
RTCSA 2017

A Server-based Approach for
Predictable GPU Access Control

Hyoseung Kim* Pratyush Patel† Shige Wang‡ Raj Rajkumar†

* University of California, Riverside
† Carnegie Mellon University

‡ General Motors R&D

RTCSA 2017

Benefits of GPUs
• High computational demands of recent safety-critical systems

– Long execution times Hard to meet their deadlines

• General-Purpose Graphics Processing Units (GPUs)
– 4-20x faster than a CPU for data-parallel, compute-intensive workloads*

– Many embedded multi-core processors have on-chip GPUs

2

NXP i.MX6NVIDIA TK1/TK2

* Govindaraju et al. High Performance Discrete Fourier Transforms on Graphics Processors. ACM/IEEE conference on Supercomputing (SC), 2008.

Samsung Exynos 9

RTCSA 2017

• Task accessing a GPU

GPU Execution Pattern

3

GPU

CPU

Normal exec.
segment

Normal exec.
segmentGPU access segment

① Copy data
to GPU

② Trigger GPU computation ④ Copy results
to CPU

GPU kernel execution

③ Notify completion

Need for predictable GPU access control
• To bound and minimize GPU access time
• To achieve better task schedulability

RTCSA 2017

Many of Today’s COTS GPUs
1. Do not support preemption

– Due to the high overhead expected on GPU context switching*

– Some recent GPU architectures support preemption (e.g., NVIDIA Pascal)

2. Handle GPU requests in a sequential manner
– Concurrent execution of GPU kernels may result in unpredictable delay

3. Do not respect task priorities and the scheduling policy used
– May result in unbounded priority inversion

4

Four same kernels on NVIDIA GTX 980
• 97% slowdown on two kernels
• Unpredictable who gets the delay

* I. Tanasic et al. Enabling preemptive multiprogramming on GPUs. In International Symposium on Computer Architecture (ISCA), 2014.

RTCSA 2017

Prior Approach
• Synchronization-based approach*†‡

– Models each GPU access segment as a critical section
– Uses a real-time synchronization protocol to handle GPU requests

5

GPU

CPU
Lock Unlock

GPU access segment
 Critical section

* G. Elliott and J. Anderson. Globally scheduled real-time multiprocessor systems with GPUs. Real-Time Syst., 48(1):34–74, 2012.
† G. Elliott and J. Anderson. An optimal k-exclusion real-time locking protocol motivated by multi-GPU systems. Real-Time Syst., 49(2):140–170, 2013.
‡ G. Elliott et al. GPUSync: A framework for real-time GPU management. In IEEE Real-Time Systems Symposium (RTSS), 2013.

– Does not require any change in GPU device drivers
– Existing schedulability analyses can be directly reused

Benefits

RTCSA 2017

Limitations
1. Busy waiting

– Critical sections are executed entirely on the CPU
– No suspension during the execution of a critical section

2. Long priority inversion
– High priority tasks may suffer from unnecessarily long priority inversion
– Due to priority boosting used by some protocols, e.g., MPCP and FMLP

6

* R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization protocols for multiprocessors. In IEEE Real-Time Systems Symposium (RTSS), 1988.
† A. Block et al. A flexible real-time locking protocol for multiprocessors. In IEEE Embedded and Real-Time Comp. Systems and Apps., (RTCSA), 2007.
‡ B. Brandenburg and J. Anderson. The OMLP family of optimal multiprocessor real-time locking protocols. Design Automation for Embedded Systems,
17(2):277–342, 2013.

Busy wait

GPU

CPU
Lock UnlockCritical section

Common assumptions of most RT synch.
protocols, e.g., MPCP*, FMLP†, OMLP‡

RTCSA 2017

Our Contributions
• Server-based approach for predictable GPU access control

• Addresses the limitations of the synchronization-based approach
– Yields CPU utilization benefits
– Reduces task response time

• Prototype implementation on an NXP i.MX6 running Linux

• Can be used for other types of computational accelerators,
such as a digital signal processor (DSP)

7

RTCSA 2017

Outline
• Introduction and motivation

• Server-based approach for predictable GPU access control
– System model
– GPU server and analysis
– Comparison with the synchronization-based approach

• Evaluation

• Conclusions

8

RTCSA 2017

System Model
• Single general-purpose GPU device

– Shared by tasks in a sequential, non-preemptive manner

• Sporadic tasks with constrained deadlines
– Task 𝜏𝜏𝑖𝑖 ≔ (𝐶𝐶𝑖𝑖 ,𝑇𝑇𝑖𝑖 ,𝐷𝐷𝑖𝑖 ,𝐺𝐺𝑖𝑖 , 𝜂𝜂𝑖𝑖)

• 𝐶𝐶𝑖𝑖: Sum of the WCET of all normal execution segments
• 𝑇𝑇𝑖𝑖: Minimum inter-arrival time
• 𝐷𝐷𝑖𝑖: Relative deadline
• 𝐺𝐺𝑖𝑖: Max. accum. length of all GPU segments
• 𝜂𝜂𝑖𝑖: Number of GPU access segments

– GPU segment 𝐺𝐺𝑖𝑖,𝑗𝑗 ≔ (𝐺𝐺𝑖𝑖,𝑗𝑗𝑒𝑒 ,𝐺𝐺𝑖𝑖,𝑗𝑗𝑚𝑚)

• Partitioned fixed-priority preemptive task scheduling

9

GPU

CPU

GPU kernel 𝐺𝐺𝑖𝑖,𝑗𝑗𝑒𝑒

GPU segment 𝐺𝐺𝑖𝑖,𝑗𝑗

RTCSA 2017

Server-based Approach
• GPU server task

– Handles GPU access requests from other tasks on their behalf
– Allows tasks to suspend whenever no CPU intervention is needed

10

GPU Server Task

GPU request queue

Task 𝝉𝝉𝒊𝒊

Data
Command

GPU

Code

② Order reqs.
in task priority

GPU access
segment

Shared
memory

region

① Request to the
GPU server task

③ Execute the highest
priority GPU request

Highest priority

GPU server suspends during CPU-inactive time

𝜏𝜏𝑖𝑖 suspends

RTCSA 2017

Timing Behavior of GPU Server
• GPU server overhead 𝜖𝜖

– Receiving a request and waking up the GPU server
– Checking the request queue
– Notifying the completion of the request

• Maximum handling time of all GPU requests of 𝜏𝜏𝑖𝑖 by GPU server

11

Total waiting time GPU segment length Server overhead (twice per segment)

RTCSA 2017

Task Response Time with GPU Server
• Case 1: a task 𝜏𝜏𝑖𝑖 and the GPU server are on the same CPU core

• Case 2: a task 𝜏𝜏𝑖𝑖 and the GPU server are on different cores

12

GPU segment handling time Self-suspension by
higher-priority tasks*

* J.-J. Chen et al. Many suspensions, many problems: A review of self-suspending tasks in real-time systems. Technical Report 854, Department of
Computer Science, TU Dortmund, 2016.

Interference from the GPU server (e.g., GPU mem copy by server)

No interference from the GPU server (and misc. GPU operations)

RTCSA 2017

Example under Synch-based Approach

13

𝝉𝝉𝒉𝒉

𝝉𝝉𝒎𝒎

𝝉𝝉𝒍𝒍

GPU

CPU
Core

1

CPU
Core

2

Normal exec. segment Misc. GPU operation GPU computation Busy waiting

GPU req.

Response time of task 𝜏𝜏ℎ: 9

GPU req.

GPU req.

Busy wait

Busy wait

Busy wait

Priority boosting

0 1 2 3 4 5 6 7 8 9 10 11 12

Priority boosting
𝑮𝑮𝒍𝒍 𝑮𝑮𝒉𝒉 𝑮𝑮𝒎𝒎

Priority boosting

* MPCP is used

RTCSA 2017

Example under Server-based Approach

14

GPU req.

GPU req.

GPU req.

Suspend

Suspend

Suspend

Response time of task 𝜏𝜏ℎ: 6+4εε

𝝉𝝉𝒍𝒍 𝝉𝝉𝒉𝒉 𝝉𝝉𝒎𝒎

𝝉𝝉𝒉𝒉

𝝉𝝉𝒎𝒎

𝝉𝝉𝒍𝒍

GPU

CPU
Core

1

CPU
Core

2

GPU
server

0 1 2 3 4 5 6 7 8 9 10 11 12

Normal exec. segment Misc. GPU operation GPU computation Svr. overhead

RTCSA 2017

Implementation
• SABRE Lite board (NXP i.MX6 SoC)

– Four ARM Cortex-A9 cores running at 1GHz
– Vivante GC2000 GPU
– NXP Embedded Linux kernel version 3.14.52
– Linux/RK version 1.6 patch*

• GPU server overhead 𝜖𝜖
– Total of 44.97𝜇𝜇𝜇𝜇 delay

15

* Linux/RK: http://rtml.ece.cmu.edu/redmine/projects/rk/

OpenCL

http://rtml.ece.cmu.edu/redmine/projects/rk/

RTCSA 2017

Case Study
• Motivated by the software system of the CMU’s self-driving car*

– Workzone Recognition Algorithm†

– Two other GPU-using tasks and two CPU-only tasks

16

* J. Wei et al. Towards a viable autonomous driving research platform. In IEEE Intelligent Vehicles Symposium (IV), 2013.
† J. Lee et al. Kernel-based traffic sign tracking to improve highway workzone recognition for reliable autonomous driving. In IEEE International
Conference on Intelligent Transportation Systems (ITSC), 2013.

RTCSA 2017

Task Execution Timeline

17

• Synchronization-based approach (using MPCP)

• Server-based approach

Response time of a GPU-using task:
520.68 ms vs. 219.09 ms in the worst case

RTCSA 2017

Schedulability Experiments
• Purpose: To explore the impact of the two approaches on task

schedulability

• 10,000 randomly-generated tasksets

18

RTCSA 2017

Results (1)
• Schedulability w.r.t. the percentage of GPU-using tasks

19

Server-based approach performs better in most cases
(with realistic parameters)

RTCSA 2017

Results (2)
• Schedulability w.r.t. the GPU server overhead

20

Server-based approach does not dominate
synchronization-based approach

44.97𝜇𝜇𝜇𝜇 was the overhead
in our platform

RTCSA 2017

Conclusions
• Server-based GPU access control

– Motivated by the limitations of the synchronization-based approach
• Busy-waiting and long priority inversion

– Implementation with an acceptable overhead
– Significant improvement over the synch-based approach in most cases

• Future directions
– Improvement of analysis (worst-case waiting time calculation)
– Comparison with other synchronization protocols

• e.g., recent extension of FMLP+ allows self-suspension within critical sections
– GPU server has a central knowledge of all GPU requests

• Efficient co-scheduling of GPU kernels, GPU power management, etc.

21

RTCSA 2017

A Server-based Approach for Predictable GPU
Access Control

Thank You

* University of California, Riverside
† Carnegie Mellon University

‡ General Motors R&D

Hyoseung Kim* Pratyush Patel† Shige Wang‡ Raj Rajkumar†

	A Server-based Approach for Predictable GPU Access Control
	Benefits of GPUs
	GPU Execution Pattern
	Many of Today’s COTS GPUs
	Prior Approach
	Limitations
	Our Contributions
	Outline
	System Model
	Server-based Approach
	Timing Behavior of GPU Server
	Task Response Time with GPU Server
	Example under Synch-based Approach
	Example under Server-based Approach
	Implementation
	Case Study
	Task Execution Timeline
	Schedulability Experiments
	Results (1)
	Results (2)
	Conclusions
	A Server-based Approach for Predictable GPU Access Control

