
Learning and Inference in Tractable Probabilistic Knowledge Bases

Mathias Niepert and Pedro Domingos
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350, USA

Abstract

Building efficient large-scale knowledge bases
(KBs) is a longstanding goal of AI. KBs need
to be first-order to be sufficiently expressive,
and probabilistic to handle uncertainty, but these
lead to intractable inference. Recently, tractable
Markov logic (TML) was proposed as a non-
trivial tractable first-order probabilistic represen-
tation. This paper describes the first inference
and learning algorithms for TML, and its applica-
tion to real-world problems. Inference takes time
per query sublinear in the size of the KB, and
supports very large KBs via parallelization and
a disk-based implementation using a relational
database engine. Query answering is fast enough
for interactive and real-time use. We show that,
despite the data being non-i.i.d. in general, max-
imum likelihood parameters for TML knowl-
edge bases can be computed in closed form.
We use our algorithms to build a very large
tractable probabilistic KB from numerous het-
erogeneous data sets. The KB includes millions
of objects and billions of parameters. Our ex-
periments show that the learned KB outperforms
existing specialized approaches on challenging
tasks in information extraction and integration.

INTRODUCTION

A knowledge base that continuously acquires knowledge
and answers complex queries is a vision as old as the field
of AI itself. The formal representation employed by such a
KB needs to be at the level of first-order logic, in which in-
ference is intractable. Many tractable subsets of first-order
logic have been proposed (e.g., description logics, Horn
KBs), but building large KBs further requires that the rep-
resentation be probabilistic, for at least two reasons: most
of the knowledge will necessarily be acquired from text, the
Web, etc., which are inherently noisy and ambiguous, and

maintaining the consistency of large KBs is extremely dif-
ficult. First-order probabilistic representations like Markov
logic have been developed, but they are again intractable,
as are subsets like probabilistic Horn KBs and description
logics. Recently, Domingos and Webb [2011] developed
tractable Markov logic (TML), a subset of Markov logic
that has expressiveness comparable to probabilistic Horn
KBs and description logics but remains tractable. However,
to date this was only a theoretical proposal, with no infer-
ence and learning algorithms beyond the basic inference re-
quired to prove tractability, and no real-world applications.

This paper develops highly scalable inference and learn-
ing algorithms for tractable probabilistic knowledge bases
(TPKBs), using TML as the representation. After an ini-
tialization phase that computes the partition function of the
TPKB in time linear in its size, queries are answered in
sublinear time using a relational database implementation
that allows for large disk-resident KBs and is easily paral-
lelized. Maximum-likelihood parameter learning is done in
closed form, and takes time linear in the size of the train-
ing data, which can therefore also be very large and disk-
resident. Together these inference and learning algorithms
make it possible to learn and reason with very large first-
order probabilistic KBs.

As a test of our architecture and algorithms, we learn the
structure and parameters of a TPKB from a multitude of
very large data sets, and use it to answer a variety of
queries. The resulting TPKB is larger than previous sta-
tistical relational models by at least an order of magnitude,
with millions of objects and billions of parameters, yet al-
lows for subsecond query answering times. Extensive ex-
periments show the efficiency and effectiveness of the pro-
posed framework for entity linking and resolution.

RELATED WORK

Probabilistic description logic programs [17] combine DL
programs under the answer set and well-founded seman-
tics with independent choice logic [26]. Particular variants
of light-weight description logics with probabilistic seman-

tics [11, 22, 24] have been proposed. However, these for-
malisms are too expressive to be tractable for the types of
queries needed in large-scale applications, do not allow the
modeling of data properties, and do not address the prob-
lem of parameter and structure learning.

TPKBs are related to PROBLOG [28] a probabilistic
logic programming language that is generally intractable.
URDF [19] is based on weighted MAX-SAT algorithms
and is in principle intractable. It also does not support
queries that ask for a distribution over objects, classes and
relations given a subset of their attributes. Infinite relational
models (IRMs) are non-parametric hierarchical models but
are not tractable in general [13]. We leverage the hierarchy
of TPKBs to estimate parameters on the level of classes and
relation more robustly. This is related to shrinkage [18].

TPKBs are different from probabilistic databases [31] in
that they represent general knowledge attached to class and
relation hierarchies and do not assume tuple independence,
that is, the independence of facts in the knowledge base.
Moreover, inference in a TPKB is always at most linear
in the size of the TPKB whereas inference complexity in
PDBs depends on the query expression and can be costly.

Open information extraction [7] and other IE projects [2,
15] often use ad-hoc approaches and heuristics and do not
provide a consistent joint distribution and query language.
There exist several statistical relational systems employ-
ing relational database technology to facilitate queries over
structured data [23, 33, 25]. However, the proposed sys-
tems are intractable. Recent work on statistical relational
learning has focused on tractable probabilistic graphical
models, that is, probabilistic models for which inference
is efficient by design. Examples are relational sum-product
networks [20], particular tractable fragments of probabilis-
tic logics [32], and probabilistic soft logic [14]. None of
these languages feature disk-based, sublinear inference al-
gorithms or has been used to build a real-world tractable
probabilistic knowledge base. There is related work in
the context of information extraction and relation learn-
ing. Notable representative publications of this line of re-
search are tensor factorizations of YAGO [21] and univer-
sal schemas [29]. These approaches do not facilitate a con-
sistent probabilistic semantics and expressive query lan-
guages.

TRACTABLE PROBABILISTIC
KNOWLEDGE BASES

Tractable Markov logic (TML) [4] is a subset of Markov
logic exploiting probabilistic class and part hierarchies to
control complexity. In TML the domain is decomposed into
parts, each part is drawn probabilistically from a class hier-
archy, the part is further decomposed into parts according
to its class, and so on. More recently, TML was extended

so as to also handle existence uncertainty [34]. Tractable
probabilistic knowledge bases (TPKBs) accomplish this by
defining a possible world as a set of objects and the truth
values of the atoms in which they occur as arguments,
rather than just as a set of truth values over a fixed uni-
verse of objects. TPKBs form the basis for the new algo-
rithms in this paper. We extend them with attributes that
can have discrete and continuous distributions. Attributes
allow us to model typical properties of objects in real-world
knowledge bases such as images, geographical locations,
and mentions.

Syntax

A TPKB is a set of class and object declarations. A class
declaration specifies the subclasses, parts, attributes, and
relations of the class, along with their distributions. It has
the following form:

Class C {
subclasses S1 w1, ..., Sn wn;
parts P1[c1] C1, ..., P`[c`] C`;
attributes A1 D1 u1, ..., Am Dm um;
relations R1(...) v1, ..., Rk(...) vk;
}

Subclass declarations specify the direct subclasses (chil-
dren) of C and their real-valued weights. Direct subclasses
are assumed to be mutually disjoint and form a partition of
the superclass.

Part declarations specify the parts every instance of C must
have. Part declarations consist of a part name Pi, the part’s
class Ci, and the number ci of parts of that type where ci
is optional and 1 by default. Two classes such that one is a
descendant of the other in the class hierarchy never have a
part with the same name.

Every attribute A has a domain Di (e.g., {0, ..., 10}, R) and
a weight function ui : Di → R. The weight function for a
continuous domain must be efficiently integrable.

Each relation Ri(...) has the form Ri(Pa, ..., Pz) where each
of Pa, ..., Pz is a part of C, that is, one of P1, ..., P`, and the
vi’s are real-valued weights. Weights determine the prob-
ability that an object belongs to a direct subclass or that a
relation is true as specified below. If a relation weight does
not appear, then the relation is hard, that is, it must hold in
every possible world.

Objects of the TPKB are introduced as parts, subparts, sub-
subparts, etc., of a single top object. The top object is the
sole instance of its class which is named the top class. The
top class does not have superclasses. Given a set of class
declarations, we can define the following concepts.

The class hierarchy is a directed graph whose nodes cor-
respond to classes and whose edges correspond to direct

subclass relationships. The class hierarchy must be a for-
est.

The part decomposition is a directed graph whose nodes
correspond to parts and with edges from each object to each
of its possible parts. The part decomposition must be a tree
with the top object as root node.

In addition to class declarations, TPKBs have object
declarations which introduce evidence by specifying the
names of the object as well as its subclass memberships,
attribute values, and relations. An object declaration has
the form

Path Name {
S1, ..., Sn;
A1 = D1, ...;
R1(...), ...,¬R1(...), ...;
}

where Path is the object’s path from the top object in
the part decomposition and Name the name given to the
object. For instance, for a TPKB with top object World,
World.Country1.State5.Capital Olympia { ... } is the
declaration for object World.Country1.State5.Capital
giving it the name Olympia. If, for instance, Country1
was previously declared to be World.USA and State5
to be USA.Washington, then Path could also be
Washington.Capital.

The statement S1, ..., Sn; expresses that S1, ..., Sn are the
only classes the object can be an instance of. Each state-
ment Ai = D, with D ∈ Di, is an attribute fact and denotes
that the attribute is known to have value D. For every at-
tribute Ai of the object there exists at most one fact Aai = D.
Each statement Ri(...) is a relation fact and denotes that the
relation is known to be true, and each statement ¬Ri(...) is
a relation fact that denotes that the relation is known to be
false. Object declarations are optional and may be empty,
that is, they may have the form Path Name { }. Empty ob-
ject declarations introduce evidence by declaring the object
to exist in all possible worlds. Object declarations have the
purpose of naming objects and introducing evidence and
must be compatible with the class declarations. Table 1 de-
picts a typical set of class and object declarations.

Semantics

The possible objects of a TPKB are the top object and every
other object in the part decomposition. The Herbrand uni-
verse of a TPKB is the set of constants representing classes,
paths representing objects, and constants representing at-
tribute values. An n-ary predicate grounded with elements
of the Herbrand universe is an atom. We define the binary
predicate Is, where atom Is(O, C) is true if object O is of
class C and false otherwise. Likewise, A(O, D) is an atom
which is true if attribute A has value D for object O. Finally,

Class City {
 parts Mayor Person, PoliceChief Person;
 attributes area ℝ u5, image Images u6;
 relations reportsTo(PoliceChief,Mayor) 2.3;
}

Class Person {
 subclasses Politician 0.6, ..., Actor 1.1;
 attributes age ℕ u3, image Images u4;
}

World.Country1 USA {
 area = 9857306;
}

Class Country {
 parts Capital City, President Person;
 attributes area ℝ u1, image Images u2;
}

WashingtonDC.PoliceChief CathyLanier { }

USA.Capital WashingtonDC {
 area = 77, image= ;
}

WashingtonDC.Mayor MurielBowser {
 age = 42, image= ;
}

Table 1: Example class and object declarations of a TPKB.
area is an attribute that models the area of an entity in
square kilometers, and images a collection of images de-
picting entities.

R(O, ...) is an atom which is true if the relation R(...) is true
for object O and false otherwise. We refer to class mem-
bership, attribute, and relation atoms and their negations as
literals. A TPKB is a DAG of objects and their properties
(classes, attributes, relations), and a possible world is a sub-
tree of the DAG with values for the attributes and relations.
More formally, a possible world W of a TPKB with top
object O0 and top class C0 is a set of literals such that:

1. Is(O0, C0) ∈W.

2. If Is(O, C) ∈W, then

(a) if C has direct subclasses, then Is(O, S) ∈W for
exactly one direct subclass S and ¬Is(O, S′) ∈
W for every other direct subclass S′;

(b) for every part P of O declared to be of class C′,
Is(O.P, C′) ∈W;

(c) for every attribute Ai declared for class C there
is exactly one D ∈ Di with Ai(O, D) ∈ W and
¬Ai(O, D′) ∈W for every other D′ ∈ Di; and

(d) for every relation R(...) declared for class C either
R(O, ...) ∈ W or ¬R(O, ...) ∈ W; if R is hard,
then R(O, ...) ∈W.

3. No other literals are in W.

The set of objects that exist in a possible world is exactly
the objects that occur as arguments of the class member-
ship, relation, and attribute predicates. We write W to de-
note the set of all possible worlds.

We write Subs(C), Parts(C), Atts(C) and Rels(C) to de-
note the direct subclasses, parts, attributes, and relations de-
clared for class C.

A possible subworld for object O and class C is defined as
above with O0 replaced by O and C0 replaced C. The unnor-
malized distribution φ over possible subworld W without
evidence, that is, without object declarations, is defined re-
cursively as φ(O, C,W) = 0 if ¬Is(O, C) ∈ W or if a
relation R of C is hard and ¬R(O, ...) ∈W and otherwise as

φ(O, C,W) =

 ∑
Si∈Subs(C)

ewi φ(O, Si,W)

×
 ∏

Pi∈Parts(C)

φ(O.Pi, Ci,W)ni

×
 ∏

Ai∈Atts(C)

α(O, Ai,W)

×
 ∏

Ri∈Rels(C)

ρ(O, Ri,W)

 ,

where α(O, Ai,W) = eui(D) if Ai(O, D) ∈ W. Moreover,
ρ(O, Ri,W) = evi if Ri(O, ...) ∈W and ρ(O, Ri,W) = 1
if ¬Ri(O, ...) ∈ W. If an object has no subclasses, parts,
attributes, or relations, then the corresponding products in
the above equation evaluate to 1.

The unnormalized probability of a possible world W is
now φ(O0, C0,W). The sub-partition function for object O
and class C is

ZKO,C =
∑

W∈W

φ(O, C,W).

If O is the top object and C the top class, we simply write
ZK. The probability of a possible world W is

P (W) =
φ(O0, C0,W)

ZK
.

Sum-product networks (SPNs) are a class of deep proba-
bilistic models in which one can perform fast exact infer-
ence [27]. An SPN is recursively constructed by forming
sums and products of univariate distributions, and its par-
tition function can be computed in time linear in its size.
Every TPKB maps into a corresponding SPN such that the
distribution of the TPKB is equivalent to the distribution of
the SPN. The construction follows the recursive definition
of the distribution over possible worlds φ(O0, C0, ·). Fig-
ure 1 depicts the SPN corresponding to the example TPKB

×

+

area
+

image

×

Is(WashingtonDC,City)

Is(USA.President,Person)
...

× ×

9857306
u2

Is(USA,Country)

+

area
+

image

×

77
Is(CathyLanier,Person)

×

Is(MurielBowser,Person)

×

+

reportsTo(MurielBowser,CathyLanier)
¬reportsTo(MurielBowser,CathyLanier)

...

e2.3
1

+

...

×

×

e0.6 e1.1

Is(MurielBowser,Politician)

+

age
+

image
...
×

42Is(MurielBowser,Actor)
...

...

×

u1

u5 u6

u3 u4

Figure 1: The SPN corresponding to the TPKB in Table 1.

of Table 1. The size of a TPKB is the number of objects
times the number of classes each object is possibly an in-
stance of. The proof of the following theorem can be found
in the appendix.

Theorem 1. The partition function of a TPKB can be com-
puted in time linear in its size.

We can also show that TPKBs are at least as expressive as
the class of SPNs.

Theorem 2. For every SPN there exists a TPKB with the
same distribution and the size of the TPKB is linear in the
size of the SPN.

Hence, TPKBs include a large number of high-treewidth
graphical models. These high-treewidth distributions are
common in the real world, occurring whenever two sub-
classes of the same class have different subparts. TPKBs
are non-trivial relational models that capture relational de-
pendencies, multiple objects, existence uncertainty, etc.
Also, even though data is not i.i.d. in general, closed-form
maximum likelihood learning is possible given the TPKB’s
structure and complete data. Lifting in TPKBs is straight-
forward and makes the complexity of inference indepen-
dent of the number of evidence-free objects.

The key assumption that TPKBs make to ensure tractability
is that an object’s attributes and relations are independent
given its class. As a result, some distributions cannot be
represented compactly. For example, an Ising model with

0

1

2 2

1

01

0

O1

O2

C1

C2

C'2

Figure 2: A part decomposition (left) with 6 objects and
the class hierarchy (right) with two trees and 8 classes.
Dashed arrows indicate which object was declared with
which class. The numbers indicate the depth ` of the layers
in the part decomposition (left) and of the trees of the class
hierarchy (right).

arbitrary structure may require an exponential number of
classes to represent.

INFERENCE

Object declarations introduce evidence in form of subclass,
attribute, and relation facts and therefore influence the dis-
tribution of a TPKB by reducing the number of possible
worlds with non-zero probability. The TPKB’s partition
function is now the sum of the unnormalized probabilities
of all possible worlds not contradicting the evidence. For
a TPKB K and a set of facts E, we write ZK(E) for the
corresponding partition function.

There are several possible types of queries. For instance,
we can ask for P (Q | E), where E and Q are sets of facts
pertaining to objects inK. The answers to these queries can
always be tractably computed as ratios of partition func-
tions:

P (Q | E) =
ZK(Q ∪ E)

ZK(E)
.

We can also perform MAP inference, that is, ask for the
most probable possible world given evidence. This is pos-
sible in a TPKB simply by replacing sums over subclasses
with maxes and performing a traceback.

For real-world knowledge bases with millions of objects
and tens of thousand of relations and attributes, disk-based
and parallel inference algorithms with sublinear running
time are required. We now introduce a novel inference algo-
rithm with these characteristics. To the best of our knowl-
edge, this is the first sublinear exact inference algorithm
that scales to millions of objects and is fully implemented
using a relational database. The algorithm performs sev-
eral relational queries, which allows us to take advantage
of query evaluation plans, index structures, and caching
strategies. Intuitively, the structure of the query expres-
sions resembles the corresponding sum-product network
where sum nodes correspond to join-and-sum operations
and product nodes to join-and-multiply operations.

There are two distinct inference algorithms. The first one
computes the partition function and, as a by-product,
all sub-partition functions for objects and their possible
classes (stored in table TZ) and the values of all sum nodes
(stored in table T+S). It does this once offline, in time linear
in the size of the TPKB.

The second algorithm computes, given evidence E, the
ratio of the partition function with and without E (the
marginal probability of E), by propagating ratios of sub-
partition functions with and without evidence.

To illustrate the algorithm, let us consider Figure 2 which
depicts the part decomposition and the class hierarchy of
a small TPKB. Every fact given by evidence E specifies
either (a) the value of an attribute; (b) the truth value of
a relation; (c) or the possible classes of an object. Ev-
idence changes the sub-partition functions involving ob-
jects to which these attributes, relations, or subclasses ap-
ply. For instance, in Figure 2, if the sub-partition function
for object O2 and its possible class C′2 is ewSewPewAewR ,
and if evidence changes the factor pertaining to attributes
from ewA to ew

′
A and leaves all other factors the same, then

the ratio of the sub-partition functions with and without
evidence is ew

′
A/ewA . The evidence also impacts the ra-

tios of sub-partition functions with and without evidence,
Z

(O2,C)
K (E)/Z

(O2,C)
K , for every superclass C of C′2 the object

O2 can be an instance of (here: class C2). In Figure 2 these
classes are depicted as shaded nodes in the second tree of
the class hierarchy. Moreover, since O2 is a part of object
O1, the ratios of sub-partition functions for object O1 in
layer 1 and the class it was declared with also change, and
so on. Fortunately, we only need to compute the ratios for
objects that are ancestors of the object whose sub-partition
function is impacted by the evidence.

The inference algorithm propagates these ratios of sub-
partition functions bottom-up through the TPKB’s struc-
ture to obtain ZK(E)/ZK = P (E). The relational queries
computing these ratios of sub-partition functions only in-
volve tables changed by the evidence and, therefore, the
complexity of the algorithm depends on the evidence and
not the size of the TPKB.

The inference algorithm is shown in Algorithm 1. To avoid
confusion with relations and attributes of the TPKB, we use
the terms table for relations and columns for attributes in
the relational algebra. Table TZ(Path, Class, subZ) with
unique key (Path, Class) represents the TPKB’s sub-
partition functions. Hence, (O, C, Z) ∈ TZ if and only if
O can be an instance of class C and ZK(O, C) = Z. Anal-
ogously, we store the ratios of sub-partition function with
and without evidence E in table TEZ with the same schema.
We often write TZ(O, C) to denote the value of the unique
sub-partition function for object O and its possible class C.

Layer ` of the part decomposition consists of all ob-
jects with depth (distance to the root node) `. Table

Algorithm 1 Computes the probability of evidence E at
each sub-partition function of objects in layer `.

1: T← T
`,E
Is

2: k ← maximum height of class hierarchy
3: if ` < height of part decomposition then
4: T′ ← T`Part on TEZ
5: TE×P←π(Path,Class,subZ)

(
(Path,Class)GMUL(subZ)(T

′)
)

6: T← ⊗
(
T, TEA1 , ..., T

E
Am

)
7: T← ⊗

(
T, TER1 , ..., T

E
Rn

)
8: T ← ⊗

(
T, TE×P

)
9: T′ ← ∅

10: for each t← (O, C, C′, Z) ∈ T do
11: TEZ ← TEZ ∪ {(O, C, Z)}
12: if C = C′ then
13: T← T− {t}
14: else if C is in layer k of the class hierarchy then
15: t← (O, C, C′, TZ(O, C)(1− Z))
16: T′ ← T′ ∪ {t}
17: if T 6= ∅ then
18: T← T− T′

19: T′ ← ⊕(Path,Superclass)(⊗(T′, Tk−1Sub))
20: T′ ← π(Path,Superclass→Class,Class′,subZ) (T

′)
21: for each (O, C, C′, Z) ∈ T′ do
22: T← T ∪ (O, C, (T+S(O, C)− Z)/T+S(O, C))

23: k ← k − 1
24: goto 6

T
`,E
Is (Path, Class, Class′) represents, for every object O

in layer `, its possible leaf classes C in the class hierarchy,
and the classes C′ it is declared with. The table, however,
only stores objects and classes whose sub-partition func-
tion is impacted by the evidence E. These sub-partition
functions can be efficiently computed using the structure
of the TPKB.

Table TPart represents the part decomposition of the TPKB.
This table is used in lines 4 and 5 of Algorithm 1 to com-
pute the table TE×p(Path, Class, subZ) with (O, C, Z) ∈
TE×p if and only if object O is in layer ` of the part de-
composition, O is declared as instance of class C, and Z
is the product of the ratios of sub-partition functions with
and without evidence of O’s parts according to C.

Lines 6, 7, and 8 evaluate the attribute, relation, and part
product nodes of the TPKB’s SPN (the three product nodes
in Figure 1). The table TEA (Path, Class, subZ) stores, for
each object and its possible classes, the ratio of the expo-
nentiated summed weights of the attribute A with and with-
out evidence E. The tables TERi(Path, Class, subZ) are the
analogous tables for relations. The operator ⊗ computes a
left outer join on the columns Path and Class, and mul-
tiplies the values of the tables’ subZ columns. The join
queries of lines 5 and 6 only involve attribute and relation
tables changed by the evidence.

Line 11 stores the computed ratios of sub-partition func-
tions with and without evidence to table TEZ . In Line 12 it
is tested, for each object O, whether we have reached the
node of the class O was declared with. If this is the case, we
remove the corresponding tuple from T since the computa-
tion of sub-partition functions that involve these objects is
finished.

Lines 19 and 20 evaluate the SPN’s sum nodes. First,
we perform a left outer join of the tables T and TkSub to
multiply the children of each sum node with their re-
spective weight. Table TSub(Class, Superclass, weight)
represents the class hierarchy and the subclass weights.
For each Superclass in layer k of the class hierarchy,
TkSub(Class, Superclass, weight) stores the weight for
each of its subclasses. Second, the operator ⊕ performs a
grouping on the columns Path and Superclass and sums
the values of column subZ for each of the groups. Line 20
renames the column Superclass to Class and projects
out superfluous columns. The result of these operations are
the values Z by which the sub-partition function at the sum
nodes is reduced by the evidence. Line 22 computes the
ratio of the sum node for object O and class C with and
without evidence: (T+S(O, C)− Z)/T+S(O, C).

Steps 6-22 are repeated until we have computed the ratio
of the sub-partition function with and without evidence for
every object in layer ` and each of its possible classes.

After running Algorithm 1 for ` = h, .., 0, where h is the
height the part decomposition, we have that TEZ (O0, C0) =
ZK(E)/ZK = P (E).

Theorem 3. Let K be a TPKB and let n(E) be the number
of sub-partition functions changed by a set of facts E. Al-
gorithm 1 computes the probability P (E) in time O(n(E))
and independent of the size of K.

Proof sketch. This can be shown with a nested proof by
induction on (a) the height of the part decomposition and
(b) the height of the class trees of each object.

Hence, inference time depends on the number of sub-
partition functions changed by the evidence. This approach
is different from caching previously computed values [10].
While we exploit this idea as well, the major advancement
is the propagation of only those ratios of partition functions
that are changed by the evidence.

Algorithm 1 can be parallelized by leveraging the struc-
ture of the TPKB’s part decomposition and class hierarchy.
First, the executions of Algorithm 1 on distinct trees of the
class hierarchy are independent and can be performed in
parallel. Moreover, for each layer of the part decomposi-
tion, the execution of the algorithm for an object in the
layer is independent of the execution for any other object
in the same layer. More generally, for any two objects, Al-
gorithm 1 can be executed independently until we reach a

layer with the parent of the two objects. By using relational
database systems for query processing, we can take advan-
tage of existing paralellization strategies that detect these
types of decompositions. We show below that this reduces
the query evaluation time on multi-core architectures.

LEARNING

The TPKB’s parameters are the weights associated with
attributes, relations, and subclasses. The training data is
an i.i.d. sample of possible worlds. Hence, a sample
{W1, ...,WN} is a multiset of N i.i.d. possible worlds.
Note that, even if the sample consists of only one possible
world (a mega-example), we can often still obtain robust
parameter estimates due to the structure of a TPKB which
features a large number of objects with the same class and,
therefore, the same attributes and relations.

We derive closed-form maximum likelihood (ML) estima-
tors of the parameters. We choose ML parameters that lead
to a partition function with value 1. Since for each possible
world, the classes for all objects are known and every object
can only be an instance of one of a set of sibling classes, the
expression for the likelihood is a product of factors. The
log-likelihood, therefore, is a sum of terms and differenti-
ating it with respect to a particular parameter leaves only
the terms involving one particular attribute, at which point
the MLE can be found in closed form for exponential fam-
ily distributions.

Let n(C) be the number of objects O in all possible worlds
in the training data such that O is an instance of class C. For
each class C, the probabilities of its subclasses S1, ..., Sn are
governed by a categorical distribution. The standard ML
estimates of P (Si|C), therefore, are n(Si)/n(C). Due to the
parameterization of TPKBs, the MLEs are the logarithms
of these estimates. Hence MLE(wi) = log (n(Si)/n(C)) .

Analogously, we can derive the ML estimates for attributes
and relations. For categorical attributes, let nA(C, D) be the
number of objects O in all possible worlds in the training
data such that O is an instance of class C and has value D

for attribute A. Moreover, let nA(C) be the number of ob-
jects O in all possible worlds such that O is an instance of
class C and has some value for attribute A. If attribute A

is declared for class C and for none of C’s superclasses,
then MLE(u(D)) = log (nA(C, D)/nA(C)) . If attribute A is
declared for class C, then it is also (implicitly) declared for
each of its subclasses. Let S be such a subclass of C. Then

MLE(u(D)) = log
nA(S, D)/nA(S)

nA(C, D)/nA(C)
.

These are ML estimates precisely because we set the em-
pirical probability, that is, the probability of an instance of
class S having attribute value D, to the exponentiated sum
of the weight estimates for S and all its superclasses. If the
distribution is identical for a class and one of its subclasses,

Class Country {
 subclasses USA 1.1, ..., Italy 0.4;
 attributes area ℝ u3, image Images u4;
}

Class Capital {
 parts s City, o Country;
 attributes distance ℝ u1;
}

Class Paris {
 founded ℕ u8;
}

Table 2: Example class and object declarations of the
TPKB based on the DBPEDIA ontology.

the MLE is 0 and we do not have to explicitly represent the
attribute parameters for the subclass. This is advantageous
as it results in sparser TPKBs. Note also that this param-
eterization is useful as we may not know an object’s most
specific class during inference time.

The ML estimates for attributes with continuous distribu-
tions are derived analogously. As before, the ML estimate
is based on the sufficient statistics for the attribute at class
C and its superclass for which the attribute is also declared.
For instance, for Gaussian variables, we compute the mean
and standard deviation, and the MLE for the weight func-
tion for S subclass of C is

MLE(u(x)) = log
(x− µS)2/σ2

S

(x− µC)2/σ2
C

.

Relations are similar to Boolean attributes except that for
relations we represent the positive case only. The weight
of a relation at a class is the log ratio of the positive and
negative count differences.

In order to smooth distributions that are defined on mul-
tiple levels of the class hierarchy, we recursively average
the estimate for each class with the estimate for the super-
class, with the combination weights determined by a form
of cross-validation [18]. There are more sophisticated vari-
ants of shrinkage and other forms of hierarchical smooth-
ing, but we leave this to future work.

So far, we have assumed that the training data is complete,
that is, that for every object its class, its attribute values,
and the truth values of relations are given. If attribute val-
ues, classes, or relation values are missing in the training
data, we can use the EM algorithm [3], alternating between
inferring the distributions of the missing values and finding
the MLEs.

Structure learning involves the learning of the part decom-
position and the class hierarchy. While this is beyond the
scope of this paper, possible directions include adapting
LearnSPN [9] and LearnRSPN [20] to TPKBs.

TPKBS FOR INFORMATION
EXTRACTION

There are several information extraction projects such
as NELL [2], DBPEDIA [16, 1], the Google Knowl-
edge Vault [5], and REVERB [7]. These systems parse
large amounts of text and semi-structured data sources.
Typical extractions are of the form 〈ms, mp, mo〉 where
ms is a mention of the subject, mp of the predicate,
and mo of the object of a sentence. For instance,
〈Obama, graduated from, Columbia〉. A common prob-
lem is the grounding of these extractions in a canonical
KB such as DBPEDIA. It is a challenging problem due to
the inherent ambiguities of extractions and the problem of
representing context. For instance, in the above example
extractions, the mention Obama might refer to numerous
individuals; Columbia to the district, the university, or a
number of other possible entities; and graduated from

might express that someone graduated from high school,
college, etc. Only in conjunction with background knowl-
edge is it possible to infer that the extraction mentions
Barack Obama, 44th President of the US, and his being a
graduate of Columbia University in New York.

We propose to use TPKBs to address the problem of joint
entity linking. The TPKB has three objects s, p, and o,
representing the latent canonical subjects, predicates, and
objects of extractions. Every possible class of the object p
represents a relation type. For instance, DBPEDIA’s canon-
ical relation type alumni, which expresses a person having
graduated from a university, is such a class. The represen-
tation of relation types as classes of object pairs is advan-
tageous due to the type-token distinction: in order to per-
form entity linking one has to model objects as classes,
not constants, since one predicts the class membership of
s and o from their attributes. Since objects are represented
as classes, we cannot use TPKB relations and, instead, rep-
resent relation types as classes of object pairs.

The objects s and o are declared as parts of object p. The
classes of s and o depend on the class in which they were
declared. For instance, in class alumni, s is declared to be
of class Person and o to be of class University. In class
capital, s is declared to be of class populatedPlace and
o of class City. Objects s and o are declared as parts of p
only in classes representing relations without subrelations.

The class hierarchy consists of three trees, representing the
class structure of objects o, s, and p, respectively. The leaf
classes of the class trees of s and o are classes that repre-
sent canonical entities such as BarackObama. The structure
of this TPKB allows us to model the dependencies between
attributes, classes, and relation types in a tractable and prin-
cipled way. It also allows us to disambiguate extractions
based on geographical, temporal, and other numerical at-
tributes in a principled manner.

Once the parameters of the TPKB are estimated, we
can perform entity linking. For instance, given the
extraction 〈Obama, graduated from, Columbia〉 we
compute the probability of the mention Obama referring
to the canonical entity BarackObama using the query
P (Q | E) with Q = {Is(s, BarackObama)} and E =
{mention(s, Obama), mention(p, graduated from),
mention(o, Columbia)}, where mention is an attribute
modeling mentions.

Experiments

We derived the class trees for objects s and o directly from
the DBPEDIA ontology [16, 1]. The class tree for object p
is derived from the relations in DBPEDIA, that is, every re-
lation type in DBPEDIA is represented with a class object
that p can be an instance of. In addition to the classes and
relation types taken from the DBPEDIA ontology, we cre-
ated one leaf class for each canonical entity. For instance,
the DBPEDIA entity BarackObama is a leaf in the class hi-
erarchy with attributes birthYear, mention, etc. Table 2
depicts a small selection of class declarations.

For several attributes such as birthYear, elevation,
geocoordinates, etc. we used data from DBPEDIA to
learn the parameters. To learn the attribute distributions
for leaf classes, that is, classes modeling entities, we as-
sumed a uniform distribution if, for one entity, more than
one value was given for a particular attribute. For in-
stance, if Arnold has values 1947 and 1946 for attribute
birthYear then, following the maximum-likelihood prin-
ciple, we assume that both values have probability 0.5. For
the other classes, we pooled attribute values of the instances
of each class and used histograms to model these distri-
butions. For the attribute mention modeling mentions we
used the WIKIPREP tool [8] to compute the conditional dis-
tribution of a canonical entity given a mention. We also
learned the parameters of attributes for classes represent-
ing relation types. For instance, we introduced the attribute
diffBirthYear which models a distributions over the ab-
solute value of birth year differences.

The number of parameters of the resulting TPKB exceeds 1
billion and we model more than 1 million objects. We per-
formed inference by running Algorithm 1 using a MYSQL
database system. Each query was answered in less than
one second. The reduction in running time for comput-
ing the partition function was 31% for 2 cores, 47% for 4
cores, 49% for 6 cores, and 50% for 8 cores. We evaluated
the learned TPKB empirically on two important problem
classes.

Entity Linking

For the entity linking experiments we used an existing gold
standard [6] for aligning NELL triples to DBPEDIA en-
tities. For each NELL triple of the form 〈ms, mp, mo〉, we

Precision@1 Recall@1
NELL relation WL TPKB1 TPKB2 WL TPKB1 TPKB2
ActorStarredInMovie 0.81 0.85 0.92 0.82 0.82 0.31
AgentcollaboratesWithAgent 0.82 0.83 0.91 0.86 0.87 0.20
AnimalIsTypeofAnimal 0.86 0.86 0.99 0.86 0.86 0.71
AthleteLedSportsTeam 0.89 0.91 0.93 0.86 0.87 0.37
BankBankInCountry 0.82 0.87 0.93 0.76 0.76 0.10
CityLocatedInState 0.80 0.85 0.95 0.81 0.82 0.64
BookWriter 0.82 0.83 0.92 0.81 0.82 0.73
CompanyAlsoKnownAs 0.71 0.71 1.00 0.58 0.61 0.49
PersonLeadsOrganization 0.79 0.81 0.92 0.75 0.71 0.68
TeamPlaysAgainstTeam 0.81 0.81 1.00 0.81 0.83 0.70
WeaponMadeInCountry 0.88 0.91 1.00 0.88 0.89 0.65
LakeInState 0.90 0.91 1.00 0.90 0.90 0.84

System Prec@1 Rec@1
PARIS 91.9 73.8

TPKB1 85.3 75.2
TPKB2 92.1 74.0

Table 3: Results for entity resolution experiments (left) and entity linking experiments (right). Bold numbers indicate
significance (paired t-test; p < 0.05) compared to the baselines.

performed the following two queries. The query (TPKB1)

P ({Is(s, x), Is(o, y)} | {mention(s, ms), mention(o, mo)})

asks for the marginal probability of s being entity x and o
being entity y, conditioned on the NELL triple’s mentions.
The result is a list of substitutions for variables x and y and
the corresponding marginal probabilities.

We proceeded to manually align the subject and object
mention with their classes in the TPKB. For instance,
for the triple 〈Obama, graduated from, Columbia〉, we
aligned Obama to the class Politician and Columbia

to the class University. We then performed the previous
query except that we added the set {Is(s, Cs), Is(o, Co)}
to the evidence (TPKB2). This query retrieves the probabil-
ities of s being entity x and o being entity y, conditioned on
the mentions and their class memberships. The results are
given in Table 3 (left) and compared with a baseline given
in [6]. There are other possible baselines such as matrix
factorization methods [21, 29]. However, it is non-trivial
to use these methods for the entity linking problem. This
is because we have only mentions of entities and no data
that links these mentions to relations and attributes in the
canonical KBs. Precision@k and Recall@k is computed by
retrieving the k most probable answer tuples. The results
of the TPKB outperform the WikiLink baseline [6] sub-
stantially and are as efficient to compute. TPKB2, however,
should only be used if high precision results are required.

Entity Resolution

Entity resolution is the problem of determining whether
two entities in two knowledge bases are equivalent. To
evaluate the TPKB for entity linking we repeated the ex-
periment of linking YAGO [12] to DBPEDIA conducted
to evaluate the PARIS matching system [30]. Both knowl-
edge bases use Wikipedia identifiers for their objects which
gives us a large set of gold standard pairs for evaluation
purposes. We manually aligned a set of attributes (datatype

properties) and classes between YAGO and the learned
TPKB. We sampled 100,000 objects in YAGO, retrieved
the aligned attributes for each object (labels, numerical at-
tributes, etc.) and ran, for each entity, the query above,
where we condition on the given value of attribute mention
(TPKB1); and all other attributes for which a manual align-
ment existed (TPKB2). Table 3 shows that TPKBs are able
to accurately link entities and compare favorably with spe-
cialized algorithms.

The learned TPKB is both efficient and accurate, outper-
forming existing problem-specific approaches.

CONCLUSION

We presented a novel inference algorithm for TPKBs that is
disk-based, parallel, and sublinear. We also derived closed-
form maximum likelihood estimates for TPKB parameters.
We used these results to learn a large TPKB from multiple
data sources and applied it to information extraction and
integration problems. The TPKB outperformed existing al-
gorithms in accuracy and efficiency.

Future work will be concerned with more sophisticated
smoothing approaches, the comparison of different learn-
ing strategies, and the problem of structure learning. We
also plan to apply TPKBs to a wide range of problems that
benefit from tractable probabilistic knowledge representa-
tions.

An open-source implementation of TPKBs is available at
alchemy.cs.washington.edu/lite2.

ACKNOWLEDGMENTS

This research was partly funded by ONR grants N00014-13-1-
0720 and N00014-12-1-0312, and AFRL contract FA8750-13-2-
0019. The views and conclusions contained in this document are
those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of
ONR, AFRL, or the United States Government.

References

[1] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the
story so far. Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

[2] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr.,
and T. M. Mitchell. Toward an architecture for never-ending
language learning. In Proc. AAAI, pages 1306–1313, 2010.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm. Jour-
nal of the Royal Statistical Society, Series B, 39(1):1–38,
1977.

[4] P. Domingos and W. A. Webb. A tractable first-order prob-
abilistic logic. In Proc. AAAI, pages 1902–1909, 2012.

[5] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao,
K. Murphy, T. Strohmann, S. Sun, and W. Zhang. Knowl-
edge Vault: A web-scale approach to probabilistic knowl-
edge fusion. In Proc. SIGKDD, pages 601–610, 2014.

[6] A. Dutta, C. Meilicke, M. Niepert, and S. P. Ponzetto. Inte-
grating open and closed information extraction: Challenges
and first steps. In Proc. NLP-DBPEDIA@ISWC, 2013.

[7] O. Etzioni, A. Fader, J. Christensen, S. Soderland, and
Mausam. Open information extraction: The second genera-
tion. In Proc. IJCAI, pages 3–10, 2011.

[8] E. Gabrilovich and S. Markovitch. Computing semantic re-
latedness using Wikipedia-based explicit semantic analysis.
In Proc. IJCAI, pages 1606–1611, 2007.

[9] R. Gens and P. Domingos. Learning the structure of sum-
product networks. In Proc. ICML, pages 873–880, 2013.

[10] V. Gogate and P. Domingos. Probabilistic theorem proving.
In Proc. UAI, pages 256–265, 2011.

[11] V. Gutiérrez-Basulto, J. C. Jung, C. Lutz, and L. Schröder.
A closer look at the probabilistic description logic prob-el.
In Proc. AAAI, pages 197–202, 2011.

[12] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum.
YAGO2: A spatially and temporally enhanced knowledge
base from Wikipedia. Artif. Intell., 194:28–61, 2013.

[13] C. Kemp, J. B. Tenenbaum, T. L. Griffiths, T. Yamada, and
N. Ueda. Learning systems of concepts with an infinite re-
lational model. In Proc. AAAI, pages 381–388, 2006.

[14] A. Kimmig, S. H. Bach, M. Broecheler, B. Huang, and
L. Getoor. A short introduction to probabilistic soft logic. In
Proc. NIPS Workshop on Probabilistic Programming: Foun-
dations and Applications, 2012.

[15] J. Lehmann, D. Gerber, M. Morsey, and A.-C. N. Ngomo.
Defacto - deep fact validation. In Proc. ISWC, pages 312–
327, 2012.

[16] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kon-
tokostas, P. N. Mendes, S. Hellmann, M. Morsey, P. van
Kleef, S. Auer, and C. Bizer. DBpedia - a large-scale, multi-
lingual knowledge base extracted from wikipedia. Semantic
Web Journal, 2014.

[17] T. Lukasiewicz. Probabilistic description logic programs.
Int. J. Appr. Reas., 45, 2007.

[18] A. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng.
Improving text classification by shrinkage in a hierarchy of
classes. In Proc. ICML, pages 359–367, 1998.

[19] N. Nakashole, M. Sozio, F. M. Suchanek, and M. Theobald.
Query-time reasoning in uncertain RDF knowledge bases
with soft and hard rules. pages 15–20, 2012.

[20] A. Nath and P. Domingos. Learning the structure of rela-
tional sum-product networks. In Proc. AAAI, pages 873–
880, 2013.

[21] M. Nickel, V. Tresp, and H.-P. Kriegel. Factorizing YAGO:
Scalable machine learning for linked data. In Proc. WWW,
pages 271–280, 2012.

[22] M. Niepert, J. Noessner, and H. Stuckenschmidt. Log-linear
description logics. In Proc. IJCAI, pages 2153–2158, 2011.

[23] F. Niu, C. Ré, A. Doan, and J. W. Shavlik. Tuffy: Scaling
up statistical inference in Markov logic networks using an
RDBMS. PVLDB, 4(6):373–384, 2011.

[24] J. Noessner and M. Niepert. Elog: A probabilistic reasoner
for OWL EL. In Proc. RR, pages 281–286, 2011.

[25] J. Noessner, M. Niepert, and H. Stuckenschmidt. Rockit:
Exploiting parallelism and symmetry for map inference in
statistical relational models. In Proc. AAAI, pages 739–745,
2013.

[26] D. Poole. The independent choice logic and beyond.
In Probabilistic inductive logic programming. Springer-
Verlag, 2008.

[27] H. Poon and P. Domingos. Sum-product networks: A new
deep architecture. In Proc. UAI, pages 337–346, 2011.

[28] L. D. Raedt, A. Kimmig, and H. Toivonen. Problog: a prob-
abilistic prolog and its application in link discovery. In Proc.
IJCAI, pages 2468–2473, 2007.

[29] S. Riedel, L. Yao, B. M. Marlin, and A. McCallum. Relation
extraction with matrix factorization and universal schemas.
In Proc. HLT-NAACL, pages 74–84, 2013.

[30] F. M. Suchanek, S. Abiteboul, and P. Senellart. PARIS:
Probabilistic alignment of relations, instances, and schema.
PVLDB, 5(3):157–168, 2011.

[31] D. Suciu, D. Olteanu, R. Christopher, and C. Koch. Proba-
bilistic Databases. Morgan & Claypool Publishers, 1st edi-
tion, 2011.

[32] G. Van den Broeck. On the completeness of first-order
knowledge compilation for lifted probabilistic inference. In
Proc. NIPS, pages 1386–1394, 2011.

[33] D. Z. Wang, M. J. Franklin, M. N. Garofalakis, and J. M.
Hellerstein. Querying probabilistic information extraction.
PVLDB, 3(1):1057–1067, 2010.

[34] W. Webb and P. Domingos. Tractable probabilistic knowl-
edge bases with existence uncertainty. In Proc. AAAI Work-
shop on Statistical Relational AI, 2013.

