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High Computational Demand of 
Safety-Critical Systems

Repeat

Sense Compute Actuate

Sensors Actuators

Computing System

Perception Path 
Planning

Brake 
Control

…
Deadline

33 ms
Deadline

66 ms
Deadline
100 ms

 Long execution time
 Difficult to meet deadlines

Need Computational Accelerators*†

* GP-GPUs (General-Purpose GPUs)
† Digital Signal Processor (DSP)2/26
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Problems with Hardware Accelerators
• They do not support preemption

o Due to high context switching overhead*†

* I. Tanasicet al. Enabling preemptive multiprogramming on GPUs. In International Symposium on Computer Architecture (ISCA), 2014.
† Some recent GPU architectures support preemption - NVIDIA Volta Architecture https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/

• They handle multiple resource requests in any order
o Concurrent execution on GPU may result in unpredictable delays

• They do not respect task priorities or scheduling policies
o May result in unbounded priority inversion

3 identical CUDA kernels on NVIDIA GTX 1070
 97% slowdown on two kernels
 Unpredictable which kernel gets delayed

3/26
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Existing Solution: Synchronization-
Based Approaches*†‡

CPU

GPU

Critical Section

Benefits of synchronization-based approaches
 Do not require any change in accelerator device drivers
 Existing schedulability analyses can be directly re-used

Lock Unlock

* G. Elliott and J. Anderson. Globally scheduled real-time multiprocessor systems with GPUs. Real-Time Syst., 48(1):34–74, 2012.
† G. Elliott and J. Anderson. An optimal k-exclusion real-time locking protocol motivated by multi-GPU systems. Real-Time Syst., 49(2):140–170, 2013.
‡ G. Elliott et al. GPUSync: A framework for real-time GPU management. In IEEE Real-Time Systems Symposium (RTSS), 2013.
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Busy wait

Limitations

* R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization protocols for multiprocessors. In IEEE Real-Time Systems Symposium (RTSS), 1988. 
† A. Block et al. A flexible real-time locking protocol for multiprocessors. In IEEE Embedded and Real-Time Comp. Systems and Apps., (RTCSA), 2007. 
‡ B. Brandenburg and J. Anderson. The OMLP family of optimal multiprocessor real-time locking protocols. Design Automation for Embedded Systems, 2013 

Common assumption of most RT synch. 
protocols, e.g., MPCP*, FMLP†, OMLP‡

CPU

GPU

Critical SectionLock Unlock

• Busy waiting
o Critical sections are executed entirely on the CPU

• Analytical pessimism
o Traditional recursion-based analysis#

o Can lead to expensive over-provisioning

# K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task scheduling, allocation and synchronization on multiprocessors. In IEEE Real-Time Systems 
Symposium (RTSS), 2009.
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Our Contributions
• Analytical enhancements for the Multiprocessor Priority 

Ceiling Protocol (MPCP)
 Tighter bounds for task response times
 Allow suspensions when executing critical sections

• Extensive schedulability experiments for a variety of task set 
parameters

• Prototype implementation and evaluation on Nvidia TX2 
running Linux

• Extensions can be used with multiple types of computational 
accelerators, such as a digital signal processor (DSP) and 
General-Purpose GPU (GP-GPU)

6/26
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• Motivation & Introduction
• Suspension-based MPCP

– System model
– Comparison with busy-waiting approach
– Task response time analysis

• Evaluation
• Conclusions

Outline
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Example of GPU Execution

CPU

GPU

GPU 
execution

Non-critical 
section

Non-critical 
section

“Critical section”

CPU executionTask arrival GPU execution Misc. operationGPU request

8/26

Non-critical 
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execution
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System Model
• Sporadic tasks with constrained deadlines

o Task τ𝑖𝑖 ∶= 𝐶𝐶𝑖𝑖, 𝐺𝐺𝑖𝑖, 𝑇𝑇𝑖𝑖, η𝑖𝑖
• 𝐶𝐶𝑖𝑖 : Sum of the WCET* of all non-critical sections 
• 𝐺𝐺𝑖𝑖 : Sum of the WCET* of all critical sections
• 𝑇𝑇𝑖𝑖 : Period (Deadline = Period) 
• η𝑖𝑖 : Maximum number of critical sections
• ζ𝑖𝑖,𝑗𝑗 : Maximum number of suspensions 

in the jth critical section
o Critical segment 𝐺𝐺𝑖𝑖,𝑗𝑗 ∶= (𝐺𝐺𝑖𝑖,𝑗𝑗𝑒𝑒 , 𝐺𝐺𝑖𝑖,𝑗𝑗𝑚𝑚)

• Each hardware accelerator is modeled as a distinct shared 
resource

• Use partitioned fixed-priority preemptive scheduling

* Worst-Case Execution Time (WCET) 9/26

“Critical section” “Critical section”
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Example under Busy-Waiting MPCP

τℎ

GPU

CPU
Core

1

Busy-wait

Busy-wait

Busy-wait

Global priority ceiling

Global priority ceiling

0           1            2           3           4           5           6           7           8           9          10   11         12 

Global priority ceiling

τ𝑚𝑚

τ𝑙𝑙
CPU
Core

2

Response time of 𝜏𝜏ℎ : 9 

CPU execution Blocked segmentTask arrival GPU execution Preempted segment
Busy wait Misc. operationGPU request

10/26
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Example under Suspension-based MPCP

Suspend

Suspend

Suspend
Priority boosting

0           1            2           3           4           5           6           7           8           9          10   11         12 

Priority boosting

τℎ

GPU

CPU
Core

1 τ𝑚𝑚

τ𝑙𝑙
CPU
Core

2

Response time of 𝜏𝜏ℎ : 6 + overhead   

CPU execution Blocked segmentGPU execution Preempted segment
Self-Suspension Misc. operation Self-suspension overhead

Priority boosting

Task arrival
GPU request

Time 
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𝑊𝑊𝑖𝑖
𝑛𝑛+1 = 𝐶𝐶𝑖𝑖 + 𝐺𝐺𝑖𝑖 + 𝐵𝐵𝑖𝑖 + �

τℎ∈h𝑝𝑝𝑝𝑝(τ𝑖𝑖)

𝑊𝑊𝑖𝑖
𝑛𝑛 + 𝑊𝑊ℎ − 𝐶𝐶ℎ

𝑇𝑇ℎ
� 𝐶𝐶ℎ

• Worst-Case Response Time (𝑊𝑊𝑖𝑖)*  i = task number

Task Response Time Analysis

Blocking delay

Preemption delay by 
Higher-priority tasks

Self-suspension by 
higher-priority tasks†

* N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Applying new scheduling theory to static priority pre-emptive scheduling. Software 
Engineering Journal, 8(5):284–292, 1993.
† J.-J. Chen et al. Many suspensions, many problems: A review of self-suspending tasks in real-time systems. Technical Report 854, Department of 
Computer Science, TU Dortmund, 2016.

Our contribution

12/26
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For each analyzed task,
• Request-driven (RD) Approach*

o Consider the sum of the worst-case blocking times for each lock-
acquisition request issued by the analyzed task

• Job-driven (JD) Approach
o Consider the maximum number of lock-acquisition requests issued by 

other tasks during the execution of the analyzed task

• Hybrid Approach
o Upper-bound the maximum lock-acquisition requests possible in RD

analysis by using JD analysis – obtain the best of both approaches
o Different from RTAS'14† which simply takes the minimum of RD and JD for 

the blocking delay

* K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task scheduling, allocation and synchronization on multiprocessors. In IEEE Real-Time Systems 
Symposium (RTSS), 2009. 
† H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding memory interference delay in COTS-based multi-core systems. In IEEE 
Real-Time Technology and Applications Symposium (RTAS), 2014. 

Total Blocking Time Analysis

13/26
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Task Ci Gi 𝜂𝜂𝑖𝑖 Gi,1 Gi,2 𝑇𝑇𝑖𝑖 CPU

𝝉𝝉𝟏𝟏 1 1 1 1 - 102 1

𝝉𝝉𝟐𝟐 1 100 1 100 - 1000
0

2

𝝉𝝉𝟑𝟑 1000 2 2 1 1 1106 3

Request-driven* 
Blocking Time Analysis

𝐵𝐵3 = 𝐵𝐵3,1 + 𝐵𝐵3,2

For each request made by 𝝉𝝉𝟑𝟑, its blocking time is given by
= 102 +102 = 204

𝝉𝝉𝟏𝟏
𝝉𝝉𝟐𝟐
𝝉𝝉𝟑𝟑

Time  

* K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task scheduling, allocation and synchronization on multiprocessors. In IEEE Real-Time Systems 
Symposium (RTSS), 2009. 

GPU execution

Blocked segment

𝝉𝝉𝟏𝟏’s period
𝝉𝝉𝟑𝟑’s period

Job arrival

14/26



RTAS 2018

Job-driven 
Blocking Time Analysis

𝐵𝐵3 = 12x1 + 1x100

The max requests (= jobs) made by other tasks

𝝉𝝉𝟏𝟏
𝝉𝝉𝟐𝟐
𝝉𝝉𝟑𝟑

Time  

# of req. by 𝝉𝝉𝟏𝟏= 12 # of req. by 𝝉𝝉𝟐𝟐= 1 = 112

Request-Driven
𝐵𝐵3 = 204

15/26

Task Ci Gi 𝜂𝜂𝑖𝑖 Gi,1 Gi,2 𝑇𝑇𝑖𝑖 CPU

𝝉𝝉𝟏𝟏 1 1 1 1 - 102 1

𝝉𝝉𝟐𝟐 1 100 1 100 - 1000
0

2

𝝉𝝉𝟑𝟑 1000 2 2 1 1 1106 3

GPU execution

Blocked segment

𝝉𝝉𝟏𝟏’s period
𝝉𝝉𝟑𝟑’s period

Job arrival
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Hybrid
Blocking Time Analysis

𝐵𝐵3 = 𝐵𝐵3,1 + 𝐵𝐵3,2

Both each req. made by 𝝉𝝉𝟑𝟑 and max req. made by other tasks

= (4x1) + (1x100) = 104

𝝉𝝉𝟏𝟏
𝝉𝝉𝟐𝟐
𝝉𝝉𝟑𝟑

Time  

Request-Driven
𝐵𝐵3 = 204

Job-Driven
𝐵𝐵3 = 112
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Outline

• Motivation & Introduction
• Suspension-based MPCP
• Evaluation

– Case Study
– Schedulability Experiment

• Conclusions
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Case Study

Read 
Image ClassificationFeature

Extraction
Color

Conversion

GPU ExecutionGPU Execution

Matrix 
Calculation

Arithmetic
Calculation

Arithmetic
Calculation

GPU Execution

o Lane-Change Detector

o Matrix Calculation

* J. Wei et al. Towards a viable autonomous driving research platform. In IEEE Intelligent Vehicles Symposium (IV), 2013.
† J. Lee et al. Kernel-based traffic sign tracking to improve highway workzone recognition for reliable autonomous driving. In IEEE International 
Conference on Intelligent Transportation Systems (ITSC), 2013.

• Motivated by the software system of CMU’s self-driving car*

GPU Execution
Read 
Image ClassificationBlob

Detection
Pre-

processing

o Workzone Detector†
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Experimental Setup

• NVIDIA TX2
 6 CPU Cores
 1 GPU (256 Cores, Pascal Arch.)

Lane Change Detector Workzone Detector

Two Matrix Calculations One Matrix Calculation

CPU core 1 CPU core 2

Task priorities are assigned based on the rate-monotonic policy

19/26
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DEMO

Deadline : 33 ms Deadline : 33 ms
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Suspension-based vs. Busy-waiting 
MPCP

 Performs better in practice, especially for lower-priority tasks
 Allows other tasks to use the CPU while a task is using the GPU

21/26
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Effect of Suspension Overhead
• Test result w.r.t. the number of co-scheduled tasks

The overhead of self-suspension implementation negatively affects 
task response times when the tasks have small GPU segments

w/ small GPU segments

22/26
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Schedulability Experiments
• Purpose: To explore the impact of the different approaches on task 

schedulability 

• 10,000 randomly-generated tasksets

Parameters Values
Number of CPUs (m) 4
Number of shared resources (g) [1, 3]
Number of tasks per CPU [3, 6]
Percentage of tasks with critical sections [10, 40] %
Task period and deadline (𝑇𝑇𝑖𝑖 = 𝐷𝐷𝑖𝑖) [30, 500] ms
Utilization per CPU [40, 60] %
Ratio of crit. Sec. len. To non-crit. Sec. len. (𝐺𝐺𝑖𝑖/ 𝐶𝐶𝑖𝑖) [10, 30] %
Number of critical sections per task (η𝑖𝑖) [1, 3]
Number of suspensions in a critical section (ζ𝑖𝑖,𝑗𝑗) [1, 2]

MPCP – Our Analysis
FMLP+ – LP-based Analysis*

* The Schedulability Test Collection and Toolkit (SchedCAT). 
http://github.com/brandenburg/schedcat23/26
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Schedulability w.r.t. the 
Percentage of GPU-using Tasks

Hybrid MPCP outperforms both the original MPCP and LP-based FMLP+

Period range 
[30, 500] ms

24/26
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Schedulability w.r.t. the 
Percentage of GPU-using Tasks

Neither hybrid MPCP nor LP-based FMLP+ dominates the other

Hybrid MPCP analysis is over 100x faster than LP-based FMLP+
25/26

Period range 
[300, 500] ms
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Conclusions

• Suspension-based MPCP
 Motivated by the limitations of the busy-waiting synchronization-based 

approach
 Implementation on a real-world embedded platform 
 Significant improvement over the busy-waiting approach
 Very competitive with and often outperforms LP-based FMLP+
 100x better runtime performance compared to LP-based analysis

• Future directions 
 A detailed study of the suspension overhead trade-offs on modern 

platforms with accelerators
 Comparison with other synchronization protocols

26/26
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Self-Suspension Implementation

CPU GPU

Request GPU

Wait GPU response

GPU Execution

Callback 2Wake up

Unlock

Copy Data

Callback 1

Wait GPU response Copy Data

Decrease Priority

Wake up
Request GPU

• Global Lock
 POSIX pthread_mutex()
 Shared memory

• Priority Ceiling
 sched_setscheduler()

• CPU Suspension
 POSIX pthread_cond()

• GPU Execution
 Asynchronous functions

ex) cudaMemcpyAsync()
 Stream and Callback

Lock

Increase Priority
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Experimental Setup

• NVIDIA TX2
- 4 ARM Cortex-A9 at 2GHz
- 2 Denver at 2GHz
- 1 GPU (256 Cores, Pascal Arch.)
- Ubuntu 16.04

1

CPU

1
GPU

6

…
.

𝐶𝐶𝑖𝑖 𝐺𝐺𝑖𝑖 𝑇𝑇𝑖𝑖 = 𝐷𝐷𝑖𝑖 CPU Test
LC 13.5 3.19 39.5 1 
WZ 29.48 4.04 50 2 
AM1 11.05 5.12 100 1 
AM2 8.81 9.38 165 1 
AM3 32.97 10.88 300 2 
AM4 1.15 2.7 120 1 
AM5 1.15 0.7 120 1 

* All times are in milliseconds (ms)

General Use Case

GPU Overload

Overhead Test

LC

WZ

AM1~5

1

2

3

30/26



RTAS 2018

Suspension Overhead

• CPU-side overhead
 Suspension
 Context Switching

• GPU-side overhead
 Asynchronous Calls
 Callback functions

≈ 200 μs

CPU

GPU

GPU req.

Busy-wait

CPU

GPU

GPU req.

Suspend

Lock Unlock

Lock Unlock(2)(1)
(3)

GPU access time < the suspension overhead
 the busy-wait approach is better
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Self-Suspension Implementation

CPU GPU

Lock

Request GPU

Wait GPU response

GPU Execution

Callback 2Wake up

Unlock

Copy Data

Callback 1

Wait GPU response Copy Data

Increase Priority

Decrease Priority

Pr
io

rit
y 

C
ei

lin
g

Wake up
Request GPU

new_pri = 
highest_pri + (cur_pri – lowest_pri) + 1

Ex) 
Task 1: 80 (cpu)
Task 2: 54 (gpu) -> 85 = 80 + (54 - 50) + 1
Task 3: 53 (gpu) -> 84 = 80 + (53 - 50) + 1
Task 4: 52 (gpu) -> 83 = 80 + (52 - 50) + 1
Task 6: 50 (gpu) -> 81 = 80 + (50 - 50) + 1

• Global Lock
 Shared memory
 pthread_mutex()

• Suspension
 a POSIX conditional variable

• CUDA-related
 Asynchronous CUDA functions

ex) cudaMemcpyAsync()
 Stream and Callback

• Priority Ceiling
 sched_setscheduler()
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33/30

𝑊𝑊𝑖𝑖
𝑛𝑛+1 = 𝐶𝐶𝑖𝑖 + 𝐺𝐺𝑖𝑖 + 𝐵𝐵𝑖𝑖 + �

τℎ∈h𝑝𝑝𝑝𝑝(τ𝑖𝑖)

𝑊𝑊𝑖𝑖
𝑛𝑛 + 𝑊𝑊ℎ − 𝐶𝐶ℎ

𝑇𝑇ℎ
� 𝐶𝐶ℎ

• Worst-Case Response Time (𝑊𝑊𝑖𝑖)
– Time span between a request and the end of the request

Task Response Time with Suspension

Blocking Delay

GPU

GPU req.

GPU req.

Suspend

Suspendτ𝑚𝑚

τ𝑙𝑙
CPU
Core

2

τℎ
CPU
Core

1

Preemption Delay by 
Higher priority task

𝑊𝑊𝑖𝑖 ≤ Deadline (𝐷𝐷𝑖𝑖) 
= Schedulable

CPU execution Blocked segmentGPU execution Preempted segmentTask arrival
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Schedulability Experiments
• Purpose: To explore the impact of the different approaches on task 

schedulability 

• Schedulability: How many taskets are schedulable? 

𝐶𝐶𝑖𝑖, 𝐺𝐺𝑖𝑖, 𝐷𝐷𝑖𝑖, 𝑇𝑇𝑖𝑖, η𝑖𝑖

Taskset 1 = {τ1, τ2 ….τ𝑥𝑥}

Taskset n = {τ1, τ2 …. τ𝑥𝑥}

…
..

Parameter Variation
% of GPU-using Tasks
% of CPU Utilization
…

Sc
he

du
la

bi
lit

y 
(%

) 100%

0%
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τ1

τ2

τ3

Core 1

Core 2

Core 1

Blocking Definition

• A task τi is said to be blocked
 If a local task τi with a lower base priority is scheduled while of τi is pending.
 If any task τk has locked the resource that τi is waiting for.

Blocking (1) Blocking (2) Blocking (1)
Blocking (2)

Higher-Priority Task preemption
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• Direct Blocking (DB)
– is incurred when any task τk has locked the 

resource that τi is waiting for.

• Prioritized Blocking (PB)
– is incurred when lower-priority tasks 

executing with priority ceilings preempt the 
CPU execution of τi

• Indirect Blocking (IB)
– is incurred when a task τx accessing a 

resource with a higher priority ceiling 
preempts the execution of τj , which is 
holding the resource that τi is waiting for.

τ𝑖𝑖

τ𝑘𝑘

Core 1

Core 2

τ𝑖𝑖

τ𝑙𝑙

Core 1

Core 1

R2

τ𝑖𝑖

τ𝑥𝑥

τ𝑗𝑗

Core 1

Core 2

Core 2
R1

DB IB DB

DB

Blocking Definition
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Task Response Time with Suspension

𝑊𝑊𝑖𝑖= 𝐶𝐶𝑖𝑖 + 𝐺𝐺𝑖𝑖 + 𝐵𝐵𝑖𝑖 + �
τℎ∈h𝑝𝑝𝑝𝑝(τ𝑖𝑖)

𝐼𝐼𝑖𝑖 τ𝑖𝑖

• Worst-case response time under partition fixed-priority scheduling

Worst-case execution 
time of τ𝑖𝑖

Upper bound on the 
maximum 

synchronization-based 
blocking

𝐼𝐼𝑖𝑖 τ𝑖𝑖 = 𝛼𝛼𝑖𝑖,ℎ � 𝐸𝐸ℎ

Worst-case preemption 
time due to higher 

priority tasks on the 
same CPU

𝛼𝛼𝑖𝑖,ℎ =
𝑊𝑊𝑖𝑖 + 𝑊𝑊ℎ − 𝐸𝐸ℎ

𝑇𝑇ℎ

Worst-case CPU 
execution time of τ𝑖𝑖

Maximum instances of 
τℎ released during the 

execution of τ𝑖𝑖

Back-to-back execution 
effect

Upper bound on the 
maximum 

synchronization-based 
blocking
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Blocking Analysis
• Direct Blocking (DB)

– is incurred when any task τk has locked the 
resource that τi is waiting for.

𝐵𝐵𝑖𝑖𝑑𝑑𝑑𝑑 = �
0<𝑗𝑗≤η𝑖𝑖

𝐵𝐵𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑

 Request-Driven (RD) Approach

𝐵𝐵𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑 = max
τ𝑙𝑙∈𝑙𝑙𝑙𝑙(τ𝑖𝑖)

∧𝑅𝑅 τ𝑖𝑖,𝑗𝑗 =𝑅𝑅 τ𝑙𝑙,𝑘𝑘

(𝐻𝐻𝑙𝑙,𝑘𝑘) + �
τℎ∈ℎ𝑙𝑙(τ𝑖𝑖)

∧𝑅𝑅 τ𝑖𝑖,𝑗𝑗 =𝑅𝑅 τℎ,𝑘𝑘

𝛽𝛽𝑖𝑖,𝑗𝑗,ℎ � 𝐻𝐻ℎ,𝑘𝑘

Maximum blocking from 
lower priority tasks Maximum blocking from 

higher priority tasks

Worst-case response time of 
kth critical section of τ𝑙𝑙

𝛽𝛽𝑖𝑖,𝑗𝑗,ℎ =
𝐵𝐵𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑 + 𝑊𝑊ℎ − 𝐸𝐸ℎ

𝑇𝑇ℎ

Maximum instances of τℎ released 
during the blocking duration 𝐵𝐵𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑

τ𝑖𝑖

τ𝑘𝑘

Core 1

Core 2

DB

DB

Critical sections 
per job of τ𝑖𝑖

�
τℎ∈ℎ𝑙𝑙(τ𝑖𝑖)

�
0<𝑘𝑘≤ηℎ

𝛽𝛽𝑖𝑖,𝑗𝑗,ℎ � 𝐻𝐻ℎ,𝑘𝑘
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Blocking Analysis

 Job-Driven (JD) Approach

𝐵𝐵𝑖𝑖
𝑑𝑑𝑗𝑗 = �

𝑑𝑑∈𝑅𝑅 τ𝑖𝑖

η𝑖𝑖,𝑑𝑑 � max
τ𝑙𝑙∈𝑙𝑙𝑙𝑙 τ𝑖𝑖
∧𝑅𝑅 τ𝑙𝑙,𝑘𝑘 =𝑑𝑑

(𝐻𝐻𝑙𝑙,𝑘𝑘) + �
τℎ∈ℎ𝑙𝑙(τ𝑖𝑖)

∧𝑅𝑅 τℎ,𝑘𝑘 ∈𝑅𝑅 τ𝑖𝑖

𝛼𝛼𝑖𝑖,ℎ � 𝐻𝐻ℎ,𝑘𝑘

τ𝑖𝑖

τ𝑘𝑘

Core 1

Core 2

DB

DB

𝛼𝛼𝑖𝑖,ℎ =
𝑊𝑊𝑖𝑖 + 𝑊𝑊ℎ − 𝐸𝐸ℎ

𝑇𝑇ℎ

Maximum instances of 
τℎ released during the 

execution of τ𝑖𝑖

Maximum number of times τ𝑖𝑖
accesses resource 𝑅𝑅𝑑𝑑

Maximum direct blocking  
caused by lower-priority

tasks
= analogous to the RD 

approach

Direct blocking caused by 
each higher-priority task 
critical section that uses 
the requested resource

�
τℎ∈ℎ𝑙𝑙(τ𝑖𝑖)

�
0<𝑘𝑘≤ηℎ

𝛼𝛼𝑖𝑖,ℎ � 𝐻𝐻ℎ,𝑘𝑘�
0<𝑗𝑗≤η𝑖𝑖

�
τ𝑙𝑙∈𝑙𝑙𝑙𝑙(τ𝑖𝑖)

�
0<𝑘𝑘≤ηℎ

max(𝐻𝐻𝑙𝑙,𝑘𝑘)

iff. 𝑅𝑅 τ𝑙𝑙,𝑘𝑘 = 𝑅𝑅 τ𝑖𝑖

iff. 𝑅𝑅 τℎ,𝑘𝑘 = 𝑅𝑅 τ𝑖𝑖

• Direct Blocking (DB)
– is incurred when any task τk has locked the 

resource that τi is waiting for.
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Blocking Analysis

 Hybrid Approach

τ𝑖𝑖

τ𝑘𝑘

Core 1

Core 2

DB

DB

𝐵𝐵𝑖𝑖𝑑𝑑𝑚𝑚 = 𝐵𝐵𝑖𝑖𝑑𝑑𝑚𝑚𝑙𝑙 + 𝐵𝐵𝑖𝑖𝑑𝑑𝑚𝑚ℎ

𝐵𝐵𝑖𝑖𝑑𝑑𝑚𝑚ℎ = �
τℎ∈ℎ𝑙𝑙(τ𝑖𝑖)

∧𝑅𝑅 τℎ,𝑘𝑘 =𝑅𝑅 τ𝑖𝑖

𝛿𝛿𝑖𝑖,ℎ � 𝐻𝐻ℎ,𝑘𝑘 𝛿𝛿𝑖𝑖,ℎ = min 𝛼𝛼𝑖𝑖,ℎ , �
0<𝑗𝑗≤η𝑖𝑖

∧𝑅𝑅 τℎ,𝑘𝑘 ∈𝑅𝑅 τ𝑖𝑖

𝛽𝛽𝑖𝑖,𝑗𝑗,ℎ

𝛼𝛼𝑖𝑖,ℎ =
𝑊𝑊𝑖𝑖 + 𝑊𝑊ℎ − 𝐸𝐸ℎ

𝑇𝑇ℎ
𝛽𝛽𝑖𝑖,𝑗𝑗,ℎ =

𝐵𝐵𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑 + 𝑊𝑊ℎ − 𝐸𝐸ℎ
𝑇𝑇ℎ1) Maximum direct higher-priority blocking

Worst-case response time of 
kth critical section of τℎ

Maximum cumulative 
number of interfering 
requests by τℎ to the 

resources accessed by 
critical sections of τ𝑖𝑖

Maximum instances of 
τℎ released during the 

execution of τ𝑖𝑖

Maximum instances of τℎ
released during the 

blocking duration 𝐵𝐵𝑖𝑖,𝑗𝑗𝑑𝑑𝑑𝑑

• Direct Blocking (DB)
– is incurred when any task τk has locked the 

resource that τi is waiting for.
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Blocking Analysis

 Hybrid Approach

τ𝑖𝑖

τ𝑘𝑘

Core 1

Core 2

DB

DB

𝐵𝐵𝑖𝑖𝑑𝑑𝑚𝑚 = 𝐵𝐵𝑖𝑖𝑑𝑑𝑚𝑚𝑙𝑙 + 𝐵𝐵𝑖𝑖𝑑𝑑𝑚𝑚ℎ

𝐵𝐵𝑖𝑖𝑑𝑑𝑚𝑚𝑙𝑙 = �
0<𝑗𝑗≤𝑔𝑔

�
0<𝑘𝑘≤ 𝑄𝑄𝑖𝑖,𝑗𝑗

ψ𝑖𝑖,𝑗𝑗,𝑘𝑘 � 𝐿𝐿𝑖𝑖,𝑗𝑗,𝑘𝑘

2) Maximum direct lower-priority blocking

ψ𝑖𝑖,𝑗𝑗,𝑘𝑘 = min η𝑖𝑖,𝑗𝑗 − �
0<𝑡𝑡<𝑘𝑘

ψ𝑖𝑖,𝑗𝑗,𝑡𝑡 ,𝜃𝜃𝑖𝑖,𝑋𝑋𝑖𝑖,𝑗𝑗,𝑘𝑘 𝜃𝜃𝑖𝑖,𝑙𝑙 =
𝑊𝑊𝑖𝑖 + 𝐷𝐷𝑙𝑙 − 𝐸𝐸𝑙𝑙

𝑇𝑇𝑙𝑙

Maximum number of release 
of a lower-priority τ𝑙𝑙 during 

the execution of τ𝑖𝑖Maximum number of times 
that the kth longest critical 

section can block τ𝑖𝑖

The kth longest critical 
section that access resource 

𝑅𝑅𝑗𝑗and belong to 𝑙𝑙𝑙𝑙 τ𝑖𝑖

𝑄𝑄𝑖𝑖,𝑗𝑗 = 𝐻𝐻𝑙𝑙,𝑥𝑥 τ𝑙𝑙 ∈ 𝑙𝑙𝑙𝑙 τ𝑖𝑖 ∧ 𝑅𝑅 τ𝑙𝑙,𝑘𝑘 = 𝑟𝑟

A set contains the worst-case execution 
times of all the critical sections that 

access resource 𝑅𝑅𝑗𝑗and belong to 𝑙𝑙𝑙𝑙 τ𝑖𝑖

Maximum number of times τ𝑖𝑖
accesses resource 𝑅𝑅𝑗𝑗

• Direct Blocking (DB)
– is incurred when any task τk has locked the 

resource that τi is waiting for.
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Blocking Analysis: Example
Task Ci Gi ni Gi,1 Gi,2 Gi,3 T
τ1 20 10 2 5 5 - 100

τ2 10 30 3 10 10 10 400

τ3 10 25 3 10 10 5 200

τ1

τ2

τ3
1000 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

𝑄𝑄2,1 = 𝐻𝐻𝑙𝑙,𝑥𝑥 τ𝑙𝑙 ∈ 𝑙𝑙𝑙𝑙 τ2 ∧ 𝑅𝑅 τ𝑙𝑙,𝑘𝑘 = 1 = 20, 10, 5

𝜃𝜃2,3 = 1

𝐿𝐿2,1,1 = 20 𝐿𝐿2,1,2 = 10 𝐿𝐿2,1,3 = 5
ψ2,1,1 = min η2,1 − �

0<𝑡𝑡<1

ψ2,1,𝑡𝑡 ,𝜃𝜃2,3 = min 3, 1 = 3

ψ2,1,2 = min η2,1 − �
0<𝑡𝑡<2

ψ2,1,𝑡𝑡 ,𝜃𝜃2,3 = min 0, 1 = 0
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Nvidia TX2
NVIDIA

Jetson TX1
NVIDIA

Jetson TX2
CPU ARM Cortex-A57 (quad-core) @ 1.73GHz ARM Cortex-A57 (quad-core) @ 2GHz +

NVIDIA Denver2 (dual-core) @ 2GHz

GPU 256-core Maxwell @ 998MHz 256-core Pascal @ 1300MHz

Memory 4GB 64-bit LPDDR4 @ 1600MHz | 25.6 
GB/s

8GB 128-bit LPDDR4 @ 1866Mhz | 59.7 
GB/s

Storage 16GB eMMC 5.1 32GB eMMC 5.1
Encoder* 4Kp30, (2x) 1080p60 4Kp60, (3x) 4Kp30, (8x) 1080p30

Decoder* 4Kp60, (4x) 1080p60 (2x) 4Kp60
Camera† 12 lanes MIPI CSI-2 | 1.5 Gb/s per lane | 

1400 megapixels/sec ISP
12 lanes MIPI CSI-2 | 2.5 Gb/sec per lane 
| 1400 megapixels/sec ISP

Display 2x HDMI 2.0 / DP 1.2 / eDP 1.2 | 2x MIPI DSI
Wireless 802.11a/b/g/n/ac 2×2 867Mbps | 

Bluetooth 4.0
802.11a/b/g/n/ac 2×2 867Mbps | 
Bluetooth 4.1

Ethernet 10/100/1000 BASE-T Ethernet
USB USB 3.0 + USB 2.0
PCIe Gen 2 | 1×4 + 1 x1 Gen 2 | 1×4 + 1×1 or 2×1 + 1×2

CAN Not supported Dual CAN bus controller
Misc I/O UART, SPI, I2C, I2S, GPIOs
Socket 400-pin Samtec board-to-board connector, 50x87mm
Thermals‡ -25°C to 80°C
Power†† 10W 7.5W
Price $299 at 1K units $399 at 1K units
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Nvidia TX2

• SM is limited to 2,048 per SM.
• Shared memory usage is limited to 64KB per SM and 48KB per block.
• the total number of threads each block can use is limited to 1,024.
• Each thread can use up to 255 registers
• A block can use up to 32,768 registers (regardless of its thread count).
• Additionally, there is a limit of 65,536 registers in total on each SM.
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