for ai to be in state 2, and (since k is odd), ai will
be in state 4. The case where every edge entering C is used an even number of times (the
bottom picture in the left box of Figure 73) is similar, except we begin the alternation by
using both edges. The transition probabilities in this case are (0, k−1

k , 0, 1
k), where k is the

number of children.

On the other hand, with probability 1− α, every child transitions to state 4, by either using
both edges from each pair if we are in the top case of state 4, or by doubling one edge
from each pair uniformly at random if we are in the bottom case of state 4. Overall, the
net transition probabilities are then (0, α · k−1

k , 0, α
k + 1− α). As α ranges from 0 to 1, the

transition probability to state 2 ranges from 0 to k−1
k . Since this range is most restricted

when k = 3, we conclude it is always feasible to transition out of state 4 with probabilities
(0, w, 0, 1− w) for any w ∈ [0, 2

3].

This finishes the proof of why the Podd Markov chain is achievable for the ranges of probabilities
depicted in Figure 65.

212

α + (1− α)

Figure 73: Transitions out of state 4 in the general Podd chain. On the left, we pick one child
uniformly at random to transition to state 4 (we visualize this to be the right child in the figure),
and the remaining children transition to state 2. On the right, every child transitions to state 4.

Note that the rules given in the proof of Proposition 17.18 satisfy the following two invariants:
1) Given that a cycle cut C is in some state, it is equally likely to look like the top picture as the
bottom picture of Figure 63, and 2) Each edge in E→(C) is used 1

2 , 1
2 , 1, 1 times in expectation if C

is in state 1, 2, 3, 4, respectively.

17.7 Fixed Point and Algorithm

Algorithm 6 A randomized 4
3 -approximation algorithm for half-integral cycle cut TSP.

Require: A half-integral cycle cut TSP instance G = (V, E) with edge costs c.
Ensure: An Eulerian multi-subgraph T of G with expected cost at most 4

3 times that of the Subtour
LP.

1: Compute x, an optimal solution of the Subtour LP.
2: Choose any vertex r ∈ V, and compute the hierarchy H of critical cuts in V − {r}.
3: if x is not half-integral or some cut in H is not a cycle cut then
4: Fail . Not a half-integral cycle cut instance
5: end if
6: Initialize T ← ∅.
7: Sample edges entering V − {r} according to the distribution p = (4

9 , 2
9 , 2

9 , 1
9). Add these edges

to T.
8: for each cut C in a depth-first search ordering of H do
9: Given the edges in T entering C, sample edges connecting the children of C according to

the rules described in Section 17.6 using the specific transition probabilities in Section 17.7.
Add these edges to T.

10: end for
11: Return T.

We now give the reader some more intuition by giving a specific example of how to maintain
distributions in the feasible region R (as defined in Definition 17.17), on all the cuts in the hierarchy
by choosing appropriate transition probabilities on the Markov chains in Figure 65. This already

213

gives a 4
3 -approximation algorithm for half-integral cycle cut TSP, which we describe in Algorithm

6. In Section 17.8, we will extend the ideas here to show that R is the maximal feasible region
achievable through our Markov chains.

Specifically, let p = (4
9 , 2

9 , 2
9 , 1

9) and q = (2
9 , 4

9 , 2
9 , 1

9) (i.e. q is p with the first two coordinates
swapped). It is easy to check that p, q ∈ R. We now show for any half-integral cycle cut instance,
it is possible to make the distribution entering any cycle cut to be either p or q.

To see this, let C be a cycle cut and suppose C is odd. Set the transition probabilities in Podd to
be x = y = z = w = 2

3 . For these probabilities, it is easy to check that Poddp = Poddq = p.51 On the
other hand, if C is even, setting z = w = 1 in Peven gives Pevenp = p, and setting z = 3

4 , w = 1 gives
Pevenq = p. Thus, as long as the distribution entering C is p or q, we can make the distribution on
each child of C be either p (if the child is straight), or q (if the child is twisted). Since we have
freedom in choosing the distribution on the topmost cycle cut V − {r}, we can simply set it to be
p, and then following the rules given in Section 17.6 with the above transition probabilities will
ensure that the distribution on every cut in the hierarchy is either p or q.

Proposition 17.19. Algorithm 6 is a 4
3 -approximation algorithm for half-integral cycle cut instances of the

TSP.

Proof. By the above reasoning, Algorithm 6 samples from a distribution of Eulerian tours with the
property that the distribution of patterns on each cut in the hierarchy is either p or q. Under p and
q, the rules for connecting the children in Section 17.6 guarantee that each edge is used exactly
4
3 xe of the time in expectation. The Subtour LP can be solved in polynomial time. The hierarchy
of critical cuts can be found efficiently by computing the cactus decomposition of the graph (e.g.
[Fle99]). Finally, given the hierarchy, sampling the tour just requires going through the cuts in the
hierarchy from the top-down (e.g. using a depth-first search), and for each cut following the rules
to sample a multiset of edges inside of it. This takes linear time in the size of the graph.

17.8 Characterizing the Feasible Region

We now show that R (as given in Definition 17.17), is the maximal feasible region according to the
chains in Figure 65. Recall that by "feasible region", we mean that 1) If the distribution of patterns
entering a cycle cut C belongs to R, there is a way to connect up the children of C such that the
distribution on each child also belongs to R, and 2) for each p ∈ R, the corresponding rule for
connecting the children of C uses each edge in E→(C) at most 2

3 = 4
3 xe of the time in expectation.

Informally speaking, R is the set of distributions "that guarantee a 4
3 -approximation all the way

down" the hierarchy of cycle cuts. In particular, the fact that R is nonempty implies the existence
of a 4

3 -approximation algorithm.

Remark 17.20. Note that the distribution (1
3 , 1

3 , 1
3 , 0) lies in R. This is the distribution that, among

the four edges entering a cycle cut, uses each pair of edges with equal probability (and possibly
doubles zero, one or both of the other edges). We find it nice that such a symmetric distribution is
feasible.

Before moving on, note that every distribution in R has a net probability of 2
3 to be in states

1 or 2, and a probability of 1
3 to be in states 3 or 4. For any cycle cut C, since all of our rules

51In fact, it can be checked that for these probabilities, Podd maps every distribution (whose first two coordinates sum
to 2

3), to p.

214

for connecting the children use each edge in E→(C) 1
2 the time in states 1 and 2, and once in

expectation in states 3 and 4, every distribution in R automatically uses each edge exactly 2
3 = 4

3 xe
times in expectation. Therefore, checking the feasibility of R boils down to showing that if the
distribution of a parent belongs to R, then we can make the distribution of the children also
belong to R.

We show this in Theorem 17.21. In other words, R is sufficient, in the sense that if the
distribution entering a cycle cut belongs to R, then it is possible to get a 4

3 -approximation all the
way down the hierarchy using the Markov chains in Figure 65. We complement this by showing
in Theorem 17.22 that R is necessary; if the distribution entering a cycle cut does not belong to R,
then it is impossible to obtain a 4

3 -approximation using these Markov chains.

Theorem 17.21 (R is sufficient). If the distribution of patterns entering a cycle cut belongs to R, then
there are feasible Markov chains (among the ones shown in Figure 65) such that the induced distribution
entering each child also belongs to R.

Theorem 17.22 (R is necessary). Suppose the distribution of patterns entering a cycle cut does not belong
to R. Then it is not possible to obtain a 4

3 -approximation using the Markov chains in Figure 65.

Proof of Theorem 17.21. Let C be any cycle cut in the hierarchy. Suppose the distribution entering
C is (p1, p2, p3, p4) ∈ R. We consider the 2 cases, depending on if C is even or odd. We show that
in each case, there is a valid choice of transition probabilities for the corresponding Markov chain
(illustrated in Figure 65), that cause the resulting distribution to also land in R.

Case 1. C is even. Set w = 1 and leave z as a variable in Peven. Applying the resulting transition
matrix to (p1, p2, p3, p4) yields the distribution(p1

2
+ zp2,

p3

2
+ p4,

p1

2
+ (1− z)p2,

p3

2

)
.

Let z = 1
p2
(2

3 − p4 − p1+p3
2) (this is the value of z that makes the first two components sum to 2

3).
To show that it is valid to set z to this value, we have to show that z ∈ [0, 1] (since this is the
feasible range for z in the Peven chain). First, z ≥ 0 because p1+p3

2 + p4 ≤ 2
3 .52 On the other hand,

z ≤ 1 is equivalent to
p1

2
+ p2 +

p3

2
+ p4 ≥

2
3

.

Plugging in p1 = 2
3 − p2 and p3 = 1

3 − p4, this becomes equivalent to p2 + p4 ≥ 1
3 , which is a

constraint defining R. Thus it is valid to set z to this value. Plugging in this value for z and using
p3 = 1

3 − p4, the resulting distribution becomes

(q1, q2, q3, q4) :=
(

1
2
− p4

2
,

1
6
+

p4

2
,

1
6
+

p4

2
,

1
6
− p4

2

)
It is easy to check that both (q1, q2, q3, q4) and (q2, q1, q3, q4) lie in R.

Case 2. C is odd. Set x = y = z = w = 2
3 in Podd. Applying the resulting transition matrix to

(p1, p2, p3, p4) yields the distribution(
2
3

p1 +
2
3

p2,
2
3

p3 +
2
3

p4,
1
3

p1 +
1
3

p2,
1
3

p3 +
1
3

p4

)
=

(
4
9

,
2
9

,
2
9

,
1
9

)
.

It is easy to check that both (4
9 , 2

9 , 2
9 , 1

9) and (2
9 , 4

9 , 2
9 , 1

9) lie in R.
52Since p1 + p2 = 2

3 , p1+p3
2 + p4 is maximized when p1 = 2

3 , p2 = p3 = 0, and p4 = 1
3 .

215

Proof of Theorem 17.22. The result follows from the following two statements.

1. Any feasible distribution must have its first two coordinates summing to exactly 2
3 .

2. Given a feasible distribution whose first two coordinates sum to 2
3 , it must in fact be in R.

We will now prove these two statements.
Proof of Statement 1. To show that any feasible distribution must have its first two coordinates

summing to exactly 2
3 , consider a general distribution (p1, p2, p3, p4). Clearly in order to obtain

a 4
3 -approximation, we must have p1 + p2 ≥ 2

3 .53 Thus we just need to show p1 + p2 cannot be
strictly larger than 2

3 . To prove this, suppose p1 + p2 > 2
3 . We will obtain a contradiction by

applying Peven twice. Applying Peven once with z = z1 and w = w1 (for some z1 ∈ [0, 1], w1 ∈ [0, 1])
to (p1, p2, p3, p4), we get the distribution

(q1, q2, q3, q4) :=
(p1

2
+ p2z1,

p3

2
+ p4w1,

p1

2
+ p2(1− z1),

p3

2
+ p4(1− w1)

)
.

In particular, note that q1 + q3 = p1 + p2 > 2
3 . Applying Peven a second time to (q1, q2, q3, q4), with

z = z2 and w = w2, we get a distribution whose first two coordinates sum to(q1

2
+ q2z2

)
+
(q3

2
+ q4w2

)
≤ q1 + q3

2
+ q2 + q4 = 1− q1 + q3

2
<

2
3

.

Since the first two coordinates of this distribution sum to strictly less than 2
3 , it cannot give a

4
3 -approximation.

Proof of Statement 2. Having just shown that any feasible distribution must have its first two
coordinates summing to exactly 2

3 , we now show that any such distribution must in fact lie
in R. Consider a general distribution whose first two coordinates sum to 2

3 ; we can write it
as (p1, p2, p3, p4) where p1 + p2 = 2

3 . To show this point lies in R, we just need to show that
p2 + p4 ≥ 1

3 . Applying Peven to the input (p1, p2, p3, p4), we obtain(
1
2

p1 + zp2,
1
2

p3 + wp4,
1
2

p1 + (1− z)p2,
1
2

p3 + (1− w)p4

)
.

We need the first two components to sum to 2
3 , which means 1

2 p1 + zp2 +
1
2 p3 + wp4 = 2

3 . Plugging
in x, w ≤ 1, we get 1

2 p1 + p2 +
1
2 p3 + p4 ≥ 2

3 . Finally, using p1 + p2 + p3 + p4 = 1, we obtain
p2 + p4 ≥ 1

3 .

Remark 17.23. Algorithm 6 can now be modified to use any initial distribution p ∈ R, not just
(4

9 , 2
9 , 2

9 , 1
9). To do this, simply begin by sampling edges entering V − {r} according to p. Then,

given the edges entering a parent cycle cut, connect up its children using the rules given in
the proof of Proposition 17.18, according to the transition probabilities given in the proof of
Theorem 17.21.

Remark 17.24. The "tightness" of the feasible region is respect to our Markov chains in Figure 65. It
is possible that there are other patterns / Markov chains that would give rise a larger feasible
region.

53Since states 1 and 2 use each edge 1
2 of the time and states 3 and 4 use each edge once in expectation, p1 + p2 < 2

3
would imply each edge is used strictly more than 1 · 1

3 + 1
2 ·

2
3 = 2

3 times in expectation.

216

17.9 Conclusion and Open Questions

This result leads to several interesting open questions. One such open question is whether our
result extends to the case of cycle cuts for non-half-integral solutions. We believe this may be
possible through a more refined understanding of the patterns that result from considering
non-half-integral solutions.

Clearly a better understanding of what happens in the case of degree cuts is needed to make
substantial progress on the overall half-integral case. Recall that in a degree cut, each vertex
has degree four, there are no parallel edges, and every non-trivial cut has at least six edges in
it. Ideally one would be able to show that any distribution on a parent cut lying in the feasible
region of Fig. 62 could be used to induce a distribution on patterns of the children of the degree
cut in a subregion of the feasible region with each edge used at most 2/3 of the time; such a result
would lead immediately to a 4/3 integrality gap for half-integral instances.

217

18 An Improved Approximation Algorithm for k-ECSM

As mentioned in the introduction, in an instance of the minimum k-edge connected spanning
subgraph problem, or k-ECSS, we are given an (undirected) graph G = (V, E) with n := |V|
vertices and a cost function c : E → R≥0, and we want to choose a minimum cost set of edges
F ⊆ E such that the subgraph (V, F) is k-edge connected. In its most general form, k-ECSS
generalizes several extensively-studied problems in network design such as tree augmentation
or cactus augmentation, for which there has been recent exciting progress (e.g. [Fio+18; CTZ21;
TZ22; BGA20b]). The k-edge-connected multi-subgraph problem, k-ECSM, is a close variant of
k-ECSS in which we want to choose a k-edge-connected multi-subgraph of G of minimum cost,
i.e., we can choose an edge e ∈ E multiple times. Note that without loss of generality we can
assume the cost function c in k-ECSM is a metric, i.e., for any three vertices x, y, z ∈ V, we have
c(x, z) ≤ c(x, y) + c(y, z).

Around four decades ago, Fredrickson and Jájá [FJ81; FJ82] designed a 2-approximation
algorithm for k-ECSS and a 3/2-approximation algorithm for k-ECSM. The latter essentially
follows by a reduction to the well-known Christofides-Serdyukov approximation algorithm for
the traveling salesperson problem (TSP). Over the last four decades, despite a number of papers
on the problem [CT00; KR96; Kar99; Gab05; GG08; Gab+09; Pri11; LOS12], the aforementioned
approximation factors were only improved in the cases where the underlying graph is unweighted
or k � log n. Most notably, Gabow, Goemans, Tardos and Williamson [Gab+09] showed that if
the graph G is unweighted then k-ECSS and k-ECSM admit 1 + 2/k approximation algorithms,
i.e., as k → ∞ the approximation factor approaches 1. The case of k-ECSM where k = 2 has
received significant attention and (significantly) better than 3/2-approximation algorithms were
designed for special cases [CR98; BFS16; SV14; Boy+20]. In the general k = 2 case, only a 3/2− ε
approximation is known where ε = 10−36 [KKO22]; we remark this also extends to all even k.

Motivated by [Gab+09], Pritchard posed the following conjecture:

Conjecture 18.1 ([Pri11]). The k-ECSM problem admits a 1 + O(1)/k approximation algorithm.

In other words, if true, the above conjecture implies that the 3/2-classical factor can be
substantially improved for large k, and moreover that it is possible to design an approximation
algorithm whose factor gets arbitrarily close to 1 as k → ∞. In this paper, we prove a weaker
version of the above conjecture.

Theorem 18.2 (Improved Approximation for k-ECSM). There is a polynomial time randomized
algorithm for (weighted) k-ECSM with approximation factor (at most) 1 + 5.06√

k
.

We remark that our main theorem only improves the classical 3/2-approximation algorithm
for k-ECSM when k > 103. However, the constants are not optimized and we expect our algorithm
to beat 3/2 for much smaller values of k.

For a set S ⊆ V, let δ(S) = {{u, v} : |{u, v} ∩ S| = 1} denote the set of edges with one
endpoint in S. The following is the natural linear programming relaxation for k-ECSM.

min ∑
e∈E

xec(e)

s.t. x(δ(v)) = k ∀v ∈ V
x(δ(S)) ≥ k ∀S ⊆ V, S 6= ∅
xe ≥ 0 ∀e ∈ E.

(79)

218

Note that while in an optimum solution of k-ECSM the degree of each vertex is not necessarily
equal to k, since the cost function satisfies the triangle inequality we may assume that in any opti-
mum fractional solution each vertex has (fractional) degree k. This follows from the parsimonious
property [GB93b].

We prove Theorem 18.2 by rounding an optimum solution to the above linear program. So, as
a corollary we also upper-bound the integrality gap of the above linear program.

Corollary 18.3. The integrality gap of LP (79) is at most 1 + 5.06√
k

.

18.1 Proof Overview

Before explaining our algorithm, we recall a randomized rounding approach of Karger [Kar99].
Karger showed that if given a solution x to (79) we choose every edge e independently with
probability xe, then the sample is k−O(

√
k log n)-edge connected with probability close to 1. He

then fixes the connectivity of the sample by adding O(
√

k log n) copies of the minimum spanning
tree of G. This gives a randomized 1 + O(

√
log n/k) approximation algorithm for the problem.

While this is a very effective procedure for large k, it is not useful when k is a constant or grows
slower than log n. We view our result as a refinement of this method using random spanning
trees which allows k to be independent of n.

First, we observe that when x is a solution to (79), the vector 2x/k is in the spanning tree
polytope (after modifying x slightly, see Corollary 18.7 for more details). Following a recent line
of works on the traveling salesperson problem [OSS11; KKO21] we write 2x/k as a so-called
max-entropy distribution µ over spanning trees.

Warm-up algorithm and key idea. Our first algorithm, explained in Section 18.3, independently
samples k/2 spanning trees T1, . . . , Tk/2 from µ. Call the (multi-set) union of these trees T∗. Since
max entropy distributions are negatively correlated, it is easy to show using Chernoff bounds
that any particular cut S has at least k−O(

√
k ln k) edges with probability at least 1−O(1/

√
k)54.

So, in the second step of the algorithm, we add O(
√

k ln k) additional spanning trees to fix the
connectivity of every cut “with high probability." In other words, after this procedure (which has
expected cost 1+O(

√
ln k/k) times the cost of the LP), every cut S has at least k edges with probability

1−O(1/
√

k). One can think of this as a version of Karger’s algorithm which does not fix every
cut with high probability but instead fixes each individual cut with high probability.

A priori, this does not seem like a useful property, because there are exponentially many cuts
to bound over. However, we show that (perhaps somewhat surprisingly) there is a way to fix the
connectivity of every cut simultaneously by only paying an additional factor of O(1/k) times the
cost of the LP in expectation.

To do so, we begin with the following simple observation: Fix a cut S. Then, if we ensure that
every tree Ti has at least 2 edges in δ(S), the union of the trees Ti will have at least k edges across
the cut and we are done. So, if a cut S turns out to have fewer than k−O(

√
k ln k) edges in T∗,

one can think of “blaming" the trees which had only one edge in δ(S); in particular, we will fix
the cut by doubling the sole edge in δ(S) for each of those trees. This guarantees that every tree

54Of course, one can make this probability much closer to 1 (say 1−O(1/k2)) by only paying a constant factor in the
O(
√

k ln k) term, but it is sufficient to make it 1−O(1/
√

k).

219

has at least two edges across the cut and therefore it has at least k edges total as desired. This is
essentially the key idea of this paper.

Formally, after sampling T1, . . . , Tk/2, iterate over every edge e of every tree Ti and consider
the unique cut S in which e appears as the only edge of Ti. This is the only cut for which e may
be “blamed" and hence doubled. Now, we check if T∗ has fewer than k−O(

√
k ln k) edges across

δ(S). Over the randomness of the remaining trees, this occurs with probability O(1/
√

k) (by
Chernoff bounds, as argued above). This shows that every edge of T∗ is doubled with probability
O(1/

√
k), and therefore since T∗ has expected cost at most c(x) ≤ OPT, the approximation ratio

of the algorithm is 1 + O(
√

ln k/k) + O(1/
√

k), i.e. 1 + O(
√

ln k/k), as desired.

Main algorithm. The above algorithm is suboptimal in a fairly obvious way. Suppose that a cut
S is missing (for example)

√
k ln2 k edges. Then, its connectivity is not fixed by the additional

O(
√

k ln k) spanning trees added by the algorithm. So, the warm-up algorithm simply adds an
additional copy of every edge which appeared alone in this cut in its tree. However, it may be
that the cut δ(S) has only one edge in as many as Ω(k) trees! Therefore, we will add Ω(k) extra
edges to fix the cut instead of just the required

√
k ln2 k edges: a huge overcorrection. Algorithm 8

simply avoids this overcorrection by only adding the number of edges actually missing from the
cut, sampling them independently from the set of edges which appeared alone on this cut. It
turns out this will let us add only O(

√
k) additional trees instead of O(

√
k ln k), avoiding the extra√

ln k factor55.
However, this adds some difficulty to the analysis. For example, now that we only add O(

√
k)

extra trees, it is not true that a cut only has to be fixed with probability O(1/
√

k). In fact, this
probability may even be O(1). To sharpen the analysis, for any fixed set S we study pS, the
probability that a random (max entropy) tree has exactly one edge in δ(S). In particular, we show
that the expected number of edges that δ(S) is missing (below k) is at most O(

√
ke−1/pS).

This bound on the expectation is then enough to complete the argument as follows. Let n(S)
be the number of trees Ti for which |Ti ∩ δ(S)| = 1. Let e be the unique edge in δ(S) for some
Ti. Then, the probability e needs to double is the expected number of edges missing from δ(S)
divided by n(S). Using the analysis above and that E [n(S)] = Ω(kpS), this can be shown to be
O(
√

ke−1/pS
kpS

) = O(1/
√

k) in expectation56.

Remark 18.4. We note that we expect this algorithm to work for any distribution of spanning
trees which is negatively correlated. So, one could for example apply swap rounding [CVZ10] to
generate random spanning trees (instead of using the max entropy distribution). However, while

the analysis giving 1 + O(
√

ln k
k) approximation in Section 18.3 can easily be modified to give

similar bounds for any negatively correlated distribution (since Chernoff bounds can be applied),
the proof of Theorem 18.2 in Section 18.4 currently relies on the fact that the distribution of the
number of edges in any cut can be written as a sum of independent Bernoullis. So, an extension of
Theorem 18.2 to an arbitrary negatively correlated distribution would require a different analysis
technique or a generalization of Lemma 18.18.

55For a slightly tighter analysis we also include these additional trees in T∗, but this is mostly a superficial difference.
56This is not immediate since this is the ratio of the expectations, but we actually need to analyze the expectation of

the ratio.

220

We also briefly remark that some form of concentration is necessary. In particular, consider a
distribution over spanning trees in which a vertex v has degree 1 with probability 1− 1/(n− 2)
and degree n− 1 with probability 1/(n− 2). In such a case, we expect to need to add k/2 edges
from δ(v) to ensure v has degree at least k. If these edges have all the cost of the LP (or there are
many vertices with this property), we can get an approximation ratio as bad as 3/2 even for large
k.

18.2 Preliminaries

We will use the same G0 as in the max entropy algorithm for TSP. We include it here again as a
reminder and because the LP solution is slightly different (it is a point in PSub scaled by k

2).

Definition 18.5 (G0, u0, v0). We expand the graph G = (V, E) to a graph G0 by picking an arbitrary
vertex u ∈ V, splitting it into two nodes u0 and v0, and then, for every edge e = (u, w) incident to u,
assigning fraction x(e)

2 to each of the two edges (u0, w) and (v0, w) in G0 We set x((u0, v0)) = 0. Call
this expanded graph G0, its edge set E0, and the resulting fractional solution x0, where x0(e) and x(e)
are identical on all other edges. (Note that each of u0 and v0 now have fractional degree k/2 in x0.) In
Corollary 18.7 below, we show that 2

k · x0 is in the spanning tree polytope for the graph G0. For ease of
exposition, the algorithm is described as running on G0 (and spanning trees57 of G0), which has the same
edge set as G (when u0 and v0 are identified).

We use the notation standard in this thesis, and add the following:
For two sets of edges F, F′ ⊆ E, we write F] F′ to denote the multi-set union of F and F′

allowing multiple edges. Note that we always have |F] F′| = |F|+ |F′|. For a real-valued random
variable X, we write X+ = max(0, X) to denote the positive part of X.

Definition 18.6 (ST(e), the “One-Cut" of e in T). For any spanning tree T on the vertex set V0, and any
edge e ∈ T, let ST(e) ⊆ V0 r {u0} be the unique connected component of T r {e} which does not contain
u0. We will call this the one-cut of e in T.

Recall that the natural linear programming relaxation for k-ECSM is (79). The solution to this
LP can be computed in polynomial time using the ellipsoid method.

18.2.1 Background

The following is an immediate corollary of Fact 2.3, and is also noted in Corollary 2.4.

Corollary 18.7. Let x be the optimal solution of LP (79) and x0 its extension to G0 as described in
Definition 18.5. Then 2

k · x0 is in the spanning tree polytope (85) of G0.

This allows us to sample k/2 spanning trees independently from 2
k · x. We will use the max

entropy distribution, which is equivalent to a λ-uniform distribution (see Section 2.3.1).
We will use the fact that any random variable FT for F ⊆ E is distributed as a BS(x(F)). Thus

we will study properties of BS random variables. In particular, here we will use Bernoullis as a
window into the variance of our tree distribution. We start with a fact that comes directly from
linearity of expectation and the definition of variance.

57A spanning tree in G0 is a 1-tree in G, that is, a tree plus an edge.

221

Fact 18.8. If X = BS(q1) and Y = BS(q2) are two independent Bernoulli-sum random variables, then
E [X + Y] = q1 + q2 and Var [X + Y] = Var [X] + Var [Y].

The following is a consequence of Theorem 2.17.

Corollary 18.9. For any BS(q) with q ≥ 1, P [BS(q) = 0] ≤ 1/e.

Proof. Suppose BS(q) = X1 + · · · + Xm for some m ∈ Z+ where X1, · · · , Xm are independent
Bernoullis with success probability p1, · · · , pm. Let g(x) = I[x = 0]. Then from ??, if we want to
maximize P [BS(q) = 0] = E [g(X1 + · · ·+ Xm)], then p1, · · · , pm ∈ {0, x, 1} for some 0 < x < 1.
Suppose m1 of pi’s are 1, m2 of pi’s are 0, and the rest of the (m− m1 − m2) pi’s are q−m1

m−m1−m2
.

Then we have

Pr[BS(q) = 0] =
m

∏
i=1

(1− pi) ≤ 0m1 · 1m2 · (1− q−m1

m−m1 −m2
)m−m1−m2 ≤ (1− q

m
)m ≤ e−q.

where maximization is reached when m1 = m2 = 0 and m → +∞. Notice that q ≥ 1, we have
Pr[BS(q) = 0] ≤ 1/e as desired.

Fact 18.10. Given any 0 ≤ ε < 1, let p1 ≥ p2 ≥ . . . pm be the success probabilities of m ≥ 2 independent
Bernoullis such that ∑m

i=1 pi = 1 + ε. Suppose p1 ≤ 1
2 (1 + ε). Then ∏m

i=1(1− pi) ≥ 1
4 (1− ε)2.

Proof. The first step is to see that ∏m
i=1(1− pi) is minimized when p1 is as large as possible, i.e.,

p1 = 1
2 (1 + ε). To see that, say pm > 0 (for some m > 1) and observe that for any 0 < δ ≤ pm,

(1− (p1 + δ))(1− p2) . . . (1− (pm − δ)) ≤
m

∏
i=1

(1− pi).

Note that this operation does not change the order of pi’s. So, without loss of generality, assume
p1 = 1

2 (1 + ε). Now, by Weierstrass inequality we have

m

∏
i=1

(1− pi) ≥ (1− p1)

(
1−

m

∑
i=2

pi

)
= (1− 1

2
(1 + ε))(1− 1

2
(1− ε)) ≥ 1

4
(1− ε)2

where the second to last identity uses that ∑i pi = 1 + ε.

Theorem 18.11 (Bernstein Inequality for BS Random Variables). Let X = BS(q) be a BS random
variable with E [X] = q and Var [X] = σ2. Then ∀λ > 0 we have

P [X ≤ q− λ] ≤ exp
(
− λ2

2(σ2 + λ/3)

)
.

Theorem 18.12 (Multiplicative Chernoff-Hoeffding Bound for BS Random Variables). Let X =
BS(q) be a Bernoulli-Sum random variable. Then, for any 0 < ε < 1 and q′ ≤ q,

P
[
X < (1− ε)q′

]
≤ e−

ε2q′
2 ,

and for any ε > 0, q′ ≥ q,

P
[
X > (1 + ε)q′

]
≤ e−

ε2q′
2+ε .

222

18.3 Warm-up: a Simple Algorithm with a 1 + O
(√ ln k

k
)
-Approximation Ratio.

We first explain a simple algorithm (Algorithm 7) that has a slightly weaker 1 + O
(√ ln k

k

)
-

approximation ratio. We defer our main algorithm (Algorithm 8) and the proof of our main result
(Theorem 18.2) to Section 18.4.

Algorithm 7 An Approximation Algorithm for k-ECSM

1: Let x0 be an optimum solution of (79) extended to the graph G0 as described above.
2: Find weights λ : E0 → R≥0 such that for any e ∈ E0, Pµλ

[e] ≤ 2
k x0

e (1 + 2−n). . By ??
3: Sample k/2 spanning trees T1, · · · , Tk/2 ∼ µλ (in G0) independently and let T∗ ← T1] · · ·]

Tk/2.
4: Let B be the disjoint union of an additional α

√
k/2− 158 spanning trees sampled from µλ. .

α = Θ(
√

ln k) is a parameter we choose later.
5: for i ∈ [k

2] and e ∈ Ti do
6: if δ(STi(e))T∗ < k− α

√
k/2− 1 and (u0, v0) /∈ δ(STi(e)) then

7: F ← F] {e}.
8: end if
9: end for

10: Return T∗] B] F.

In the first step of Algorithm 7, we solve (79) on the (slightly) extended graph G0. Let x0 to be
the optimal solution. By Corollary 18.7, (2/k)x0 is in the spanning tree polytope. Then in line 2,
we find the λ-uniform spanning tree distribution µλ where each edge has marginal probability
(2/k)x0

e (ignoring the 2−n relative errors). This step is guaranteed to be done in polynomial time
by ??.

In line 3, we independently sample k/2 spanning trees59 T1, . . . , Tk/2 from µλ, and let T∗ =
T1] · · ·] Tk/2 to be the (multi-set) union of the samples. It follows that T∗ satisfies many desirable
properties of the λ-uniform spanning tree distribution:

i) T∗ has the same expectation as the LP solution x0, since the marginal probability of each
edge is exactly x0(e);

ii) For any cut δ(S) in G, since δ(S)T∗ is distributed as a Bernoulli-sum random variable,
Chernoff-type inequalities apply and δ(S)T∗ is highly concentrated around its mean;

iii) Since T∗ is the union of k/2 trees, for all cuts we have δ(S)T∗ ≥ k/2. Moreover, if a cut δ(S)
is not a tree cut of any of the k/2 trees, then each of the k/2 trees must have at least 2 edges
crossing it. Therefore, the number of “bad” cuts of T∗, i.e. those with δ(S)T∗ < k, is at most
(n− 1)k/2 (with probability 1).

To fix the potentially O(nk) bad cuts, we divide them into two types: (i) Cuts S such that
δ(S)T∗ ≥ k− α

√
k/2− 1 and (ii) Cuts S where δ(S)T∗ < k− α

√
k/2− 1, for some α = Θ(

√
ln k).

We fix all cuts of type (i) by adding B = α
√

k/2− 1 additional spanning trees as in line 4 of the
algorithm (note one could alternatively add α

√
k/2− 1 copies of the minimum spanning tree as

59If k is odd, we sample dk/2e trees. The bound remains unchanged relative to the analysis we give below as the
potential cost of one extra tree is O(OPT/k).

223

in Karger’s algorithm). To fix cuts S of type (ii), we employ the following procedure: for any tree
Ti where δ(S)Ti = 1 and S is of type (ii), we add one extra copy of the unique edge of Ti in δ(S).
This procedure is in line 5 to line 9 of the algorithm. Let F be the set of edges added in this step;
then the output of our algorithm is T∗] B] F as in line 10.

Now we analyze Algorithm 7.

Theorem 18.13 (Approximation Ratio for Algorithm 7). Algorithm 7 outputs a (weighted) k-ECSM

with approximation factor (at most) 1 +
√

8 ln k
k .

We begin by showing that the output of Algorithm 7 is k-edge connected (in G) with probability
1.

Lemma 18.14 (k-Connectivity of the Output). For any α ≥ 0, the output of Algorithm 7, F] B] T∗ is
a k-edge connected subgraph of G.

Proof. Fix spanning trees T1, · · · , Tk/2 in G0 and a cut S where (u0, v0) 6∈ δ(S). We show that
δ(S)T∗]F]B ≥ k. If δ(S)T∗ ≥ k− α

√
k/2− 1, then since B has α

√
k/2− 1 copies of the minimum

spanning tree, δ(S)T∗]B ≥ k and we are done. Otherwise δ(S)T∗ < k− α
√

k/2− 1. Then, we know
that for any tree Ti, if δ(S)Ti = 1, since (u0, v0) 6∈ δ(S)Ti , F has one extra copy of the unique edge
of Ti in δ(S). Therefore, including those cases where an extra copy of the edge e is added, each Ti
has at least two edges in δ(S), so δ(S)T∗]F ≥ 2 · k

2 ≥ k as desired since there are k
2 spanning trees

Ti.

To bound the expected cost of our rounded solution, we use the concentration property of
λ-uniform trees on edges of T∗ to show the probability that any fixed cut δ(s) is in type (ii), i.e.
δ(S) < k− α

√
k/2− 1, is exponentially small in α, i.e. ≤ e−α2/2, even if we condition on δ(S)Ti = 1

for a single tree Ti.
In our algorithm we sample k/2 trees T1, . . . , Tk/2. The following definition will be useful

in this section as well as in Section 18.4. Note it is important to separate the case in which
(u0, v0) ∈ δ(S) for a cut S because in this event, x0(δ(S)) may be as small as k/2, in which case
our analysis is not valid. However, since the (u0, v0) edge has cost 0, we need not worry about
such cuts since they can be trivially satisfied by adding many copies of this edge.

Definition 18.15 (E i
e). For a tree Ti sampled in Algorithm 7 and an edge e, we define E i

e to be the event
that e ∈ Ti ∧ (u0, v0) /∈ δ(STi(e)).

Lemma 18.16. For any 0 ≤ α ≤
√

k, 1 ≤ i ≤ k/2, and any e ∈ E,

P
[
δ(STi(e))T∗ ≤ k− α

√
k/2− 1 | E i

e

]
≤ e−α2/2.

where the randomness is over spanning trees T1, · · · , Ti−1, Ti+1, · · · , Tk/2 independently sampled from µλ.

Proof. Condition on tree Ti and the event E i
e. By Corollary 2.18, for any 1 ≤ j ≤ k/2 such that j 6= i,

δ(STi(e))Tj is a BS(E
[
δ(STi(e))Tj

]
) random variable, with E

[
δ(STi(e))Tj

]
= 2

k x(δ(STi(e))) ≥ 2.
Also, by definition, δ(STi(e))Ti = 1 (with probability 1). Since T1, · · · , Tk/2 are independently
chosen, by Corollary 2.18 the random variable δ(STi(e))T∗ is distributed as BS(q) for q ≥ k− 1.

224

Since each Tj has at least one edge in δ(STi(e)), δ(STi(e))T∗ ≥ k/2 with probability 1. So, by
Theorem 18.12, with q′ = k− 1− k/2, when 0 ≤ α ≤

√
k/2− 1,

P
[
δ(STi(e))T∗ < k− α

√
k/2− 1 | E i

e

]
= P

[
δ(STi(e))T∗ − k/2 < k/2− α

√
k/2− 1 | E i

e

]
≤ e−

(α/
√

k)2(k/2−1)
2 = e−α2/2.

Averaging over all realizations of Ti satisfying the required conditions proves the lemma.

Proof of Theorem 18.13. Let x be an optimum solution of LP (79). Since the output of the algorithm

is always k-edge connected we just need to show E [c(F ∪ T∗ ∪ B)] ≤
(

1 +
√

8 ln k
k

)
c(x). By

linearity of expectation,

E [c(T∗)] = ∑
i∈[k

2]

E [c(Ti)] =
k
2 ∑

e∈E
c(e)Pµλ

[e] =
k
2 ∑

e∈E
c(e) · 2

k
· xe = c(x),

where for simplicity we ignored the 1 + 2−n loss in the marginals. On the other hand, since by
Corollary 18.7, 2x

k is in the spanning tree polytope of G0, c(B) ≤ 2c(x)
k · α

√
k/2− 1 ≤ αc(x)√

k/2
. It

remains to bound the expected cost of F. By Lemma 18.16,

E [c(F)] = ∑
e∈E

c(e)
k/2

∑
i=1

P
[
E i

e

]
P
[
δ(STi(e))T∗ < k− α

√
k/2− 1 | E i

e

]
≤ ∑

e∈E
c(e)xee−α2/2 ≤ e−α2/2c(x).

Putting these together we get, E [c(T∗ ∪ B ∪ F)] ≤ (1 + α/
√

k/2 + e−α2/2)c(x). Setting α =√
ln
(

k
2

)
finishes the proof.

18.4 Improved Algorithm and Proof of Main Theorem

We now introduce our main algorithm that has an approximation ratio of 1 + O(1√
k
)). Let x0 be

an optimal solution of LP (79) extended to G0 as above. Our algorithm is given in Algorithm 8.
Note for convenience we drop the ceiling in the expression k

2 + α
√

k in all that follows.

Theorem 18.2 (Improved Approximation for k-ECSM). There is a polynomial time randomized
algorithm for (weighted) k-ECSM with approximation factor (at most) 1 + 5.06√

k
.

We remark that we may assume k ≥ 100 without loss of generality because for smaller values
of k our guarantee is worse than Christofides’ algorithm.

Lemma 18.17 (k-Edge Connectivity of the Output). The output of Algorithm 8, F] T∗ is a k-edge
connected subgraph of G.

225

Algorithm 8 Algorithm for k-ECSM with Approximation Ratio 1 + O(1√
k
))

1: Let x0 be an optimum solution of (79) extended to the graph G0 as described above.
2: Find weights λ : E0 → R≥0 such that for any e ∈ E0, Pµλ

[e] ≤ 2
k · x0

e · (1 + 2−n).
3: Initialize F ← ∅.
4: Sample k/2 + α

√
k spanning trees T1, · · · , Tk/2+α

√
k ∼ µλ (in G0) independently and let

T∗ ← T1] · · ·] Tk/2+α
√

k.
5: Let S ← {STi(e) : i ∈ [k

2 + α
√

k], e ∈ Ti, (u0, v0) 6∈ δ(S)}. . S is the set of one-cuts (see
Definition 18.6) of Ti ∈ T∗.

6: for S ∈ S do
7: P(S) :=]k/2+α

√
k

i=1 {e ∈ Ti : STi(e) = S} . P(S) is the multi-set of e ∈ T∗ with one-cut S.
8: if δ(S)T∗ < k then
9: for j = 1 to k− δ(S)T∗ do

10: Sample an edge from P(S) uniformly at random and add into F.
11: end for
12: end if
13: end for
14: Return T∗] F.

Proof. First, note that for every set S ⊂ V in G, the corresponding cut in G0 has u0, v0 on the same
side. Therefore, we may restrict our attention to sets S ⊂ V such that u0, v0 6∈ S. However for such
an S, line 9 of the above algorithm ensures δ(S)T∗]F ≥ k, which completes the claim.

Lemma 18.18 (Variance Upper Bound of Cuts in a Random Spanning Tree). Let µλ be the max-
entropy distribution in Algorithm 8. For any 0 ≤ p ≤ 1, any ε ≥ 0 and any S ⊆ V such that
PT∼µλ

[δ(S)T = 1] = p and ET∼µλ
[δ(S)T] = 2 + ε, we have VarT∼µλ

[δ(S)T] ≤ 4p + 3ε.

Proof. By Corollary 2.18, δ(S)T is distributed as a BS random variable with ET∼µλ
[δ(S)T] = 2 + ε

and PT∼µλ
[δ(S)T ≥ 1] = 1. Hence we can write δ(S)T = 1 + X1 + · · · + Xm for some integer

m ≥ 2 60, where X1, · · · , Xm are independent Bernoulli random variables with success probabilities
b1 ≥ b2 ≥ · · · ≥ bm. Then from the assumption, ∑m

i=1 bi = 1 + ε. By Fact 18.8, we have

VarT∼µλ
[δ(S)T] = Var

[
m

∑
i=1

Xi

]
=

m

∑
i=1

bi(1− bi).

If 4p ≥ 1− 2ε, then we have

VarT∼µλ
[δ(S)T] =

m

∑
i=1

bi(1− bi) ≤
m

∑
i=1

bi = 1 + ε ≤ 4p + 3ε.

Otherwise, 4p < 1− 2ε. Notice that

p = Pr[∀i, Xi = 0] = (1− b1)
m

∏
i=2

(1− bi) ≥ (1− b1)(1−
m

∑
i=2

bi) = (1− b1) · (b1 − ε).

60We remark that the case for m = 1 is trivial.

226

where the fourth step comes from Weierstrass Inequality, and the last step comes from ∑m
i=1 bi =

1 + ε. This gives b1 ≤ 1
2 (1 + ε −

√
(1− ε)2 − 4p) or b1 ≥ 1

2 (1 + ε +
√
(1− ε)2 − 4p). Since

4p < 1− 2ε ≤ (1− ε)2, the solutions for b1 are well-defined. By Fact 18.10 we have b1 ≥ 1
2 (1 + ε),

so b1 ≥ 1
2 (1 + ε +

√
(1− ε)2 − 4p) ≥ 1− 2p− ε

2 (using the square root inequality
√

1− x ≥ 1− x
for 0 ≤ x ≤ 1).

Therefore, VarT∼µλ
[δ(S)T] is upper-bounded by:

VarT∼µλ
[δ(S)T] =

m

∑
i=1

bi(1− bi) ≤ b1(1− b1) +
m

∑
i=2

bi

= b1(1− b1) + (1 + ε− b1)

= 1 + ε− b2
1 ≤ 1 + ε− (1− 2p− ε

2
)2 ≤ 4p + 3ε.

As mentioned in Section 18.1, the following lemma is the key to analyzing Algorithm 8.
Roughly speaking, it says that the probability a cut is “bad," i.e. has fewer than k− α

√
k edges in

T∗, is exponentially small in the probability that δ(S)T = 1 for T ∼ µλ.

Lemma 18.19 (Expected Augmentation of a Cut). For any k ≥ 100 and integer α ≥ 1 let µλ be the
max-entropy distribution and T∗ be the union of k

2 + α
√

k random spanning trees sampled from µλ in
Algorithm 8. Then for any S ⊆ V,

ET∗
[
(k− δ(S)T∗)

+
]
≤ 1.8

√
k exp

(
−0.6α

max{k−1/2, P [δ(S)T = 1]}

)
Proof. We can write the expectation as

ET∗
[
(k− δ(S)T∗)

+
]
≤

k

∑
i=1

PT∗ [δ(S)T∗ ≤ k− i]

≤
√

k

∑
i=0

√
k

∑
j=1

PT∗
[
δ(S)T∗ ≤ k− (i ·

√
k + j)

]

≤
√

k

∑
i=2α

√
k ·PT∗

[
δ(S)T∗ ≤ k− (i− 2α)

√
k
]

, (80)

where we reindex for convenience in the following argument. Define β ≥ 0 such that x(δ(S)) =
k + β

√
k, or equivalently that E [δ(S)T] = 2(1 + β/

√
k). By Lemma 18.18, we have

VarT∗ [δ(S)T∗] ≤ (4p + 6β/
√

k)(k/2 + α
√

k)

where p = P [δ(S)T = 1]. Also, notice,

E [δ(S)T∗] ≥ (k/2 + α
√

k)E [δ(S)T] = k + (2α + β)
√

k + 2αβ.

Therefore, by Bernstein’s inequality, for i ≥ 2α, we have that PT∗
[
δ(S)T∗ ≤ k− (i− 2α)

√
k
]

is
equal to

PT∗
[
δ(S)T∗ ≤ E [δ(S)T∗]− (i + β)

√
k− 2αβ

]
227

Applying Theorem 18.11, this is at most

exp

(
− (i + β)2k + 4αβ(i + β)

√
k

2(2kp + 3β
√

k + 6αβ + 4αp
√

k + (i + β)
√

k/3 + 2αβ/3)

)

Now, note that using that β ≥ 0 and the mediant inequality (namely, that for A, B, C, D ≥ 0 we
have A+B

C+D ≥ min{A/C, B/D}), we can upper bound the term inside the exp by

−min

{
i2k

4kp + 8αp
√

k + 2i
√

k/3
,

2ik + 4αi
√

k
40α/3 + 20

√
k/3

}

Therefore, we can bound this probability by

≤ exp

(
− 1

max{k−1/2, p} min

{
i2

4 + 8α/
√

k + 2i/3
,

2i + 4αi/
√

k
20/3 + 40α/3

√
k

})

≤
i≥2α,α≥1,k≥100

exp
(

−0.3i
max{k−1/2, p}

)
Therefore,

ET∗
[
(k− δ(S)T∗)

+
]
≤
√

k

√
k

∑
i=2α

exp
(

−0.3i
max{k−1/2, p}

)
≤

p,k−1/2≤1/e

√
k exp

(
−0.6α

max{k−1/2, p}

) ∞

∑
i=0

e−0.3ei

≤ 1.8
√

k exp
(

−0.6α

max{k−1/2, p}

)

Given the above lemma, the expected cost of F follows from a relatively straightforward
calculation:

Lemma 18.20 (Expected Payment of an Edge for Augmentation). For any k ≥ 100 and integer α ≥ 1,
let T∗ be the union of k

2 + α
√

k random spanning trees T1, · · · , Tk/2+α
√

k in Algorithm 8. For any solution
x to LP (79),

ET∗ [c(F)] ≤
(

1 +
2α√

k

)(
7.2e√

k
e−0.6αe + e−

√
k/2
)

c(x)

where F is as defined in Algorithm 8.

Proof. Fix any i ∈ [k
2 + α

√
k], condition on Ti, fix an edge e ∈ Ti such that u0, v0 /∈ STi(e). (If

v0 ∈ STi(e), then this is not a cut in the original graph G, so there is nothing to prove). Let
S = STi(e) and let p = PT∼µλ

[δ(S)T = 1]. Recall P(S) :=]k/2+α
√

k
j=1 { f ∈ Tj : STj(f) = S} denotes

the multi-set of edges f ∈ Tj for all 1 ≤ j ≤ k/2 + α
√

k, such that STj(f) = S.

228

Let XTi ,e be the number of times that edge e from tree Ti is sampled in Line 4, line 10. We will
prove that, letting E i

e denote the event e ∈ Ti, (u0, v0) /∈ δ(STi(e)),

E [XTi ,e | Ee] ≤
7.2e√

k
e−0.6αe + e−

√
k/2 (81)

Then, to prove the lemma,

E [c(F)] = ∑
e∈E

c(e)
k/2+α

√
k

∑
i=1

P
[
E i

e

]
·E
[

XTi ,e | E
i
e

]
≤

(81)
∑
e∈E

c(e)
k/2+α

√
k

∑
i=1

P
[
E i

e

] (7.2e√
k

e−0.6αe + e−
√

k/2
)

≤ ∑
e∈E

c(e)
(

k
2
+ α
√

k
)
· 2

k
xe ·
(

7.2e√
k

e−0.6αe + e−
√

k/2
)

=

(
1 +

2α√
k

)(
7.2e√

k
e−0.6αe + e−

√
k/2
)

c(x)

In the rest of the proof we show (81). First, observe that

E [XTi ,e | Ti, e ∈ Ti, δ(S)T∗ , |P(S)|] =
(k− δ(S)T∗)

+

|P(S)| .

So, it is enough to upper bound the expected value of the RHS conditioned on Ti, e ∈ Ti. Let T∗−i =
T∗ r Ti and P(S)−i := P(S)r Ti and note that |P(S)| = |P(S)−i|+ 1 and δ(S)T∗ = δ(S)T∗−i

+ 1.

Define Ye,Ti =
(k−δ(S)T∗−i

+1)+

|P(S)−i |+1 . Note that E [XTi ,e|Ti, e ∈ Ti] = E [Ye,Ti]. We drop the subscript of Y
for readability.

First, assume p ≥ 2/k. Then, we write,

E [Y] = P

[
|P(S)−i| ≥

pk
4

]
·E
[

Y | |P(S)−i| ≥
pk
4

]
+ P

[
|P(S)−i| <

pk
4

]
·E
[

Y | |P(S)−i| <
pk
4

] (82)

We upper bound each term in the RHS separately.

P

[
|P(S)−i| ≥

pk
4

]
E

[
Y | |P(S)−i| ≥

pk
4

]
≤ 4

pk
P

[
|P(S)−i| ≥

pk
4

]
E

[
(k− δ(S)T∗−i

)+ | |P(S)−i| ≥
pk
4

]
≤ 4

pk
E
[
(k− δ(S)T∗−i

)+
]
≤ 7.2

p
√

k
exp

(
−0.6α

max{p, k−1/2}

)
Now, if p > k−1/2, the RHS is maximized when p = 1/e since 1

p e−c/p is an increasing function of
p for 0 ≤ p ≤ 1/e; note p ≤ 1/e (by Corollary 18.9) and α ≥ 1. We obtain a bound of 7.2e√

k
e−0.6αe.

229

Otherwise, the maximum is achieved by k−1/2. Using p ≥ 2/k, the above expression is at most
3.6
√

ke−0.6αk1/2
. So, the first term is at most 7.2e√

k
e−0.6αe for k ≥ 100.

Next, we bound the second term of (82). First notice Y ≤ 1 with probability 1; this is because
if there are exactly ` trees which have (S, S) as a one-cut then, δ(S)T∗ ≥ k + 2α

√
k− ` whereas

|P(S)| = `. Furthermore, Y 6= 0 only when |P(S)−i| ≥ 2α
√

k ≥ 2
√

k (for α ≥ 1). Therefore,

P

[
|P(S)−i| <

pk
4

]
·E
[

Y | |P(S)−i| <
pk
4

]
≤ P

[
|P(S)−i| <

pk
4

]
P

[
|P(S)−i| ≥ 2

√
k | |P(S)−i| <

pk
4

]
= P

[
2
√

k ≤ |P(S)−i| ≤
pk
4

]
≤ e−pk/16 ≤ e−

√
k/2

To see the last two inequalities notice we must have p ≥ 8k−1/2 or this event cannot occur.
Therefore, since E [|P(S)−i|] = p(k

2 + α
√

k− 1) the inequality follows by an application of the
Chernoff bound (Theorem 18.12).

Putting these two terms together, if p > 2/k,

E [XTi ,e | Ti, e ∈ Ti] = E [Y] ≤ 7.2e√
k

e−0.6αe + e−
√

k/2

Otherwise, suppose p ≤ 2/k. Then since E [|P(S)|−i] ≤ 1 + 2αk−1/2, by Theorem 18.12 (using
α ≥ 1),

P
[
|P(S)−i| > (1 + 2α

√
k)(1 + 2αk−1/2)

]
≤ e−

4α2k(1+2αk−1/2)
2+2α

√
k ≤

k≥10,α≥1
e−
√

k.

Since Y ≤ 1 as observed above, we obtain

E [Y] ≤ P
[
δ(S)T∗−i

≤ k
]
≤ P

[
|P(S)|−i ≥ 2α

√
k
]
≤ e−

√
k

which gives (81). Therefore we can bound E [Y] by 7.2e√
k

e−0.6αe + e−
√

k/2 for all values of p.

Proof of Theorem 18.2. Let x be the optimum solution of (79). From Lemma 18.17, the output of
Algorithm 8 is always k-edge connected. Thus it suffices to show that E [c(T∗] F)] ≤ (1+ 5.06√

k
)c(x).

By linearity of expectation,

E [c(T∗)] = ∑
i∈[k

2+α
√

k]

E [c(Ti)] = (
k
2
+ α
√

k) ∑
e∈E

c(e)Pµλ
[e]

= (
k
2
+ α
√

k) ∑
e∈E

c(e) · 2
k
· xe = (1 +

2α√
k
)c(x),

where for simplicity we ignored the 1 + 2−n loss in the marginals.
Therefore, by Lemma 18.20, E [c(T∗] F)] is at most

≤ c(x) ·
(

1 +
2α√

k
+

(
1 +

2α√
k

)(
7.2e√

k
e−0.6αe + e−

√
k/2
))
≤ c(x) ·

(
1 +

5.06√
k

)
.

as desired, where in the last inequality we use k ≥ 100 and set α = 2.

230

18.5 Conclusion

We remark that the approximation factor 1 + O(1/
√

k) is tight for any algorithm that starts by
sampling O(k) spanning trees independently from the max-entropy distribution and then fixes
the union by adding edges. For a tight example, consider a complete graph with a unit metric on
the edges and let x be uniform across all edges. In such a case, the max-entropy distribution µλ

will be the uniform distribution over all spanning trees of a complete graph. A simple analysis
shows that every vertex will have degree k−

√
k in T∗ with constant probability. Therefore, to fix

T∗ we need to add at least Ω(n
√

k) edges.
It still remains open if the integrality gap of the LP is indeed 1 + O(1/k) or if there is an

approximation algorithm with approximation factor 1 + O(1/k). It would also be interesting to
find the optimal constant for Algorithm 8. We remark that another open question from Pritchard is
whether it can be shown that it is NP-Hard to approximate k-ECSM within a factor of 1 + Ω(1/k).

231

19 Thin Trees for Laminar Families

19.1 Introduction

Let G = (V, E) be a connected undirected graph. Given any proper S ⊂ V, we use δ(S) to
denote the cut with shores S and V − S. A spanning tree T of G is called α-thin if the number
of edges of T crossing any given cut of G is at most an α fraction of the total number of edges:
|T ∩ δ(S)| ≤ α|δ(S)| for each S ⊆ V.

In 2004, Goddyn [God04] made the following conjecture: there exists a function f : Z+ → [0, 1]
with limk→∞ f (k)/k = 0 such that every k-edge-connected graph G has an f (k)-thin spanning tree.
This has become known as the thin tree conjecture, and it remains open despite substantial efforts.

A natural strengthening of the conjecture, which we will refer to as the strong thin tree conjecture
makes the same claim, but for f (k) = C/k for some constant C. This conjecture is found explicitly
in [Asa+17] and is the best that one could hope for up to constant factors; clearly no k-edge-
connected graph has an α-thin tree for any α < 1/k. In a different direction, there is also an
algorithmic question one can ask: if a thin tree always exists, can we find one in polynomial time?

The thin tree conjecture has some nice implications. It implies the weak 3-flow conjecture of
Jaeger [Jae84]. This has since been resolved, by Thomassen [Tho12], however this would provide
an alternate proof. Another application lies in the asymmetric traveling salesman problem (ATSP).
As shown by Asadpour, Goemans, Madry, Oveis Gharan and Saberi [Asa+17; OS11], if the
constructive form of the strong thin tree conjecture is true, it would yield an O(1)-approximation
algorithm to ATSP. This has since been resolved by Svensson, Tarnawski and Végh [STV20] using
completely different methods. Nonetheless, a new algorithm stemming from thin trees would be
of significant interest. Furthermore, a constant factor approximation algorithm to the bottleneck
version of the asymmetric traveling salesman problem, where the goal is to minimize the longest
edge in the tour rather than the sum, is not known. This would follow from the constructive form
of the thin tree conjecture [AKS21].

Although the (strong) thin tree conjecture would no longer imply breakthroughs to these other
problems, it remains a natural question in its own right. Turning things around, the positive
resolution of these implications can perhaps be viewed as some weak evidence for the conjecture.

For the following discussion, it is useful to observe that the strong thin tree conjecture has
the following equivalent formulation. Suppose we are given a graph G as well as a point x in
the spanning tree polytope (that is, a convex combination of characteristic vectors of edge sets of
spanning trees of G). We say that a spanning tree T is α-thin with respect to x if |T∩ δ(S)| ≤ αx(δ(S))
for every S ⊆ V. The conjecture is that there is a universal constant α such that an α-thin tree
with respect to x always exists, for any instance and point in the spanning tree polytope. The
equivalence follows from the observation that the point x′ defined by x′e = 2/k for all e ∈ E is in
the dominant of the spanning tree polytope for every k-edge-connected graph G, and so there is a
point x in the spanning tree polytope with xe ≤ 2/k for all e. An α-thin tree with respect to x is
then a (2α/k)-thin tree for the graph.

Progress on the thin tree conjecture. The conjecture is known to hold for some graph classes,
most notably planar and bounded genus graphs [OS11]. For general graphs, the best known result
is that there always exists an O(polyloglog n

k)-thin tree in any k-connected graph [AO15]. This is
non-constructive; constructively, the best known is only O(log n

log log n·k)-thinness.

232

One difficulty with the constructive form of the conjecture is that it’s not even clear how to
check if a given tree T is α-thin, or even O(α)-thin. Nor do we know of a polynomially checkable
certificate that can certify thinness. The problem, of course, is that there are an exponential number
of cuts to be concerned with. An easier question presents itself: what if we consider an explicitly
given family of cuts, and require the thinness condition |T ∩ δ(S)| ≤ α|δ(S)| only for these specific
cuts? And one step further: what if we consider a family of cuts with some specific structure?

Explicitly given cut collections. Related questions have been considered from an algorithmic
perspective already, independently from the thin tree conjecture. The first class considered was
that of singleton cuts. Suppose we are given an integer-valued degree bound bv for each node v of
the graph G. The degree bounded spanning tree problem asks for a spanning tree satisfying these
bounds, if such a spanning tree exists. This problem is easily seen to be NP-hard, since it captures
the question of finding a Hamiltonian path with a specified start and end node. So it is necessary
to allow for some relaxation of the degree bounds. Fürer and Raghavachari [FR92] showed that
relaxing the degree bounds by 1 additively suffices. That is, they showed how to efficiently find a
spanning tree T satisfying |T ∩ δ(v)| ≤ bv + 1 for all v ∈ V, if there exists a spanning tree T∗ that
satisfies the degree bounds exactly.

One can also consider a minimum cost version of the question. Now each edge e ∈ E has a
nonnegative cost c(e), and the goal is to find a cheapest spanning tree satisfying the degree bounds
(again, assuming one exists). Goemans [Goe06] showed how to efficiently find a spanning tree T
which violates the degree bounds by at most an additive 2, and satisfies c(T) ≤ c(T∗), where T∗ is
a minimum cost spanning tree that satisfies all the degree bounds exactly. Singh and Lau [SL15]
then showed how to improve the degree violation to just 1, while maintaining the same bound on
the cost. They use the method of iterative relaxation; we use iterative relaxation as well, so we will
discuss this further in the sequel.

That ends the story for degree bounds; what about other families of constraints? So we have a
given family F of subsets, and a “degree bound” bS for each S ∈ F . Olver and Zenklusen [OZ18]
showed how to obtain, constructively, a constant multiplicative violation of all cut constraints if
F is a chain; that is, F = {S1, S2, . . . , St} with S1 (S2 (· · · (St. Linhares and Swamy [LS18]
showed that a minimum cost version of this result also holds, if one allows a constant factor
approximation in the cost as well as in the cut constraints.

All of these results compare to the natural fractional relaxation. That is, they do not require that
there is an actual tree satisfying the degree bounds, merely that there is a point in the spanning
tree polytope which does. As such, we can view them in the context of thin trees. They show
that weaker versions of the strong thin tree conjecture hold, where the cut bounds are enforced
only on singleton cuts, or only on a chain of cuts. We will say that the strong thin tree conjecture
holds for a given family F if given any x in the spanning tree polytope, there is a spanning tree T
satisfying |T ∩ δ(S)| ≤ O(1)x(δ(S)) for all S ∈ F .

Our results. Given that the strong thin tree conjecture holds for the family of singletons, and for
a chain family, a very natural question presents itself. Suppose that L is an arbitrary laminar family
of subsets of V; that is, for every S, T ∈ L, S ∩ T is either equal to ∅, S, or T. Does the strong thin
tree conjecture hold for L?

We show that this is indeed true. Further, our proof is constructive, and allows for costs. More
precisely, given arbitrary nonnegative edge costs, our returned tree has cost within a constant

233

factor of the cost of the starting fractional solution x.
We briefly sketch our high-level approach, leaving a full overview until Section 19.6. As

already mentioned, iterative relaxation has been applied very successfully to the degree-bounded
spanning tree problem, so it is a natural candidate approach. However, there is an immediate
obstruction. Iterative relaxation for degree-bounded spanning tree is fairly insensitive to the use
of the graphic matroid; it works just as well (essentially without changes) if the graphic matroid is
replaced by any other matroid.61 However, the matroid generalization of the laminar-constrained
spanning tree problem does not have a constant integrality gap, and even obtaining a constant
factor multiplicative violation is hard. This was shown by Olver and Zenklusen [OZ18] already for
the chain case. So any successful approach will need to exploit the graphic matroid specifically; it
is not clear how to do this directly with iterative relaxation.

We manage to bypass this obstruction and make use of iterative relaxation. We do this by first
reducing to a special class of instances that we call L-aligned, where the fractional solution x has
the property that for every set S in the laminar family of constraints L, the restriction of x to S is
a point in the base polytope of the graphic matroid for the graph restricted to S. Our reduction
crucially exploits properties of spanning trees, and does not apply to general matroids. We then
give an iterative relaxation proof of this L-aligned case. This part does generalize to arbitrary
matroids.

Other related work. For laminar families, the most directly comparable work is from 2013 by
Bansal, Khandekar, Könemann, Nagarajan, and Peis. They give an additive O(log n) approximation
for the laminar constrained spanning tree problem [Ban+13], improving upon an earlier more
general result which given a family of m constraints obtains a violation of (1 + ε)b + O(1

ε log m)
for each bound b [CVZ10]. As previously mentioned, Olver and Zenklusen [OZ18] demonstrated
a constant factor multiplicative violation for a family of cuts given by a chain. These three results
are with respect to the fractional relaxation, and thus also solve the related thin tree problems.
Nägele and Zenklusen [NZ19] demonstrated that in quasi-polynomial time the violation for the
chain-constrained spanning tree problem can be improved to a (1 + ε) multiplicative factor, for
any ε > 0. They further generalize this slightly towards laminar families, by allowing for a family
of cuts that form a laminar family of constant width, meaning that the maximum number of
disjoint sets in the laminar family is bounded by a constant. (Put differently, the number of leaves
in the tree representing the laminar family is constant). However, this result is not based on the
LP relaxation, and so does not imply anything for the strong thin tree conjecture for chains or
constant-width laminar families.

This problem has also been studied for general matroids. Király, Lau and Singh [KLS12]
showed that given a matroidM and a collection of upper bound constraints, one can achieve an
additive violation of ∆− 1 for all constraints, so long as every element of the matroid is in at most
∆ constraints. They achieve a similar guarantee if lower bounds (or both lower and upper bounds)
are present. Similar results and further generalizations can be found in [CVZ10; Ban+13].

Pritchard [Pri11] conjectured that every k-edge-connected graph contains a spanning tree
after whose deletion the graph remains k− f (k) connected, where f (k) is any function for which
limk→∞ f (k)/k = 0. This can easily be seen as a weakening of the thin tree conjecture. The strong

61With the notable exception of [LS18] which solves the bounded degree spanning problem with an additive error of
1 on both lower and upper bounds. When translated to the general matroid setting, the additive error is only known to
be 2 [KLS12].

234

version of this conjecture (which is a consequence of the strong thin tree conjecture) is that f (k)
is an absolute constant. Currently the best known bound for this problem (to the best of our
knowledge) is f (k) = b k

2c − 1 by the Nash-Williams theorem [NW61].
There is a natural spectral strengthening of thin trees. Let LH denote the Laplacian of a graph

H, and let � denote the Löwner ordering on symmetric matrices62. We say T is α-spectrally-thin
if LT � αLG; that is, if zT LTz ≤ αzT LGz for any vector z ∈ RV . This is a stronger condition than
α-thinness, as can be seen by choosing z to be the characteristic vector of a set S ⊆ V. A big
advantage of spectral thinness is that it can be efficiently checked. A natural analogue of the
strong thin tree conjecture, where connectivity is replaced by the minimum effective conductance,
can be derived [HO14] as a consequence of results on the the Kadison-Singer problem [MSS13].
This demonstrates that the strong thin tree conjecture holds for edge transitive graphs (or any
graph where the minimum edge conductance is within a constant factor of the connectivity).
Unfortunately, spectral thinness is too strong a property to directly aid in proving the (strong
or weak) thin tree conjecture in general; there are instances where no o(

√
n/k)-spectrally thin

tree exists [HO14; Goe12]. Nonetheless, spectral approaches have been fruitful. The current best
result by Anari and Oveis Gharan [AO15] mentioned previously, that O(log log n/k)-thin trees
exist, makes use of spectral methods in a sophisticated way. Our approach on the other hand is
completely combinatorial; we will not make use of any spectral techniques.

19.2 Preliminaries and Results

19.3 Notation

Given a graph G = (V, E) and a subset S ⊆ V, let δ(S) = {{u, v} : |{u, v} ∩ S| = 1} denote the
set of edges with exactly one endpoint in S. Let G[S] denote the induced graph of G whose vertex
set is S, and let E(S) ⊆ E denote the set of edges in G[S]. For P = {P1, . . . , Pk} a partition of a
subset of the vertices of G, we let δ(P) denote the set of edges with endpoints in two different
sets Pi. If the choice of G is not clear, we may write, e.g., δG(S) or δG(P).

For any edge weight function x : E→ R, we write x(F) := ∑e∈F x(e). For F ⊆ E, we write x|F
to denote x restricted to F.

19.4 Polyhedral Background

Edmonds [Edm70] gave the following description for the convex hull of the spanning trees of any
graph G = (V, E), known as the spanning tree polytope.

Pst(G) =
{

x ∈ RE
≥0 : x(E) = |V| − 1, x(E(S)) ≤ |S| − 1 ∀S ⊆ V

}
. (83)

The following is the natural LP relaxation for the problem given in Definition 19.2.

min ∑
e∈E

xece

s.t., x(δ(S)) ≤ bS ∀S ∈ L,
x ∈ Pst(G)

(84)

62That is, A � B if B− A is positive semidefinite.

235

For two x, x′ ∈ RE, we say x dominates x′ if x− x′ ≥ 0. Let P↑st(G) denote the dominant of the
spanning tree polytope of G, that is, the set of points in x ∈ RE which dominate some point in
Pst(G). P↑st(G) has the following characterization:

P↑st(G) =
{

x ∈ RE
≥0 : x(δ(P)) ≥ |P| − 1 ∀ partitions P of V

}
. (85)

It is well-known that P↑st(G) can be separated efficiently.

Theorem 19.1 ([Bar92]). Given a graph G = (V, E) and a point x ∈ RE
≥0, A partition P of G minimizing

x(δ(P))− (|P| − 1) can be found in polynomial time.

SupposeM = (E, I) is a matroid with groundset E and independent sets I . The matroid base
polytope ofM, which we will denote PM, is the convex hull of the incidence vectors of all bases of
M. The rank ofM, denoted rankM, is the cardinality of the largest independent set ofM. Given
F ⊆ E:

1. The deletion of F from M is the matroid on the groundset Mr F with independent sets
{I r F : I ∈ I}. If F = {e}, i.e. it is a singleton, we will use the shorthand M− e.

2. The restriction ofM to F, denotedM|F, is the matroid on groundset F with independent
sets {I ∩ F : I ∈ I}. This is equivalent to the deletion of E− F.

3. The contraction of M by F, denoted M/F, is the matroid on the groundset E − F with
independent sets {I ⊆ E− F : I ∪ B ∈ I}, where B is an arbitrary basis ofM|F (equivalently,
an independent set of M contained in F of largest cardinality). If F = {e}, i.e. it is a
singleton, we will use the shorthandM/e.

19.5 Our Results

We recall that a family of sets L ⊆ 2V is laminar if for all S, T ∈ L, S ∩ T is either equal to ∅, S, or
T.

Definition 19.2 (Laminar constrained spanning tree problem). Let G = (V, E) be a connected graph,
and L a laminar family on V, with an associated degree bound bS ∈ Z≥0 for each S ∈ L. The goal is to
find efficiently a spanning tree T for which |T ∩ δ(S)| ≤ αbS for each S ∈ L, assuming that there does
exist a spanning tree T∗ satisfying |T∗ ∩ δ(S)| ≤ bS. In such a case, we say T is an α-approximate solution
to the laminar constraints. We assume for convenience that V ∈ L, though the associated constraint is of
course vacuous.

To solve the above problem, we first determine if LP (84) is feasible, which can be done in
polynomial time. If it is not, we may return “no” to the above problem since this would certify
that such a tree does not exist. Thus to obtain an α approximation for the problem above, it is
enough to obtain an α-thin tree with respect to a solution x of (84).

Definition 19.3 (Laminar α-thin tree for (G,L, x)). As input we get a graph G = (V, E), a laminar
family L over V, and a feasible LP solution x to LP (84). Our goal is to find a spanning tree T such that
|T ∩ δ(S)| ≤ αx(δ(S)) for all S ∈ L, i.e. a tree that is α thin with respect to x.

236

The main result of this paper is the following. We remark it also gives an O(1) approximation
in terms of the cost of the tree.

Theorem 19.4. Given an instance (G,L, x), we can in polynomial time find a spanning tree T such that:

i) c(T) ≤ (2 +
√

7)c(x) < 5c(x), and

ii) |T ∩ δ(S)| ≤ (2 +
√

7)2x(δ(S)) < 22x(δ(S)), i.e., it is a 22-thin tree for (G,L, x).

Our theorem can be generalized as follows, which can be used to reduce the cost of the tree
arbitrarily close to 2 (at the expense of incurring a larger multiplicative loss).

Theorem 19.5 (Main). Given an instance (G,L, x) and any η > 2, we can in polynomial time find a
spanning tree T such that:

i) c(T) ≤ ηc(x), and

ii) |T ∩ δ(S)| ≤ 1
1− 2

η

(2η + 3)x(δ(S)).

We will prove the latter theorem, since the previous theorem follows by setting η = 2 +
√

7.

19.6 Proof Overview

A key observation of this paper is the usefulness of the following definition.

Definition 19.6 (L-aligned). Given a graph G = (V, E) and a laminar family L ⊆ 2V we say a point
x ∈ Pst(G) is L-aligned if x|E(S) ∈ Pst(G[S]) for all S ∈ L.

Note that G[S] should be connected for each set S ∈ L, otherwise no point can be L-aligned.
In Section 19.7 and Section 19.8 we show the following two theorems which when combined

immediately give Theorem 19.5.

Theorem 19.7 (Laminar thin trees for L-aligned points). Given an instance (G,L, x) for which x is
L-aligned, we can find a tree T of cost at most c(x) in polynomial time for which

|T ∩ δ(S)| ≤ 2dx(δ(S))e+ 1 ≤ 2x(δ(S)) + 3

for all S ∈ L.

Theorem 19.8 (Reduction to L-aligned points). For any instance (G,L, x) and any η > 2, we can find
an instance (G,L′, x′) in polynomial time such that:

i) x′ is L′-aligned,

ii) x′ is dominated by ηx,

iii) If for a spanning tree T there are α, β ≥ 0 such that |T ∩ δ(S)| ≤ αx′(δ(S)) + β for all S ∈ L′, then
we have |T ∩ δ(S)| ≤ 1

1− 2
η

(ηα + β)x(δ(S)) for all S ∈ L.

237

S

P1 P2

< 1
η

Figure 74: An example of a set which is not η-well-connected (see Definition 19.9). In this case,
Algorithm 9 may replace S by P1 and P2 in L.

To obtain our main theorem, given an instance (G,L) we solve LP (84) to obtain an instance
(G,L, x). We then apply Theorem 19.8 to obtain a L-aligned instance (G,L′, x′). Finally, we apply
Theorem 19.7 to obtain our tree with the desired properties.

We remark that while Theorem 19.7 can be generalized to hold for any matroid over the
edges of a graph and any laminar family (see Section 19.8), Theorem 19.8 cannot be. Olver and
Zenklusen [OZ18] showed that there is a matroid and a laminar family of constraints (in fact, their
family is a chain, and their matroid simply a partition matroid) with no constant-thin basis, in
particular giving a lower bound of O(log n

log log n) on the multiplicative violation. Thus it is necessary
that one of these two pieces cannot be generalized to all matroids.

Theorem 19.8 is proved via a natural combinatorial procedure which iteratively replaces sets
in L that are far from meeting the criteria x|E(S) ∈ Pst(G[S]) with some partition of them. We
first consider the scaling ηx, and show that if η · x|E(S) ∈ P↑st(G[S]) for all S ∈ L, then there is
a point x′ dominated by ηx which is L-aligned. If not, we iteratively find a minimal cut S for
which η · x|E(S) /∈ P↑st(G[S]), and then find the partition P = {P1, . . . , Pk} of S which maximally
violates an inequality in P↑st(G[S]). We then delete S from the laminar family and add P1, . . . , Pk.
We show that η · x|E(Pi) ∈ P↑st(G[Pi]) for all i. Therefore, by applying this procedure we get closer
to obtaining an L-aligned point. To finish the proof, we show that this process allows us to still
effectively maintain (iii) of Theorem 19.8.

Theorem 19.7 (and its generalization to arbitrary matroids) is proved via an iterative relaxation
procedure. The criteria that x is L-aligned is, in some sense, exactly what is needed to make the
iterative relaxation procedure work.

19.7 Reduction to L-aligned Points

The following definition is key to our reduction to L-aligned points.

Definition 19.9 (Well-connected). Call a set S ⊆ V η-well-connected if η · x|E(S) ∈ P↑st(G[S]), i.e., if
ηx(δG[S](P))− (|P| − 1) ≥ 0 for all partitions P of S.

We will make us of the following simple fact, that allows us to contract η-well-connected
subsets of a given set when evaluating the well-connectedness of a given set S.

238

Lemma 19.10. Consider a set S ⊆ V, and suppose that S1, . . . , Sr are disjoint subsets of S that are all
η-well-connected. Let GS = (VS, ES) be the graph obtained from G[S] after contracting each of S1, . . . , Sr.
Then S is η-well-connected, i.e., η · x|E(S) ∈ P↑st(G[S]), if and only if η · x|ES

∈ P↑st(GS).

Proof. Let y = ηx|E(S).
First, if y ∈ P↑st(G[S]), then certainly y|ES

∈ P↑st(GS), since given any convex combination
of spanning trees of G[S] that dominates y, the same convex combination of the images of
these spanning trees upon contracting S1, . . . , Sr is a convex combination of connected spanning
subgraphs of GS with marginals y|ES

.
Conversely, suppose that y|ES

∈ P↑st(GS). If y|ES
= χ(T) for some spanning tree T of GS, and

each y|E(Si) = χ(Ti) for some spanning tree Ti of Si, then the claim is clear; T ∪ T1 ∪ · · · ∪ Tr is a
spanning tree of G[S]. But the claim clearly remains true upon taking convex combinations, and
moreover taking the dominant of any convex combination.

Algorithm 9 Reduction to a new laminar family
1: L′ ← ∅.
2: while L is nonempty do
3: Choose a minimal set S ∈ L.
4: Let GS be obtained from G[S] by contracting all the maximal sets in L′ contained in S.
5: Compute a partition P ′ of GS minimizing ηx(δGS(P ′))− (|P ′| − 1). Let P be the corre-

sponding partition of S obtained by uncontracting.
6: Delete S from L and add all parts of P to L′.
7: end while
8: Return L′.

In this section we prove Theorem 19.8, which heavily relies on Algorithm 9. This algorithm
will be used to output the new family L′ in the theorem statement. As such, we first prove some
properties of this algorithm.

Lemma 19.11. Algorithm 9 can be implemented in polynomial time.

Proof. In each iteration, |L| decreases, so there are at most 2|V| − 1 iterations. Each iteration can
be implemented in polynomial time using Theorem 19.1.

Lemma 19.12. Consider any graph G = (V, E) and η > 0. Let P be a partition of G that minimizes
ηx(δ(P))− (|P| − 1). Then each part of P is η-well-connected.

Proof. Fix any part P ∈ P , and consider any partition Q = {Q1, Q2, . . . , Qr} of P. Let P ′ be the
partition of V ′ obtained by replacing P with the parts of Q.

Write δP(Q) for δG[P](Q). Since |P ′| = |P|+ |Q| − 1 and ηx(δ(P ′)) = ηx(δ(P)) + ηx(δP(Q)),
we have

ηx(δP(Q))− (|Q| − 1) = ηx(δ(P ′))− (|P ′| − 1)−
(
ηx(δ(P))− (|P| − 1)

)
.

This is nonnegative, by our choice of P , and so ηx ∈ P↑st(G[P]).

Lemma 19.13. The output L′ of Algorithm 9 is a laminar family, and each S ∈ L′ is η-well-connected.

239

Proof. We claim that throughout the algorithm, we maintain the invariant that L ∪ L′ is a laminar
family, and that each S ∈ L′ is η-well-connected. Certainly this holds at the start of the algorithm.
Consider a partition P ′ of GS generated in step 5. By Lemma 19.12, each part of P ′ is η-well-
connected. Then since the sets that were contracted in forming GS are η-well-connected, by
Lemma 19.10 all parts of P are η-well-connected in G. Further, no part of P crosses a set in L′, by
construction. So the invariant is maintained.

The following is the main relevant quality of our reduction.

Lemma 19.14. Let S ∈ L and let L′ be the output of Algorithm 9. Let S1, . . . , S` be the unique maximal
sets in L′ whose union is S. Then, ∑`

i=1 x(δ(Si)) ≤ 1
1− 2

η

x(δ(S))− 2
η−2 .

Proof. Consider the iteration of the algorithm where S is deleted from L, and a partition P of S
(corresponding to a partition P ′ of GS) is added to L′. Then P = {S1, . . . , S`}. Note that by the
choice of P ′, ηx(δGS(P ′))− (|P ′| − 1) ≤ 0 (either P ′ is a violated constraint for P↑st(GS), or if GS
is η-well-connected, P ′ can be chosen to be the trivial partition of size 1, and equality is attained).
Converting this to a statement about P , we have ηx(δG[S](P))− (|P| − 1) ≤ 0. Thus

x(δ(S)) =
`

∑
i=1

x(δ(Si))− 2x(δG[S](P))

≥
`

∑
i=1

x(δ(Si))−
2
η
(|P| − 1)

≥
(

1− 2
η

) `

∑
i=1

x(δ(Si)) +
2
η

(as x(δ(Si)) ≥ 1 for each Si).

The claim follows.

We now prove Theorem 19.8.

Theorem 19.8 (Reduction to L-aligned points). For any instance (G,L, x) and any η > 2, we can find
an instance (G,L′, x′) in polynomial time such that:

i) x′ is L′-aligned,

ii) x′ is dominated by ηx,

iii) If for a spanning tree T there are α, β ≥ 0 such that |T ∩ δ(S)| ≤ αx′(δ(S)) + β for all S ∈ L′, then
we have |T ∩ δ(S)| ≤ 1

1− 2
η

(ηα + β)x(δ(S)) for all S ∈ L.

Proof. First, apply Algorithm 9 to L to obtain a new family L′ (which requires only polynomial
time by Lemma 19.11). By Lemma 19.13, L′ is a laminar family of η-well-connected sets.

We now show that ηx dominates a point x′ which is L′-aligned, giving i) and ii). Let
GS = (VS, ES) denote the graph obtained by restricting to S ∈ L′ and contracting all children in
L′. By definition of η-well-connected, for any S ∈ L′, ηx|ES

∈ P↑st(GS). It follows that for every
S ∈ L′ we can find yS ∈ Pst(GS) with yS ≤ ηx|ES

. Combining yS for each S, we obtain x′ ∈ Pst(G)
with x′ ≤ ηx, and where x′ is L-aligned.

240

It remains to show (iii). Fix some S ∈ L. The algorithm replaces S by some partition
S1, S2, . . . , S` of S in L′. Then we have

|T ∩ δ(S)| ≤
`

∑
i=1
|T ∩ δ(Si)| (since

⋃̀
i=1

δ(Si) ⊆ δ(S))

≤
`

∑
i=1

(αx′(δ(Si)) + β) (by assumption)

≤
`

∑
i=1

(ηαx(δ(Si) + β) (x′ ≤ ηx)

≤ (ηα + β)
`

∑
i=1

x(δ(Si)) (since x(δ(Si)) ≥ 1 for all Si).

By Lemma 19.14, ∑`
i=1 x(δ(Si)) ≤ 1

1− 2
η

x(δ(S)). The claim follows.

19.8 Laminar thin trees for L-aligned points via iterative relaxation

We will now prove Theorem 19.7, or rather a generalization of it where the graphic matroid is
replaced by an arbitrary matroid. First, we define the obvious generalization of L-aligned for a
point in the base polytope of a matroidM.

Definition 19.15. Given a graph G = (V, E), a matroidM with groundset E, and a laminar family L of
G, we say that a point x ∈ PM is L-aligned if x(E(S)) = rankM(S) for all S ∈ L.

(In the case where M is a graphic matroid, this is just slightly different from the previous
definition, if some sets in L are not connected. The previous definition did not allow for any
L-aligned points in this case, but here it is possible. This relaxation of the definition is irrelevant;
there is no real reason to consider disconnected sets in L, since they could simply be split into
their connected components.)

The following is the primary reason it is useful for a point x to be L-aligned in the iterative
relaxation process.

Lemma 19.16. Let x be L-aligned. Let S ∈ L and let S1, . . . , Sk ∈ L such that Si ∩ Sj = ∅ for all
1 ≤ i, j ≤ k, i 6= j. Let GS = (VS, ES) be the graph arising from contacting S1, . . . , Sk in the graph G[S].

Then, x(ES) is an integer.

Proof. Since x(E(S)) = rankM(S), it is an integer. Similarly, x(E(Si)) is an integer for all 1 ≤ i ≤ k.
However ES = E(S)r (∪k

i=1E(Si)), from which the claim follows.

Next, we define the notion of a matroid (rather than a point) being L-aligned.

Definition 19.17. Given a graph G = (V, E), a matroidM with groundset E, and a laminar family L of
G, we say thatM is L-aligned if for any basis B ofM, and every S ∈ L, B ∩ E(S) is a basis ofM|E(S).

The relationship between the notion of a matroid being L-aligned, and a point x ∈ PM being
L-aligned, is captured by the following lemma.

Lemma 19.18. A matroidM is L-aligned if and only if for every point x ∈ PM, x is L-aligned.

241

Proof. First supposeM is L-aligned and let x ∈ PM. Then, we can write x as a convex combination
of some bases B1, . . . , Bk ofM. SinceM is L-aligned, Bi ∩ E(S) is a basis ofM|E(S) for all S ∈ L.
Thus |Bi ∩ E(S)| = rank(M|E(S)) for all i. It follows that x(E(S)) = rank(M|E(S)) = rankM(S)
for all S ∈ L as desired, demonstrating that x is L-aligned.

For the other direction, suppose every point x ∈ PM is L-aligned. Then for any basis B ofM,
by taking x to be the characteristic vector of B, we have |B ∩ E(S)| = x(E(S)) = rank(M|E(S)).
ThusM is L-aligned.

In the previous section, we saw how to reduce to the case where x is a point in the base
polytope of the graphic matroid that is L-aligned. It will be more convenient for our purposes
to work with a matroid that is L-aligned; this is a stronger property that will ensure that all
fractional points we consider later in the iterative relaxation algorithm are all L-aligned as well.
We can ensure this by refining the matroid, in the sense defined in [Lin+20].

Definition 19.19. Given a matroidM and a nonempty proper subset R of the groundset, the refinement
ofM with respect to R is the matroidM′ obtained as the direct sum ofM|R andM/R.

Note that ifM′ is a refinement ofM, then every base ofM′ is a base ofM. It is easy to show
that for R ⊆ E with x(R) = rankM(R), x remains in the base polytope of the matroid obtained
by refining M with respect to R (see [Lin+20] for details). As such, given a point x ∈ PM that
is L-aligned, we can repeatedly refineM by each set of L in turn, to obtain a new matroidM′

such that x ∈ PM′ andM′ is L-aligned. ForM the graphic matroid, this refinement procedure
corresponds to takingM′ to be the direct sum of graphic matroids on GS for each S ∈ L.

So we consider the generalization of the laminar thin tree problem to matroids, under the
restriction that the matroid is aligned with the laminar family. An instance of the problem is
defined by a graph G = (V, E), a matroid M with groundset E, and a laminar family L with
degree bounds bS for S ∈ L, such thatM is L-aligned. Edge costs ce may also be given. The goal
is to find a minimum cost basis ofM satisfying the cut constraints, if a solution exists.

The following LP is the natural relaxation that we will use. Note that sinceM is L-aligned, no
explicit additional constraints on x are required; any feasible solution must satisfy x|E(S) ∈ PM|E(S) ,
and thus must be L-aligned.

min ∑
e∈E

xece

s.t. x(δ(S)) ≤ bS ∀S ∈ L,
x ∈ PM.

(86)

Theorem 19.20 (Laminar-constrained matroid basis). Given an instance (G,M,L, b) in whichM
is L-aligned, and where the LP relaxation (86) has a feasible solution x, we can find a basis T of M in
polynomial time for which c(T) ≤ c(x) and |T ∩ δ(S)| ≤ 2bS + 1 for all S ∈ L.

Theorem 19.7 is an immediate consequence, by first refining the graphic matroid as described
above.

The algorithm we will use to prove this theorem is shown in Algorithm 10. Our algorithm
follows the usual iterative relaxation recipe: it ignores edges set to 0 and 1 and then drops
constraints which are close to being satisfied. We have one non-standard step which drops a set in
L if it is approximately implied by its immediate parent or child in the family of tight constraints.
This non-standard step is what leads to a multiplicative violation instead of an additive one.

242

Algorithm 10 Procedure LamConstrainedBasis, used to demonstrate Theorem 19.20.
Require: Instance (G = (V, E, c),M,L, b) whereM is tight for L and (86) is feasible.
Ensure: Basis B ofM.

1: If E = ∅, return ∅.
2: Let x be a basic optimal solution to (86).
3: If there is an edge e with xe = 0, return LamConstrainedBasis(G− e,M− e,L, b).
4: If there is an edge e with xe = 1, return {e} ∪ LamConstrainedBasis(G − e,M/e,L, b′),

where b′S = bS if e /∈ δ(S), and b′S = bS − 1 if e ∈ δ(S).
5: Let Ltight be the set of cuts S ∈ L with x(δ(S)) = bS.
6: If there is a set S ∈ Ltight for which either ∑e∈δ(S)(1− xe) < 3, or there is an S′ 6= S ∈ Ltight with

δ(S′) ⊆ δ(S) and ∑e∈δ(S)−δ(S′)(1− xe) < 2, then return LamConstrainedBasis(G,M,L −
{S}, b).

7: return “Fail”. . Should not reach this line

If a recursive call to LamConstrainedBasis returns “Fail”, then we consider that the result of
the procedure as a whole is also “Fail”. We also note that if LamConstrainedBasis is recursively
called in any of steps 3, 4 or 6, the required properties of the input to the recursive call are satisfied.
In particular, (86) is feasible. For steps 3 and 4, x|E−e is feasible for the smaller instance; for step 6,
simply x is. With this in mind, LamConstrainedBasis is well-defined.

We first show that as long as the algorithm does succeed, the returned basis obeys the theorem
statement.

Lemma 19.21. If Algorithm 10 does not return “Fail”, the returned set B is a basis and obeys c(B) ≤ c(x)
and |B ∩ δ(S)| ≤ 2bS + 1 for all S ∈ L.

Proof. We prove the claim by induction on |E|+ |L|. The claim is trivially true if E = ∅.
So suppose the claim holds for all smaller values of |E|+ |L|. If xe = 0 for some e in step

3, then the claim is immediate; as long as the recursive call succeeds, returning a basis B′ of
M− e approximately satisfying the constraints, then B = B′ is of course a basis of M still
approximately satisfying the constraints. Furthermore, since c(B′) ≤ c(x′) where x′ is a basic
optimal solution to the problem on M− e, and x|E−{e} is feasible for the problem on M− e,
c(B) = c(B′) ≤ c(x′) ≤ c(x). If xe = 1 for some e in step 4, and the recursive call succeeds and
returns a basis B′ of M/e, then B := B′ ∪ {e} is a basis of M. Further, for any set S ∈ L with
e /∈ δ(S), we have

|B ∩ δ(S)| = |B′ ∩ δ(S)| ≤ 2b′S + 1 = 2bS + 1.

On the other hand if e ∈ δ(S), we have

|B ∩ δ(S)| = |B′ ∩ δ(S)|+ 1 ≤ 2b′S + 2 < 2bS + 1.

Finally, since c(B′) ≤ c(x′) where x′ was a basic optimal solution to the problem onM/e, and
x|E−{e} is feasible for the problem onM/e, c(B) = c(B′) + c(e) ≤ c(x′) + c(e) ≤ c(x).

It remains to consider the situation where we drop a constraint in step 6. Suppose a set
S ∈ Ltight is dropped because |δ(S)| − x(δ(S)) = ∑e∈δ(S)(1− xe) < 3. Since the constraint is tight,
we deduce that |δ(S)| − bS < 3, and so |δ(S)| ≤ bS + 2 ≤ 2bS + 1 as desired.

Now suppose S ∈ Ltight is dropped because there is an S′ 6= S ∈ Ltight with δ(S′) ⊆ δ(S)
and ∑e∈δ(S)−δ(S′)(1− xe) < 2. By tightness, x(δ(S)− δ(S′)) = x(δ(S))− x(δ(S′)) = bS − bS′ is an

243

integer. Note that either δ(S′) = δ(S), in which case clearly we can drop the duplicate constraint,
or bS > bS′ ; assume the latter. We have |δ(S)− δ(S′)| ≤ 1 + bS − bS′ . Suppose B is any basis
satisfying |B ∩ δ(S′)| ≤ 2bS′ + 1. Then

|B ∩ δ(S)| ≤ |B ∩ δ(S′)|+ |δ(S)− δ(S′)|
≤ (2bS′ + 1) + 1 + bS − bS′

= bS′ + 2 + bS

≤ (bS − 1) + 2 + bS ≤ 2bS + 1.

Of course, dropping a constraint can only decrease the cost of a basic optimal solution to (86), so
c(B) ≤ c(x) is immediate by induction in this case.

Now we are ready to prove the theorem.

Proof of Theorem 19.20. By the above lemma, it is enough to prove that the algorithm succeeds. For
this, it suffices to show that whenever the preconditions of LamConstrainedBasis are satisfied,
the procedure never reaches step 7.

Suppose for a contradiction that we do reach step 7. By assumption, none of the constraints
defining the extreme point x are of the form xe = 0 or xe = 1, so they all come from tight cut
constraints and tight matroid constraints. Let Cbasis = {C1, C2, . . . , Cr}, with C1 (C2 · · · (Cr ⊆ E
and Lbasis ⊆ Ltight be such that the constraints x(δ(S)) = bS for S ∈ Lbasis and x(C) = rankM(C)
for C ∈ Cbasis are a collection of linearly independent tight constraints defining x. Moreover,
choose this basis of tight constraints in such a way that |Cbasis| is as large as possible. The fact
that the tight matroid constraints form a chain follows from standard uncrossing arguments (see
[Sch03] Chapter 41 or [KLS12]). Since there are precisely |E| defining constraints, we have

|E| = |Lbasis|+ |Cbasis|.

We note that sinceM is L-aligned, the maximality of Cbasis ensures that E(S) ∈ span(Cbasis) for
each S ∈ L.

Assign 1 splittable token to each e ∈ E; our goal will be to assign these tokens to the constraints
of Lbasis and Cbasis so that each tight constraint gets 1 token, and there is something left over. This
will be our desired contradiction.

We will assign xe tokens to Ci for each e ∈ Ci − Ci−1. Since 0 < xe < 1 for each e, and x(Ci)
and x(Ci−1) are both integers with x(Ci−1) < x(Ci), we can deduce that x(Ci − Ci−1) ≥ 1.

Now each edge has 1− xe tokens remaining. Our token assignment scheme will be as follows.
We start with an assignment that is very reminiscent of the scheme for degree bounded spanning
trees [SL15]. For each e = {u, v}, we assign (1− xe)/2 tokens to the smallest set in Lbasis containing
u, and (1− xe)/2 tokens to the smallest set in Lbasis containing v. After this, we work bottom up
on Lbasis, and if S ∈ Lbasis has strictly more than the 1 token needed, we assign the excess to its
parent in Lbasis.

First, any minimal set S ∈ Lbasis satisfies ∑e∈δ(S)(1− xe) ≥ 3, meaning that at least 3
2 tokens

are initially assigned to S. So S receives enough tokens to give a half token as excess to its parent.
Inductively, we claim that every set gets 1 token, and moreover, has an excess of at least 1

2 that
it can give to its parent. For any non-minimal S ∈ Lbasis, we have three cases depending on
the number of disjoint maximal children of S in Lbasis. In each case we will consider the graph
GS = (VS, ES) resulting from contracting the maximal children of S in Lbasis in the graph G[S]. In
Cases 2 and 3 we crucially use that x(ES) is an integer by Lemma 19.16.

244

- Case 1: S has at least three maximal children in Lbasis.

Then inductively, each of these children has an excess of at least 1
2 . This gives us at least 3

2
tokens for S, as desired.

- Case 2: S has exactly two maximal children A, B ∈ Lbasis.

S

A B

E3

E1

E2

E5

E4

Figure 75: Setting for Case 2. Note some edge sets may be empty.

Inductively, each child has an excess of at least 1
2 , giving us at least one token. Thus we need

to collect at least 1
2 additional tokens.

Consider the edge sets as defined in Fig. 75. In particular,

E1 = δ(S)r (δ(A) ∪ δ(B))
E2 = (δ(A)4 δ(B))r δ(S)
E3 = δ(A) ∩ δ(B)
E4 = (δ(A) ∪ δ(B)) ∩ δ(S)
E5 = ES r (E2 ∪ E3)

First we observe that E1 ∪ E2 ∪ E5 is nonempty. For suppose not; then, with χ denoting the
incidence vector of a set, we can write

χ(δ(S)) + 2χ(E(S)) = χ(δ(A)) + χ(δ(B)) + 2χ(E(A)) + 2χ(E(B)).

However, by the maximality of our choice of Cbasis, E(A), E(B) and E(S) are all in the span
of Cbasis, whereas δ(S), δ(A) and δ(B) are all in Lbasis. Thus we have a linear dependence
among the constraints defined by Cbasis and Lbasis, a contradiction.

So x(E1) + x(E2) + x(E5) > 0. Therefore, we get

|E1|+ |E2| − x(E1)− x(E2)

2
+ |E5| − x(E5) = z−

(
x(E1) + x(E2)

2
+ x(E5)

)
> 0

fractional tokens for some z ∈ Z≥0. We will prove that x(E1)+x(E2)
2 + x(E5) is half integral,

from which the claim follows. By the integrality of x(ES) (using L-alignment) and the

245

tightness of the constraints on A, B and S, we have that

a := x(E2) + x(E3) + x(E5), b := x(E2) + 2x(E3) + x(E4) and c := x(E1) + x(E4)

are all integers. Since a− b/2 + c/2 = x(E1)+x(E2)
2 + x(E5), the claim follows.

- Case 3: S has precisely one maximal child S′ in Lbasis.

S

S′

E2

E1

E3

E4

Figure 76: Setting for Case 3.

We need to find 1 token that has been given by edges directly to S, so that the 1
2 excess token

from S′ can be carried over as the excess of S.

If δ(S′) ⊆ δ(S), then because no relaxation step was possible in line 6, ∑e∈δ(S)−δ(S′)(1− xe) ≥
2. Since each edge in δ(S)− δ(S′) contributes (1− xe)/2 tokens, this gives us our token as
necessary. Similarly, if δ(S′) ⊇ δ(S) we get the desired one token.

So assume that δ(S)− δ(S′) and δ(S′)− δ(S) are both nonempty. Let

E1 := δ(S)− δ(S′),
E2 := δ(S′)− δ(S),
E3 := ES − δ(S′), and
E4 := δ(S) ∩ δ(S′).

(See Figure 76.)

Let δ ∈ [0, 1) be the fractional part of x(E4). Note that the number of tokens assigned to S is

|E3| − x(E3) +
1
2 (|E1|+ |E2| − x(E1)− x(E2)). (87)

Also observe that

x(E2) + x(E3), x(E1) + x(E4), and x(E2) + x(E4) (88)

are all integer-valued, by tightness of the cut constraints and L-alignment. We distinguish
two subcases.

246

– δ = 0. Then x(E1) and x(E2) are both integers, and moreover since E1 and E2 are
nonempty, |E1| − x(E1) and |E2| − x(E2) are both positive integers. This already gives
us the desired 1 token by (87).

– δ > 0. Then by (88) the fractional parts of x(E1) and x(E2) are both 1− δ, and the
fractional part of x(E3) is then δ. Thus |E1| − x(E1) ≥ δ (being positive, with fractional
part δ); similarly, |E2| − x(E2) ≥ δ and |E3| − x(E3) ≥ 1− δ. Substituting into (87), we
have at least 1− δ + (2δ)/2 = 1 tokens assigned to S, as required.

We have demonstrated that all sets in Lbasis receive a full tokens; moreover, any maximal set
in Lbasis will have an extra token that is not needed, since it has no parent to give it to. So we
have our desired contradiction: |E| > |Cbasis|+ |Lbasis|.

19.9 Conclusion

Besides the (strong) thin tree conjecture, our work leaves open several directions. One fascinating
question is whether it is possible to leverage or strengthen our results to give a novel constant
factor approximation algorithm for ATSP. While an algorithmic version of the strong thin tree
conjecture is sufficient to give a constant factor approximation algorithm for ATSP, it is unclear
if it is necessary: indeed, the current constant factor approximation algorithm for ATSP is not
known to imply anything about thin trees. We ask if perhaps it is sufficient to focus on thinness
for a laminar (or near laminar) family of cuts.

A second open question is whether it is possible to achieve a minimum cost tree which violates
the degree bounds in a laminar family by any constant factor. One would need to avoid the
scaling currently present in our reduction. A natural relaxation of this question is to ask for a
1 + ε approximation for arbitrarily small ε as has been done for the chain case [LS18].

Finally, we note that our results immediately give a thin tree with respect to the set of minimum
cuts of any graph, and we believe it may be possible to extend it to the set of all (1 + ε) near
minimum cuts for some small ε > 0 using results from [KKO22]. We ask whether it is possible
to extend our result to more general families of cuts such as the union of a constant number
of laminar families or the set of cuts with at most αk edges in the graph for some constant α
significantly larger than 1.

References

[AKS21] Hyung-Chan An, Robert Kleinberg, and David B. Shmoys. “Approximation Algo-
rithms for the Bottleneck Asymmetric Traveling Salesman Problem”. In: ACM Transac-
tions on Algorithms 17.4 (2021). doi: 10.1145/3478537 (cit. on p. 232).

[AO15] Nima Anari and Shayan Oveis Gharan. “Effective-Resistance-Reducing Flows, Spec-
trally Thin Trees, and Asymmetric TSP”. In: Proceedings of the 56th Annual IEEE
Symposium on Foundations of Computer Science (FOCS). 2015, pp. 20–39. doi: 10.1109/
FOCS.2015.11 (cit. on pp. 232, 235).

[App+07] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook. The Traveling
Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics).
Princeton, NJ, USA: Princeton University Press, 2007 (cit. on p. 8).

247

https://doi.org/10.1145/3478537
https://doi.org/10.1109/FOCS.2015.11
https://doi.org/10.1109/FOCS.2015.11

[Arc+11] Aaron Archer, MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Howard
Karloff. “Improved Approximation Algorithms for Prize-Collecting Steiner Tree and
TSP”. In: SIAM Journal on Computing 40.2 (2011), pp. 309–332. doi: 10.1137/090771429
(cit. on p. 10).

[Aro96] Sanjeev Arora. “Polynomial Time Approximation Schemes for Euclidean TSP and
Other Geometric Problems”. In: FOCS. 1996, pp. 2–11 (cit. on p. 20).

[Aro+98] Sanjeev Arora, Michelangelo Grigni, David Karger, Philip Klein, and Andrzej Woloszyn.
“A polynomial-time approximation scheme for weighted planar graph TSP”. In: SODA.
1998, pp. 33–41 (cit. on p. 20).

[Asa+10] Arash Asadpour, Michel X. Goemans, Aleksander Madry, Shayan Oveis Gharan, and
Amin Saberi. “An O(log n/ log log n)-approximation Algorithm for the Asymmetric
Traveling Salesman Problem”. In: SODA. 2010, pp. 379–389 (cit. on pp. 10, 22, 23).

[Asa+17] Arash Asadpour, Michel X. Goemans, Aleksander Madry, Shayan Oveis Gharan, and
Amin Saberi. “An O(log n/log log n)-Approximation Algorithm for the Asymmetric
Traveling Salesman Problem”. In: Operations Research 65.4 (2017), pp. 1043–1061 (cit. on
pp. 18, 232).

[Ban+13] Nikhil Bansal, Rohit Khandekar, Jochen Könemann, Viswanath Nagarajan, and Britta
Peis. “On generalizations of network design problems with degree bounds”. In:
Mathematical Programming 141.1 (2013), pp. 479–506. doi: 10.1007/s10107-012-0537-
8 (cit. on p. 234).

[Bar92] Francisco Barahona. “Separating from the dominant of the spanning tree polytope”.
In: Operations Research Letters 12.4 (1992), pp. 201–203. doi: 10.1016/0167-6377(92)
90045-5 (cit. on p. 236).

[BB08] Geneviève Benoit and Sylvia Boyd. “Finding the exact integrality gap for small
traveling salesman problems”. In: 33 (2008), pp. 921–931 (cit. on p. 196).

[BBL09] Julius Borcea, Petter Branden, and Thomas M. Liggett. “Negative dependence and
the geometry of polynomials.” In: Journal of American Mathematical Society 22 (2009),
pp. 521–567 (cit. on pp. 12, 28, 32, 33).

[BC11a] Sylvia Boyd and Robert Carr. “Finding low cost TSP and 2-matching solutions using
certain half-integer subtour vertices”. In: Discrete Optimization 8.4 (2011), pp. 525 –539
(cit. on p. 9).

[BC11b] Sylvia Boyd and Robert Carr. “Finding Low Cost TSP and 2-matching Solutions Using
Certain Half-Integer Subtour Vertices”. In: Discrete Optimization 8 (2011), pp. 525–539
(cit. on p. 196).

[BEM10] S. Boyd and P. Elliott-Magwood. “Structure of the extreme points of the subtour elimi-
nation polytope of the STSP”. In: Combinatorial Optimization and Discrete Algorithms.
Vol. B23. 2010, pp. 33–47 (cit. on p. 9).

[Ben95] András A. Benczúr. “A Representation of Cuts within 6/5 Times the Edge Connectivity
with Applications”. In: FOCS. 1995, pp. 92–102 (cit. on pp. 13, 61, 134, 136, 139, 151,
174, 175).

[Ben97] Andras A. Benczúr. “Cut structures and randomized algorithms in edge-connectivity
problems”. PhD thesis. MIT, 1997 (cit. on pp. 39, 41, 148).

248

https://doi.org/10.1137/090771429
https://doi.org/10.1007/s10107-012-0537-8
https://doi.org/10.1007/s10107-012-0537-8
https://doi.org/10.1016/0167-6377(92)90045-5
https://doi.org/10.1016/0167-6377(92)90045-5

[BFS16] Sylvia Boyd, Yao Fu, and Yu Sun. “A 5/4-approximation for subcubic 2EC using
circulations and obliged edges”. In: Discrete Applied Mathematics 209 (2016), pp. 48–58
(cit. on pp. 17, 218).

[BG08] András A. Benczúr and Michel X. Goemans. “Deformable Polygon Representation
and Near-Mincuts”. In: Building Bridges: Between Mathematics and Computer Science,
M. Groetschel and G.O.H. Katona, Eds., Bolyai Society Mathematical Studies 19 (2008),
pp. 103–135 (cit. on pp. 13, 41, 61, 134, 136, 138, 139, 148, 151, 174).

[BGA20a] Jarosław Byrka, Fabrizio Grandoni, and Afrouz Jabal Ameli. “Breaching the 2-
Approximation Barrier for Connectivity Augmentation: A Reduction to Steiner Tree”.
In: STOC. Association for Computing Machinery, 2020, 815–825. isbn: 9781450369794
(cit. on p. 134).

[BGA20b] Jaroslaw Byrka, Fabrizio Grandoni, and Afrouz Jabal Ameli. “Breaching the 2 approx-
imation barrier for connectivity augmentation: a reduction to Steiner tree”. In: STOC.
Ed. by Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath,
and Julia Chuzhoy. ACM, 2020, pp. 815–825 (cit. on p. 218).

[BHH59] Jillian E. Beardwood, John H. Halton, and J. M. Hammersley. “The shortest path
through many points”. In: Mathematical Proceedings of the Cambridge Philosophical Society
55 (1959), pp. 299 –327 (cit. on p. 8).

[BKN23] Jannis Blauth, Nathan Klein, and Martin Nägele. A Better-Than-1.6-Approximation for
Prize-Collecting TSP. 2023. arXiv: 2308.06254 [cs.DS] (cit. on p. 10).

[BN23] Jannis Blauth and Martin Nägele. “An Improved Approximation Guarantee for Prize-
Collecting TSP”. In: Proceedings of the 55th Annual ACM Symposium on Theory of
Computing. STOC 2023. Orlando, FL, USA: Association for Computing Machinery,
2023, 1848–1861. isbn: 9781450399135. doi: 10.1145/3564246.3585159 (cit. on p. 10).

[Boy+20] Sylvia Boyd, Joseph Cheriyan, Robert Cummings, Logan Grout, Sharat Ibrahim-
pur, Zoltán Szigeti, and Lu Wang. “A 4/3-Approximation Algorithm for the Min-
imum 2-Edge Connected Multisubgraph Problem in the Half-Integral Case”. In:
APPROX/RANDOM. Ed. by Jarosław Byrka and Raghu Meka. Vol. 176. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020, 61:1–61:12 (cit. on pp. 17, 218).

[BP91] S. C. Boyd and William R. Pulleyblank. “Optimizing over the subtour polytope of the
travelling salesman problem”. In: Math. Program. 49 (1991), pp. 163–187 (cit. on p. 9).

[BS21] Sylvia Boyd and András Sebő. “The Salesman’s Improved Tours for Fundamental
Classes”. In: Math. Program. 186.1–2 (2021), 289–307. issn: 0025-5610. doi: 10.1007/
s10107-019-01455-3 (cit. on pp. 14, 37, 191, 196, 197).

[BV22] Traub-V. Blauth J. and J. Vygen. “Improving the approximation ratio for capacitated
vehicle routing”. In: Mathematical Programming (2022) (cit. on p. 10).

[Chr76] Nicos Christofides. Worst Case Analysis of a New Heuristic for the Traveling Salesman
Problem. Report 388. Pittsburgh, PA: Graduate School of Industrial Administration,
Carnegie-Mellon University, 1976 (cit. on pp. 8, 9).

[Coo12] William J. Cook. In Pursuit of the Traveling Salesman: Mathematics at the Limits of
Computation. Princeton, NJ: Princeton University Press, 2012. isbn: 978-0691152707
(cit. on p. 9).

249

https://arxiv.org/abs/2308.06254
https://doi.org/10.1145/3564246.3585159
https://doi.org/10.1007/s10107-019-01455-3
https://doi.org/10.1007/s10107-019-01455-3

[CR98] Robert Carr and R. Ravi. “A New Bound for the 2-Edge Connected Subgraph Problem”.
In: IPCO. 1998, pp. 112–125 (cit. on pp. 17, 218).

[CT00] J. Cheriyan and R. Thurimella. “Approximating minimum- size k-connected spanning
subgraphs via matching”. In: SIAM J Comput 30 (2000), pp. 528–560 (cit. on pp. 17,
218).

[CTZ21] Federica Cecchetto, Vera Traub, and Rico Zenklusen. “Bridging the Gap between Tree
and Connectivity Augmentation: Unified and Stronger Approaches”. In: Proceedings of
the 53rd Annual ACM SIGACT Symposium on Theory of Computing. New York, NY, USA:
Association for Computing Machinery, 2021, 370–383. isbn: 9781450380539 (cit. on
pp. 134, 218).

[CV00] Robert D. Carr and Santosh Vempala. “Towards a 4/3 approximation for the asym-
metric traveling salesman problem”. In: SODA. 2000, pp. 116–125 (cit. on p. 9).

[CVZ10] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. “Dependent Randomized Round-
ing via Exchange Properties of Combinatorial Structures”. In: FOCS. 2010, pp. 575–584
(cit. on pp. 220, 234).

[Dar64] J. N. Darroch. “On the distribution of the number of successes in independent trials”.
In: Ann. Math. Stat. 36 (1964), pp. 1317–1321 (cit. on p. 32).

[DFJ54] G Dantzig, R Fulkerson, and S Johnson. “Solution of a large-scale traveling-salesman
problem”. In: Operations Research 2 (1954), pp. 393–410 (cit. on pp. 8, 10, 19).

[DHM07] Erik D. Demaine, MohammadTaghi Hajiaghayi, and Bojan Mohar. “Approximation
algorithms via contraction decomposition”. In: SODA. 2007, pp. 278–287 (cit. on p. 20).

[DKL76] E.A. Dinits, A.V. Karzanov, and M.V. Lomonosov. “On the structure of a family of
minimal weighted cuts in graphs”. In: Studies in Discrete Mathematics (in Russian), ed.
A.A. Fridman, 290-306, Nauka (Moskva) (1976) (cit. on pp. 38, 61, 134–136, 139).

[DT09] Vladimir Deineko and Alexander Tiskin. “Min-weight double-tree shortcutting for
Metric TSP: Bounding the approximation ratio”. In: Electronic Notes in Discrete Mathe-
matics 32 (2009). DIMAP Workshop on Algorithmic Graph Theory, pp. 19–26. issn:
1571-0653. doi: https://doi.org/10.1016/j.endm.2009.02.004 (cit. on pp. 259,
260).

[Edm70] Jack Edmonds. “Submodular functions, matroids and certain polyhedra”. In: Combina-
torial Structures and Their Applications. New York, NY, USA: Gordon and Breach, 1970,
pp. 69–87 (cit. on pp. 20, 21, 235).

[Edr53] Albert Edrei. “Proof of a Conjecture of Schoenberg on the Generating Function of a
Totally Positive Sequence”. In: Canadian Journal of Mathematics 5 (1953), 86–94. doi:
10.4153/CJM-1953-010-3 (cit. on p. 27).

[EJ73] Jack Edmonds and Ellis L. Johnson. “Matching, Euler tours and the Chinese postman”.
In: Mathematical Programming 5.1 (1973), pp. 88–124 (cit. on p. 21).

[FF09] Tamás Fleiner and András Frank. A quick proof for the cactus representation of mincuts.
Tech. rep. QP-2009-03. www.cs.elte.hu/egres. Egerváry Research Group, Budapest,
2009 (cit. on pp. 38, 199).

250

https://doi.org/https://doi.org/10.1016/j.endm.2009.02.004
https://doi.org/10.4153/CJM-1953-010-3

[Fio+18] Samuel Fiorini, Martin Gross, Jochen Könemann, and Laura Sanità. “Approximating
Weighted Tree Augmentation via Chvátal-Gomory Cuts”. In: SODA. 2018, pp. 817–831
(cit. on p. 218).

[FJ81] G. N. Fredrickson and Joseph F. JáJá. “Approximation Algorithms for Several Graph
Augmentation Problems”. In: SIAM J. Comput. 10.2 (1981), pp. 270–283 (cit. on pp. 17,
218).

[FJ82] G. N. Fredrickson and Joseph F. JáJá. “On the relationship between the biconnectivity
augmentation and traveling salesman problem”. In: Theoretical Computer Science 19
(1982), pp. 189 –201 (cit. on pp. 17, 218).

[Fle99] Lisa Fleischer. “Building Chain and Cactus Representations of All Minimum Cuts
from Hao-Orlin in the Same Asymptotic Run Time”. In: 33 (1999), pp. 51–72 (cit. on
p. 214).

[FM92] Tomás Feder and Milena Mihail. “Balanced matroids”. In: Proceedings of the twenty-
fourth annual ACM symposium on Theory of Computing. Victoria, British Columbia,
Canada: ACM, 1992, pp. 26–38 (cit. on p. 32).

[FR92] Martin Fürer and Balaji Raghavachari. “Approximating the Minimum Degree Span-
ning Tree to Within One from the Optimal Degree”. In: Proceedings of the Third
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 1992, pp. 317–324. doi:
10.1145/139404.139469 (cit. on p. 233).

[Fri+22] Zachary Friggstad, Ramin Mousavi, Mirmahdi Rahgoshay, and Mohammad R. Salavatipour.
“Improved Approximations for Capacitated Vehicle Routing with Unsplittable Client
Demands”. In: Integer Programming and Combinatorial Optimization: 23rd International
Conference, IPCO 2022, Eindhoven, The Netherlands, June 27–29, 2022, Proceedings. Eind-
hoven, The Netherlands: Springer-Verlag, 2022, 251–261. isbn: 978-3-031-06900-0. doi:
10.1007/978-3-031-06901-7_19 (cit. on p. 10).

[Gab05] H. Gabow. “An improved analysis for approximating the smallest k-edge connected
spanning subgraph of a multi-graph”. In: SIAM J Disc Math 19 (2005), pp. 1–18 (cit. on
pp. 17, 218).

[Gab+09] Harold N. Gabow, Michel X. Goemans, Éva Tardos, and David P. Williamson. “Ap-
proximating the smallest k-edge connected spanning subgraph by LP-rounding”. In:
Networks 53.4 (2009), pp. 345–357 (cit. on pp. 17, 218).

[GB93a] Michel Goemans and Dimitris Bertsimas. “Survivable Network, Linear Programming
Relaxations and the Parsimonious Property”. In: Math Program 60 (June 1993). doi:
10.1007/BF01580607 (cit. on p. 17).

[GB93b] Michel X. Goemans and Dimitris Bertsimas. “Survivable networks, linear program-
ming relaxations and the parsimonious property”. In: Math. Program. 60 (1993),
pp. 145–166 (cit. on pp. 10, 219).

[GG08] H. Gabow and S. Gallagher. “Iterated rounding algorithms for the smallest k-edge
connected spanning subgraph”. In: SIAM J. Comput. 41 (2008), pp. 61–103 (cit. on
pp. 17, 218).

251

https://doi.org/10.1145/139404.139469
https://doi.org/10.1007/978-3-031-06901-7_19
https://doi.org/10.1007/BF01580607

[GKP95] M. Grigni, E. Koutsoupias, and C. Papadimitriou. “An approximation scheme for pla-
nar graph TSP”. In: FOCS ’95: Proceedings of the 36th Annual Symposium on Foundations
of Computer Science. Washington, DC, USA: IEEE Computer Society, 1995, p. 640. isbn:
0-8186-7183-1 (cit. on p. 20).

[GL21] Leonid Gurvits and Jonathan Leake. “Capacity lower bounds via productization”. In:
STOC. 2021, pp. 847–858 (cit. on p. 62).

[GLS05] David Gamarnik, Moshe Lewenstein, and Maxim Sviridenko. “An improved upper
bound for the TSP in cubic 3-edge-connected graphs”. In: Oper. Res. Lett. 33.5 (Sept.
2005), pp. 467–474 (cit. on p. 9).

[God04] Luis A. Goddyn. “Some Open Problems I Like”. available at http://www.math.sfu.ca/ god-
dyn/Problems/problems.html. 2004 (cit. on pp. 18, 232).

[Goe06] Michel X. Goemans. “Minimum Bounded Degree Spanning Trees”. In: FOCS. 2006,
pp. 273–282 (cit. on pp. 18, 233).

[Goe09] Michel X. Goemans. Combining Approximation Algorithms for the Prize-Collecting TSP.
2009. arXiv: 0910.0553 [cs.DS] (cit. on p. 10).

[Goe12] Michel Goemans. Thin spanning trees. Lecture at “Graph Theory @ Georgia Tech:
Conference Honoring the 50th Birthday of Robin Thomas”. 2012 (cit. on p. 235).

[Goe95a] Michel X. Goemans. “Worst-Case Comparison of Valid Inequalities for the TSP”. In:
MATH. PROG 69 (1995), pp. 335–349 (cit. on p. 9).

[Goe95b] Michel X. Goemans. “Worst-case comparison of valid inequalities for the TSP”. In: 69
(1995), pp. 335–349 (cit. on p. 196).

[Gup+22] Anupam Gupta, Euiwoong Lee, Jason Li, Marcin Mucha, Heather Newman, and
Sherry Sarkar. “Matroid-Based TSP Rounding for Half-Integral Solutions”. In: Integer
Programming and Combinatorial Optimization. Ed. by Karen Aardal and Laura Sanità.
Lecture Notes in Computer Science 13265. See also https://arxiv.org/pdf/2111.
09290.pdf. 2022, pp. 305–318 (cit. on pp. 42, 196, 197).

[Gur06] Leonid Gurvits. “Hyperbolic polynomials approach to Van der Waerden/Schrijver-
Valiant like conjectures: sharper bounds, simpler proofs and algorithmic applications”.
In: STOC. Ed. by Jon M. Kleinberg. ACM, 2006, pp. 417–426 (cit. on p. 62).

[Gur08] Leonid Gurvits. “Van der Waerden/Schrijver-Valiant like Conjectures and Stable (aka
Hyperbolic) Homogeneous Polynomials: One Theorem for all”. In: Electr. J. Comb. 15.1
(2008) (cit. on p. 62).

[GW17] Kyle Genova and David P. Williamson. “An Experimental Evaluation of the Best-of-
Many Christofides’ Algorithm for the Traveling Salesman Problem”. In: Algorithmica
78.4 (2017), pp. 1109–1130 (cit. on p. 14).

[HK70] M. Held and R.M. Karp. “The traveling salesman problem and minimum spanning
trees”. In: Operations Research 18 (1970), pp. 1138–1162 (cit. on pp. 10, 20).

[HLP52] G. H. Hardy, J. E. Littlewood, and G. Polya. Inequalities. Cambridge Univ. Press, 1952
(cit. on p. 32).

252

https://arxiv.org/abs/0910.0553
https://arxiv.org/pdf/2111.09290.pdf
https://arxiv.org/pdf/2111.09290.pdf

[HN19] Arash Haddadan and Alantha Newman. “Towards Improving Christofides Algorithm
for Half-Integer TSP”. In: ESA. Ed. by Michael A. Bender, Ola Svensson, and Grzegorz
Herman. Vol. 144. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019,
56:1–56:12 (cit. on pp. 9, 42, 196).

[HNR17] Arash Haddadan, Alantha Newman, and R. Ravi. “Cover and Conquer: Augmenting
Decompositions for Connectivity Problems”. abs/1707.05387. 2017 (cit. on p. 9).

[HO14] Nicholas J. A. Harvey and Neil Olver. “Pipage Rounding, Pessimistic Estimators and
Matrix Concentration”. In: Proceedings of the 25th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). 2014, pp. 926–945 (cit. on p. 235).

[Hoe56] W. Hoeffding. “On the distribution of the number of successes in independent trials”.
In: Ann. Math. Statist. 27 (1956), pp. 713–721 (cit. on pp. 29, 96).

[Jae84] F. Jaeger. “On circular flows in graphs, Finite and Infinite Sets”. In: Colloquia Mathe-
matica Societatis Janos Bolyai 37 (1984), pp. 391–402 (cit. on pp. 18, 232).

[Jai01] Kamal Jain. “A Factor 2 Approximation Algorithm for the Generalized Steiner Net-
work Problem”. In: Combinatorica 21 (2001), pp. 39–60 (cit. on p. 134).

[Kar00] David R. Karger. “Minimum cuts in near-linear time”. In: J. ACM 47.1 (Jan. 2000),
pp. 46–76 (cit. on p. 134).

[Kar+21] Anna R. Karlin, Nathan Klein, Shayan Oveis Gharan, and Xinzhi Zhang. An Improved
Approximation Algorithm for the Minimum k-Edge Connected Multi-Subgraph Problem.
2021. doi: 10.48550/ARXIV.2101.05921 (cit. on p. 134).

[Kar72] Richard M. Karp. “Reducibility Among Combinatorial Problems”. In: Complexity of
Computer Computations. 1972, pp. 85–103 (cit. on pp. 8, 20, 257).

[Kar99] D. Karger. “Random sampling in cut, flow, and network design problems”. In: Math
OR 24 (1999), pp. 383–413 (cit. on pp. 17, 218, 219).

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated Annealing”.
In: Science 220.4598 (1983), pp. 671–680. doi: 10.1126/science.220.4598.671. eprint:
https://www.science.org/doi/pdf/10.1126/science.220.4598.671 (cit. on p. 8).

[KKO20] Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. “An improved approx-
imation algorithm for TSP in the half integral case”. In: STOC. Ed. by Konstantin
Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy.
ACM, 2020, pp. 28–39 (cit. on pp. 9, 42, 134, 135, 191, 192, 196).

[KKO21] Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. “A (Slightly) Improved
Approximation Algorithm for Metric TSP”. In: STOC. ACM, 2021 (cit. on pp. 61, 137,
144, 162–164, 167, 169, 172, 173, 183, 185, 187, 192, 219, 277).

[KKO22] Anna Karlin, Nathan Klein, and Shayan Oveis Gharan. “A (Slightly) Improved Bound
on the Integrality Gap of the Subtour LP for TSP”. In: FOCS. IEEE Computer Society,
2022, pp. 844–855 (cit. on pp. 61, 137, 167, 169, 172, 173, 176, 177, 179, 189, 218, 247).

[Kle05] Philip N. Klein. “A linear-time approximation scheme for planar weighted TSP”. In:
FOCS. 2005, pp. 647–657 (cit. on p. 20).

253

https://doi.org/10.48550/ARXIV.2101.05921
https://doi.org/10.1126/science.220.4598.671
https://www.science.org/doi/pdf/10.1126/science.220.4598.671

[KLS12] Tamás Király, Lap Chi Lau, and Mohit Singh. “Degree Bounded Matroids and Sub-
modular Flows”. In: Combinatorica 32 (2012), pp. 703–720. doi: 10.1007/s00493-012-
2760-6 (cit. on pp. 234, 244).

[KLS15] Marek Karpinski, Michael Lampis, and Richard Schmied. “New inapproximability
bounds for TSP”. In: Journal of Computer and System Sciences 81.8 (2015), pp. 1665 –1677.
issn: 0022-0000 (cit. on p. 9).

[KP09] A Near-Linear Time Algorithm for Constructing a Cactus Representation of Minimum Cuts.
2009, pp. 246–255 (cit. on p. 134).

[KR96] S. Khuller and B. Raghavachari. “Improved approximation algorithms for uniform
connectivity problems”. In: J Algorithms 21 (1996), pp. 434–450 (cit. on pp. 17, 218).

[Lin+20] André Linhares, Neil Olver, Chaitanya Swamy, and Rico Zenklusen. “Approximate
multi-matroid intersection via iterative refinement”. In: Mathematical Programming
183.1 (2020), pp. 397–418. doi: 10.1007/s10107-020-01524-y (cit. on p. 242).

[LOS12] Bundit Laekhanukit, Shayan Oveis Gharan, and Mohit Singh. “A Rounding by Sam-
pling Approach to the Minimum Size k-Arc Connected Subgraph Problem”. In: ICALP
(1). 2012, pp. 606–616 (cit. on pp. 17, 218).

[LRS11] Lap-Chi Lau, R. Ravi, and Mohit Singh. Iterative Methods in Combinatorial Optimization.
1st. New York, NY, USA: Cambridge University Press, 2011 (cit. on p. 134).

[LS18] André Linhares and Chaitanya Swamy. “Approximating Min-Cost Chain-Constrained
Spanning Trees: A Reduction from Weighted to Unweighted Problems”. In: Mathe-
matical Programming 172 (2018), pp. 17–34. doi: 10.1007/s10107-017-1150-7 (cit. on
pp. 233, 234, 247).

[Mit99] Joseph SB Mitchell. “Guillotine subdivisions approximate polygonal subdivisions: A
simple polynomial-time approximation scheme for geometric TSP, k-MST, and related
problems”. In: SIAM Journal on Computing 28.4 (1999), pp. 1298–1309 (cit. on p. 20).

[MS16] Tobias Mömke and Ola Svensson. “Removing and Adding Edges for the Traveling
Salesman Problem”. In: 63 (2016). Article 2 (cit. on pp. 20, 196).

[MSS13] Adam Marcus, Daniel A Spielman, and Nikhil Srivastava. “Interlacing Families II:
Mixed Characteristic Polynomials and the Kadison-Singer Problem”. In: FOCS. 2013
(cit. on p. 235).

[NNI94] Hiroshi Nagamochi, Kazuhiro Nishimura, and Toshihide Ibaraki. “Computing All
Small Cuts in an Undirected Network”. In: SIAM Journal on Discrete Mathematics 10
(1994), pp. 469–481 (cit. on p. 175).

[NW61] C. St. J. A. Nash-Williams. “Edge disjoint spanning trees of finite graphs”. In: J. London
Math. Soc. 36 (1961), pp. 445–45 (cit. on p. 235).

[NZ19] Martin Nägele and Rico Zenklusen. “A New Dynamic Programming Approach for
Spanning Trees with Chain Constraints and Beyond”. In: Proceedings of the 30th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 2019, pp. 1550–1569 (cit. on
p. 234).

[OS11] Shayan Oveis Gharan and Amin Saberi. “The Asymmetric Traveling Salesman Problem
on Graphs with Bounded Genus”. In: Proceedings of the 22nd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 2011, pp. 967–975 (cit. on pp. 18, 232).

254

https://doi.org/10.1007/s00493-012-2760-6
https://doi.org/10.1007/s00493-012-2760-6
https://doi.org/10.1007/s10107-020-01524-y
https://doi.org/10.1007/s10107-017-1150-7

[OSS11] Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. “A Randomized Rounding
Approach to the Traveling Salesman Problem”. In: FOCS. IEEE Computer Society,
2011, pp. 550–559. isbn: 978-0-7695-4571-4 (cit. on pp. 10, 19, 20, 24, 33, 39, 53, 61, 63,
144, 167, 219).

[OZ18] Neil Olver and Rico Zenklusen. “Chain-Constrained Spanning Trees”. In: Mathematical
Programming 167 (2018), pp. 293–314. doi: 10.1007/s10107-017-1126-7 (cit. on pp. 18,
233, 234, 238).

[Pri11] David Pritchard. “k-Edge-Connectivity: Approximation and LP Relaxation”. In: Pro-
ceedings of the Ninth International Workshop on Approximation and Online Algorithms
(WAOA). Ed. by Klaus Jansen and Roberto Solis-Oba. Springer Berlin Heidelberg,
2011, pp. 225–236. doi: 10.1007/978-3-642-18318-8_20 (cit. on pp. 17, 218, 234).

[PS23] Aditya Pillai and Mohit Singh. Linear Programming based Reductions for Multiple Visit
TSP and Vehicle Routing Problems. 2023. arXiv: 2308.11742 [cs.DS] (cit. on p. 10).

[PV84] Christos H Papadimitriou and Umesh V Vazirani. “On two geometric problems related
to the travelling salesman problem”. In: Journal of Algorithms 5.2 (1984), pp. 231–246.
issn: 0196-6774. doi: https://doi.org/10.1016/0196-6774(84)90029-4 (cit. on
p. 258).

[RS05] Qazi Ibadur Rahman and Gerhard Schmeisser. Analytic Theory of Polynomials. Oxford:
Oxford University Press, 2005. isbn: 9780198534938 0198534930 (cit. on p. 28).

[Sch03] Alexander Schrijver. Combinatorial Optimization. English. Vol. 2. Algorithms and Com-
binatorics. Springer, 2003. isbn: 978-3-540-44389-6 (cit. on pp. 11, 20, 244).

[Ser78] A. I. Serdyukov. “O nekotorykh ekstremal’nykh obkhodakh v grafakh”. In: Upravlyae-
mye sistemy 17 (1978), pp. 76–79 (cit. on p. 9).

[SL15] Mohit Singh and Lap Chi Lau. “Approximating minimum bounded degree spanning
trees to within one of optimal”. In: Journal of the ACM 62.1 (2015). doi: 10.1145/
2629366 (cit. on pp. 18, 233, 244).

[STV20] Ola Svensson, Jakub Tarnawski, and László A. Végh. “A Constant-Factor Approxima-
tion Algorithm for the Asymmetric Traveling Salesman Problem”. In: Journal of the
ACM 67.6 (2020). doi: 10.1145/3424306 (cit. on pp. 18, 20, 232).

[SV12] András Sebö and Jens Vygen. “Shorter Tours by Nicer Ears:” CoRR abs/1201.1870.
2012 (cit. on p. 20).

[SV14] András Sebö and Jens Vygen. “Shorter tours by nicer ears: 7/5-Approximation for the
graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs”. In:
Combinatorica 34.5 (2014), pp. 597–629 (cit. on pp. 17, 218).

[SV19] Damian Straszak and Nisheeth K. Vishnoi. “Maximum Entropy Distributions: Bit
Complexity and Stability”. In: COLT. Ed. by Alina Beygelzimer and Daniel Hsu. Vol. 99.
Proceedings of Machine Learning Research. PMLR, 2019, pp. 2861–2891 (cit. on pp. 23,
65, 166).

[SW90] D. B. Shmoys and D. P. Williamson. “Analyzing the Held-Karp TSP bound: a mono-
tonicity property with application”. In: Inf. Process. Lett. 35.6 (Sept. 1990), pp. 281–285
(cit. on pp. 9, 11, 19, 22).

255

https://doi.org/10.1007/s10107-017-1126-7
https://doi.org/10.1007/978-3-642-18318-8_20
https://arxiv.org/abs/2308.11742
https://doi.org/https://doi.org/10.1016/0196-6774(84)90029-4
https://doi.org/10.1145/2629366
https://doi.org/10.1145/2629366
https://doi.org/10.1145/3424306

[SWZ12] Frans Schalekamp, David P. Williamson, and Anke van Zuylen. “A proof of the
Boyd-Carr conjecture”. In: SODA. 2012, pp. 1477–1486 (cit. on pp. 9, 71).

[SWZ13] Frans Schalekamp, David P. Williamson, and Anke van Zuylen. “2-Matchings, the
Traveling Salesman Problem, and the Subtour LP: A Proof of the Boyd-Carr Conjec-
ture”. In: Mathematics of Operations Research 39.2 (2013), pp. 403–417 (cit. on pp. 71,
196).

[Tho12] Carsten Thomassen. “The weak 3-flow conjecture and the weak circular flow con-
jecture”. In: Journal of Combinatorial Theory, Series B 102.2 (2012), pp. 521–529. doi:
10.1016/j.jctb.2011.09.003 (cit. on pp. 18, 232).

[TV22] Vera Traub and Jens Vygen. “An Improved Approximation Algorithm for The Asym-
metric Traveling Salesman Problem”. In: SIAM Journal on Computing 51.1 (2022),
pp. 139–173. doi: 10 . 1137 / 20M1339313. eprint: https : / / doi . org / 10 . 1137 /
20M1339313 (cit. on p. 20).

[TVZ20] Vera Traub, Jens Vygen, and Rico Zenklusen. “Reducing path TSP to TSP”. In: STOC.
Ed. by Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath,
and Julia Chuzhoy. ACM, 2020, pp. 14–27 (cit. on pp. 10, 16, 167).

[TZ22] Vera Traub and Rico Zenklusen. “A Better-Than-2 Approximation for Weighted Tree
Augmentation”. In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS). 2022, pp. 1–12. doi: 10.1109/FOCS52979.2021.00010 (cit. on p. 218).

[Wol80] Laurence A. Wolsey. “Heuristic analysis, linear programming and branch and bound”.
In: Combinatorial Optimization II. Vol. 13. Mathematical Programming Studies. Springer
Berlin Heidelberg, 1980, pp. 121–134 (cit. on pp. 9, 11, 19, 22, 63, 137).

[WS11] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011. doi: 10.1017/CBO9780511921735 (cit. on p. 9).

256

https://doi.org/10.1016/j.jctb.2011.09.003
https://doi.org/10.1137/20M1339313
https://doi.org/10.1137/20M1339313
https://doi.org/10.1137/20M1339313
https://doi.org/10.1109/FOCS52979.2021.00010
https://doi.org/10.1017/CBO9780511921735

A Preliminary Background

A.1 Graphs, Walks, and Circuits

Let G = (V, E) denote a graph with vertex set V and edge set E. We will always use n to denote
|V|. We will sometimes use {u, v} to denote the edge between u and v.

A walk in a graph is a sequence of edges that joins a sequence of vertices. In other words,
a sequence of edges (e1, . . . , ek) is a walk if there exists a sequence of vertices (v1, . . . , vk+1) (not
necessarily distinct) such that ei = {vi, vi+1}. A walk is closed if v1 = vk+1.

v1

v2

v3

v4

e1e2

e3

v1

v2

v3

v4

Figure 77: On the right is the closed walk {e1, e2, e2, e1} on the graph to the left. This walk is
associated with the vertex sequence {v1, v2, v3, v2, v1}.

A cycle is a closed walk in which only the first and last vertices in its vertex sequence appear
twice. A Hamiltonian cycle is a cycle of length n, i.e. one that visits all vertices. It is NP-Hard to
recognize if a graph contains a Hamiltonian cycle [Kar72].

Figure 78: On the left, a Hamiltonian graph. On the right is a Hamiltonian cycle of this graph
highlighted in red.

A circuit is a closed walk which does not repeat edges. A circuit is Eulerian if it uses every
edge of the graph. Thus, every Hamiltonian cycle is an Eulerian circuit, however the converse is
not true. We say a graph is Eulerian if it has an Eulerian circuit. The following simple fact is due
to Euler:

Fact A.1. A connected multigraph is Eulerian if and only if every vertex has even degree.

This demonstrates that while it is NP-Hard to determine if a graph has a closed walk that
visits every vertex exactly once (except the starting vertex), it is trivial to determine if a graph has
a walk which visits every edge exactly once.

257

A.2 Metric Completion and Equivalent Formulations of Metric TSP

Let G = (V, E) be a connected graph with weight function c ∈ RE such that ce denotes the cost of
edge e. For a set of edges F ⊆ E, we will let c(F) denote ∑e∈F ce.

We define the metric completion of G as a complete graph such that c{u,v} is equal to the
weight of the shortest path between u and v in G. (Note that this may decrease the value of ce for
some edges e, as in the below example.)

u1

u2

u3

u4

12

2 6

u1

u2

u3

u4

12

2

3

5
4

Figure 79: On the right is the metric completion of the graph on the left.

Fact A.2. The following problems are equivalent:

1. Given a complete graph G = (V, E) and a symmetric cost function c : V ×V → R≥0 with forms a
metric, find a minimum cost Hamiltonian cycle. This is classically known as the metric traveling
salesperson problem, or metric TSP.

2. Given a connected graph G = (V, E) with a weight function c ∈ RE, find a minimum cost multi-set
of edges F such that the multigraph G′ = (V, F) is connected and Eulerian, i.e. a minimum cost TSP
tour.

3. Given a complete graph G = (V, E) and a symmetric cost function c : V ×V → R≥0 which forms a
metric, find a minimum cost multi-set of edges F such that the multigraph G′ = (V, F) is connected
and Eulerian, i.e. a minimum cost TSP tour.

The equivalence of these problems follows from the fact that (1) the metric completion of a
graph forms a metric, and (2) any optimal TSP tour of a graph G can be shortcut to a Hamiltonian
cycle of the same cost in the metric completion of G. In general, any TSP tour can be shortcut
to a Hamiltonian cycle of no greater cost in the metric completion (by a simple application of the
triangle inequality).

Remark A.3. It is important to note that there can be many ways to shortcut a TSP tour to a
Hamiltonian cycle, and finding the one which produces the Hamiltonian cycle of minimum cost
is NP-Hard, even in the Euclidean case [PV84]. Thus there is a subtlety to be aware of when
going from (2) or (3) to (1): if your solution to the former is approximate, in translating to (1) you
may sometimes improve your solution. However, determining how much you can improve is
NP-Hard. Thus in this work we ignore all potential improvements gleaned from shortcutting.
We make no claim that this is the correct approach, and indeed learning how to exploit the gain
from shortcutting is an interesting open direction. So, we will always work with (3), and since the
graph is given by a metric we can assume that the optimal solution is a Hamiltonian cycle. By
Fact A.1, our goal is therefore to select the cheapest multi-set of edges which connects the graph

258

and has even degree at every vertex. In this section we will continue to address shortcutting, but
in future sections we will ignore it.

u1

u2

u3

u4

12

2 6

u1

u2

u3

u4

12

2

u1

u2

u3

u4

12

2 5

Figure 80: On the left is a metric TSP instance given by (3). In the middle is the optimal solution
of weight 10 as in (3). On the right, the optimal solution in the metric completion as in (2).

A.3 The Double Tree Algorithm

The double tree algorithm is a fast and simple 2-approximation for TSP. As in all future discussions
in this paper, our input will be symmetric metric c : V ×V → R≥0 and our goal will be to output
a minimum cost Eulerian multi-subgraph.

This algorithm simply chooses a minimum spanning tree T and returns T] T, where for two
sets A, B we let A] B denote their multi-set union.

Algorithm 11 Double Tree Algorithm for TSP

1: Find a minimum cost spanning tree T of G
2: Return T] T, i.e. return the Eulerian multi-subgraph containing two copies of each edge in T.

Since T is connected, the output is connected. Furthermore, since every edge in T appears
twice, every vertex has even degree, so T] T is Eulerian. Therefore this algorithm always produces
a valid solution. Finally we notice that c(T) ≤ c(OPT), since OPT connects the graph and T is
the cheapest set of edges that connects the graph. Thus the cost of the solution returned by the
algorithm is 2c(T) ≤ 2c(OPT), as desired.

Fig. 80 is an example solution produced by the double tree algorithm. In this case it is optimal.
However, the analysis is tight, as Fig. 81 illustrates.

The graph in Fig. 81 is Hamiltonian, so there is a solution of cost n, however the double
tree algorithm returns a solution of cost 2n− 2, which tends to a 2-approximation as n → ∞.
(The same is true for any Hamiltonian graphic instance of TSP.) If shortcutting is allowed (see
Remark A.3), this instance is not a lower bound example, however a lower bound of 2 is given in
[DT09] which works against even the optimal shortcutting.

A.4 The Christofides-Serdyukov Algorithm

For a set of vertices O ⊆ V with even parity, an O-Join M ⊆ E is a set of edges such that every
vertex in O is adjacent to an odd number of edges in F and every vertex not in O is adjacent to
an even number of edges in F. A minimum cost O-Join can be computed in polynomial time by
finding a minimum weight perfect matching on the metric completion of G.

259

Figure 81: A tight example for the double tree algorithm (without shortcutting). Let ce = 1 for all
edges.

Algorithm 12 Christofides-Serdyukov Algorithm

1: Find a minimum cost spanning tree T of G
2: Let O be the set of vertices with odd degree in T. Compute the minimum cost O-Join M.
3: Return T]M.

Every vertex with odd degree in T has odd degree in M, so it has even degree in T] M.
Similarly, every vertex with even degree in T has even degree in M, so it again has even degree in
T]M. Therefore T]M is Eulerian and the algorithm is correct.

We now show that this is a 3/2 approximation. As above, we use that c(T) ≤ c(OPT). It
remains to show that c(M) ≤ 1

2 c(OPT). Using Fact A.2, we may assume OPT is a Hamiltonian
cycle. Now, OPT itself can be decomposed into the union of two O-Joins, as visualized here:

Figure 82: The set O of odd vertices of the minimum spanning tree is marked in red along the
optimal Hamiltonian cycle. Notice OPT can be decomposed into two disjoint O-Joins, marked in
blue and red. Therefore the minimum cost O-Join must cost at most OPT/2.

It follows that the minimum cost O-Join costs at most OPT/2, completing the proof. This
analysis is tight, even allowing shortcutting, as seen in the following Fig. 83.63

A.5 Integrality Gap

Here we define the integrality gap of a polyhedron P in the positive orthant as the smallest
number α ≥ 1 such that for every x ∈ P and every positive weight function c, there exists an

63In this example we do not use an optimal shortcutting. For a simple lower bound of 3
2 even under optimal

shortcutting, see for example [DT09].

260

Figure 83: A tight example for Christofides. Let ce = 1 for all edges. In red is the minimum
spanning tree, and marked in red are the odd vertices. In blue is a minimum cost O-Join. The
cost will be 3

2 n− 2, but the graph is Hamiltonian, so this is a lower bound of 3/2 as n→ ∞. Note
we can force Christofides to pick the red edges by making their costs just slightly cheaper than
the remaining edges. On the right is a possible shortcutting of the Eulerian graph which also
costs 3

2 n− 2, where the red edges have cost 1 and the green edges have cost 2. Note that this can
be easily generalized: any Hamiltonian graphic instance with a spanning tree with all but a o(1)
fraction of vertices of even degree is a lower bound of 3/2 for Christofides.

x′ ∈ P ∩Z such that c(x′) ≤ αc(x).64

x1

x2

Figure 84: The integrality gap of this polyhedron is 2. It is achieved by the weight function (1, 1)
and the point (0.5, 0.5). This has value 1, but the best integer coordinate has value 2.

For a convex polyhedron P, this is equivalent to studying how much the values of the following
two programs can differ:

min cTz
s.t. Az ≥ b

z ∈ Z≥0

(89)
min cTx

s.t. Ax ≥ b
x ∈ R≥0

(90)

Where A is the polyhedron P of interest in inequality form (possibly given by a separation
oracle) and c is an arbitrary non-negative cost function. In other words, the integrality gap is the

64Of course, an analogous definition can be given for maximization problems.

261

largest possible value of c(z)
c(x) over all cost functions c where z, x are optimal solutions to the above

programs (1) and (2) respectively.
This quantity is of significant interest when designing approximation algorithms, since often

(2) can be solved efficiently but not (1). In this situation, proving that the integrality gap is α
implies solving (2) estimate the cost of (1) up to a factor α.

262

B Proofs from Section 6

In all of the following lemmas, we assume that εη ≤ ε2
1/2 and 12ε1/1 ≤ ε1/2.

u ve

V

Figure 85: Setting of Lemma 6.28

Lemma 6.28. Let e = (u, v) be a top edge bundle such that xe ≤ 1/2− ε1/2. If ε1/2 ≤ 0.001 then, e is
2-1-1 happy with probability at least 0.005ε2

1/2.

Proof. Let A, B, C be the degree partitioning of δ(u). Let V := δ(v)−e (see Fig. 85). Condition
u, v be trees, e and C to 0, let ν be the resulting measure. This happens with probability at least
0.5 and increases marginals in A−e, B−e, V by at most xe + 2ε1/1 + εη ≤ xe + 2.1ε1/1 and by tree
conditioning decreases marginals by at most 2εη . After conditioning, we have

Eν [AT] ∈ x(A)− xe(A) + [−2εη , xe + 2.1ε1/1] ⊂ [0.5, 1.5], similarly Eν [BT] ⊂ [0.5, 1.5]

Eν [VT] ∈ x(δ(v))− xe + [−2εη , xe + 2.1ε1/1] ⊂ [1.5, 2.01]
Eν [BT + VT] ∈ x(B) + x(δ(v))− xe − xe(B) + [−2εη , xe + 2.1ε1/1] ⊂ [2 + 1.8ε1/2, 3.01],

Eν [AT + BT] ∈ x(A) + x(B)− xe(A) − xe(B) + [−2εη , xe + 2.1ε1/1] ⊂ [1.5, 2.01],

Eν [AT + BT + VT] ∈ x(A) + x(B) + x(δ(v))− xe − xe(A) − xe(B) + [−2εη , xe + 2.1ε1/1]

⊂ [3 + 1.75ε1/2, 4.01].

where we used ε1/2 ≤ 0.001 and 12ε1/1 < ε1/2 and xe(A), xe(B), xe(A) + xe(B) ≤ xe ≤ 1/2− ε1/2. It
immediately follows from Proposition 6.8 that Pν [AT = BT = 1, VT = 2] is at least a constant. In
the rest of the proof, we do a more refined analysis. Using AT + BT ≥ 1, VT ≥ 1,

Pν [AT + BT + VT = 4] ≥ (1.75ε1/2)e−1.75ε1/2 ≥ 1.7ε1/2, (Lemma 6.4)
Pν [AT + BT ≥ 2] , Pν [VT ≥ 2] ≥ 0.39, (Lemma 6.5)
Pν [AT + BT ≤ 2] , Pν [VT ≤ 2] ≥ 0.5, (Markov, AT + BT ≥ 1, VT ≥ 1 under ν)
Pν [AT ≤ 1] ≥ 0.25, Pν [BT + VT ≤ 3] ≥ 0.33. (Markov’s Inequality and VT ≥ 1 under ν)
Pν [AT ≥ 1] ≥ 0.39, Pν [BT + VT ≥ 3] ≥ 1.75ε1/2, (Lemma 6.5)

It follows by Corollary 6.12 (with ε = 0.195, pm ≥ 1− 2ε ≥ 0.6) that

Pν [VT = 2|AT + BT + VT = 4] ≥ 0.13.

Note that since VT ≥ 1, AT + BT ≥ 1 with probability 1, we apply Corollary 6.12 to VT − 1, AT +
BT − 1.

Furthermore, by Lemma 6.11, Pν [AT ≥ 1|AT + BT + VT = 4] ≥ 0.128, Pν [AT ≤ 1|AT + BT + VT = 4] ≥
0.43ε1/2. The same holds for BT. Therefore, by Corollary 6.12 (with ε = 0.055ε1/2), using that
ε1/2 < 0.001,

Pν [AT = 1|AT + BT = 2, VT = 2] ≥ 0.05ε1/2.

263

Putting these together we have

P [e 2-1-1 happy] ≥ 0.5Pν [AT = BT = 1, VT = 2]
= 0.5Pν [AT + BT + VT = 4]Pν [VT = 2|AT + BT + VT = 4]
·Pν [AT = 1|VT = 2, AT + BT = 2]

≥ 0.5(1.7ε1/2)(0.13)(0.05ε1/2) ≥ 0.005ε2
1/2

as desired.

Lemma 6.29. Let e = (u, v) be a top edge bundle such that xe ≥ 1/2 + ε1/2. If ε1/2 ≤ 0.001, then, e is
2-1-1 happy with respect to u with probability at least 0.006ε2

1/2.

Proof. Let A, B, C be the degree partitioning of the edges in δ(u), V = δ−e(v). Condition u, v
be trees, CT = 0 and u ∪ v to be a tree (in order). This happens with probability at least
1
2 + ε1/2 − 3εη − 2ε1/1 ≥ 0.5. Let ν be the resulting measure restricted to edges in A, B, V.
Note that ν on edges in A, B, V is SR. This is because ν is a product of two strongly Rayleigh
distribution on the following two disjoint set of edges (i) the edges between u, v and (ii) the edges
in A−e, B−e, V.

Furthermore, observe that under ν, every set of edges in A−e, B−e, V increases by at most
2ε1/1 + εη < 0.2ε1/2 (using 12ε1/1 ≤ ε1/2), and decreases by at most 1− xe + 2εη . Therefore,

Eν [AT] ∈ x(A) + [−(1− xe)− 2εη , 1− xe + 0.2ε1/2] ⊂ [0.5, 1.5], similarly, Eν [BT] ∈ [0.5, 1.5]
Eν [VT] ∈ x(δ(v))− xe + [−(1− xe)− 2εη , 0.2ε1/2] ⊂ [0.995, 1.5].
Eν [AT + BT] ∈ x(A) + x(B) + 1− xe(A) − xe(B) + [−(1− xe)− 2εη , 0.2ε1/2] ⊂ [1.995, 2.5],

Eν [BT + VT] ∈ x(B) + x(δ(v))− xe + [−(1− xe)− 2εη , 1− xe + 0.2ε1/2] ⊂ [1.99, 3− 1.75ε1/2].
Eν [AT + BT + VT] ∈ x(A) + x(B) + x(δ(v)) + 1− xe − xe(A) − xe(B) + [−(1− xe)− 2εη , 0.2ε1/2]

⊂ [2.99, 4− 1.75ε1/2].

where in the upper bound on Eν [AT], Eν [BT], Eν [BT + VT] we used that the marginals of edges
in the bundle e can only increase by 1− xe (in total) when conditioning u ∪ v to be a tree. So,

Pν [AT + BT + VT = 3] ≥ ε1/2, (By Theorem 2.17)
Pν [AT + BT ≥ 2] ≥ 0.63, Pν [VT ≥ 1] ≥ 0.63 (Lemma 6.5, AT + BT ≥ 1)
Pν [AT + BT ≤ 2] ≥ 0.25, Pν [VT ≤ 1] ≥ 0.25, (Markov Inequality, AT + BT ≥ 1)
Pν [AT ≥ 1] ≥ 0.39, Pν [BT + VT ≥ 2] ≥ 0.59 (Lemma 6.5)
Pν [AT ≤ 1] ≥ 0.25, Pν [BT + VT ≤ 2] ≥ 1.75ε1/2, (Markov, In worst case P [BT + VT < 2] = 0)

It follows by Corollary 6.12 (with ε = 0.157, pm = 0.68) that

Pν [AT + BT = 2|AT + BT + VT = 3] ≥ 0.12.

Note that since AT + BT ≥ 1 with probability 1, we apply Corollary 6.12 to AT + BT − 1, VT.
Furthermore, by Lemma 6.11, Pν [AT ≥ 1|AT + BT + VT = 3] ≥ 0.68ε1/2 and

Pν [AT ≤ 1|AT + BT + VT = 3] ≥ 0.147. By symmetry, the same holds for BT. Therefore, by
Corollary 6.12,

Pν [AT = 1|AT + BT = 2, VT = 1] ≥ 0.09ε1/2.

264

where we used ε1/2 < 0.001.
Finally,

P [e 2-1-1 happy] ≥ (0.09ε1/2)0.12(ε1/2)0.5 ≥ 0.005ε2
1/2,

as desired.

A B
u

v
V

e(A)

e(B)

Figure 86: Setting of Lemma B.1

Lemma B.1. For a good half top edge bundle e = (u, v), let A, B, C be the degree partitioning of δ(u),
and let V = δ(v)−e (see Fig. 86). If ε1/2 ≤ 0.001, xe(B) ≤ ε1/2, and P [(A−e)T + VT ≤ 1] ≥ 5ε1/2 then
e is 2-1-1 good,

P [e 2-1-1 happy w.r.t. u] ≥ 0.005ε2
1/2

Proof. The proof is similar to Lemma 6.29. We condition u, v to be trees, CT = 0, u ∪ v to be a tree.
Let ν be the resulting SR measure on edges in A, B, V. The main difference is since xe 6≥ 1/2+ ε1/2
we use the lemma’s assumptions to lower bound Pν [AT + BT + VT = 3] , Pν [AT + VT ≤ 2] , Pν [BT + VT ≤ 2].

First, since e is 2-2 good, by Lemma 6.22 and negative association,

Pν [(δ(u)−e)T + VT ≤ 2] ≥ P [(δ(u)−e)T + VT ≤ 2]−P [CT = 0] ≥ 0.4ε1/2 − 2ε1/1 − εη ≥ 0.22ε1/2,

where we used ε1/1 ≤ ε1/2/12. Letting pi = P [(δ(u)−e)T + VT = i], we therefore have p≤2 ≥
0.22ε1/2. In addition, by Lemma 6.4, p3 ≥ 1/4. If p2 < 0.2ε1/2, then from p2/p3 ≤ 0.8ε1/2, we
could use log-concavity to derive a contradiction to p≤2 ≥ 0.22ε1/2 (analogously to what’s done in
the proof of Lemma 6.1). Therefore, we must have

Pν [AT + BT + VT = 3] = Pν [(δ(u)−e)T + VT = 2] ≥ 0.2ε1/2.

Next, notice since P [u, v, u ∪ v trees, CT = 0] ≥ 0.49, by the lemma’s assumption, Pν [e(B)] ≤
2.01ε1/2. Therefore,

Eν [BT + VT] ≤ x(V) + x(B) + 1.01ε1/2 + 2ε1/1 + εη ≤ 2.51.

So, by Markov, Pν [BT + VT ≤ 2] ≥ 0.15. Finally, by negative association,

Pν [AT + VT ≤ 2] ≥ Pν [(A−e)T + VT ≤ 1] ≥ P [(A−e)T + VT ≤ 1]−P [CT = 0] ≥ 4.8ε1/2

where we used the lemma’s assumption.
Now, following the same line of arguments as in Lemma 6.29, we have

Pν [AT + BT = 2|AT + BT + VT = 3] ≥ 0.12. Also, Pν [AT ≥ 1|A− T + BT + VT = 3] ≥ 3.02, which
implies Pν [AT = 1|AT + BT = 2, VT = 1] ≥ 0.42ε. This implies

P [e 2-1-1 happy] ≥ (0.42ε1/2)0.12(0.2ε1/2)0.498 ≥ 0.005ε2
1/2

as desired.

265

Lemma 6.30. Let e = (v, u) and f = (v, w) be good half top edge bundles and let A, B, C be the degree
partitioning of δ(v) such that xe(B), xf(B) ≤ ε1/2. Then, one of e, f is 2-1-1 happy with probability at least
0.005ε2

1/2.

Proof. Let U = δ(u)−e. By Lemma 6.7, we can assume, without loss of generality, that

E [UT|f /∈ T, u, v, w tree] ≤ x(UT) + 0.405 + 3εη . (91)

On the other hand,

E [(A−e−f)T] ≥ E [(A−e−f)T|f /∈ T, u, v, w tree]P [f /∈ T, u, v, w, tree]
≥ E [(A−e−f)T|f /∈ T, u, v, w tree] 0.49

So,

E [(A−e−f)T|f /∈ T, u, v, w, tree] ≤ 1
0.49

x(A−e−f) ≤
1

0.49
(4ε1/2 + εη) ≤ 8.2ε1/2. (92)

Combining (91) and (92), we get E [UT + (A−e)|f /∈ T, u, v, w tree] ≤ 1.91 where we used
ε1/2 ≤ 0.001. Therefore, using Lemma 6.4, we get

P [UT + (A−e)T ≤ 1] ≥ 0.49P [UT + (A−e)T ≤ 1|f /∈ T, u, v, w tree] ≥ 0.01,

Since ε1/2 ≤ 0.001, by Lemma B.1, e is 2-1-1 good.

A B v
Y

X

e(A)

e(B)

Figure 87: Setting of Lemma 6.31.

Lemma 6.31. Let e = (u, v) be a good half edge bundle and let A, B, C be the degree partitioning of δ(u)
(see Fig. 87). If ε1/2 ≤ 0.001 and xe(A), xe(B) ≥ ε1/2, then

P [e 2-1-1 happy w.r.t u] ≥ 0.02ε2
1/2.

Proof. Condition CT to be zero, u, v and u ∪ v be trees. This happens with probability at least 0.49.
Let ν be the resulting measure. Let X = A−e ∪ B−e, Y = δ(v)−e Since e is 2-2 good by Lemma 6.22
and stochastic dominance,

Pν [XT + YT ≤ 2] ≥ P [(δ(u)−e)T + YT ≤ 2]−P [CT = 0] ≥ 0.4ε1/2 − 2ε1/1 − εη ≥ 0.22ε1/2,

where we used ε1/1 < 12ε1/2. It follows by log-concavity of XT + YT that Pν [XT + YT = 2] ≥
0.2ε1/2. Now,

Eν [XT] , Eν [YT] ∈ [1− 3ε1/1, 1.5 + ε1/2 + 2ε1/1 + 3εη] ⊂ [0.995, 1.51]

266

So,

Pν [XT ≥ 1] , Pν [YT ≥ 1] ≥ 0.63, (Lemma 6.5)
Pν [XT ≤ 1] , Pν [YT ≤ 1] ≥ 0.245. (Markov)

Therefore, by Corollary 6.12 Pν [XT = 1|XT + YT = 2] ≥ 0.119.

Pν [XT = YT = 1] ≥ (0.2ε1/2)0.119 ≥ 0.023ε1/2,

Let E be the event {XT = YT = 1|ν}. Note that in ν we always choose exactly 1 edge from the e
bundle and that is independent of edges in X, Y, in particular the above event. Therefore, we can
correct the parity of A, B by choosing from eA or eB. It follows that

P [e 2-1-1 happy w.r.t u] ≥ Pν [E] (1.99ε1/2)0.49 ≥ 0.02ε2
1/2,

where we used that Eν [e(A)T] ≥ 1.99ε1/2, and the same fact for e(B)T. To see why this latter fact
is true, observe that conditioned on u, v trees, we always sample at most one edge between u, v.
Therefore, since under ν we choose exactly one edge between u, v, the probability of choosing
from e(A) (and similarly choosing from e(B)) is at least

E [e(A)T|u, v trees, CT = 0]
P [e|u, v trees, CT = 0]

≥
xe(A) − 2εη

xe + 3ε1/1
≥

ε1/2 − 2εη

1/2 + 1.3ε1/2
≥ 1.99ε1/2

as desired.

u

U

w

W

A Be(A)

e(B) f(A)

f(B)

Z

Figure 88: Setting of Lemma 6.34. We assume that the dotted green/blue edges are at most ε1/2.
Note that edges of C are not shown.

Lemma 6.34. Let e = (u, v), f = (v, w) be two good top half edge bundles and let A, B, C be degree
partitioning of δ(v) such that xe(B), xf(A) ≤ ε1/2. If e, f are not 2-1-1 good with respect to v, and
ε1/2 ≤ 0.0002, then e, f are 2-2-2 happy with probability at least 0.01.

Proof. First, observe that by Lemma B.1 if P [UT + (A−e)T ≤ 1] ≥ 0.25ε, where ε ≥ 20ε1/2
is a constant that we fix later, then e is 2-1-1 good, which is a contradiction. So, assume,
P [UT + (A−e)T ≥ 2] ≥ 1 − 0.25ε. Furthermore, let q = P [UT + (A−e)T ≥ 3]. Since x(U) +
x(A−e) ≤ 2 + 3ε1/2 + 2ε1/1 + 3εη ≤ 2 + 3.2ε1/2 (where we used xe(A) ≥ xe − xe(B) − xC ≥
1/2− 2ε1/2 − 2ε1/1 − εη and where we used 12ε1/1 ≤ ε1/2),

2(1− q− 0.25ε) + 3q ≤ 2 + 3.2ε1/2.

267

This implies that q ≤ 0.5ε + 3.2ε1/2 ≤ 0.75ε (for ε ≥ 13ε1/2). Therefore,

P [UT + (A−e)T = 2] , P [WT + (B−f)T = 2] ≥ 1− ε (93)

where the second inequality follows by a similar argument.

Claim B.2. Let Z = δ(u)∩ δ(w). If ε < 1/15, then either E [Z|u, v, w tree] ≤ 3ε or E [Z|u, v, w tree] ≥
(1− 3ε).

Proof. For the whole proof we work with µ conditioned on u, v, w are trees. Let z = E [Z]. Let
D = U ∪W ∪ A−e ∪ B−f r Z. Note that DT + 2ZT = UT ∪WT ∪ (A−e)T ∪ (B−f)T. By Eq. (93) and
a union bound P [DT + 2ZT = 4] ≥ 1− 2ε− 3εη . Therefore,

2.1ε ≥ 2ε + 3εη ≥ P [DT + 2ZT 6= 4] ≥ P [DT = 3] ≥
√

P [DT = 2]P [DT = 4]

where the last inequality follows by log-concavity. On the other hand,

z = P [Z = 1] ≤ P [DT = 2, Z = 1] + P [DT + 2ZT 6= 4] ≤ P [DT = 2] + 2.1ε,
1− z = P [Z = 0] ≤ P [DT = 4, Z = 0] + P [DT + 2ZT 6= 4] ≤ P [DT = 4] + 2.1ε

Putting everything together,

(2.1ε)2 ≥ (z− 2.1ε)(1− z− 2.1ε) = z(1− z)− 2.1ε + 2.1ε2.

Therefore, using ε ≤ 1/15, we get that either z ≤ 3ε or z ≥ 1− 3ε.

So, for the rest of proof we assume E [ZT|u, v, w trees] < 3ε. A similar proof shows e, f are
2-2-2 good when E [ZT|u, v, w trees] > 1− 3ε. We run the following conditionings in order: u, v, w
trees, ZT = 0, CT = 0, e(B), f /∈ T, e(A) ∈ T. Note that e(A) ∈ T is equivalent to u ∪ v be a tree.
Call this event E (i.e., the event that all things we conditioned on happen). First, notice

P [E] ≥ (1− 3εη)(1− 3ε− 2ε1/1 − εη − ε1/2 − (1/2 + ε1/2))(1/2− 3ε1/2) ≥ 0.22 ≥ 1/5 (94)

Moreover, since all of these conditionings correspond to upward/downward events, µ|E is
strongly Rayleigh. The main statement we will show is that

P [e, f 2-2-2 happy|E] ≥ P [UT = (A−e)T = 1, (B−f)T = 0, WT = 2|E] = Ω(1).

The main insight of the proof is that Eq. (93) holds (up to a larger constant of ε), even after
conditioning E , B−f = 0, A−e = 1; so, we can bound the preceding event by just a union bound.
The main non-trivial statement is to argue that the expectations of B−f and A−e do not change so
much under E .

Combining (93) and (94),

P [UT + (A−e)T = 2|E] , P [WT + (B−f)T = 2|E] ≥ 1− 5ε. (95)

We claim that

E [BT|E] = E [(B−f)T|E] ≤ x(B−f) + 3εη + 3ε1/1 + ε1/2 + 35ε ≤ 0.66 (96)

268

using ε1/2 < 0.0002 and ε = 20ε1/2. To see this, observe that after each conditioning in E either all
marginals increase or all decrease. Furthermore, the events CT = 0, ZT = 0, e(B)T = 0 can increase
marginals by at most 3εη + 3ε1/1 + ε1/2; the only other event that can increase B−f is f /∈ T. Now
we know P [(B−f)T + WT = 2|E] ≥ 1− 5ε before and after conditioning f /∈ T. Therefore, by
Corollary 2.19, 2− 10ε ≤ E [(B−f)T + WT] ≤ 2 + 25ε. But if E [(B−f)T] increased by more than
35ε, then either before conditioning f /∈ T, E [(B−f) + WT] < 2− 10ε or afterwards it is more than
2 + 25ε, which is a contradiction, and completes the proof of (96). A similar argument shows that
E [(A−e)T|E] ≤ 0.66.

We also claim that
E [(A−e)T|E] ≥ x(A−e)− 3εη − 35ε ≥ 0.33.

As above, everything conditioned on in E increases E [(A−e)T] except for possibly e(A) ∈ T.
As above, we know that P [UT + (A−e)T = 2|E] ≥ 1− 5ε before and after e(A) /∈ T. So again
applying Corollary 2.19, we see that it can’t decrease by more than 35ε.

It follows that

0.33 ≤ E [(A−e)T|E] ≤ E [(A−e)T|E , (B−f)T = 0] ≤ 0.66 + 0.66 ≤ 1.32.

So, by Lemma 6.4 and Theorem 2.17, P
[
(A−e)T = 1|E , (B− f)T = 0

]
≥ 0.33e−.33 ≥ 0.237.

Therefore, by Lemma 6.4

P [E , (A−e)T = 1, (B−f)T = 0] ≥ (0.22)(0.39)(0.23) ≥ 0.019.

Therefore, by (95)

P [UT = 1|E , (A−e)T = 1, (B−f)T = 0] , P [WT = 2|E , (A−e)T = 1, (B−f)T = 0] ≥ 1− 5ε/0.019

Finally, by union bound

P [UT = 1, WT = 2|E , (A−e)T = 1, (B−f)T = 0] ≥ 1− ε/0.009

Using ε = 20ε1/2 and ε1/2 ≤ 0.0002 this means both of the above events happens, so e, f are
2-2-2-happy with probability 0.019(1− ε/0.009) > 0.01 as desired.

269

C Cuts crossed on one side

This is the first appendix for the integrality gap result, Theorem 1.2.

C.1 Cuts crossed on one side

In Theorem 11.2, we found a vector which satisfies all cuts crossed on both sides. Consequently,
we can study the structure of cuts which remain after deleting all cuts crossed on both sides,
i.e. connected components of cuts crossed on one side. The arguments in this section closely
follow Section 5.4. Even though in that section, these families were handled using OPT edges, the
extension to charging to LP edges is very natural in this setting and requires little modification.

Lemma C.1. Suppose C is a connected component of cuts inNη,1 with |C| ≥ 2. If η ≤ 2
5 , the corresponding

polygon P of C has no inside atoms.

Proof. By Lemma 10.17, to show that the polygon of C has no inside atoms it is sufficient to show
that there are no k-cycles for any integer k. Since η ≤ 2/5, by Lemma 10.16 there are no 3 or
4-cycles. By way of contradiction suppose there was a k-cycle C1, . . . , Ck ∈ C with k ≥ 5. Then,
perhaps after renaming, we can assume that C1, C2, C3 do not contain the root, C1 and C3 each
cross C2, and C1 ∩ C3 = ∅. Then by Lemma 10.12, C2 ∈ Nη,2, which is a contradiction since we
assumed C ⊆ N1. Therefore, P has no k-cycles for k ≥ 5. So, P has no inside atoms.

Also note that by Lemma 10.12, if C is a connected component of cuts in Nη,1, then every cut
C ∈ C is crossed on one side in the polygon of C. (In other words, deleting the cuts in Nη,2 does
not allow a cut previously crossed on one side to be crossed on both sides in its new polygon.)

C.2 Notation and results that we re-use

As before suppose C is a connected component of cuts crossed on one side with corresponding
polygon P. Now assume P has outside atoms a0, . . . , am−1, and WLOG assume a0 is the root (recall
there are no inside atoms).

Definition C.2 (Leftmost and Rightmost cuts). We call any cut C ∈ C with leftmost atom a1 a leftmost
cut of P, and any cut C ∈ C with rightmost atom am−1 a rightmost cut of P. We also call a1 the leftmost
atom of P (resp. am−1 the rightmost atom).

Recall that in Theorem 5.9, we showed that polygons of cuts crossed on one side have a simple
structure. In particular, they look like a near-integral cycle. We repeat the theorem here:

Theorem C.3 (Structure of Polygons of Nη,1). For εη ≥ 7η and any polygon of cuts crossed on one side
with atoms a0...am−1 (where a0 is the root) the following holds:

• For all adjacent atoms ai, ai+1 (also including a0, am−1), we have x(E(ai, ai+1)) ≥ 1− εη .

• All atoms ai (including the root) have x(δ(ai)) ≤ 2 + εη .

• x(E(a0, {a2, . . . , am−2})) ≤ εη .

We will also re-use the following definitions:

270

Definition C.4 (A, B, C-Polygon Partition). The A, B, C-polygon partition of a polygon P is a partition
of edges of δ(a0) into sets A = E(a1, a0) and B = E(am−1, a0), C = δ(a0)r A r B.

Definition C.5 (Happy Polygons). For a spanning tree T, we say that a polygon P of cuts crossed on one
side is happy if

AT and BT odd, CT = 0.

We say that P is left-happy (respectively right-happy) if

AT odd, CT = 0,

(respectively BT odd, CT = 0).

Definition C.6 (Happy Cut). We say a leftmost cut L ∈ C is happy if

E(L, L ∪ a0)T = 1.

Similarly, the leftmost atom a1 is happy if E(a1, a0 ∪ a1)T = 1. Define rightmost cuts in u or the rightmost
atom in u to be happy, similarly.

Note that, by definition, if leftmost cut L is happy and P is left happy then L is even, i.e.,
δ(L)T = 2. Similarly, a1 is even if it is happy and P is left-happy.

Definition C.7 (Relevant Cuts). Define the family of relevant cuts of a polygon P representing a connected
component C ⊆ Nη,1 as follows:

C+ = C ∪ {ai : 1 ≤ i ≤ m− 1∧ x(δ(ai)) ≤ 2 + η}.

Lemma C.8 (Restatement of Lemma 5.28). There is a mapping of cuts in C+ to the collections of
edges E(a1, a2), . . . , E(am−2, am−1) such that each set E(ai, ai+1) has at most 4 cuts mapped to it, every
cut C ∈ C+ containing atoms ai through aj is mapped to either E(ai−1, ai) or E(aj, aj+1) (or both), and
every atom of the polygon in C ′ gets mapped to two (not necessarily distinct) groups of edges E(ai, ai+1),
E(aj, aj+1).

Note in the following three statements, we gain a factor of two compared to their previous
incarnations as we look at η-near min cuts instead of 2η-near min cuts.

Lemma C.9 (Restatement of Lemma 5.26). For every cut A ∈ C that is not a leftmost or a rightmost
cut, P [δ(A)T = 2] ≥ 1− 11η.

Lemma C.10 (Restatement of Lemma 5.27). For any atom ai 6= a0 that is not the leftmost or the
rightmost atom we have

P [δ(ai)T = 2] ≥ 1− 21η.

Lemma C.11 (Restatement of Lemma 5.30). For every leftmost or rightmost cut A in P that is an
η-near min cut, P [A happy] ≥ 1− 5η, and for the leftmost atom a1 (resp. rightmost atom am−1), if it is
an η-near min cut then P [a1 happy] ≥ 1− 12η (resp. P [am−1 happy] ≥ 1− 12η).

271

C.3 Main theorem for cuts crossed on one side

The following is the extension of Theorem 5.24 to the case when we do not use OPT. This is the
key theorem used to deal with components cuts crossed on one side and the atoms in Nη which
compose them.

Theorem C.12 (Happy Polygons (Similar to Theorem 5.24)). Let G = (V, E, x) for an LP solution
x. Let µ be an arbitrary distribution of spanning trees with marginals x. For any α > 0, η ≤ 1/10, and
εη = 7η, there is a random vector s∗ : E→ R≥0 (as a function of T ∼ µ) such that

• For a connected component C of cuts crossed on one side with corresponding polygon P and atoms
a0, a1...am−1 and cycle partition A, B, C the following holds:

– For any cut S ∈ C+ which is not a leftmost/rightmost cut/atom if δ(S)T is odd then we have
s∗(δ(S)) ≥ α(1− εη),

– If P is left happy, then for any S ∈ C+ that is a leftmost cut or the leftmost atom, if δ(S)T is
odd, then we have s∗(δ(S)) ≥ α(1− εη).

– Similarly, if P is right happy then for any cut S ∈ C+ that is a rightmost cut or the rightmost
atom, if δ(S)T is odd, then s∗(δ(S)) ≥ α(1− εη).

• E [s∗e] ≤ 44αηxe for all e ∈ E.

Before proving the theorem, we study a special case.

Lemma C.13 (Theorem C.12 Holds for Triangles). Let S = X ∪Y where X, Y, S are εη-near min cuts
which do not cross. Then, letting X be a1 and Y be a2 (and a0 = X ∪Y) Theorem C.12 holds.

Proof. In this case this system has cycle partition A = E(a1, a0), B = E(a2, a0), C = ∅. For the edges
E(a1, a2) we define an increase event I when at least one of T ∩ E(X), T ∩ E(Y), T ∩ E(S) is not a
tree. Whenever this happens we define s∗e = αxe for all e ∈ E(a1, a2). If S is left-happy we need to
show when δ(X)T is odd, then s∗(δ(X)) ≥ α(1− εη). This is because when S is left-happy we have
AT = 1 (and CT = 0), so either the increase event I does not happen and we get δ(X)T = 2 or it
happens in which case s∗(δ(X)) = α · x(E(a1, a2)) ≥ α(1− εη) by Lemma 2.35. Finally, observe
that by Corollary 2.29, P [I] ≤ 3εη/2, so E [s∗e] = 1.5εηαxe < 44αηxe for all e ∈ E(a1, a2).

Proof of Theorem C.12. Fix a connected component C of N1 with corresponding polygon P. Fix
1 < i < m. By Theorem C.3 x(E(ai−1, ai)) ≥ 1− εη .

For the at most four cuts mapped to E(ai−1, ai) in Lemma C.8, we define the following three
events:

i) A leftmost cut mapped to E(ai−1, ai) is not happy.

ii) A rightmost cut mapped to E(ai−1, ai) is not happy.

iii) A cut which is not leftmost or rightmost mapped to E(ai−1, ai) is odd.

Observe that the cuts in (i) and (ii) are assigned to E(ai−1, ai) in Lemma C.8. We say an atom a is
singly-mapped to E(ai−1, ai) if in the matching a is only mapped to E(ai−1, ai) once, otherwise we
say it is doubly-mapped to E(ai−1, ai).

272

We say an event I(E(ai−1, ai)) occurs if either (i), (ii), or (iii) occurs. If I(E(ai−1, ai)) occurs
then for all e ∈ E(ai−1, ai), we set:

s∗e =


αxe If (i),(ii), or (iii) occurred for at least one non-atom cut in C ′, or for an atom

which is doubly-mapped to E(ai−1, ai)

αxe/2 Otherwise.

If I(E(ai−1, ai)) does not occur we set s∗e = 0 for all e ∈ E(ai−1, ai).
First, observe that for any non-atom cut S ∈ C+ (i.e. any relevant cut) that is not a leftmost

or a rightmost cut/atom, if δ(S)T is odd, then if E(ai−1, ai) is the set of edges that S is mapped
to, it satisfies s∗(δ(S)) ≥ α · x(E(ai−1, ai)) ≥ α(1− εη). So, these cuts satisfy the conditions of the
theorem.

The same inequality holds for non-leftmost/rightmost atom cuts a ∈ C ′ which are doubly-
mapped to E(ai−1, ai). For non-leftmost/rightmost atom cuts a ∈ C ′ which are singly-mapped to
E(ai−1, ai), a is mapped (possibly even twice) to another edge E(aj−1, aj) (note j = i− 1 or i + 1),
and in this case s∗(δ(S)) ≥ α/2 · 2(1− εη) = α(1− εη), and again the above inequality holds.

Now, suppose S ∈ C is a leftmost cut of P and δ(S)T is odd, and the rightmost atom of S is ai−1
(i.e. it is mapped to E(ai−1, ai)). If P is not left-happy then there is nothing to prove. If P is left-
happy, we may assume S is not happy. Then I(E(ai−1, ai)) happens, so as in the above inequality
s∗(δ(S)) ≥ α(1− εη). We obtain the same condition for rightmost cuts and leftmost/rightmost
atoms that are assigned to P (note leftmost/rightmost atoms are always doubly-mapped: a1 to
E(a1, a2) and am−1 to E(am−2, am−1)).

It remains to upper bound E [s∗e] for any edge e ∈ E(ai−1, ai). By Lemma C.8, at most four cuts
are mapped to E(ai−1, ai).

First suppose exactly one atom is doubly-mapped to E(ai−1, ai). Then there are at most three
cuts mapped to E(ai−1, ai), including that atom. The probability of an event of type (i) or (ii)
occurring for the leftmost or rightmost atom is at most 1− 12η by Lemma C.11. Atoms which are
not leftmost or rightmost are even with probability at least 1− 21η by Lemma C.10. Therefore,
in the worst case, the doubly-mapped atom is not leftmost or rightmost. For the remaining two
cuts, leftmost and rightmost cuts are happy with probability at least 1− 5η by Lemma C.11, and
(non-atom) non leftmost/rightmost cuts are even with probability at least 1− 11η by Lemma C.9.
Therefore in the worst case the remaining two (non-atom) cuts mapped to E(ai−1, ai) are not
leftmost/rightmost. Therefore, if an atom is doubly-mapped to E(ai−1, ai), for any e ∈ E(ai−1, ai)
we have

E [s∗(e)] ≤ 21ηαxe + 2 · 11ηαxe < 44ηαxe

Note if two atoms are doubly-mapped to E(ai−1, ai), there are no other mapped cuts and in the
worst case the atoms are not leftmost/rightmost, so for any e ∈ E(ai−1, ai),

E [s∗(e)] ≤ 2 · 21ηαxe < 44ηαxe

Otherwise, any atoms mapped to E(ai−1, ai) are singly-mapped. In this case, if only an atom
cut is odd/unhappy, we set s∗(e) = xeα/2. The probability of an event of type (i) or (ii) occurring
for the leftmost or rightmost atom is at most 1− 12η by Lemma C.11, so we can bound the
contribution of this event to E [s∗(e)] by 12ηαxe/2. Atoms which are not leftmost or rightmost are
even with probability at least 1− 21η by Lemma C.10, and so we can bound their contribution by

273

21ηαxe/2. Therefore, in the worst case four non-leftmost/rightmost non-atom cuts are mapped to
E(ai−1, ai), in which case, for any e ∈ E(ai−1, ai),

E [s∗(e)] ≤ 4 · 11ηαxe = 44ηαxe

as desired.

D Proof of Theorem 12.1

In this section, we use the previous section and Theorem 11.2 to prove Theorem 12.1, the main
technical ingredient required to prove the integrality gap result.

Definition D.1 (Hierarchy). For an LP solution x0 with support E0 = E ∪ {e0} where x is x0 restricted
to E, a hierarchy H ⊆ Nεη is a laminar family with root V r {u0, v0}, where every cut S ∈ H is called
either a “near-cycle" cut or a degree cut. In the special case that S has exactly two children we call it a
triangle cut. Furthermore, every cut S is the union of its children. For any (non-root) cut S ∈ H, define the
parent of S, p(S), to be the smallest cut S′ ∈ H such that S (S′.

For a cut S ∈ H, let A(S) := {a ∈ H : p(a) = S}. If S is called a “near-cycle" cut, then we can order
cuts in A(S), a1, . . . , am−1 such that

• A = E(S, a1), B = E(am−1, S) satisfy x(A), x(B) ≥ 1− εη .

• For any 1 ≤ i < m− 1, x(E(ai, ai+1)) ≥ 1− εη .

• C = ∪m−2
i=2 E(ai, S) satisfies x(C) ≤ εη .

We call the sets A, B, C the “near-cycle" partition of edges in δ(S). We say S is left-happy when AT is
odd and CT = 0 and right happy when BT is odd and CT = 0 and happy when AT, BT are odd and CT = 0.

We abuse notation and for an edge e = (u, v) that is not a neighbor of u0, v0, we write p(e) to denote
the smallest65 cut S′ ∈ H such that u, v ∈ S′. We say edge e is a bottom edge if p(e) is a polygon cut and
we say it is a top edge if p(e) is a degree cut.

The terminology of the above differs slightly from Definition 5.31, where we replace “polygon"
cut with “near-cycle" cut and “polygon" partition with “near-cycle" partition.

By Theorem C.3, an example of a near-cycle cut is the union of non-root atoms of a connected
component of cuts crossed on one side (i.e. its outer polygon cut). Another example is the non-root
atoms of a connected component of minimum cuts (i.e. a cycle of a cactus of length at least four).

In the following, we will define a hierarchy H satisfying the above definition such that every
cut S ∈ Nη,≤1 is either in H or there is a near-cycle cut P ∈ H representing a connected component
C such that S ∈ C.

Recall the “main payment theorem."

Theorem D.2. For an LP solution x0 where x is x0 restricted to E and a hierarchy H for some εη ≤ 10−10

and any β > 0, the maximum entropy distribution µ with marginals x satisfies the following:

i) There is a set of good edges Eg ⊆ E r δ({u0, v0}) such that any bottom edge e is in Eg and for any
(non-root) S ∈ H such that p(S) is not a near-cycle cut, we have x(Eg ∩ δ(S)) ≥ 3/4.

65in the sense of the number of vertices that it contains

274

ii) There is a random vector s : Eg → R (as a function of T ∼ µ) such that for all e, se ≥ −xeβ (with
probability 1), and

iii) If a near-cycle cut S with cycle partition A, B, C is not left happy, then for any set F ⊆ E with
p(e) = S for all e ∈ F and x(F) ≥ 1− εη/2, we have

s(A) + s(F) + s−(C) ≥ 0,

where s−(C) = ∑e∈C min{se, 0}. A similar inequality holds if S is not right happy.

iv) For every cut S ∈ H such that p(S) is not an near-cycle cut, if δ(S)T is odd, then s(δ(S)) ≥ 0.

v) For a good edge e ∈ Eg, E [se] ≤ −εPβxe (where εP ≥ 3.12 · 10−16) .

We will shortly show how the main payment theorem along with Theorem C.12 and Theo-
rem 11.2 implies the following:

Theorem D.3. Let x0 be a feasible solution of LP (2) with support E0 = E ∪ {e0} with x the restriction
of x0 to E. Let µ be the max entropy distribution with marginals x. For η ≤ 10−12, β > 0, there is a set
Eg ⊂ E r δ({u0, v0}) of good edges and two functions s : E0 → R and s∗ : E → R≥0 (as functions of
T ∼ µ) such that

(i) For each edge e ∈ Eg, se ≥ −xeβ and for any e ∈ E r Eg, se = 0.

(ii) For each η-near min cut S, including those for which {u0, v0} ∈ δ(S), if δ(S)T is odd, then
s(δ(S)) + s∗(δ(S)) ≥ 0.

(iii) We have E [se] ≤ −εPβxe for all edges e ∈ Eg and E [s∗e] ≤ 125ηβxe for all edges e ∈ E, where εP
is defined in Theorem 5.33.

(iv) For every cut S crossed on at most one side such that S 6= {u0, v0}, x(δ(S) ∩ Eg) ≥ 3/4.

We will first use it to prove the appendix theorem, which we already showed implies Theo-
rem 1.2:

Theorem 12.1 (Combination of Theorem 9.8 and Theorem 11.2). Let x0 be a solution of LP (2) with
support E0 = E ∪ {e0}, and x be x0 restricted to E. Let η ≤ 10−12, β > 0 and let µ be the max-entropy
distribution with marginals x. Then there are two functions s : E0 → R and s∗ : E→ R≥0 (as functions
of T ∼ µ), such that

i) For each edge e ∈ E, se ≥ −xeβ (with probability 1).

ii) For each S ∈ Nη , if δ(S)T is odd, then s(δ(S)) + s∗(δ(S)) ≥ 0.

iii) For every edge e, E [s∗e] ≤ 125ηβxe and E [se] ≤ − 1
3 xeεPβ, where εP is defined in Theorem D.2.

Proof of Theorem 12.1. Let Eg be the good edges defined in Theorem D.3 and let Eb := E r Eg be
the set of bad edges; in particular, note all edges in δ({u0, v0}) are bad edges. We define a new
vector s̃ : E ∪ {e0} → R as follows:

s̃(e)←


∞ if e = e0

−xe(4β/5)(1− 2η) if e ∈ Eb,
xe(4β/3) otherwise.

(97)

275

Let s̃∗ be the vector s∗ from Theorem 11.2 called with α = 2β. We claim that for any η-near
minimum cut S such that δ(S)T is odd, we have

s̃(δ(S)) + s̃∗(δ(S)) ≥ 0.

To check this note by (iv) of Theorem D.3 for every set S ∈ Nη,≤1 such that S 6= V r {u0, v0}, we
have x(Eg ∩ δ(S)) ≥ 3

4 , so we have

s̃(δ(S)) + s̃∗(δ(S)) ≥ s̃(δ(S)) =
4β

3
x(Eg ∩ δ(S))− 4β

5
(1− 2η)x(Eb ∩ δ(S)) ≥ 0. (98)

For S = V r {u0, v0}, we have δ(S)T = δ(u0)T + δ(v0)T = 2 with probability 1, so condition ii)
is satisfied for these cuts as well. Finally, consider cuts S ∈ Nη,2. By Theorem 11.2, if δ(S)T is odd,
then s̃∗(δ(S)) ≥ α(1− η) = 2β(1− η). Therefore, in such a case we have:

s̃(δ(S)) + s̃∗(δ(S)) ≥ 2β(1− η)− 4β

5
(1− 2η)x(δ(S)) ≥ 0 (99)

where we use that x(δ(S)) ≤ 2 + η.
Now, we are ready to define s, s∗. Let ŝ, ŝ∗ be the s, s∗ of Theorem D.3 respectively. Define

s = γs̃ + (1− γ)ŝ and similarly define s∗ = γs̃∗ + (1− γ)ŝ∗ for some γ that we choose later. We
prove all three conclusions of Theorem 12.1 for s, s∗. (i) follows by (i) of Theorem D.3 and Eq. (97).
(ii) follows by (ii) of Theorem D.3 and Eqs. (98) and (99) above. It remains to verify (iii). For edge
e ∈ E, E [s∗e] ≤ 125ηβxe by (iii) of Theorem D.3 and the construction of s∗. On the other hand, by
(iii) of Theorem D.3 and Eq. (97),

E [se]

{
≤ xe(γ

4
3 β− (1− γ)εPβ) ∀e ∈ Eg,

= −xeγ · (4
5 β)(1− 2η) ∀e ∈ Eb.

Setting γ = 15
32 εP we get E [se] ≤ − 1

3 εPβxe for e ∈ Eg and E [se] ≤ − 1
3 xeβεP for e ∈ Eb as

desired.

So it remains to prove the following:

Theorem D.3. Let x0 be a feasible solution of LP (2) with support E0 = E ∪ {e0} with x the restriction
of x0 to E. Let µ be the max entropy distribution with marginals x. For η ≤ 10−12, β > 0, there is a set
Eg ⊂ E r δ({u0, v0}) of good edges and two functions s : E0 → R and s∗ : E → R≥0 (as functions of
T ∼ µ) such that

(i) For each edge e ∈ Eg, se ≥ −xeβ and for any e ∈ E r Eg, se = 0.

(ii) For each η-near min cut S, including those for which {u0, v0} ∈ δ(S), if δ(S)T is odd, then
s(δ(S)) + s∗(δ(S)) ≥ 0.

(iii) We have E [se] ≤ −εPβxe for all edges e ∈ Eg and E [s∗e] ≤ 125ηβxe for all edges e ∈ E, where εP
is defined in Theorem 5.33.

(iv) For every cut S crossed on at most one side such that S 6= {u0, v0}, x(δ(S) ∩ Eg) ≥ 3/4.

276

Proof. We start by explaining how to construct H. Run the following procedure on Nη,≤1 (of x):
For every connected component C of Nη,≤1, if |C| = 1 then add the unique cut in C to the hierarchy.
Otherwise, C corresponds to a polygon P of cuts crossed on one side with atoms a0, . . . , am−1 (for
some m > 3). By Lemma C.1 all these atoms are outside atoms. Add a1, . . . , am−1 to H66 and
∪m−1

i=1 ai to H. Note that since x(δ({u0, v0})) = 2, the root of the hierarchy is always V r {u0, v0}.
Now, we name every cut in the hierarchy. For a cut S, if there is a connected component of at

least two cuts with union equal to S, then call S a near-cycle cut with A, B, C partition as defined
in Definition D.1. If S is a cut with exactly two children X, Y in the hierarchy (i.e. a triangle), then
let A = E(X, X rY), B = E(Y, Y r X) and C = ∅. Otherwise, call S a degree cut.

Fact D.4 ([KKO21, Fact 4.34]). The above procedure produces a valid hierarchy.

The following observation simply follows from the fact that the new cuts that we introduce in
the above hierarchy, i.e., atoms and union of non-root atoms of a polygon, are not crossed and are
never part of a non-singleton connected component.

Fact D.5. The set of non-singleton connected components C1, C2, . . . that the above procedure produces are
in one-to-one correspondence to the set of non-singleton connected components of Nη,≤1.

Let Eg and s be defined as in Theorem 5.33 for the hierarchy defined above, and let se0 = ∞.
Also, let s∗ be the sum of the s∗ : E→ R≥0 vectors from Theorem 11.2 and Theorem C.12 called
with α = 2+η

1−εη
β. (i) follows from (ii) of Theorem 5.33. Then, E [s∗e∗] ≤ (18 + 44)η(2+η

1−εη
β) ≤ 125ηβ

follows from Theorem 11.2 and Theorem C.12 and using that η ≤ 10−12 and εη = 7η. Also,
E [se] ≤ −εPβxe for edges e ∈ Eg follows from (v) of Theorem 5.33.

Now, we verify (iv): For any (non-root) cut S ∈ H such that p(S) is not a near-cycle cut
x(δ(S) ∩ Eg) ≥ 3/4 by (i) of Theorem 5.33. The only remaining case is η-near minimum cuts
which are either atoms or near minimum cuts in a polygon. Fix such a set S in a polygon P.
Let S′ be the union of the non-root atoms of P. Then by Lemma 2.38, x(δ(S) ∩ δ(S′)) ≤ 1 + εη .
All edges in δ(S) r δ(S′) are bottom edges, so by (i) of Theorem 5.33 are in Eg. Therefore,
x(δ(S) ∩ Eg)) ≥ 1− εη ≥ 3/4.

It remains to verify (ii): We consider 5 groups of cuts:
Type 1: Cuts S such that e0 ∈ δ(S). Then, since se0 = ∞, s(δ(S)) + s∗(δ(S)) ≥ 0.
Type 2: Cuts S ∈ Nη,2. By Theorem 11.2 and the fact that α = 2+η

1−εη
β, if δ(S)T is odd then

s∗(δ(S)) ≥ 2 + η

1− εη
β(1− η) ≥ (2 + η)β ≥ −s(δ(S))

where we use that se ≥ −βxe for all edges e and x(δ(S)) ≤ 2 + η.
Type 3: Cuts S ∈ H ∩Nη where p(S) is not a near-cycle cut. By (iv) of Theorem 5.33 and that

s∗ ≥ 0 the inequality follows.
Type 4: Cuts S such that either S ∈ Nη,≤1 rH or S ∈ H ∩Nη and p(S) is a (non-triangle)

near-cycle cut. In this case either S is an atom or an η-near minimum cut of a non-singleton
connected component C of Nη,≤1 with corresponding polygon P of cuts crossed on one side

66Notice that an atom may already correspond to a connected component, in such a case we do not need to add it in
this step.

277

and the cycle partition A, B, C. If S is not a leftmost cut/atom or a rightmost cut/atom, then by
Theorem C.12, whenever δ(S)T is odd, we have (similar to Type 2):

s∗(δ(S)) ≥ 2 + η

1− εη
β(1− εη) = (2 + η)β ≥ −s(δ(S)) (100)

Otherwise, suppose S is a leftmost cut. If P is left-happy then by Theorem C.12, similar to
above, s∗(δ(S)) + s(δ(S)) ≥ 0 if δ(S)T is odd. Otherwise, let S′ be the union of the non-root
atoms of P and F = δ(S)r δ(S′). By Lemma 2.38, we have x(F) ≥ 1− εη/2. Therefore, by (iii) of
Theorem 5.33 we have

s(δ(S)) + s∗(δ(S)) ≥ s(A) + s(F) + s−(C) ≥ 0

as desired. Note that since S is a leftmost cut, we always have A ⊆ δ(S). But C may have an
unpredictable intersection with δ(S); in particular, in the worst case only edges of C with negative
slack belong to δ(S). This is why we need to use s−(C) instead of s(C). A similar argument holds
when S is the leftmost atom or a rightmost cut/atom.

Type 5: Cuts S ∈ H∩Nη where p(S) is a triangle P. This is similar to the previous case except
we use Lemma C.13 to argue that the inequality is satisfied when P is left/right happy.

278

	Introduction
	Approximation Algorithms
	High Level Overview of Techniques
	Other Results on TSP
	Lower Bounds for the Max Entropy Algorithm
	Optimal Results for a Special Case of TSP

	Summary of Results on TSP and Corollaries
	Other Results on Network Design Problems
	Designing k-Edge-Connected Graphs
	The Thin Tree Conjecture and the Laminar Crossing Spanning Tree Problem

	Essential Background
	Polyhedra of Interest
	Notation
	The Subtour LP
	The Spanning Tree Polytope

	The O-Join Polyhedron and the Integrality Gap of PSub
	The Maximum Entropy Algorithm for TSP
	-uniform Spanning Trees
	The Algorithm

	Generating Polynomials and -uniform Spanning Trees
	Real Stable Polynomials
	Strongly Rayleigh Distributions
	Additional Properties of SR Distributions
	Staying in the -Uniform Distribution
	The Structure of (Near) Minimum Cuts
	Notation
	The Cactus Representation
	Near Minimum Cuts
	The Polygon Representation

	Building Up: Degree Cuts and The Half Integral Case
	The Degree Cut Case
	The Construction of s in the Half Integral Degree Cut Case
	Proof of lem:goodedgeswarmup
	The Construction of s in the General Degree Cut Case

	The Half Integral Case
	Critical Sets

	Overview of Analysis
	Probabilistic lemmas
	Proof of Main Theorem
	Summary of special cases

	Overview
	Three New Techniques
	Polygon Structure for Near Minimum Cuts Crossed on one Side.
	Generalized Gurvits' Lemma
	Conditioning while Preserving Marginals

	Overview of Proof
	Ideas underlying proof of thm:maintechnicalOPT
	Proof ideas for thm:paymentinformal

	Polygons and the Hierarchy of Near Minimum Cuts
	Notation
	Cuts Crossed on Both Sides
	Proof of the Main Technical Theorem, thm:maintechnical
	Structure of Polygons of Cuts Crossed on One Side
	Happy Polygons
	Hierarchy of Cuts and Proof of lem:beforetechnicalthm
	Hierarchy Notation

	Probabilistic statements
	Properties of Bernoulli-Sum Random Variables
	Random Spanning Trees
	Gurvits' Machinery and Generalizations
	Max Flow
	Good Edges
	2-1-1 and 2-2-2 Good Edges

	Matching
	Reduction and payment
	Increase for Good Top Edges
	Increase for Bottom Edges
	Case 1: is a degree cut
	Case 2: S and its parent are both polygon cuts

	Introduction to the Integrality Gap Result and a Proof Overview
	New techniques and contributions
	Proof Overview
	Overview of proof of thm:informalmain – no inside atoms
	Satisfying the above desiderata
	Defining bad events for each polygon point
	Defining the slack increase sets for bad events

	Extending to polygons with inside atoms

	Polygon Representation: Redux
	Our polygon notation and the root
	Properties of inside atoms
	New properties of polygon representations
	Almost diagonal cuts and the chain lemma

	Another structural property of inside atoms

	Using the Polygon Representation for Cuts Crossed on Both Sides
	Notation and a preliminary lemma
	Main theorem
	All cuts are satisfied
	Every cut is mapped to a constant number of bad events

	Putting everything together for the integrality gap
	Constructing the slack vector s
	Proof of thm:main-TSP-full using thm:maintechnical

	Derandomizing the Max Entropy Algorithm
	High level proof overview
	Computing probabilities
	Notation
	Matrix tree theorem

	Computing parities in a simple case
	A deterministic algorithm in the degree cut case
	A deterministic algorithm in the general case

	Computation for c(s*)
	Polygon representation preprocessing
	Computation for cuts crossed on both sides

	Preprocessing for cuts crossed on one side
	Computation of E[c(s*) Set]

	Computation for c(s)
	Hierarchy definition and computation
	Edge bundles, A,B,C degree partition, and edge classification
	Max Flow
	Matching
	Reductions
	Increases
	Increases for bottom edges
	Increases for top edges

	Computation of E[c(s) Set]

	A Lower Bound for Max Entropy: k-Donuts
	The Max Entropy Algorithm on the k-Donut
	Analyzing the Performance of Max Entropy on the k-Donut

	4/3 for Cycle Cut Instances
	Technical Overview
	Preliminaries
	The structure of minimum cuts

	Cycle cut instances and the hierarchy of critical tight sets
	Structure of cycle cuts
	Proof of thm:maincycle
	The Markov Chains
	Fixed Point and Algorithm
	Characterizing the Feasible Region
	Conclusion and Open Questions

	An Improved Approximation Algorithm for k-ECSM
	Proof Overview
	Preliminaries
	Background

	Warm-up: a Simple Algorithm with a 1 + O(to.lnkk)to.-Approximation Ratio.
	Improved Algorithm and Proof of Main Theorem
	Conclusion

	Thin Trees for Laminar Families
	Introduction
	Preliminaries and Results
	Notation
	Polyhedral Background
	Our Results
	Proof Overview
	Reduction to L-aligned Points
	Laminar thin trees for L-aligned points via iterative relaxation
	Conclusion

	Preliminary Background
	Graphs, Walks, and Circuits
	Metric Completion and Equivalent Formulations of Metric TSP
	The Double Tree Algorithm
	The Christofides-Serdyukov Algorithm
	Integrality Gap

	Proofs from sec:probabilistic
	Cuts crossed on one side
	Cuts crossed on one side
	Notation and results that we re-use
	Main theorem for cuts crossed on one side

	Proof of thm:maintechnical

