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ABSTRACT

Quantum computation was first proposed two decades ago. Since
then, we have chased the intrinsic parallelism that nature employs and
have dreamed of bringing it to bear on our most intractable compu-
tational problems. However, despite our best efforts, methods for effi-
ciently employing the power of quantum mechanics continue to elude
us even as physicists make great strides toward quantum hardware.
If this continues, we may well develop powerful quantum computers
only to find that we have no way to use them.

When developing algorithms, quantum theorists use a formalism
first used in the early twentieth century to describe physical systems.
However, this formalism, a combination of linear algebra and a no-
tation for describing individual states, is not sufficient for reasoning
about quantum effects. When describing quantum computation, we
are interested in the properties exhibited by specific states and the
changes induced by applying some operation. Hence, we present
a new algebraic formalism that supports abstractions for reasoning
about quantum effects and indicates important quantum properties ex-
plicitly rather than focusing solely on describing a physical system.

The new quantum algebra has several attractive properties includ-
ing explicit representation of important quantum properties, mecha-
nisms for compactly describing and efficiently reasoning about large
numbers of bits in a highly entangled state, and a descriptive repre-
sentation of quantum operations. It is hardware independent and can
be used as a notation for quantum computation or as the basis for a
programming language.

1. Introduction

Quantum computing offers both the opportunity to explore a new
computational model and the hope that exponential computing power
may be harnessed for use on currently intractable problems. So far,
the exploration of quantum hardware technology has had several suc-
cesses, including the entanglement of solid state qubits [1] and demon-
strated 7-bit computers [2]. However, with few exceptions [3, 4], the
dream of harnessing quantum computing for use on today’s difficult
problems has remained unfulfilled. It remains extremely difficult to
reason about quantum effects and to develop quantum algorithms.

Why, then, are so few quantum algorithms known? There may be
no more left to discover, but as we are still discovering new classi-
cal algorithms, this seems unlikely. It seems more plausible that we
lack the tools necessary to effectively reason about quantum effects.
After all, we have continued to use a notation developed nearly eighty
years ago to represent physical systems in quantum mechanics. Quan-
tum computation has different concerns, and in addition, it involves
the manipulation of distinctly unfamiliar properties like entanglement,
phase, and superposition. The current formalisms lack the necessary
abstractions to manipulate these properties intuitively. Our goal is to
develop a reasoning system that provides the tools necessary to reason
effectively about quantum effects.

In this paper, we focus on first motivating and then introducing the
elements of our algebra. We also provide a simple example that con-
trasts the traditional notation with our algebra and longer examples
that highlight the algebra’s expressiveness and demonstrate its abil-
ity to describe all major known algorithms. The major contributions
of our work are fourfold. First, superposition and entanglement are
represented explicitly. These two properties have no classical ana-

log and provide part of the power of quantum computation. Second,
we introduce a fundamental unit of phase. Phase has traditionally
been treated as continuous, but a basic unit of phase simplifies reason-
ing about interference without sacrificing expressiveness. Third, we
have developed a representation of quantum operations that indicate
the properties the operation will introduce in the input. Finally, we in-
clude two mechanisms for compactly describing and reasoning about
highly entangled states.

We begin by exploring the traditional quantum algebraic formalism
and uncover some of its shortcomings as a reasoning system and basis
for a language. In Section 3, we describe our algebra and contrast it to
the traditional formalism. Section 4 contains a few examples includ-
ing Grover’s algorithm and the quantum Fourier transform. Section 5
explores related work, and finally, in Section 6, we summarize our
findings and describe plans for future work.

2. The Traditional Formalism

Currently, a combination of linear algebra and Dirac notation [5]
is used to reason about quantum algorithms and computations. This
formalism can describe any quantum state or transformation, but we
are more interested in its ability to facilitate reasoning about quantum
states and effects. In this section, we describe the traditional formal-
ism and explore its strengths and weaknesses as a quantum reasoning
system.

2.1 Quantum States

A single quantum bit 1) is represented as ) = «|0) + B|1) or, in
the vector notation:

o[

The amplitudes « and 3 are complex numbers such that o - o™ + 3 -
B* = 1, where z* is the complex conjugate of z. If either a or 3
are zero, then ) is in a pure state. Otherwise, 1 is said to be in a su-
perposition of the two states. This use of amplitudes is problematic,
since it combines the concepts of state and phase. When a system
consists of two quantum bits, it is described by their cross product.
For example, in the Dirac notation, a two-bit system can be described
by [4192) = ay|00) + ab|01) + Bv|10) + B8|11). The number of
possible states in the system continues to expand exponentially as ad-
ditional bits are included. This leads to a problem when entanglement
is encountered.

Entanglement is a key property that must be understood and used by
algorithm designers and programmers, and when it is present, the sys-
tem cannot be decomposed into a series of small, component vectors.
For example, consider the following two systems:

(s [ [3)

In the two vectors above, the system described by the vector on the left
is not entangled, while that on the right is entangled. The vector on
the left can be decomposed into component vectors which can be used
to describe the system. However, the vector on the right cannot be
decomposed into component vectors, so the system must be described
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by the larger vector. In big systems, this leads to a state explosion
problem that hinders representation and reasoning, since a system of
n entangled bits must be described by a single vector of size 2™ rather
than n vectors of size 2.

The example above contains another subtle representation problem.
The two vectors differ by a single swap of two values, yet only one of
them represents a system that is entangled. While the entangled and
unentangled states can be distinguished by decomposing the vector,
this is not a trivial task as the size of the system increases. Thus, dis-
tinguishing whether a system contains entanglement can be difficult,
which also hinders reasoning about the system.

2.2 Quantum Operations

In the traditional formalism, quantum operations are expressed as
matrices. Multiplying an operator matrix by a state vector applies the
operation to the system. For example, the application of a Hadamard
(H) gate to the system |4} = |0) is represented by:

A= 1 -1[o]=%]1]

Unfortunately, in this approach, the representation of a gate changes
as the number of bits entangled with the target bit increases. For ex-
ample, the application of a Hadamard gate to the first bit of the system
[111h2) = |00) + [11) is represented by:
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A different representation of the gate is required to apply the Hadamard
to the second bit of the same system. The transformation from the
basic gate matrix to the one required for a larger state space is well-
known, but it is, nevertheless, unintuitive even for small extensions.
In addition, the space required to represent and store the extended op-
erators is prohibitive for large state spaces. The combination of these
two factors makes expressing computation on entangled states a non-
trivial problem.

2.3 Example: EPR Generation

In practice, linear algebra is used to perform computations and de-
scribe state transformations, and the resulting state vectors are trans-
lated into Dirac notation as necessary. Alternatively, successive states,
each in Dirac notation, can be presented with commentary describing
the transformations performed at each step. In this section, we use the
traditional formalism to present a procedure for creating EPR pairs.

The EPR pair, also known as the Bell state, is represented by the ex-
pression |00) + |11) [6, 7]. It is a fundamental component of several
important quantum effects including teleportation, which implements
secure communication, and superdense coding, which allows two bits
of information to be transmitted with one bit. The procedure for cre-
ating such pairs is as follows:

/I Start with two bits in the zero state
1

1
b= | =5 ]
/I Apply a Hadamard gate to the first bit
_ 1 1 1 1 1 1
Hev=711 1o =% |1
/I Apply a CNot on the second bit using the first bit as the control
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This example highlights a few of the problems discussed earlier.
For example, the final state is entangled and, in fact, has some very
nice properties, but nothing about the state vector explicitly signals
this. In addition, this procedure indicates how important the concept
of order is, since the C'Not applies to a state vector that must be care-
fully constructed to perform the desired operation.

3. The Quantum Algebra

The quantum algebra is an alternative to the traditional formalism
and seeks to remedy the problems encountered in Section 2. Those
problems fit into two rough categories: clarity issues and problems
dealing with entangled state spaces. The quantum algebra seeks to
resolve these issues by making properties of qubits explicit and in-
troducing mechanisms for reasoning about entangled states. Table 1
summarizes some of the interesting features of the algebra.

This section is organized into four parts. First, Section 3.1 de-
scribes how the algebra represents qubits and the states of systems.
Section 3.2 details the declaration and application of quantum oper-
ations. Next, Section 3.3 describes the mechanisms included to deal
with highly entangled states, and finally, we conclude in Sections 3.4
and 3.5 with an example and summary.

3.1 Qubits and System State

In the algebra, the basic unit is the bit. Unlike the traditional nota-
tion, where position or order is used to differentiate between bits, the
algebra uses names, and the state of the bit is denoted by a superscript.
Hence, a bit named ¢ in state |0} is denoted by ¢°. Multi-bit variables
can be represented similarly, and individual bits within that variable
can be designated with subscripts. For example, an eight bit unsigned
integeroj with value twenty-one is denoted by j°0°10101 "and ;s third
bit is j3.

3.1.1 Superposition and Entanglement

Quantum bits are represented as the superposition of two classical
bits, where superposition is denoted by the plus operator. Thus, a qubit
q in state |0) + |1) is represented by ¢° + ¢'. Multiple qubits can be
linked via concatenation, so a two qubit system in state |[00) + |01)
is written as p°¢° + p°q¢'. Commutative and associative laws apply
to both the superposition and the concatenation operators and, unlike
Dirac notation, require no extra comment since variables are named.
Furthermore, the distributive property holds over these two operators,
and its inapplicability indicates that the qubits involved are entangled.
Hence, since the expression above can be rewritten as p°(q° + ¢*), p
and g are not entangled.

3.1.2 Wkeights

So far, the quantum states presented have featured bits with equal
probabilities of being in |0) or |1). To represent bits with unequal
probabilities of being in the two base states, the algebra uses weights.
Unlike the amplitudes used in the conventional formalism, which are
constantly normalized and include phase information, the weights used
by the new algebra are purely relative. For example, the state @ [0) +
1|1), in which the qubit is three times as likely to be found in |0)
as in |1), could be written 3¢° + ¢'. Both weights and phases may



Table 1: Examples of important features of the algebra.

Description Format Examples
A state q° r?
A qubit aq® + 34" 3¢° + (—1)q'
A 2-bit vector p°¢° +p'q’
Procedure name(parl, ...) — label : pattern||... | CNot(p,q) — p°q" : p°¢"
declaration l1p'a®:p'q" | p'q" : p'q°
H(@)—q" " +q' lld :¢"—d
T(q) = q°: ¢’ l¢" : x5 ¢*
Procedure name(argl,...) = newState Il Let g be in state 2¢° — ¢"
application H(g) —»q°:¢°+¢* (| ¢ :®—qton2¢® — ¢
=20¢°+¢")-("—¢")=¢"+3¢"
Measurement | Measure(q) — q°: ¢ 1 q" : ¢' Il Let q be in state 2¢° — 3¢"
Measure(q) = 2¢° 1 —3¢* = 2¢° 134"
Symmetric | e¥(p,q) =p°¢° +p'q’ =plg et (p)=p" +p'
entanglement | e~ (p,q) = p°¢° —p'¢* =p| — ¢ plg|r = p°¢°r° + p'q'r?
Measure(plq) = p°¢° 1p'q' =plg
Negative z plg = p°¢' +p'd°
reasoning pl—a=p""+p'¢" +2p'q

be normalized when they are at the outermost level of an expression.
Otherwise, the distributive property is used to simplify expressions.

3.1.3 Phase

Finally, in addition to a weight, every bit can have a phase. In quan-
tum computations, phase is an important attribute, since it makes con-
structive and destructive interference possible. Traditionally, phase is
modeled as a continuous complex value. For example, the expression
|0) 4 €™|1) involves a phase of e*. However, in all of the quantum
algorithms we have seen, phase is only used in discrete units. There-
fore, we use an elementary unit of phase y = e2* which is defined as
a function of the number of bits » in the system.

In many cases, however, even this much detail is unnecessary. Some
algorithms require that only x° = x**?" = 1 and x*" = —1 be used.
In these cases, the use of +1 is preferred. Addition and subtraction of
like variables model constructive and destructive interference, respec-
tively, and work as expected.

3.2 Operations

In the quantum algebra, all operations have a similar two-part form:
operation(parameterl,...) — labell : patternl || ...

The information to the left of the — operator includes the name of the
operation and the names of its parameters. The information to the right
of the arrow is the definition of the operation, which is presented as a
list of labeled cases separated by double bars. The definition above
is the only one needed in the quantum algebra. Since variables are
named and operations are defined as lists of patterns, operations may
be applied without modification to arguments in any size state-space;
operations do not have to be redefined depending on the situation.

3.2.1 Applying Operations

When an operation is applied, its form changes slightly, as the initial
state and result of the operation are appended:

operation(argumentl,...) — defn on state = newState

As shown above, the operator = is used to indicate that the result
follows, and while the definition and initial state may be supplied,
either or both are often dropped to be concise.

Computation consists of three steps: consolidation, matching, and
simplification. During consolidation, all of the states containing ar-
guments are gathered and concatenated into a single, target expres-
sion. Usually, the resulting expression, which we have called the ini-
tial state, is solved for the arguments. In the next step, matching, each
label is compared to the states in the target expression, and matching
states are replaced by that label’s pattern. Finally, in the last step, the
expression is simplified and condensed, if possible. For example, let
p=p°+p'andg=gq'. Then:

CNot(p,q) — p°¢” : p°¢" || p'¢" : p'q" || p'd* : p'¢°
(Consolidate) on (p° + p')(¢") = p°¢" +p'q
(Match) = p°q* +p'q°

(Simplify)

In the example above, no simplification could be performed because
distributivity could not be applied to the expression. Hence, we know
the two qubits are entangled.

3.2.2 Measurement

Measurement is a special operation, as all primitive quantum oper-
ations except measurement are reversible. When a qubit is measured,
any superposition collapses, and it becomes a classical bit. Whether
it is observed in the |0} or the |1} state is determined by its respective
weights. For example, the state 3¢q° + ¢* has a % probability of being
observed in ¢°.

Although a qubit is placed in a purely classical state after being
measured, it is useful to consider both possibilities after measurement.
Hence, we introduce the ? operator. This operator implies that the ex-
pressions on both of its sides are disjoint possibilities. Computation
can be performed on an expression containing a ! with the constraint
that the two possibilities cannot interact with one another. For exam-
ple, letp = p° +p' and ¢ = ¢° 1 ¢*. Then:

H(p) = (go +11)1) + (pol— p')=2p"=p°
H(@) =4 +q 14" —¢

The state of p was simplified since the two possibilities could interact,
but the state of ¢ could not be further modified, since the two possibil-
ities are disjoint.



3.3 Abstractions for Entanglement

One of the major limitations of the traditional formalism is the in-
herent difficulty of dealing with the state-space explosion problem.
Our algebra provides two methods for performing computation on
groups of related states: symmetric entanglement and negative rea-
soning. Symmetric entanglement exploits symmetry in state between
two quantum variables, and negative reasoning is the act of perform-
ing computations on the complement of a set of states. In both cases,
computation can be performed on the compact form.

3.3.1 Symmetric Entanglement

Symmetric entanglement can be used on an expression containing
two or more variables that will always be observed to have identi-
cal states. This occurs fairly frequently, as EPR pairs are often used
in communication and error correction. This compaction mechanism
can also be used when some portion of the entire state is symmetric,
since superposition is associative. The definitions for the two types of
symmetric entanglement are presented in Table 1. Formally, we de-
fine these states to be the result of a function e*, which is derived from
the EPR function, but we use the | operator as semantic sugar to des-
ignate symmetric entanglement. In addition, we use the ? operator to
designate a symmetrically entangled state which has been measured.

Computation on symmetrically entangled states is supported by the
use of constraints. We define pp = p and p—p = 0 for any state
p, and elaborate on the matching phase of computation. Instead of
simply comparing each label to the states in the target expression, the
label is concatenated to each state as a constraint. Any surviving states
are then replaced. For example, let p, ¢ = p|g. Then:

CNot(p,q) — p°¢” : p°¢" || p'¢° : p'¢" |l p'q" : p'¢°

(Consolidate) on (plq)

(Match) becomes p°q° (plg) + p'q° (plg) + p'q" (plg)

=p°¢° +p'¢' = p°¢ +p'¢°

(Simplify) = ¢"(p° +p')
In this case, this process is equivalent to completely expanding the
condensed state, but in more highly entangled states, this does not
always occur. In addition, the constraints act as helpful cues for un-
rolling the state.

3.3.2 Negative Reasoning

Negative reasoning is used when the negation of a set of states is
much smaller than the set of states itself. Let U™ be the equally-
weighted superposition of all possible n-bit states. For example, U
is ¢0q? + qdai + qdq? + gdqi. Then, we denote the negation of a
set of n-bit states x with z and formally define ittobe z = U™ — .
This definition of negation is very useful, as U™ can be constructed
by introducing any missing terms to the expression. For example,
°p° + °p' + a'p° = ¢°° + 0" + ¢'0° + (¢'p' —d'p') =
U™ —q'p' = ¢'p".

Computation on a negation is performed in three steps. First, the
patterns in all cases of the gate being applied are added together and
multiplied by the superposition of all unaffected bits in the state-space.
Second, the gate is applied to the states under the bar. Finally, the
negation is replaced by the result obtained in the second step sub-
tracted from the result from the first step. Further simplification may
be performed as necessary. For example, let p, g = p'q'. Then:

H(p) —p°:p° +p'||p' : p° —p' onplq!
= (@ +p")+ @ -2 +q) = (°—p")d")
= (2p°¢° + 2p°¢") — (0°¢" — p'q") = 20°¢° + p°¢*
=" +pl¢°

+p'q"

The last line of the example above was obtained by introducing the

term p'q® — p'q® and then simplifying. The resulting expression is
more compact than the earlier form and can be interpreted as being a
superposition over the entire state space with the exception of p'q°.
The state p°¢° has extra weight.

3.4 Example: EPR Generation

In Section 2.3, we demonstrated how the traditional notation can be
used to describe the process of generating an EPR pair. In this section,
we describe the same process using the new algebra.

EPR(qubit p, qubit q) {
Zero(p) = p°
Zero(q) = ¢°
H(p) —p°:p° +p || p* : p° —p* onp° = p° + p'
CNot(p,q) _)poqa: :quac ”plqO :plql ||p1q1 :plqo

on (p° +p")q° =p°¢° + p'¢° = p°¢° + P°¢' =plg
} = p°¢" : plg

This time, the notation explicitly describes the final state as entan-
gled and even symmetric. In addition, order is no longer a concern,
since variables are named. Furthermore, the procedure has been en-
capsulated as a new procedure named EPR, so it can be reused with-
out describing its implementation.

3.5 Summary

The quantum algebra described in this section features several ad-
vantages over the traditional formalism. Properties like superposition,
entanglement, and weight have been made more explicit; operations
do not have to be redefined as state sizes increase; and mechanisms
have been built into the notation that reduce the size of the state repre-
sentation. We have demonstrated some of these advantages by defin-
ing a reusable procedure for creating EPR pairs.

The algebra is also complete and expressive, as it is capable of de-
scribing any legal quantum state or operation. The H, CNot, and
T gates have been declared in Table 1 and form a universal set, so
the algebra can express any quantum state or algorithm [8]. We need
not restrict ourselves to the primitive gates, however. More advanced
operations can be defined by showing that a sequence of primitive or
previously defined gates leads implements the desired result, and these
operations are guaranteed to be legal quantum operations if their im-
plementations are composed only of legal operations. Similarly, we
can guarantee that a quantum state is legal if it is reached after a se-
quence of initializations and legal quantum operations.

4. Examples

In Section 3, we introduced the quantum algebra and presented a
short example that highlights a few of the advantages of the new alge-
bra. That example offers a point of comparison, as we implemented
the same procedure in the traditional notation earlier in the paper. In
this section, we present larger examples to display more of the features
of the algebra and to introduce new syntax that we have found useful.
The examples presented include many of the current major quantum
algorithms. We refer the interested reader to Nielsen’s text [9] for
further explanations of the procedures presented as well as implemen-
tations in the traditional formalism.

4.1 The Deutsch-Jozsa Algorithm

The Deutsch-Jozsa (DJ) algorithm [10, 11] is the simplest of the
major quantum algorithms. It rapidly determines, for a function f
with domain D and range {0, 1}, if f is balanced or constant. A
function is constant if its range contains only a single element and
balanced if exactly half of its domain map to one element of the range.

This example has two interesting features. First, we introduce sup-



port for loops. Second, the DJ algorithm utilizes phase transfer. In
the classical world, control bits are not changed when they are used.
However, in the quantum world, phase may be transferred to a control
bit when a procedure is applied. To indicate the phase transfer in DJ as
clearly as possible, we have chosen the C' Not operation on a two-bit
domain as the function to be tested.

/I The domain and ancilla bits
qubit z[2] = zix9
qubit a = a°

/I Placing the domain and ancilla into superposition
forall z; {

H(@)—q¢":¢°+q" |a' 1 ¢"—¢q
}on (2%)(23) = («f + 1) (28 + 23)

1

Not(a) - ¢°: ¢" || ¢* : ¢® on a® = o’
H@)—q¢":¢°+¢" ||¢":¢®* —q*ona' =a® —a

/I Apply the function f

CNot(z1,a) — p°¢" : p°¢" || '¢° : p'a" || p'q’ : p'q°
on (22 4+ 21)(a® —a') = 2% — a') + 21(a® — a?)
= 23(a® — a') + zi(a’ —a®) = (2§ — x1)(a® — a?)

// Take the domain out of superposition and measure
forall z; {
H@i)—q¢:¢°+q" |¢" 1 ¢"—¢q
Measure(z;) — ¢° : ¢° ¢ : ¢*

}on (2? — 21) (23 + 23) = (221)(229) = zixd

1

The key to this process is in the application of f. The ancilla bit is
in superposition with a negative phase component, and this negative
phase is transferred to the control bit. We represent this transfer by
factoring —1 from (a' —a®) so that the distributivity property applies.
This phase transfer causes 1 to be in the state z1 when measurement
occurs, so we know that C Not is a balanced function.

Loops, as used above, are an ordered set of procedures meant to be
applied to a sequence of inputs. The entire structure is treated much
like a single procedure. The inputs are consolidated, and then the
matching and simplification steps for all of the listed procedures are
performed on each input bit. Other loop structures can be developed
using a similar form.

4.2 The Quantum Fourier Transform

The quantum Fourier transform (QFT) is the key component of
Shor’s prime-factorization algorithm [3, 12]. In addition, since the
QFT performs the same function as its classical analogue, it has many
other potential applications. Nielsen defines the QFT as follows [9]:

’ Ciies WY
l7) — \/%_" kz_:o e2im3m |k)

This example contains several new features of the algebra. The im-
plementation of the QFT relies heavily on the manipulation of discrete
units of phase, so this example is the first in which we use , the ba-
sic unit of phase. In addition, to keep the description of the phase as
clean as possible, we use a notational convention for writing classical
decimal integers. We define (0.q1g2...gn)2 = & + & + ... + L,
where g¢; has value one if it is in state ¢; and zero if it is in state ¢?.

We also use the QFT to introduce the idea of reference values.
These values are constants that maintain some quantum property like
state or phase. They cannot be used during computation; instead, ref-
erence values are used to describe the new state of a qubit with respect

to its former state.

QFT (qubit q[n]) {
I/ Keep the original state for reference
refa=q

fori=1ton{
/[The Hadamard maps state to phase and vice versa
H(g) —a):q) +at || af —af =qf +x>"2q}
= qf + x> O]

/I Store the current phase for reference in the inner loop
ref m= X2*0.(§[i]2
forj=2ton—1i{

// Map state into the phase of the current qubit

. 2% giti
Ri(qj+i0) > @ @ [l - X2 4
= g +mx” T gl = qf + x> (Oieitidagl
m = 2*(0.a,-...aj+i)2

} = q? + X2*(0.ai...an)2qi1

[/ The state of all later bits should be stored in each bit’s phase
}= (g + X Ot gl) (gn 4+ x4 gy,)
}— (@) + x> Ot g (gf + x 7 (O0m)2qy)

The QFT is an excellent example for discussing reference values
because its output states must refer back to its input states. Reference
values are used in two different ways to accomplish this. First, a refer-
ence value a is created that holds the original state of the input qubits.
These values are used to show that the state of the original qubits has
been encoded into the phase of the transformed qubits. Second, a
reference value m is created to hold the current phase of the bit being
transformed. This is useful to show how the increasingly smaller units
of phase are being added so that no information is lost and is a prime
example of how a single qubit can contain an infinite amount of data.

Reference values allow the quantum algebra to express state in terms
of history. As noted before, however, they cannot be used in computa-
tion, since they violate several postulates of quantum mechanics. For
example, we cannot copy the state of one qubit to another nor can we
determine the exact phase of a qubit. Nevertheless, reference values
can exhibit quantum properties including entanglement and superposi-
tion. This is especially apparent in the redefinition of the Hadamard
used in the QFT. The definition of Hadamard contains two cases.
Both of these cases have been folded into a single case by using a
reference value to describe the phase. This reference value can be in
superposition, which would cause two different states, with different
phases, to exist. This complexity is handled cleanly and automatically
by the algebra.

4.3 Quantum Teleportation

Quantum teleportation [13] is the transfer of information from one
qubit to another over unlimited physical distance. Classical informa-
tion must also be transferred for the information transmitted to be
useful, which keeps quantum teleportation from providing instanta-
neous communication. The process relies on the creation of EPR
pairs, which was demonstrated earlier.

Our implementation of quantum teleportation defines a pair of pro-
cedures, Send and Receive. We introduce new syntax in the param-
eters to both functions. To prove that quantum teleportation actually
transmits the correct information, we fully specify the bit to be trans-
ferred using variables that catalog the weights and phase component.
These variables are a form of reference variable, as introduced in Sec-
tion 4.2. This syntax is very useful for writing and verifying proce-



dures that act on some input.

On this and subsequent examples, we will omit, for the sake of
brevity, the definition of a procedure unless it has not yet been intro-
duced.

I/ p[2] must be an EPR pair

Send(qubit a as ma® + (—1)*na’, qubit p1 as (p1 | p2)) {
// Encode the bit to be transmitted in half of the EPR pair
CNot(a,p1) = ma’(p1 | p2) + (=1)*na’ (p1 | p2)
H(a) = m(a® +a')(p1 | p2) + (=1)*n(a® — a')(p1 | p2)

// Obtain classical values to transmit to the Receive procedure
Measure(a) = m(a®1a")(p1 | p2) + (—1)*n(a®1—a" ) (p1 | p2)

Measure(p1) => m(a®1a")(p1ip2) +(—1)* n(a®1—a")(p1 1 p2)
} = m(a®1a')(p11p2) + (=1)* n(a® 1 —a')(p1 1 p2)

/I The input to Receive must be the output of Send
Receive((qubit a, qubit p1, qubit p2)
as m(a® 1a')(p1 1p2) + (—=1)*n(a® 1 —a") (p1 1p2)) {
/I Decode the transmitted state
CNot(p1,p2)
= m(a® 1a') (P 1p1)p3 + (—1)*n(a® 1 —a') (p] 1p1)p3
= (P 1p1)(m(a®1a")p + (—1)*n(a® 1 —a')p})

// Decode the transmitted phase
CZ(a,p2) = p°¢" : 0°¢" || p'¢° : ' || p'¢" : —p'¢"
= m(a’ 1aM)pd + ((—1)*n(a’pi 1atp3}))
= (a®1a")(mpd + (—1)knp%)
} = @1 1p1)(a® 1at)(mpd + (—1)*np3)

The inputs to each of the procedures are quite complex, but the use
of the as structure to fully describe the state of the input bit has two
benefits. First, as noted above, the developer is able to verify the cor-
rect operation of the procedures. The result of the Send procedure is
quite complex, but by the end of the Receive procedure, verifying that
the correct data was teleported is a matter of confirming that the final
state of the receiver bit is the same as the initial state of the source bit.
Second, the description of the input parameters acts as a constraint.
Later readers of these procedures are immediately informed of the re-
quired attributes of the inputs.

4.4 Grover’s Algorithm

Grover’s algorithm [4] is an efficient quantum search. Given an
unordered database with n entries, Grover’s searches it in y/n time.
While not an exponential speedup over classical methods, this algo-
rithm is an example where quantum computation offers significant ad-
vantages over classical approaches. Unlike Shor’s algorithm, which is
deterministic, Grover’s algorithm is probabilistic. If correctly imple-
mented, Grover’s algorithm returns the correct answer with probabil-
ity greater than 50%.

Grover’s relies on several fairly complex procedures, including a
phase flip operation and an oracle function, which we will define but
not implement. The PhaseF'lip operation takes an array of n qubits
and introduces an additional —1 phase component to all but the zero
state. It is defined as:

Phanglig(q[n]?) — éqﬁ"...q}...qfl) s (g2 ..q} )
Il (gn---q1) : (qn---q1)

The Oracle function introduces a —1 phase component to the state
for which Grover’s is searching. Therefore, a new Oracle must be
built for each new search. We define our oracle to be:

/I p refers to the solution the Oracle is to flag

Oracle(p[ﬂ) — (Pn-.-D1) :;(PAn---PAl)
|| (5" --pi-pi?) ¢ (PR --PieptY)

In the definition above and our implementation of Grover’s algorithm,
we use p to refer to the item for which we are searching. We assume
that one copy of this item exists in the database. If more than one copy
exists, Grover’s algorithm converges more quickly; if not at all, then
Grover’s returns an incorrect answer.

We will implement Grover’s algorithm in two parts. First, we will
define a single GroverIteration. Then, implementing Grover’s is a
matter of repeating an iteration the required number of times.

GroverIteration(p[n] as 1p + rp) {
/I Flag the desired entry with a negative phase
Oracle(p) = p—rp
=UP—(r+1)p

// Because of the negative phase, p does not leave superposition
forall p; {

H(pi) .
Y= 27(p2..p00) — (r + 1)U?P

= (2" = (r+1))(pa--p9) — (r + 1) (3...p7)

// Build up the weight on the correct entry
PhaseFlip(p) = (2" — (r +1))(p%...p7) + (r + 1)(®2...p2)

=—(2" —2(r + 1))(p3..p2) + (r + 1)U?

// Put the vector back into superposition
forall p; {
H(pi) -
}= (2" =2(r+1))UP+2"(r+1)p = 2" ((1— =0 )p+ (r+1)p)
b= (1= 5E)p+ (r+1)p

Grover’s algorithm is searching for a single correct answer in a
search space. This is a perfect example of the type of situation for
which negative reasoning was included. Hence, the procedure defined
above places emphasis on partitioning the state space into incorrect
solutions (p) and the single correct value (). The sum of these two
partitions is the entire space (U”), and much of the procedure is con-
cerned with adding and subtracting instances of that correct state from
both sides to simplify computation. For example, the first loop con-
taining an H would have been near impossible to express generally
without the ability to express U®.

One subtle feature of performing computations on groups of states,
as is done above, is the treatment of weights. It appears at first glance
that the weight on the single correct value » may be much greater,
initially, than the weight on the incorrect solutions. However, because
the set of incorrect solutions contains so many more elements, their
total weight, (1 = (2™ — 1)), is likely to be much higher than r. This
point becomes especially apparent when the first set of H operations
are applied. When the entire superimposed state space is collapsed to
a zero state, that zero state must be given weight equal to the sum of
the weights of all the superimposed states. To see this, apply a H to
the state p° + p*. The result is 2p°.

Now that a single iteration of Grover’s algorithm has been defined,
defining Grover’s algorithm is a matter of preparing the state space
and iterating the required number of times.

/I An Oracle must be built (and passed) to the Grover’s procedure
Grover(int n) {
qubitp[n] = p2...p?
forall p; {
H(pi)
} = (pn +pn)-- (09 + i)



+p
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fori=1to(v/n+1){ 3
GroverlIteration(p) — (1 — =5 )p+ (r + 1)p

}:>5+rﬁ, r> (2" -1)

Measure(p) = plrp, 7 > (2" — 1)
}—=pirp, 7> (2" 1)

Although a qubit’s name is mentioned in the specification of the
output, the value produced is classical since the qubit has been mea-
sured. Hence, the procedure for Grover’s algorithm takes an integer,
requires an Oracle procedure, and produces a classical value. This
is an excellent example of interaction between the classical and quan-
tum worlds. In addition to requiring and returning purely classical
values, this, and almost all other, quantum procedure relies entirely
on classical control to manipulate quantum data [14].

Unfortunately, while convenient, the interaction between classical
control and quantum data is problematic. For example, how was it
determined that v/2 is the required number of iterations? The most
elegant proof is, unfortunately, geometric [9], but it can also be com-
puted by noting that the ratio between the weights of the incorrect

and correct solutions is (2“ —1:(r4+1)+ ;,tll) after each itera-

tion, where r is the initial weight on the correct solution. In addition,
the loop could be placed under quantum, rather than classical, control
using reference values:

refr=1

whiler < (2" —1){ _
GroverlIteration(p) — (1 — 2',{’;11 P+ (r+1)p
r=(r+1)+ &t

Y= pirp, r> (2" —1)

Unfortunately, the first half of this solution is not at all intuitive and
the second is not amenable for use in a programming language, so part
of our future work will focus on relating classical control to quantum
data.

5. Related Work

The study of quantum computation has attracted researchers with a
diverse set of backgrounds and objectives. As a result, many systems
for describing quantum states and effects have been proposed, and in
this section, we discuss the contributions these approaches made and
the differences that separate them. This section is organized loosely in
chronological order, so we begin with Dirac notation and quantum cir-
cuits, mention rules proposed for writing pseudo-code, and conclude
with quantum assembly and higher level programming languages.

Dirac notation [5] is marked by the use of the ket (])) and is the
standard method for describing states in quantum mechanics. It is a
concise and expressive notation for describing the quantum state of
a system but, traditionally, is not used to describe transformations.
Instead, a vector notation, taken directly from linear algebra, supple-
ments it. This formalism was first used early in the twentieth century
and was adopted for the purpose of describing and modeling physi-
cal systems. It does so admirably but was not developed to describe
quantum computation. Hence, Dirac and vector notation suffers from
an exponential increase in representation size, a dearth of useful ab-
stractions, and a reliance on ordering. Since it was not designed for
the purpose, we believe this notational convention limits our ability to
effectively reason about quantum concepts.

In the late 80’s, Deutsch [15] proposed a circuit-based model for
quantum computation that was further developed by Yao [16] and

which led to the circuit representation for algorithms often used today.
This representation is graphical and easily understood, and it is very
useful for communicating the structure of algorithms and describing
control flow. However, it lacks the ability to represent interactions be-
tween qubits like entanglement and phase transfer and does not scale
well due to its graphical nature. Despite these drawbacks, the combi-
nation of the circuit and vector notations is currently the most popular
method for describing quantum algorithms, as the two methods com-
plement one another well. The circuit notation gives the reader an
idea of the algorithm’s structure, and the vector notation describes the
states and transformations involved.

The first steps toward developing a notation for quantum compu-
tation amenable to programmers was Knill’s attempt to standardize
pseudo-code [17]. His work differentiates between classical and quan-
tum registers (values) and enforces a separation between the two that
is bridged by operations and measurement. In addition, his proposed
pseudo-code provides explicit support for reversible functions and
conditional operations. Like the traditional formalism on which it is
based, however, his proposed quantum pseudo-code does not provide
any clear way to indicate that quantum variables are entangled. Fur-
thermore, it does not convey any sense of the state of the variables
being manipulated.

Bernhard Omer developed the first high-level quantum program-
ming language, QCL [18, 19]. QCL is an imperative language with
a few of the usual programming constructs (procedures, arrays, etc.)
and has been built into an interpreted environment. A universal set of
basic gates is provided, and facilities exist for building new operators
and procedures. In addition, commands are provided to access the
current state of the simulated system, which aids development. Un-
fortunately however, QCL is built upon the traditional base of Dirac
and vector notation, so the same caveats apply.

At about the same time as QCL was being developed, Stephen
Blaha took an algebraic approach and developed an assembly and a
C-like language [20]. The algebra he uses is based on harmonic os-
cillators to relate it to superstring theory, and the languages he devel-
ops are useful primarily as tools for investigating theories in physics.
As such, they do not provide support for designing or reasoning about
quantum algorithms.

Later, Sanders and Zuliani used a probabilistic guarded-command
language to create a high-level, imperative quantum language called
qGCL [21, 22]. Their language is based around the invocation of
procedures that consist of three phases: initialization, evolution, and
finalization. Quantum variables are declared and placed into a state
of superposition in the initialization phase, and they are forced out
of superposition (measured) during the finalization stage. Variables
are represented as a mapping from n-bit vectors to complex numbers
and, during the evolution phase, are manipulated by a series of uni-
tary transformations, which are concisely represented as mathemati-
cal functions that alter variable mappings. A refinement calculus is
provided to verify that a given program satisfies its specification. Be-
cause of its compact representation, gGCL avoids the state explosion
problem encountered when matrices are used to represent states and
operations. However, it is difficult to relate their procedures with a
series of actual quantum operations, and during the evolution phase,
when computation is actually being performed, it is difficult to access
and reason about the states of variables. As designed, gGCL is more
a method for formally verifying the correctness of algorithms than a
notation to aid in understanding, building, or implementing them.

Most recently, Bettelli et al. developed an extension for C++ to
support the ability to do quantum computations in a classical frame-
work [23]. They limit their work by targeting a specific architecture
in which a classical core has the ability to manipulate a “quantum
co-processor,” so one of the advantages of their system is a clear sep-



aration between classical and quantum operations. In addition, their
language extension introduces the idea of operations as data objects,
rather than as functions, which allows for easy composition and op-
timization of operators during run-time. Although we have not at-
tempted it, we believe our system can provide a similar benefit, as an
algebraic simplifier may be used for optimization.

Finally, Peter Selinger recently released his work on a simple, graph-
based programming language for quantum computation called Block-
QPL [14]. It is based on complete partial orders and, like previous
language attempts, relies on a relaxed form of Dirac notation and
the traditional matrix notation to describe quantum state. Selinger
combines the graph-based approach with the traditional formalism
to mitigate the weaknesses of both. However, since BlockQPL re-
lies on flowchart-like graphs to describe control-flow, the approach is
still sensitive to state explosion effects and scaling problems. Never-
theless, Selinger’s language includes several advances not present in
earlier efforts. BlockQPL is functional, in contrast to the imperative
languages designed recently by other groups. In addition, it is typed
and has a developed syntax and formal semantics. Most importantly,
Selinger clearly separates the quantum and classical domains.

6. Conclusions

We have introduced a new algebraic foundation for describing and
reasoning about quantum computations. The goal of our algebra is to
simplify the process of reasoning about quantum systems by explic-
itly identifying quantum properties like superposition and entangle-
ment and providing mechanisms for reasoning about groups of possi-
ble quantum states. Two such mechanisms are provided in this paper:
symmetric entanglement and negative reasoning. Both of these meth-
ods provide the ability to compactly represent exponential state spaces
and to perform computations on the compact representations. In ad-
dition, we introduce the notion of a base unit of phase, which eases
reasoning about interference. Finally, our algebra represents quantum
gates in a manner independent of the system to which it is being ap-
plied. This allows gates to be defined by a single expression and to be
applied to highly entangled states without modification.

However, this algebra is merely the basis for future work in quan-
tum programming languages. While it is an attempt to make the rep-
resentation of quantum effects more intuitive, the algebra does not
provide an obvious solution to the problem of creating the high-level
abstractions necessary in a language. Therefore, we intend to ex-
tend this work in three different directions. First, we will explore
languages based on this algebra and build an environment, including
a compiler and simulated quantum device, for designing algorithms
that uses it. Second, we intend to collaborate with groups designing
quantum hardware to evaluate hardware architectures and language
styles. Third, we will explore new quantum algorithms with an em-
phasis on error correction and will apply our formalisms to the task of
developing more realistic quantum noise models.

Our overall goal is to stimulate progress in the nebulous area of
“guantum software.” We have chosen to contribute by developing an
algebra that supports reasoning about quantum effects and transfor-
mations, rather than simply describing quantum states and operations.
We hope further progress in this area will contribute to the creation of
intuitive, high-level quantum programming languages and aid in in-
creasing knowledge of quantum concepts and the development of new
quantum algorithms.
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