
Input-Dependent Power Usage in GPUs
Theo Gregersen1, Pratyush Patel1, Esha Choukse2

1University of Washington, 2Microsoft Azure Research - Systems

Abstract—GPUs are known to be power-hungry, and due to
the boom in artificial intelligence, they are currently the major
contributors to the high power demands of upcoming datacenters.
Most GPU usage in these popular workloads consists of large
general matrix-matrix multiplications (GEMMs), which have
therefore been optimized to achieve high utilization of hardware
resources.

In this work, we show that modifying the input data to
GEMMs, while maintaining the matrix shapes and sizes can
notably change the power consumption of these kernels. We
experiment with four kinds of input variations: value distribution,
bit similarity, placement, and sparsity, across different data types.
Our findings indicate that these variations can change the GPU
power usage during GEMM by almost 40%.

We hypothesize that input-dependent power usage variations
occur due to changes in the number of bit flips in the GPUs. We
propose leveraging this property through compiler and scheduler
optimizations to manage power and reduce energy consumption.

Index Terms—GPUs, power, energy, sparsity

I. INTRODUCTION

Power demand for datacenters, supercomputers, and ma-
chine learning is exploding, mainly driven by the growth
in large language models (LLMs) [1]–[4]. Recent estimates
forecast substantial annual increases in datacenter energy
consumption and raise concerns about demand exceeding grid
capacity in next few years [3], [5], [6]. With the industry
pushing for more compute, addressing power consumption is
key to sustainability [7]–[9]. Previous work has explored and
utilized various techniques for managing power, such as power
capping [10], [11], frequency scaling [9], approximation [12],
[13], and batching [14], [15]. Our work shows that input data
can also be utilized to manage power.

We focus on compute kernels and datatypes applicable to a
variety of accelerator workloads. Accelerators such as GPUs
are central to modern machine learning. For instance, Meta
plans to amass around 600,000 H100 GPUs by the end of 2024
[16], Microsoft has enabled OpenAI training and inference
with large cluster deployments of A100 and H100s [17], and
the top supercomputers leverage GPUs [18]. GPUs are also
very power hungry. For instance, recent NVIDIA H100 SXM5
GPUs have a total power draw of 700 watts [19], and a DGX-
H100 consisting 8 GPUs needs provisioning of 10,000W [19].

Research on reducing accelerator peak power draw or
energy often focuses on hardware design and the surrounding
infrastructure: system design and scheduling [14], [15], [20],
[21], power control [9], [22], or efficient chips [23]–[25].
Instead, we target input data for general matrix multiplica-
tion (GEMM) kernels [26]–[28]. GEMM kernels comprise a
large portion of machine learning cycles and are important

operations for GPUs due to natural compatibility with parallel
execution [24], [29], [30]. Prior work explores efficient imple-
mentations of GEMM [31]–[33] and the performance impacts
of quantization [34]–[36], sparsity, and data ordering [37] on
GEMM in LLMs. We demonstrate that GEMM input values
and placement can have significant impact on GPU power as
well.

While research has broadly characterized accelerator power
during machine learning and high-performance computing
(HPC) workloads [4], [8], minimal prior work measures GPU
power consumption due to varying inputs. Previous work has
shown that input data values can significantly impact GPU
power, but only considered single instructions such as FMUL
or IMUL [38]. Bhalachandra et al. investigated the effects
of GEMM input patterning on power, but only looked at
input value entropy for a single datatype and placement of
zero versus non-zero values [39]. In addition to input value
entropy, we explore the impact of other patterns such as
sorting, bit-level sparsity, hamming weight, and similarity.
We also compare across several datatypes and assess the
effect of NVIDIA tensor cores. We find that GEMM input
patterns can change GPU power consumption by up to 38%.
This observation lends itself to a variety of potential future
applications for power and energy efficiency: power-aware
sparsity, data pruning for power capping, and efficient data
placement algorithms.

II. BACKGROUND

GEMM operations are fundamental to machine learning
[30], [40] and many common computational tasks [41]. As
such, GEMM is an important target for power efficiency.

GEMM is a fundamental linear algebra operation. For
matrix A with dimensions (N,K), matrix B with dimensions
(K,M), matrix C with dimensions (N,M), and scalars α
and β, a standard GEMM execution typically computes the
following matrix output [27]:

D = αA ·B + βC

To reduce memory use, the D output matrix is often set to C
and updated in-place. GPU makers such as NVIDIA typically
provide proprietary kernels (i.e., compute routines) to execute
operations like GEMM on their hardware [29]. Kernel libraries
such as cuBLAS [26] and cuSPARSE [28] are available
through public APIs, however the underlying implementations
are black boxes. A more transparent alternative is CUTLASS
[27], an open-source kernel library maintained by NVIDIA.

To improve performance, NVIDIA GPUs can utilize tensor
cores. Tensor cores are specialized for matrix math operations



such as matrix multipy and accumulate (MMA) and provide
acceleration for specific datatypes. For instance, the NVIDIA
Ampere architecture provides 20× FP32 MMA throughput
compared to the previous generation [42].

III. EXPERIMENT SETUP

To explore the impact of GEMM inputs on GPU power, we
run a series of GEMM operations on an NVIDIA A100 PCIe
virtual machine (VM) hosted on Azure.1 The NVIDIA A100
PCIe GPU has a maximum thermal design power (TDP) of 300
watts [42]. We use standard NVIDIA CUTLASS kernels [27]
optimized for GEMM execution, measure power every 100ms
with NVIDIA dcgm command-line tools [43], and measure
elapsed time with C++ standard library high resolution clocks.

All experiments use 2048 by 2048 matrices. We selected
2048 as the largest power of two that did not consistently
throttle the A100 GPU. During our experiments, the A100
GPU averaged 98.5% utilization. The C matrix is zeroed, and
both A and B matrices use the same pattern with B transposed
unless otherwise noted. Reported results are averaged over 10
seeds with 20k iterations each for FP16-T and 10k iterations
each for the other datatypes. The A and B matrices use
different seeds.

We explore four datatype setups: 32-bit floating point
(FP32), 16-bit floating point (FP16), 16-bit floating point with
tensor cores enabled (FP16-T), and 8-bit integer (INT8). For
each datatype, we experiment with value similarity, physical
(bit) similarity, data placement, and sparsity. All of the floating
point experiments use the same generated FP32 values, with
numeric conversion to their respective datatypes (round to
nearest value). When generating input values, we use appropri-
ate parameters to ensure that all values practically fall within
each datatype’s representation range.

During testing, we observed slight variations in power mea-
surements depending on when experiments were run. Power
measurements occasionally shifted by up to 10W when the
VM instance changed, even when using the same configura-
tion. We attribute this to process variation across GPUs. To
minimize this effect, we executed all experiments on the same
VM instance. We also trim the first 500ms of power measure-
ments to account for warmup. Across all experiments for a
given datatype, the average iteration runtime (Figure 1) was
consistent to a microsecond-level; this is expected since each
experiment uses the standard cutlass kernel. Figure 2 shows
average iteration energy for a GEMM operation with Gaussian
random variables. Note the identical patterns between the
iteration runtimes and energy observations, showing that the
power used with random variables is similar across the input
types. In the rest of paper, we report power measurements
rather than total energy, as power is the key bottleneck for
large-scale machine learning [1], [2], [8].

1Experiment code and data can be found at https://github.com/
theo-gregersen/input-dependent-power-sc24.

Fig. 1. Average iteration runtime by datatype for 2048x2048 GEMM across
all A100 GPU experiments. Note that the error bars are a magnitude smaller;
iteration runtimes are very consistent across experiments.

Fig. 2. Average iteration energy on A100 GPU for 2048x2048 GEMM filled
with random variables from a Gaussian distribution. The distribution has a
mean of 0 and a standard deviation of 210 for FP and 25 for INT8.

IV. INPUT-DEPENDENT POWER ANALYSIS

We profile different kinds of inputs to GEMM kernels and
provide our takeaways (Tn).

A. Value Distribution

First, we explore the effects of input distribution on GPU
power during GEMM.

Distribution standard deviation: Figure 3a shows the aver-
age power draw during GEMM when the A and B matrices are
filled with Gaussian random variables with a fixed mean of 0
and varied standard deviation. T1: Input distribution standard
deviation does not significantly impact power.

Distribution mean: For the results in Figure 3b, the A and
B matrices are filled with Gaussian random variables with a
fixed standard deviation of 1 and varied mean. T2: Larger
input value means can reduce power for FP datatypes.

Inputs from a set: The third experiment (Figure 3c) fills A
and B with values selected uniformly, with replacement, from
a set of Gaussian random variables with a mean of 0 and
standard deviation of 210 for FP and 25 for INT8. T3: Inputs
from a small set of unique values decrease power consumption.

Fig. 3. Effects of input value distribution on GPU power.

https://github.com/theo-gregersen/input-dependent-power-sc24
https://github.com/theo-gregersen/input-dependent-power-sc24


Fig. 4. Effects of bit similarity on GPU power.

B. Bit Similarity

Next, we consider input data bit similarity. In these experi-
ments, the A matrix is initially filled with one random value
and the B matrix is filled with another random value.

Random bit flips: Figure 4a illustrates how power changes
when random bits are flipped in each element. T4: Input data
with highly similar bits uses less power.

Least significant bits: Figure 4b shows how power changes
as the least significant bits are randomized. T5: As more least
significant bits are randomized, power increases.

Most significant bits: Figure 4c illustrates how power shifts
when the most significant bits are randomized. T6: As more
of the most significant bits are randomized, power increases.

Input data types: Figure 4 also shows that FP16-T on tensor
cores has the highest power usage compared to the other data
types. This is important to note, since the default data type
in AI applications is FP16-T. Approximation related research
tries to reduce the time and memory to run AI inference, but
can also have a positive impact on power efficiency. T7: FP16-
T is the most power hungry data type.

C. Placement Patterns

Next, we explore the impact of input data placement on
GEMM power. Across each of the following experiments, the
initial values for matrices A and B are constant. Both matrices
are filled with random variables from a Gaussian distribution
with a mean of 0 and standard deviation of 210 for FP and 25

for INT8.
Sorted into rows: For this experiment (Figure 5a), we

partially sort both matrices into rows. Sorting n percent means
that the lowest n percent of values are sorted into the first n
percent of indices (row-wise). The B matrix is not transposed.
T8: Sorting input values can decrease power consumption.

Sorted and aligned: For Figure 5b, the matrices are partially
sorted into rows again. However, this time the B matrix is
transposed, so the lowest values in A are multiplied with the
lowest values in B during GEMM. T9: Aligning sorted values
decreases power even more than just sorting.

Sorted into columns: Figure 5c is a similar experiment
to that of figure 5a, but the input values are sorted into
columns rather than rows. T10: Sorting values into columns
can decrease power consumption.

Sorted within rows: We also experiment with sorting within
matrix rows and aligning across matrices. Figure 5d shows
how power changes when the A and B matrix rows are
partially sorted. T11: Intra-row sorting can decrease power,
but to a lesser extent than sorting fully.

D. Sparsity

Next, we explore the impact of sparsity on GEMM power.
These experiments use standard GEMM, not sparse GEMM.

General sparsity: Figure 6a shows power as the matrix is
made sparser. T12: Matrix sparsity decreases GEMM power.

Sparsity after sorting: In Figure 6b, the initial A and B
matrices are fully sorted before sparsity is added. With this
patterning, power has a curve that peaks around 30 − 40%
sparsity for floating point datatypes. Although both sorting
and sparsity decrease power in isolation, this trend indicates
that they do not compound when paired. T13: Sparsity applied
to sorted matrices can actually increase power consumption.

Sparsity in least significant bits: Finally, we consider spar-
sity in physical structure. Figure 6c is the result of setting each
matrix item’s least significant bits to zero. T14: Zeroing least
significant bits can reduce power.

Sparsity in most significant bits: Figure 6d illustrates the
effect of setting each matrix item’s most significant bits to
zero. T15: Zeroing most significant bits can reduce power.

E. Generalization

Our results hold across different GPU generations. We show
this by replicating several of the experiments on an NVIDIA
H100 80GB HBM3 GPU (TDP 700W, local cluster), NVIDIA
Quadro RTX 6000 24GB GPU (TDP 260W, Chameleon cloud
[44]), and NVIDIA Tesla V100-SXM2-32GB GPU (TDP
300W, Chameleon cloud [44]). We present results for FP16
runs of the Distribution mean experiment, Most significant bits
experiment, Sorted into rows experiment, and General sparsity
experiment. Figure 7 illustrates the results across GPUs. The
matrix size was 512 by 512 for the RTX 6000 (it throttled at
2048 by 2048) For the V100, A100, and H100 GPUs, power
consumption trends are consistent. The RTX 6000 has less
prominent changes in power, likely because it is the oldest
of the tested GPUs (e.g., uses GDDR6 memory rather than
HBM) and has a lower TDP.

F. Bit Alignment and Hamming Weight

To investigate broader trends across experiments, we look
at bit alignment between values multiplied during GEMM, as
well as Hamming weights of the matrix values. Bit alignment
between two values is 0 if all of the bits are opposite, and
alignment is 1 if all of the bits are the same. Figure 8
illustrates average GPU power during GEMM in relation to
the average bit alignment between the A and B matrices and
average Hamming weight in the A matrix (B has similar
weight because of shared patterns). Each dot represents one
experiment configuration from the prior subsections. Across
all floating point datatypes, there seems to be correlation with
higher bit alignment or lower Hamming weight and decreasing



Fig. 5. Effects of input value placement on GPU power.

Fig. 6. Effects of input value sparsity on GPU power.

Fig. 7. Experiment results across different NVIDIA GPUs.

Fig. 8. Bit alignment and hamming weight of input values.



average GPU power during GEMM. However, this is not an
entirely consistent trend.

V. DISCUSSION AND FUTURE WORK

Going forward, we plan to identify what causes input-
dependent power usage variation in GPUs and develop practi-
cal techniques to improve the power and energy efficiency of
GPU applications at scale. We list below future directions.

Identifying Causes. Based on prior work, we hypothesize that
GPU power draw depends on inputs due to changes in the
number of bitflips during computation [45], or how many bits
are set [38]. For example, running a GEMM with zero matrices
would incur no bitflips, and thus, it likely has lower power
draw. Value similarity likely helps by reducing bit flipping at
the hardware level. We plan to do extensive experiments to
validate this hypothesis and investigate other hardware-level
factors that might contribute to reduced power draw.

Input-dependent GPU Power Models. We are building input-
dependent GPU power models to more precisely capture how
input variations impact the GPU peak power draw. Such a
power model would take in different data patterns as inputs
(e.g., specified via a domain-specific language), and estimate
the power usage as output. Using such power models, future
work could build power-aware compilers and optimizers to
reduce the power draw of GPU applications that can tolerate
input variations.

Power- and Energy-efficient Machine Learning. Since machine
learning applications, like large language models, are very
power intensive [8], a key future direction is to leverage
input changes to drive down their power and energy usage.
Specifically, we are exploring three different directions. First,
we are trying to modify model weights into value ranges that
use less power; for example, shifting the weight values towards
larger averages could reduce the power draw as shown in
Section IV. Second, we plan to investigate whether we can
partially or fully sort neural network model weights so as to
reduce power draw. Since weights within a layer correspond
to independent neurons, rearrangement is computationally
equivalent as long as each neuron processes its own input.
Recent work leverages permutation invariant transformations
to manipulate GPU tiles without changing the computation
results [46]. Similar transformations could potentially be used
to set patterns that reduce power. Finally, we would like
to develop sparsity designs that reduce power usage while
also optimizing performance, accuracy, and/or memory trade-
offs [37]. While it is challenging to estimate/limit the impact
of input variations on model accuracy, we are hopeful that the
benefits will outweigh the pitfalls.

ACKNOWLEDGMENT

This work is supported by NSF CNS-2104548 and the
UW Center for the Future of Cloud Infrastructure (FOCI).
Some results in this paper were obtained using the Chameleon
testbed supported by the National Science Foundation.

REFERENCES

[1] L. Lin, R. Wijayawardana, V. Rao, H. Nguyen, W. E. Gnibga, and
A. Chien, “Exploding ai power use: an opportunity to rethink grid
planning and management,” 2024.

[2] C.-J. Wu, R. Raghavendra, U. Gupta, B. Acun, N. Ardalani, K. Maeng,
G. Chang, F. A. Behram, J. Huang, C. Bai, M. K. Gschwind, A. Gupta,
M. Ott, A. Melnikov, S. Candido, D. Brooks, G. Chauhan, B. Lee, H.-
H. S. Lee, B. Akyildiz, M. Balandat, J. Spisak, R. K. Jain, M. G. Rabbat,
and K. M. Hazelwood, “Sustainable ai: Environmental implications,
challenges and opportunities,” ArXiv, vol. abs/2111.00364, 2021.

[3] L. Lin and A. A. Chien, “Adapting datacenter capacity for greener
datacenters and grid,” in Proceedings of the 14th ACM International
Conference on Future Energy Systems, e-Energy ’23, (New York, NY,
USA), p. 200–213, Association for Computing Machinery, 2023.

[4] Z. Zhao, E. Rrapaj, S. Bhalachandra, B. Austin, H. A. Nam, and
N. Wright, “Power analysis of nersc production workloads,” in Pro-
ceedings of the SC ’23 Workshops of The International Conference on
High Performance Computing, Network, Storage, and Analysis, SC-W
’23, (New York, NY, USA), p. 1279–1287, Association for Computing
Machinery, 2023.

[5] S. Bangalore, A. Bhan, A. D. Miglio, P. Sachdeva,
V. Sarma, R. Sharma, and B. Srivathsan, “Investing in
the rising data center economy.” https://www.mckinsey.com/
industries/technology-media-and-telecommunications/our-insights/
investing-in-the-rising-data-center-economy, 2023.

[6] K. Blunt and J. Hiller, “Big tech’s latest obsession is finding
enough energy.” https://www.wsj.com/business/energy-oil/
big-techs-latest-obsession-is-finding-enough-energy-f00055b2?st=
ju6z5e4fcscj1ad&reflink=desktopwebshare permalink, 2024.

[7] P. Patel, T. Gregersen, and T. Anderson, “An agile pathway towards
carbon-aware clouds,” in Proceedings of the 2nd Workshop on Sus-
tainable Computer Systems, HotCarbon ’23, (New York, NY, USA),
Association for Computing Machinery, 2023.

[8] P. Patel, E. Choukse, C. Zhang, I. Goiri, B. Warrier, N. Mahalingam, and
R. Bianchini, “Characterizing power management opportunities for llms
in the cloud,” in Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), April 2024.

[9] P. Patel, Z. Gong, S. Rizvi, E. Choukse, P. Misra, T. Anderson, and
A. Sriraman, “Towards improved power management in cloud gpus,”
IEEE Computer Architecture Letters, vol. 22, no. 2, pp. 141–144, 2023.

[10] S. Li, X. Wang, X. Zhang, V. Kontorinis, S. Kodakara, D. Lo,
and P. Ranganathan, “Thunderbolt: Throughput-Optimized, Quality-of-
Service-Aware power capping at scale,” in 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), pp. 1241–
1255, USENIX Association, Nov. 2020.

[11] C. Zhang, A. G. Kumbhare, I. Manousakis, D. Zhang, P. A. Misra, R. As-
sis, K. Woolcock, N. Mahalingam, B. Warrier, D. Gauthier, L. Kunnath,
S. Solomon, O. Morales, M. Fontoura, and R. Bianchini, “Flex: High-
availability datacenters with zero reserved power,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA),
pp. 319–332, 2021.

[12] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, mar 2016.

[13] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: approximate data types for safe and general low-
power computation,” in Proceedings of the 32nd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI
’11, (New York, NY, USA), p. 164–174, Association for Computing
Machinery, 2011.

[14] J. You, J.-W. Chung, and M. Chowdhury, “Zeus: Understanding and
optimizing GPU energy consumption of DNN training,” in 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23), (Boston, MA), pp. 119–139, USENIX Association, Apr. 2023.

[15] J.-W. Chung, Y. Gu, I. Jang, L. Meng, N. Bansal, and M. Chowdhury,
“Perseus: Removing energy bloat from large model training,” 2023.

[16] A. Heath, “Mark zuckerberg’s new goal is creating artificial
general intelligence.” https://www.theverge.com/2024/1/18/24042354/
mark-zuckerberg-meta-agi-reorg-interview, 2024.

[17] OpenAI, “Scaling kubernetes to 7,500 nodes.” https://openai.com/index/
scaling-kubernetes-to-7500-nodes/, 2024.

[18] TOP500, “Top 500 list.” https://top500.org/lists/top500/2024/06/, June
2024.

https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/investing-in-the-rising-data-center-economy
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/investing-in-the-rising-data-center-economy
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/investing-in-the-rising-data-center-economy
https://www.wsj.com/business/energy-oil/big-techs-latest-obsession-is-finding-enough-energy-f00055b2?st=ju6z5e4fcscj1ad&reflink=desktopwebshare_permalink
https://www.wsj.com/business/energy-oil/big-techs-latest-obsession-is-finding-enough-energy-f00055b2?st=ju6z5e4fcscj1ad&reflink=desktopwebshare_permalink
https://www.wsj.com/business/energy-oil/big-techs-latest-obsession-is-finding-enough-energy-f00055b2?st=ju6z5e4fcscj1ad&reflink=desktopwebshare_permalink
https://www.theverge.com/2024/1/18/24042354/mark-zuckerberg-meta-agi-reorg-interview
https://www.theverge.com/2024/1/18/24042354/mark-zuckerberg-meta-agi-reorg-interview
https://openai.com/index/scaling-kubernetes-to-7500-nodes/
https://openai.com/index/scaling-kubernetes-to-7500-nodes/
https://top500.org/lists/top500/2024/06/


[19] “Nvidia h100 tensor core gpu architecture.” https://resources.nvidia.com/
en-us-tensor-core/gtc22-whitepaper-hopper.

[20] S. Choi, I. Koo, J. Ahn, M. Jeon, and Y. Kwon, “EnvPipe: Performance-
preserving DNN training framework for saving energy,” in 2023
USENIX Annual Technical Conference (USENIX ATC 23), (Boston,
MA), pp. 851–864, USENIX Association, July 2023.

[21] P. Patel, E. Choukse, C. Zhang, A. Shah, Í. Goiri, S. Maleki, and
R. Bianchini, “Splitwise: Efficient generative llm inference using phase
splitting,” in 2024 ACM/IEEE 51st Annual International Symposium on
Computer Architecture (ISCA), 2024.

[22] T. Komoda, S. Hayashi, T. Nakada, S. Miwa, and H. Nakamura, “Power
capping of cpu-gpu heterogeneous systems through coordinating dvfs
and task mapping,” in 2013 IEEE 31st International Conference on
Computer Design (ICCD), pp. 349–356, 2013.

[23] N. Jouppi, C. Young, N. Patil, and D. Patterson, “Motivation for and
evaluation of the first tensor processing unit,” IEEE Micro, vol. 38, no. 3,
pp. 10–19, 2018.

[24] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “Sigma: A sparse and irregular gemm ac-
celerator with flexible interconnects for dnn training,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pp. 58–70, 2020.

[25] M. Tibaldi and C. Pilato, “A survey of fpga optimization methods
for data center energy efficiency,” IEEE Transactions on Sustainable
Computing, vol. 8, no. 3, pp. 343–362, 2023.

[26] “cublas basic linear algebra on nvidia gpus.” https://developer.nvidia.
com/cublas, 2024.

[27] “Cutlass cuda templates for linear algebra subroutines and solvers.”
https://github.com/NVIDIA/cutlass, 2024.

[28] “cusparse.” https://developer.nvidia.com/cusparse, 2024.
[29] “Matrix multiplication background user’s guide.” https://docs.nvidia.

com/deeplearning/performance/dl-performance-matrix-multiplication/
index.html, 2023.

[30] S. Pati, S. Aga, N. Jayasena, and M. D. Sinclair, “Demystifying bert:
System design implications,” in 2022 IEEE International Symposium on
Workload Characterization (IISWC), pp. 296–309, 2022.

[31] C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, and P. Sadayappan,
“Adaptive sparse tiling for sparse matrix multiplication,” in Proceedings
of the 24th Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’19, (New York, NY, USA), p. 300–314, Association for
Computing Machinery, 2019.

[32] T. Gale, M. Zaharia, C. Young, and E. Elsen, “Sparse gpu kernels for
deep learning,” in SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–14, 2020.

[33] A. Mehrabi, D. Lee, N. Chatterjee, D. J. Sorin, B. C. Lee, and
M. O’Connor, “Learning sparse matrix row permutations for efficient
spmm on gpu architectures,” in 2021 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pp. 48–58,
2021.

[34] T. Dettmers, R. Svirschevski, V. Egiazarian, D. Kuznedelev, E. Frantar,
S. Ashkboos, A. Borzunov, T. Hoefler, and D. Alistarh, “Spqr: A sparse-
quantized representation for near-lossless llm weight compression,”
2023.

[35] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “Gptq: Accurate
post-training quantization for generative pre-trained transformers,” 2023.

[36] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” 2021.

[37] H. Tang, S. Yang, Z. Liu, K. Hong, Z. Yu, X. Li, G. Dai, Y. Wang,
and S. Han, “Torchsparse++: Efficient training and inference framework
for sparse convolution on gpus,” in Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO
’23, (New York, NY, USA), p. 225–239, Association for Computing
Machinery, 2023.

[38] J. Lucas and B. Juurlink, “Alupower: Data dependent power consump-
tion in gpus,” in 2016 IEEE 24th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 95–104, 2016.

[39] S. Bhalachandra, B. Austin, S. Williams, and N. J. Wright, “Understand-
ing the impact of input entropy on fpu, cpu, and gpu power,” ArXiv,
vol. abs/2212.08805, 2022.

[40] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” 2017.

[41] L.-H. Lim, “Tensors in computations,” Acta Numerica, vol. 30,
p. 555–764, May 2021.

[42] “Nvidia a100 tensor core gpu architecture.” https:
//images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf.

[43] “Nvidia dcgm.” https://developer.nvidia.com/dcgm, 2024.
[44] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,

M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons learned from
the chameleon testbed,” in Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC ’20), USENIX Association, July
2020.

[45] G. Pekhimenko, E. Bolotin, N. Vijaykumar, O. Mutlu, T. C. Mowry, and
S. W. Keckler, “A case for toggle-aware compression for gpu systems,”
in 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 188–200, IEEE, 2016.

[46] N. Zheng, H. Jiang, Q. Zhang, Z. Han, L. Ma, Y. Yang, F. Yang,
C. Zhang, L. Qiu, M. Yang, and L. Zhou, “Pit: Optimization of dynamic
sparse deep learning models via permutation invariant transformation,”
in Proceedings of the 29th Symposium on Operating Systems Princi-
ples, SOSP ’23, (New York, NY, USA), p. 331–347, Association for
Computing Machinery, 2023.

https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://github.com/NVIDIA/cutlass
https://developer.nvidia.com/cusparse
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://developer.nvidia.com/dcgm

	I Introduction
	II Background
	III Experiment Setup
	IV Input-Dependent Power Analysis
	IV-A Value Distribution
	IV-B Bit Similarity
	IV-C Placement Patterns
	IV-D Sparsity
	IV-E Generalization
	IV-F Bit Alignment and Hamming Weight

	V Discussion and Future Work
	References

