
RTAS 2018

Analytical Enhancements and
Practical Insights for

MPCP with Self-Suspensions

Pratyush Patel, Iljoo Baek, Hyoseung Kim*, Raj Rajkumar

*

RTAS 2018

High Computational Demand of
Safety-Critical Systems

Repeat

Sense Compute Actuate

Sensors Actuators

Computing System

Perception Path
Planning

Brake
Control

…
Deadline

33 ms
Deadline

66 ms
Deadline
100 ms

 Long execution time
 Difficult to meet deadlines

Need Computational Accelerators*†

* GP-GPUs (General-Purpose GPUs)
† Digital Signal Processor (DSP)2/26

RTAS 2018

Problems with Hardware Accelerators
• They do not support preemption

o Due to high context switching overhead*†

* I. Tanasicet al. Enabling preemptive multiprogramming on GPUs. In International Symposium on Computer Architecture (ISCA), 2014.
† Some recent GPU architectures support preemption - NVIDIA Volta Architecture https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/

• They handle multiple resource requests in any order
o Concurrent execution on GPU may result in unpredictable delays

• They do not respect task priorities or scheduling policies
o May result in unbounded priority inversion

3 identical CUDA kernels on NVIDIA GTX 1070
 97% slowdown on two kernels
 Unpredictable which kernel gets delayed

3/26

https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/

RTAS 2018

Existing Solution: Synchronization-
Based Approaches*†‡

CPU

GPU

Critical Section

Benefits of synchronization-based approaches
 Do not require any change in accelerator device drivers
 Existing schedulability analyses can be directly re-used

Lock Unlock

* G. Elliott and J. Anderson. Globally scheduled real-time multiprocessor systems with GPUs. Real-Time Syst., 48(1):34–74, 2012.
† G. Elliott and J. Anderson. An optimal k-exclusion real-time locking protocol motivated by multi-GPU systems. Real-Time Syst., 49(2):140–170, 2013.
‡ G. Elliott et al. GPUSync: A framework for real-time GPU management. In IEEE Real-Time Systems Symposium (RTSS), 2013.

4/26

RTAS 2018

Busy wait

Limitations

* R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization protocols for multiprocessors. In IEEE Real-Time Systems Symposium (RTSS), 1988.
† A. Block et al. A flexible real-time locking protocol for multiprocessors. In IEEE Embedded and Real-Time Comp. Systems and Apps., (RTCSA), 2007.
‡ B. Brandenburg and J. Anderson. The OMLP family of optimal multiprocessor real-time locking protocols. Design Automation for Embedded Systems, 2013

Common assumption of most RT synch.
protocols, e.g., MPCP*, FMLP†, OMLP‡

CPU

GPU

Critical SectionLock Unlock

• Busy waiting
o Critical sections are executed entirely on the CPU

• Analytical pessimism
o Traditional recursion-based analysis#

o Can lead to expensive over-provisioning

K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task scheduling, allocation and synchronization on multiprocessors. In IEEE Real-Time Systems
Symposium (RTSS), 2009.

5/26

RTAS 2018

Our Contributions
• Analytical enhancements for the Multiprocessor Priority

Ceiling Protocol (MPCP)
 Tighter bounds for task response times
 Allow suspensions when executing critical sections

• Extensive schedulability experiments for a variety of task set
parameters

• Prototype implementation and evaluation on Nvidia TX2
running Linux

• Extensions can be used with multiple types of computational
accelerators, such as a digital signal processor (DSP) and
General-Purpose GPU (GP-GPU)

6/26

RTAS 2018

• Motivation & Introduction
• Suspension-based MPCP

– System model
– Comparison with busy-waiting approach
– Task response time analysis

• Evaluation
• Conclusions

Outline

7/26

RTAS 2018

Example of GPU Execution

CPU

GPU

GPU
execution

Non-critical
section

Non-critical
section

“Critical section”

CPU executionTask arrival GPU execution Misc. operationGPU request

8/26

Non-critical
section

GPU
execution

“Critical section”

RTAS 2018

System Model
• Sporadic tasks with constrained deadlines

o Task τ𝑖𝑖 ∶= 𝐶𝐶𝑖𝑖, 𝐺𝐺𝑖𝑖, 𝑇𝑇𝑖𝑖, η𝑖𝑖
• 𝐶𝐶𝑖𝑖 : Sum of the WCET* of all non-critical sections
• 𝐺𝐺𝑖𝑖 : Sum of the WCET* of all critical sections
• 𝑇𝑇𝑖𝑖 : Period (Deadline = Period)
• η𝑖𝑖 : Maximum number of critical sections
• ζ𝑖𝑖,𝑗𝑗 : Maximum number of suspensions

in the jth critical section
o Critical segment 𝐺𝐺𝑖𝑖,𝑗𝑗 ∶= (𝐺𝐺𝑖𝑖,𝑗𝑗𝑒𝑒 , 𝐺𝐺𝑖𝑖,𝑗𝑗𝑚𝑚)

• Each hardware accelerator is modeled as a distinct shared
resource

• Use partitioned fixed-priority preemptive scheduling

* Worst-Case Execution Time (WCET) 9/26

“Critical section” “Critical section”

RTAS 2018

Example under Busy-Waiting MPCP

τℎ

GPU

CPU
Core

1

Busy-wait

Busy-wait

Busy-wait

Global priority ceiling

Global priority ceiling

0 1 2 3 4 5 6 7 8 9 10 11 12

Global priority ceiling

τ𝑚𝑚

τ𝑙𝑙
CPU
Core

2

Response time of 𝜏𝜏ℎ : 9

CPU execution Blocked segmentTask arrival GPU execution Preempted segment
Busy wait Misc. operationGPU request

10/26

Time

RTAS 2018

Example under Suspension-based MPCP

Suspend

Suspend

Suspend
Priority boosting

0 1 2 3 4 5 6 7 8 9 10 11 12

Priority boosting

τℎ

GPU

CPU
Core

1 τ𝑚𝑚

τ𝑙𝑙
CPU
Core

2

Response time of 𝜏𝜏ℎ : 6 + overhead

CPU execution Blocked segmentGPU execution Preempted segment
Self-Suspension Misc. operation Self-suspension overhead

Priority boosting

Task arrival
GPU request

Time

11/26

RTAS 2018

𝑊𝑊𝑖𝑖
𝑛𝑛+1 = 𝐶𝐶𝑖𝑖 + 𝐺𝐺𝑖𝑖 + 𝐵𝐵𝑖𝑖 + �

τℎ∈h𝑝𝑝𝑝𝑝(τ𝑖𝑖)

𝑊𝑊𝑖𝑖
𝑛𝑛 + 𝑊𝑊ℎ − 𝐶𝐶ℎ

𝑇𝑇ℎ
� 𝐶𝐶ℎ

• Worst-Case Response Time (𝑊𝑊𝑖𝑖)* i = task number

Task Response Time Analysis

Blocking delay

Preemption delay by
Higher-priority tasks

Self-suspension by
higher-priority tasks†

* N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Applying new scheduling theory to static priority pre-emptive scheduling. Software
Engineering Journal, 8(5):284–292, 1993.
† J.-J. Chen et al. Many suspensions, many problems: A review of self-suspending tasks in real-time systems. Technical Report 854, Department of
Computer Science, TU Dortmund, 2016.

Our contribution

12/26

RTAS 2018

For each analyzed task,
• Request-driven (RD) Approach*

o Consider the sum of the worst-case blocking times for each lock-
acquisition request issued by the analyzed task

• Job-driven (JD) Approach
o Consider the maximum number of lock-acquisition requests issued by

other tasks during the execution of the analyzed task

• Hybrid Approach
o Upper-bound the maximum lock-acquisition requests possible in RD

analysis by using JD analysis – obtain the best of both approaches
o Different from RTAS'14† which simply takes the minimum of RD and JD for

the blocking delay

* K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task scheduling, allocation and synchronization on multiprocessors. In IEEE Real-Time Systems
Symposium (RTSS), 2009.
† H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding memory interference delay in COTS-based multi-core systems. In IEEE
Real-Time Technology and Applications Symposium (RTAS), 2014.

Total Blocking Time Analysis

13/26

RTAS 2018

Task Ci Gi 𝜂𝜂𝑖𝑖 Gi,1 Gi,2 𝑇𝑇𝑖𝑖 CPU

𝝉𝝉𝟏𝟏 1 1 1 1 - 102 1

𝝉𝝉𝟐𝟐 1 100 1 100 - 1000
0

2

𝝉𝝉𝟑𝟑 1000 2 2 1 1 1106 3

Request-driven*
Blocking Time Analysis

𝐵𝐵3 = 𝐵𝐵3,1 + 𝐵𝐵3,2

For each request made by 𝝉𝝉𝟑𝟑, its blocking time is given by
= 102 +102 = 204

𝝉𝝉𝟏𝟏
𝝉𝝉𝟐𝟐
𝝉𝝉𝟑𝟑

Time

* K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task scheduling, allocation and synchronization on multiprocessors. In IEEE Real-Time Systems
Symposium (RTSS), 2009.

GPU execution

Blocked segment

𝝉𝝉𝟏𝟏’s period
𝝉𝝉𝟑𝟑’s period

Job arrival

14/26

RTAS 2018

Job-driven
Blocking Time Analysis

𝐵𝐵3 = 12x1 + 1x100

The max requests (= jobs) made by other tasks

𝝉𝝉𝟏𝟏
𝝉𝝉𝟐𝟐
𝝉𝝉𝟑𝟑

Time

of req. by 𝝉𝝉𝟏𝟏= 12 # of req. by 𝝉𝝉𝟐𝟐= 1 = 112

Request-Driven
𝐵𝐵3 = 204

15/26

Task Ci Gi 𝜂𝜂𝑖𝑖 Gi,1 Gi,2 𝑇𝑇𝑖𝑖 CPU

𝝉𝝉𝟏𝟏 1 1 1 1 - 102 1

𝝉𝝉𝟐𝟐 1 100 1 100 - 1000
0

2

𝝉𝝉𝟑𝟑 1000 2 2 1 1 1106 3

GPU execution

Blocked segment

𝝉𝝉𝟏𝟏’s period
𝝉𝝉𝟑𝟑’s period

Job arrival

RTAS 2018

Hybrid
Blocking Time Analysis

𝐵𝐵3 = 𝐵𝐵3,1 + 𝐵𝐵3,2

Both each req. made by 𝝉𝝉𝟑𝟑 and max req. made by other tasks

= (4x1) + (1x100) = 104

𝝉𝝉𝟏𝟏
𝝉𝝉𝟐𝟐
𝝉𝝉𝟑𝟑

Time

Request-Driven
𝐵𝐵3 = 204

Job-Driven
𝐵𝐵3 = 112

16/26

Task Ci Gi 𝜂𝜂𝑖𝑖 Gi,1 Gi,2 𝑇𝑇𝑖𝑖 CPU

𝝉𝝉𝟏𝟏 1 1 1 1 - 102 1

𝝉𝝉𝟐𝟐 1 100 1 100 - 1000
0

2

𝝉𝝉𝟑𝟑 1000 2 2 1 1 1106 3

GPU execution

Blocked segment

𝝉𝝉𝟏𝟏’s period
𝝉𝝉𝟑𝟑’s period

Job arrival

RTAS 2018

Outline

• Motivation & Introduction
• Suspension-based MPCP
• Evaluation

– Case Study
– Schedulability Experiment

• Conclusions

17/26

RTAS 2018

Case Study

Read
Image ClassificationFeature

Extraction
Color

Conversion

GPU ExecutionGPU Execution

Matrix
Calculation

Arithmetic
Calculation

Arithmetic
Calculation

GPU Execution

o Lane-Change Detector

o Matrix Calculation

* J. Wei et al. Towards a viable autonomous driving research platform. In IEEE Intelligent Vehicles Symposium (IV), 2013.
† J. Lee et al. Kernel-based traffic sign tracking to improve highway workzone recognition for reliable autonomous driving. In IEEE International
Conference on Intelligent Transportation Systems (ITSC), 2013.

• Motivated by the software system of CMU’s self-driving car*

GPU Execution
Read
Image ClassificationBlob

Detection
Pre-

processing

o Workzone Detector†

18/26

RTAS 2018

Experimental Setup

• NVIDIA TX2
 6 CPU Cores
 1 GPU (256 Cores, Pascal Arch.)

Lane Change Detector Workzone Detector

Two Matrix Calculations One Matrix Calculation

CPU core 1 CPU core 2

Task priorities are assigned based on the rate-monotonic policy

19/26

RTAS 2018

DEMO

Deadline : 33 ms Deadline : 33 ms

20/26

RTAS 2018

Suspension-based vs. Busy-waiting
MPCP

 Performs better in practice, especially for lower-priority tasks
 Allows other tasks to use the CPU while a task is using the GPU

21/26

0

20

40

60

80

100

120

140

LaneChange Workzone Matrix Cal. 1 Matrix Cal. 2 Matrix Cal. 3

W
or

st
-C

as
e

R
es

po
ns

e
Ti

m
e

(m
s)

Suspension-based MPCP
Busy-waiting MPCP

RTAS 2018

Effect of Suspension Overhead
• Test result w.r.t. the number of co-scheduled tasks

The overhead of self-suspension implementation negatively affects
task response times when the tasks have small GPU segments

w/ small GPU segments

22/26

15

20

25

30

35

40

45

50

0 1 2 3 4 5

W
or

st
-C

as
e

R
es

po
ns

e
tim

e
(m

s)

Number of co-scheduled Matrix calculation tasks per core

Workzone (Busy-wait) Workzone (Self-suspension)

Lane Change (Busy-wait) Lane Change (Self-suspension)

≈ 200 μs

RTAS 2018

Schedulability Experiments
• Purpose: To explore the impact of the different approaches on task

schedulability

• 10,000 randomly-generated tasksets

Parameters Values
Number of CPUs (m) 4
Number of shared resources (g) [1, 3]
Number of tasks per CPU [3, 6]
Percentage of tasks with critical sections [10, 40] %
Task period and deadline (𝑇𝑇𝑖𝑖 = 𝐷𝐷𝑖𝑖) [30, 500] ms
Utilization per CPU [40, 60] %
Ratio of crit. Sec. len. To non-crit. Sec. len. (𝐺𝐺𝑖𝑖/ 𝐶𝐶𝑖𝑖) [10, 30] %
Number of critical sections per task (η𝑖𝑖) [1, 3]
Number of suspensions in a critical section (ζ𝑖𝑖,𝑗𝑗) [1, 2]

MPCP – Our Analysis
FMLP+ – LP-based Analysis*

* The Schedulability Test Collection and Toolkit (SchedCAT).
http://github.com/brandenburg/schedcat23/26

RTAS 2018

Schedulability w.r.t. the
Percentage of GPU-using Tasks

Hybrid MPCP outperforms both the original MPCP and LP-based FMLP+

Period range
[30, 500] ms

24/26

RTAS 2018

Schedulability w.r.t. the
Percentage of GPU-using Tasks

Neither hybrid MPCP nor LP-based FMLP+ dominates the other

Hybrid MPCP analysis is over 100x faster than LP-based FMLP+
25/26

Period range
[300, 500] ms

RTAS 2018

Conclusions

• Suspension-based MPCP
 Motivated by the limitations of the busy-waiting synchronization-based

approach
 Implementation on a real-world embedded platform
 Significant improvement over the busy-waiting approach
 Very competitive with and often outperforms LP-based FMLP+
 100x better runtime performance compared to LP-based analysis

• Future directions
 A detailed study of the suspension overhead trade-offs on modern

platforms with accelerators
 Comparison with other synchronization protocols

26/26

RTAS 2018

Thank You
Analytical Enhancements and

Practical Insights for
MPCP with Self-Suspensions

Pratyush Patel*, Iljoo Baek*, Hyoseung Kim†, Raj Rajkumar*

* Carnegie Mellon University
† University of California, Riverside

ibaek@andrew.cmu.edu

mailto:ibaek@andrew.cmu.edu

RTAS 2018

BACKUP SLIDES

RTAS 2018

Self-Suspension Implementation

CPU GPU

Request GPU

Wait GPU response

GPU Execution

Callback 2Wake up

Unlock

Copy Data

Callback 1

Wait GPU response Copy Data

Decrease Priority

Wake up
Request GPU

• Global Lock
 POSIX pthread_mutex()
 Shared memory

• Priority Ceiling
 sched_setscheduler()

• CPU Suspension
 POSIX pthread_cond()

• GPU Execution
 Asynchronous functions

ex) cudaMemcpyAsync()
 Stream and Callback

Lock

Increase Priority

29/26

RTAS 2018

Experimental Setup

• NVIDIA TX2
- 4 ARM Cortex-A9 at 2GHz
- 2 Denver at 2GHz
- 1 GPU (256 Cores, Pascal Arch.)
- Ubuntu 16.04

1

CPU

1
GPU

6

…
.

𝐶𝐶𝑖𝑖 𝐺𝐺𝑖𝑖 𝑇𝑇𝑖𝑖 = 𝐷𝐷𝑖𝑖 CPU Test
LC 13.5 3.19 39.5 1
WZ 29.48 4.04 50 2
AM1 11.05 5.12 100 1
AM2 8.81 9.38 165 1
AM3 32.97 10.88 300 2
AM4 1.15 2.7 120 1
AM5 1.15 0.7 120 1

* All times are in milliseconds (ms)

General Use Case

GPU Overload

Overhead Test

LC

WZ

AM1~5

1

2

3

30/26

RTAS 2018

Suspension Overhead

• CPU-side overhead
 Suspension
 Context Switching

• GPU-side overhead
 Asynchronous Calls
 Callback functions

≈ 200 μs

CPU

GPU

GPU req.

Busy-wait

CPU

GPU

GPU req.

Suspend

Lock Unlock

Lock Unlock(2)(1)
(3)

GPU access time < the suspension overhead
 the busy-wait approach is better

31/26

RTAS 2018

Self-Suspension Implementation

CPU GPU

Lock

Request GPU

Wait GPU response

GPU Execution

Callback 2Wake up

Unlock

Copy Data

Callback 1

Wait GPU response Copy Data

Increase Priority

Decrease Priority

Pr
io

rit
y

C
ei

lin
g

Wake up
Request GPU

new_pri =
highest_pri + (cur_pri – lowest_pri) + 1

Ex)
Task 1: 80 (cpu)
Task 2: 54 (gpu) -> 85 = 80 + (54 - 50) + 1
Task 3: 53 (gpu) -> 84 = 80 + (53 - 50) + 1
Task 4: 52 (gpu) -> 83 = 80 + (52 - 50) + 1
Task 6: 50 (gpu) -> 81 = 80 + (50 - 50) + 1

• Global Lock
 Shared memory
 pthread_mutex()

• Suspension
 a POSIX conditional variable

• CUDA-related
 Asynchronous CUDA functions

ex) cudaMemcpyAsync()
 Stream and Callback

• Priority Ceiling
 sched_setscheduler()

32/26

RTAS 2018

33/30

𝑊𝑊𝑖𝑖
𝑛𝑛+1 = 𝐶𝐶𝑖𝑖 + 𝐺𝐺𝑖𝑖 + 𝐵𝐵𝑖𝑖 + �

τℎ∈h𝑝𝑝𝑝𝑝(τ𝑖𝑖)

𝑊𝑊𝑖𝑖
𝑛𝑛 + 𝑊𝑊ℎ − 𝐶𝐶ℎ

𝑇𝑇ℎ
� 𝐶𝐶ℎ

• Worst-Case Response Time (𝑊𝑊𝑖𝑖)
– Time span between a request and the end of the request

Task Response Time with Suspension

Blocking Delay

GPU

GPU req.

GPU req.

Suspend

Suspendτ𝑚𝑚

τ𝑙𝑙
CPU
Core

2

τℎ
CPU
Core

1

Preemption Delay by
Higher priority task

𝑊𝑊𝑖𝑖 ≤ Deadline (𝐷𝐷𝑖𝑖)
= Schedulable

CPU execution Blocked segmentGPU execution Preempted segmentTask arrival

RTAS 2018

Schedulability Experiments
• Purpose: To explore the impact of the different approaches on task

schedulability

• Schedulability: How many taskets are schedulable?

𝐶𝐶𝑖𝑖, 𝐺𝐺𝑖𝑖, 𝐷𝐷𝑖𝑖, 𝑇𝑇𝑖𝑖, η𝑖𝑖

Taskset 1 = {τ1, τ2 ….τ𝑥𝑥}

Taskset n = {τ1, τ2 …. τ𝑥𝑥}

…
..

Parameter Variation
% of GPU-using Tasks
% of CPU Utilization
…

Sc
he

du
la

bi
lit

y
(%

) 100%

0%

34/30

RTAS 2018

τ1

τ2

τ3

Core 1

Core 2

Core 1

Blocking Definition

• A task τi is said to be blocked
 If a local task τi with a lower base priority is scheduled while of τi is pending.
 If any task τk has locked the resource that τi is waiting for.

Blocking (1) Blocking (2) Blocking (1)
Blocking (2)

Higher-Priority Task preemption

RTAS 2018

• Direct Blocking (DB)
– is incurred when any task τk has locked the

resource that τi is waiting for.

• Prioritized Blocking (PB)
– is incurred when lower-priority tasks

executing with priority ceilings preempt the
CPU execution of τi

• Indirect Blocking (IB)
– is incurred when a task τx accessing a

resource with a higher priority ceiling
preempts the execution of τj , which is
holding the resource that τi is waiting for.

τ𝑖𝑖

τ𝑘𝑘

Core 1

Core 2

τ𝑖𝑖

τ𝑙𝑙

Core 1

Core 1

R2

τ𝑖𝑖

τ𝑥𝑥

τ𝑗𝑗

Core 1

Core 2

Core 2
R1

DB IB DB

DB

Blocking Definition

36/26

RTAS 2018

Task Response Time with Suspension

𝑊𝑊𝑖𝑖= 𝐶𝐶𝑖𝑖 + 𝐺𝐺𝑖𝑖 + 𝐵𝐵𝑖𝑖 + �
τℎ∈h𝑝𝑝𝑝𝑝(τ𝑖𝑖)

𝐼𝐼𝑖𝑖 τ𝑖𝑖

• Worst-case response time under partition fixed-priority scheduling

Worst-case execution
time of τ𝑖𝑖

Upper bound on the
maximum

synchronization-based
blocking

𝐼𝐼𝑖𝑖 τ𝑖𝑖 = 𝛼𝛼𝑖𝑖,ℎ � 𝐸𝐸ℎ

Worst-case preemption
time due to higher

priority tasks on the
same CPU

𝛼𝛼𝑖𝑖,ℎ =
𝑊𝑊𝑖𝑖 + 𝑊𝑊ℎ − 𝐸𝐸ℎ

𝑇𝑇ℎ

Worst-case CPU
execution time of τ𝑖𝑖

Maximum instances of
τℎ released during the

execution of τ𝑖𝑖

Back-to-back execution
effect

Upper bound on the
maximum

synchronization-based
blocking

37/26

RTAS 2018

Blocking Analysis
• Direct Blocking (DB)

– is incurred when any task τk has locked the
resource that τi is waiting for.

𝐵𝐵𝑖𝑖𝑑𝑑𝑑𝑑 = �
0<𝑗𝑗≤η𝑖𝑖

𝐵𝐵𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑

 Request-Driven (RD) Approach

𝐵𝐵𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑 = max
τ𝑙𝑙∈𝑙𝑙𝑙𝑙(τ𝑖𝑖)

∧𝑅𝑅 τ𝑖𝑖,𝑗𝑗 =𝑅𝑅 τ𝑙𝑙,𝑘𝑘

(𝐻𝐻𝑙𝑙,𝑘𝑘) + �
τℎ∈ℎ𝑙𝑙(τ𝑖𝑖)

∧𝑅𝑅 τ𝑖𝑖,𝑗𝑗 =𝑅𝑅 τℎ,𝑘𝑘

𝛽𝛽𝑖𝑖,𝑗𝑗,ℎ � 𝐻𝐻ℎ,𝑘𝑘

Maximum blocking from
lower priority tasks Maximum blocking from

higher priority tasks

Worst-case response time of
kth critical section of τ𝑙𝑙

𝛽𝛽𝑖𝑖,𝑗𝑗,ℎ =
𝐵𝐵𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑 + 𝑊𝑊ℎ − 𝐸𝐸ℎ

𝑇𝑇ℎ

Maximum instances of τℎ released
during the blocking duration 𝐵𝐵𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑

τ𝑖𝑖

τ𝑘𝑘

Core 1

Core 2

DB

DB

Critical sections
per job of τ𝑖𝑖

�
τℎ∈ℎ𝑙𝑙(τ𝑖𝑖)

�
0<𝑘𝑘≤ηℎ

𝛽𝛽𝑖𝑖,𝑗𝑗,ℎ � 𝐻𝐻ℎ,𝑘𝑘

38/26

RTAS 2018

Blocking Analysis

 Job-Driven (JD) Approach

𝐵𝐵𝑖𝑖
𝑑𝑑𝑗𝑗 = �

𝑑𝑑∈𝑅𝑅 τ𝑖𝑖

η𝑖𝑖,𝑑𝑑 � max
τ𝑙𝑙∈𝑙𝑙𝑙𝑙 τ𝑖𝑖
∧𝑅𝑅 τ𝑙𝑙,𝑘𝑘 =𝑑𝑑

(𝐻𝐻𝑙𝑙,𝑘𝑘) + �
τℎ∈ℎ𝑙𝑙(τ𝑖𝑖)

∧𝑅𝑅 τℎ,𝑘𝑘 ∈𝑅𝑅 τ𝑖𝑖

𝛼𝛼𝑖𝑖,ℎ � 𝐻𝐻ℎ,𝑘𝑘

τ𝑖𝑖

τ𝑘𝑘

Core 1

Core 2

DB

DB

𝛼𝛼𝑖𝑖,ℎ =
𝑊𝑊𝑖𝑖 + 𝑊𝑊ℎ − 𝐸𝐸ℎ

𝑇𝑇ℎ

Maximum instances of
τℎ released during the

execution of τ𝑖𝑖

Maximum number of times τ𝑖𝑖
accesses resource 𝑅𝑅𝑑𝑑

Maximum direct blocking
caused by lower-priority

tasks
= analogous to the RD

approach

Direct blocking caused by
each higher-priority task
critical section that uses
the requested resource

�
τℎ∈ℎ𝑙𝑙(τ𝑖𝑖)

�
0<𝑘𝑘≤ηℎ

𝛼𝛼𝑖𝑖,ℎ � 𝐻𝐻ℎ,𝑘𝑘�
0<𝑗𝑗≤η𝑖𝑖

�
τ𝑙𝑙∈𝑙𝑙𝑙𝑙(τ𝑖𝑖)

�
0<𝑘𝑘≤ηℎ

max(𝐻𝐻𝑙𝑙,𝑘𝑘)

iff. 𝑅𝑅 τ𝑙𝑙,𝑘𝑘 = 𝑅𝑅 τ𝑖𝑖

iff. 𝑅𝑅 τℎ,𝑘𝑘 = 𝑅𝑅 τ𝑖𝑖

• Direct Blocking (DB)
– is incurred when any task τk has locked the

resource that τi is waiting for.

39/26

RTAS 2018

Blocking Analysis

 Hybrid Approach

τ𝑖𝑖

τ𝑘𝑘

Core 1

Core 2

DB

DB

𝐵𝐵𝑖𝑖𝑑𝑑𝑚𝑚 = 𝐵𝐵𝑖𝑖𝑑𝑑𝑚𝑚𝑙𝑙 + 𝐵𝐵𝑖𝑖𝑑𝑑𝑚𝑚ℎ

𝐵𝐵𝑖𝑖𝑑𝑑𝑚𝑚ℎ = �
τℎ∈ℎ𝑙𝑙(τ𝑖𝑖)

∧𝑅𝑅 τℎ,𝑘𝑘 =𝑅𝑅 τ𝑖𝑖

𝛿𝛿𝑖𝑖,ℎ � 𝐻𝐻ℎ,𝑘𝑘 𝛿𝛿𝑖𝑖,ℎ = min 𝛼𝛼𝑖𝑖,ℎ , �
0<𝑗𝑗≤η𝑖𝑖

∧𝑅𝑅 τℎ,𝑘𝑘 ∈𝑅𝑅 τ𝑖𝑖

𝛽𝛽𝑖𝑖,𝑗𝑗,ℎ

𝛼𝛼𝑖𝑖,ℎ =
𝑊𝑊𝑖𝑖 + 𝑊𝑊ℎ − 𝐸𝐸ℎ

𝑇𝑇ℎ
𝛽𝛽𝑖𝑖,𝑗𝑗,ℎ =

𝐵𝐵𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑 + 𝑊𝑊ℎ − 𝐸𝐸ℎ
𝑇𝑇ℎ1) Maximum direct higher-priority blocking

Worst-case response time of
kth critical section of τℎ

Maximum cumulative
number of interfering
requests by τℎ to the

resources accessed by
critical sections of τ𝑖𝑖

Maximum instances of
τℎ released during the

execution of τ𝑖𝑖

Maximum instances of τℎ
released during the

blocking duration 𝐵𝐵𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑

• Direct Blocking (DB)
– is incurred when any task τk has locked the

resource that τi is waiting for.

40/26

RTAS 2018

Blocking Analysis

 Hybrid Approach

τ𝑖𝑖

τ𝑘𝑘

Core 1

Core 2

DB

DB

𝐵𝐵𝑖𝑖𝑑𝑑𝑚𝑚 = 𝐵𝐵𝑖𝑖𝑑𝑑𝑚𝑚𝑙𝑙 + 𝐵𝐵𝑖𝑖𝑑𝑑𝑚𝑚ℎ

𝐵𝐵𝑖𝑖𝑑𝑑𝑚𝑚𝑙𝑙 = �
0<𝑗𝑗≤𝑔𝑔

�
0<𝑘𝑘≤ 𝑄𝑄𝑖𝑖,𝑗𝑗

ψ𝑖𝑖,𝑗𝑗,𝑘𝑘 � 𝐿𝐿𝑖𝑖,𝑗𝑗,𝑘𝑘

2) Maximum direct lower-priority blocking

ψ𝑖𝑖,𝑗𝑗,𝑘𝑘 = min η𝑖𝑖,𝑗𝑗 − �
0<𝑡𝑡<𝑘𝑘

ψ𝑖𝑖,𝑗𝑗,𝑡𝑡 ,𝜃𝜃𝑖𝑖,𝑋𝑋𝑖𝑖,𝑗𝑗,𝑘𝑘 𝜃𝜃𝑖𝑖,𝑙𝑙 =
𝑊𝑊𝑖𝑖 + 𝐷𝐷𝑙𝑙 − 𝐸𝐸𝑙𝑙

𝑇𝑇𝑙𝑙

Maximum number of release
of a lower-priority τ𝑙𝑙 during

the execution of τ𝑖𝑖Maximum number of times
that the kth longest critical

section can block τ𝑖𝑖

The kth longest critical
section that access resource

𝑅𝑅𝑗𝑗and belong to 𝑙𝑙𝑙𝑙 τ𝑖𝑖

𝑄𝑄𝑖𝑖,𝑗𝑗 = 𝐻𝐻𝑙𝑙,𝑥𝑥 τ𝑙𝑙 ∈ 𝑙𝑙𝑙𝑙 τ𝑖𝑖 ∧ 𝑅𝑅 τ𝑙𝑙,𝑘𝑘 = 𝑟𝑟

A set contains the worst-case execution
times of all the critical sections that

access resource 𝑅𝑅𝑗𝑗and belong to 𝑙𝑙𝑙𝑙 τ𝑖𝑖

Maximum number of times τ𝑖𝑖
accesses resource 𝑅𝑅𝑗𝑗

• Direct Blocking (DB)
– is incurred when any task τk has locked the

resource that τi is waiting for.

41/26

RTAS 2018

Blocking Analysis: Example
Task Ci Gi ni Gi,1 Gi,2 Gi,3 T
τ1 20 10 2 5 5 - 100

τ2 10 30 3 10 10 10 400

τ3 10 25 3 10 10 5 200

τ1

τ2

τ3
1000 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

𝑄𝑄2,1 = 𝐻𝐻𝑙𝑙,𝑥𝑥 τ𝑙𝑙 ∈ 𝑙𝑙𝑙𝑙 τ2 ∧ 𝑅𝑅 τ𝑙𝑙,𝑘𝑘 = 1 = 20, 10, 5

𝜃𝜃2,3 = 1

𝐿𝐿2,1,1 = 20 𝐿𝐿2,1,2 = 10 𝐿𝐿2,1,3 = 5
ψ2,1,1 = min η2,1 − �

0<𝑡𝑡<1

ψ2,1,𝑡𝑡 ,𝜃𝜃2,3 = min 3, 1 = 3

ψ2,1,2 = min η2,1 − �
0<𝑡𝑡<2

ψ2,1,𝑡𝑡 ,𝜃𝜃2,3 = min 0, 1 = 0

42/26

RTAS 2018

Nvidia TX2

RTAS 2018

Nvidia TX2
NVIDIA

Jetson TX1
NVIDIA

Jetson TX2
CPU ARM Cortex-A57 (quad-core) @ 1.73GHz ARM Cortex-A57 (quad-core) @ 2GHz +

NVIDIA Denver2 (dual-core) @ 2GHz

GPU 256-core Maxwell @ 998MHz 256-core Pascal @ 1300MHz

Memory 4GB 64-bit LPDDR4 @ 1600MHz | 25.6
GB/s

8GB 128-bit LPDDR4 @ 1866Mhz | 59.7
GB/s

Storage 16GB eMMC 5.1 32GB eMMC 5.1
Encoder* 4Kp30, (2x) 1080p60 4Kp60, (3x) 4Kp30, (8x) 1080p30

Decoder* 4Kp60, (4x) 1080p60 (2x) 4Kp60
Camera† 12 lanes MIPI CSI-2 | 1.5 Gb/s per lane |

1400 megapixels/sec ISP
12 lanes MIPI CSI-2 | 2.5 Gb/sec per lane
| 1400 megapixels/sec ISP

Display 2x HDMI 2.0 / DP 1.2 / eDP 1.2 | 2x MIPI DSI
Wireless 802.11a/b/g/n/ac 2×2 867Mbps |

Bluetooth 4.0
802.11a/b/g/n/ac 2×2 867Mbps |
Bluetooth 4.1

Ethernet 10/100/1000 BASE-T Ethernet
USB USB 3.0 + USB 2.0
PCIe Gen 2 | 1×4 + 1 x1 Gen 2 | 1×4 + 1×1 or 2×1 + 1×2

CAN Not supported Dual CAN bus controller
Misc I/O UART, SPI, I2C, I2S, GPIOs
Socket 400-pin Samtec board-to-board connector, 50x87mm
Thermals‡ -25°C to 80°C
Power†† 10W 7.5W
Price $299 at 1K units $399 at 1K units

44/26

RTAS 2018

Nvidia TX2

• SM is limited to 2,048 per SM.
• Shared memory usage is limited to 64KB per SM and 48KB per block.
• the total number of threads each block can use is limited to 1,024.
• Each thread can use up to 255 registers
• A block can use up to 32,768 registers (regardless of its thread count).
• Additionally, there is a limit of 65,536 registers in total on each SM.

45/26

	Analytical Enhancements and Practical Insights for�MPCP with Self-Suspensions
	High Computational Demand of Safety-Critical Systems
	Problems with Hardware Accelerators
	Existing Solution: Synchronization-Based Approaches*†‡
	Limitations
	Our Contributions
	Outline
	Example of GPU Execution
	System Model
	Example under Busy-Waiting MPCP
	Example under Suspension-based MPCP
	Slide Number 12
	Total Blocking Time Analysis
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Outline
	Case Study
	Experimental Setup
	DEMO
	Suspension-based vs. Busy-waiting MPCP
	Effect of Suspension Overhead
	Schedulability Experiments
	Schedulability w.r.t. the Percentage of GPU-using Tasks
	Schedulability w.r.t. the Percentage of GPU-using Tasks
	Conclusions
	Thank You
	BACKUP SLIDES
	Self-Suspension Implementation
	Experimental Setup
	Suspension Overhead
	Self-Suspension Implementation
	Slide Number 33
	Schedulability Experiments
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Blocking Analysis
	Blocking Analysis
	Blocking Analysis
	Blocking Analysis
	Blocking Analysis: Example
	Nvidia TX2
	Nvidia TX2
	Nvidia TX2

