
Budget-optimal Crowdsourcing using Low-rank Matrix Approximations

David R. Karger, Sewoong Oh, and Devavrat Shah
Department of EECS, Massachusetts Institute of Technology

Email: {karger, swoh, devavrat}@mit.edu

Abstract— Crowdsourcing systems, in which numerous tasks
are electronically distributed to numerous “information piece-
workers”, have emerged as an effective paradigm for human-
powered solving of large scale problems in domains such as
image classification, data entry, optical character recognition,
recommendation, and proofreading. Because these low-paid
workers can be unreliable, nearly all crowdsourcers must devise
schemes to increase confidence in their answers, typically by
assigning each task multiple times and combining the answers
in some way such as majority voting.

In this paper, we consider a model of such crowdsourcing
tasks and pose the problem of minimizing the total price (i.e.,
number of task assignments) that must be paid to achieve a
target overall reliability. We give a new algorithm for deciding
which tasks to assign to which workers and for inferring correct
answers from the workers’ answers. We show that our algo-
rithm, based on low-rank matrix approximation, significantly
outperforms majority voting and, in fact, is order-optimal
through comparison to an oracle that knows the reliability of
every worker.

I. INTRODUCTION

Background. Crowdsourcing systems have emerged as an
effective paradigm for human-powered problem solving and
are now in widespread use for large-scale data-processing
tasks such as image classification, video annotation, form
data entry, optical character recognition, translation, recom-
mendation, and proofreading. Crowdsourcing systems such
as Amazon Mechanical Turk1 establish a market where
a “taskmaster” can submit batches of small tasks to be
completed for a small fee by any worker choosing to pick
them up. For example a worker may be able to earn a few
cents by indicating which images from a set of 30 are suitable
for children (one of the benefits of crowdsourcing is its
applicability to such highly subjective questions).

Because the tasks are tedious and the pay is low, errors are
common even among workers who make an effort. At the
extreme, some workers are “spammers”, submitting arbitrary
answers independent of the question in order to collect their
fee. Thus, all crowdsourcers need strategies to ensure the
reliability of answers. Because the worker crowd is large,
anonymous, and transient, it is generally difficult to build
up a trust relationship with particular workers.2 It is also
difficult to condition payment on correct answers, as the
correct answer may never truly be known and delaying

1http://www.mturk.com
2For certain high-value tasks, crowdsourcers can use entrance exams to

“prequalify” workers and block spammers, but this increases the cost of
the task and still provides no guarantee that the workers will try hard after
qualification.

payment can annoy workers and make it harder to recruit
them to your task. Instead, most crowdsourcers resort to
redundancy, giving each task to multiple workers, paying
them all irrespective of their answers, and aggregating the
results by some method such as majority voting.

For such systems there is a natural core optimization
problem to be solved. Assuming the taskmaster wishes to
achieve a certain reliability in their answers, how can she do
so at minimum cost (which is equivalent to asking how she
can do so while asking the fewest possible questions)?

Several characteristics of crowdsourcing systems make
this problem interesting. Workers are neither persistent nor
identifiable; each batch of tasks will be solved by a worker
who may be completely new and who you may never
see again. Thus one cannot identify and reuse particularly
reliable workers. Nonetheless, by comparing one worker’s
answer to others’ on the same question, it is possible to
draw conclusions about a worker’s reliability, which can be
used to weight their answers to other questions in their batch.
However, batches must be of manageable size, obeying limits
on the number of tasks that can be given to a single worker.

Another interesting aspect of this problem is the choice
of task assignments. Unlike many inference problems which
makes inferences based on a fixed set of signals, we can
choose which signals to measure by deciding which ques-
tions to ask to which workers. This makes designing a
crowdsourcing system challenging in that we are required
to determine how to allocate the tasks as well as design
an algorithm to infer the correct answers once the workers
submit their answers.

In the remainder of this introduction, we will define a
formal model that captures these aspects of the problem.
Then, we will describe how to allocate tasks and infer the
correct answers. We subsequently describe how these two
procedures can be integrated into a single Budget-optimal
Crowdsourcing algorithm. We show that this algorithm is
order-optimal: for a given target error rate, it spends only a
constant factor times the minimum necessary to achieve that
error rate.

Setup. We model a set of m tasks {ti}i∈[m] as each being
associated with an unobserved ‘correct’ solution si ∈ {±1}.
Here and after, we use [N] to denote the set of first N
integers. In the image categorization example stated earlier,
tasks corresponds to labeling m images as suitable for
children (+1) or not (−1). These m tasks are assigned to
n workers from the crowd. We use {wj}j∈[n] to denote this

set of n workers.
When a task is assigned to a worker, we get a possibly

inaccurate answer from the worker. We use Aij ∈ {±1}
to denote the answer if task ti is assigned to worker wj .
Some workers are diligent whereas other workers might be
spammers. We choose a simple model to capture the presence
of spammers, which we call the spammer-hammer model.
Under this model, we assume that each worker is either a
hammer or a spammer. A hammer always gives the correct
answer to all the questions and a spammer always gives
random answers. Each worker wj is labeled by a reliability
parameter pj ∈ {1/2, 1}, such that pj = 1 if wj is a hammer
and pj = 1/2 if wj is a spammer.

According to the spammer-hammer model, if task ti is
assigned to worker wj then

Aij =

{
si with probability pj ,
−si with probability 1− pj ,

(1)

and Aij = 0 if ti is not assigned to wj . The random variable
Aij is independent of any other event given pj . (Throughout
this paper, we use boldface characters to denote random
variables and random matrices unless it is clear from the
context.)

We further assume that each worker’s reliability is inde-
pendent and identically distributed, such that each worker is
a hammer with probability q and spammer with probability
1− q:

pj =

{
1 with probability q ,

1/2 with probability 1− q .

It is quite realistic to assume the existence of such a prior
distribution for pj’s. In particular, it is met if we simply
randomize the order in which we upload our task batches,
since this will have the effect of randomizing which workers
perform which batches, yielding a distribution that meets our
requirements. On the other hand, it is not realistic to assume
that we know what the prior is. To execute our inference
algorithm, we do not require the knowledge of the hammer
probability q. On the other hand, q is necessary in deciding
how many times a task should be replicated to achieve certain
reliability, and we discuss a simple way to overcome this
limitation in Section II-D.

Under this crowdsourcing model, a taskmaster first decides
which tasks should be assigned to which workers, and then
infer the correct solutions {si}i∈[m] once all the answers
{Aij} are submitted. We assume a one-shot model in
which all questions are asked simultaneously and then an
estimation is performed after all the answers are obtained. In
particular, we do not allow allocating tasks adaptively based
on the answers received thus far. Then, assigning tasks to
nodes amounts to designing a bipartite graph G({ti}i∈[m] ∪
{wj}j∈[n], E) with m task nodes and n worker nodes. Each
edge (i, j) ∈ E indicates that task ti was assigned to worker
wj .

With a slight abuse of notations, we use a matrix A ∈
{0, 1,−1}m×n to denote the randomly weighted adjacency
matrix of the graph G: edge (i, j) ∈ E is weighted with the

submitted answer Aij ∈ {+1,−1} and Aij = 0 if (i, j) /∈
E. We shall use C1, C2, etc. to denote general constants.
Whenever we say a property A holds with high probability
(w.h.p), we mean that there exists a function f(m,n) such
that P(A) ≥ 1− f(m,n) and limm,n→∞ f(m,n) = 0.

Prior Work. A naive approach to aggregate information
from multiple workers is to use majority voting. Majority
voting simply follows what the majority of workers agree
on. When we have many spammers in the crowd, majority
voting is error-prone since it gives the same weight to all the
answers, regardless of whether they are from a spammer or a
diligent workers. We will show in Section II-C that majority
voting is provably sub-optimal and can be significantly
improved upon.

To fully exploit redundancy, we need to infer the reliability
of the workers simultaneously while inferring the solutions
of the tasks. Dawid and Skene [DS79] proposed an iterative
algorithm for inferring the solutions and reliability of work-
ers, based on expectation maximization (EM) [DLR77]. EM
is a heuristic inference algorithm that iteratively does the
following: given workers’ answers to the tasks, the algorithm
attempts to estimate the reliability of the workers and given
estimation of reliability (error probabilities) of workers, it
estimates the solution of the tasks; and repeat. Due to
particular simplicity of the EM algorithm, it has been widely
applied in classification problems where the training data is
annotated by low-cost noisy ‘labelers’ [JG03], [RYZ+10].
In [WRW+09] and [WBBP10], this EM approach has been
applied to more complicated probabilistic models for image
labeling tasks. However, the performance of these approaches
are only empirically evaluated, and there is no analysis that
proves performance guarantees. In particular, EM algorithms
require an initial starting point which is typically randomly
guessed. The algorithm is highly sensitive to this initializa-
tion, making it difficult to predict the quality of the resulting
estimate.

Contributions. In this work, we provide a rigorous treat-
ment of designing a crowdsourcing system with the aim
of minimizing the budget to achieve completion of task
with a certain reliability. We provide both an optimal graph
construction (random regular bipartite graph) and an optimal
algorithm for inference (low-rank approximation) on that
graph. As the main result, we show that our algorithm
performs as good as the best possible algorithm. The surprise
lies in the fact that the optimality of our algorithm is
established by comparing it with the best algorithm, one that
is free to choose any graph, regular or irregular, and performs
optimal estimation based on the information provided by
an oracle about reliability of workers. In the process of
establishing these results, we obtain a generalization of a
celebrated result of Friedman, Kahn and Szemerédi [FKS89]
on the spectrum of sparse random graphs.

Previous approaches focus on developing inference al-
gorithms assuming that a graph is already given. None of
the prior work on crowdsourcing provides any systematic
treatment of the graph construction. We are the first to

study both aspects of crowdsourcing together and, more
importantly, establish optimality.

II. MAIN RESULTS

In the crowdsourcing model introduced, we are interested
in designing algorithms for two related problems: (i) how
should the tasks be assigned to workers, i.e. the selection
of the bipartite graph G; and (ii) given the responses from
the workers, how should one estimate the correct answers.
In what follows, we first address these two problems. For
(i), we propose to utilize random regular bipartite graphs
and for (ii), we propose to utilize certain low-rank matrix
approximation based estimation procedure. We subsequently
describe how we can integrate these two procedures into
a single Budget-optimal Crowdsourcing system to achieve
optimal performance.

A. Graph Generation

Assigning tasks to workers amounts to designing a bipar-
tite graph G. Given m tasks to complete, the taskmaster first
makes a choice of the left degree l (how many workers to
assign to each task) and the right degree r (how many tasks
to assign to each worker). The number of required workers
n is then determined such that the total number of edges
is consistent, that is ml = nr. To generate an (l, r)-regular
bipartite graph we use a random graph generation scheme
known as the configuration model in random graph litera-
ture [RU08], [Bol01]. In principle, one could use arbitrary
bipartite graph G for task allocation. However, as we shall
show in Section II-C, random regular graphs are sufficient
to achieve order-optimal performance.

B. Inference Algorithm

Given G, let A = [Aij] ∈ {0, 1,−1}m×n denote the
answers provided by the workers. In this section, we shall
introduce a low-rank approximation based algorithm that
takes A as input and produces an estimate for the unobserved
solution vector s = [si] ∈ {−1, 1}m. We then provide the
performance guarantee of this algorithm. Surprisingly, as we
will show in a later section, this simple inference algorithm
can be used as a subroutine to achieve optimal performance.

Low-rank Approximation
Input: A.
Output: Estimation ŝ(A).
1: Compute a pair of left and right singular vectors

(u, v) of A corresponding to the top singular value;
2: If

∑
j:vj≥0 v

2
j < 1/2, then output ŝ(A) = sign(−u);

3: Otherwise, output ŝ(A) = sign(u);

In any case, the leading singular vector of A is not
uniquely determined. Both (u, v) and (−u,−v) are valid
pairs of left and right singular vectors. To resolve this issue,
our strategy is to choose the pair (u, v) if v has more
‘mass’ on the positive orthant than −v, that is

∑
j:vj≥0 v

2
j ≥∑

j:vj<0 v
2
j .

Let (u, v) be the pair of singular vectors after we resolve
the ambiguity in the sign. The j-th entry of v represents
our belief on how reliable worker j is, and our estimate
is a weighted sum of the submitted answers weighted by
workers’ reliabilities:

ŝi = sign
(∑
j∈∂i

Aijvj

)
, (2)

where ∂i ⊆ [n] denotes the set of workers that are assigned
task i. This follows from the fact that ui =

∑
j∈∂iAijvj .

In Section III-A, we give in detail the intuition behind why
the top left singular vector of A reveals the structure of the
underlying unobserved answers.

With this estimate, we can show the following bound
on the average number of error defined as the normalized
Hamming distance:

d(s, ŝ) ≡ 1

m

m∑
i=1

I(si 6= ŝi) , (3)

where I(·) denotes the indicator function. The proof of this
result is given in Section III-A.

Theorem II.1. For fixed l and r which are independent of
m, assume that m tasks are assigned to n = ml/r workers
under the spammer-hammer model according to a random
(l, r)-regular graph drawn from the configuration model.
Then, for any s ∈ {±1}m, with probability 1 − m−Ω(

√
l),

the low-rank approximation algorithm achieves

d(s, ŝ(A)) ≤ C(ρ)

lq
, (4)

where q is the probability that a randomly chosen worker
is a hammer and C(ρ) is a constant that only depends on
ρ ≡ l/r.

Remarks about Theorem II.1. Now few remarks are in
order. First, observe that this result is non-asymptotic and
provides a concrete bound for any m. Second, the constant
C(ρ) depends continuously on ρ and is uniformly bounded
over any closed interval [α, β] for 0 < α ≤ β < ∞ (with
bound dependent on α, β). To achieve optimal performance,
we shall use the algorithm with l = r = Θ(1/q). Therefore,
ρ = 1 and hence the constant C(ρ) = C(1) can be treated
as a universal constant independent of other problem param-
eters. Third, the choice of l (and r) depend on q to achieve
average error less than 1/2 (specifically, l must scale as
1/q). Such an instance of algorithm (with l = r = Θ(1/q))
will be used to design optimal crowdsourcing system. Thus,
our system design requires (approximate) knowledge of q to
achieve optimal performance to decide on the number of task
replication, l. But beyond that, neither the graph selection
nor the inference algorithm require the knowledge of q. A
simple procedure is suggested that overcomes even this need
of knowing q in Section II-D.

Run-time of Low-rank Approximation. We next show that
O(ml log(m)/ log(lq)) operations are sufficient to ensure
that the performance guarantee in Theorem II.1 is achieved.

This is comparable to the simple majority voting which
requires Ω(ml) operations.

As an implication of Lemma III.3, which is established
as part of the proof of Theorem II.1, we obtain that when
the bound (4) is non-trivial (i.e. lq > C(ρ)), there is a
strict separation between the first singular value of A and
the rest of the singular values. Precisely, σ2(A)/σ1(A) <
C1(ρ)/

√
lq with high probability, where σi(A) is the i-th

largest singular value of A. This implies that the leading
singular vector pair (u, v) is unique up to a sign.

We will be interested in the regime where A is sparse,
that is l, r = Θ(1) and ρ = Θ(1). In this regime, the leading
singular value and singular vectors of the matrix A can
be computed efficiently, for instance, using power iteration
[Ber92]. Each iteration requires O(ml) operations. When the
second singular value is less by a factor C1(ρ)/(lq)1/2 < 1
compared to the first one, power iteration converges expo-
nentially at rate determined by this factor. Therefore, for
ρ = Θ(1) (in our optimal algorithm, ρ = 1), the Low-rank
approximation takes O(log(m)/ log(lq)) iterations to ensure
the error bound mentioned. We summarize this in form the
following Lemma which is proved in Section III-A.2.

Lemma II.2. Under the hypothesis of Theorem II.1, the total
computational cost required to achieve the bound in Theorem
II.1 is O(ml log(m)/ log(lq)).

C. Optimality

As a taskmaster, the natural core optimization problem of
our concern is how to achieve a certain reliability in our
answers with minimum cost. Since we pay equal amount for
all the task assignments, the cost is proportional to the total
number of edges of the graph G. Here we compute the total
budget sufficient to achieve a target error rate and show that
this is within a constant factor from the necessary budget to
achieve the given target error rate using any possible graph
and any possible inference algorithm. The order-optimality is
established with respect to all algorithms that operate in one-
shot, i.e. all task assignments are done simultaneously, then
an estimation is performed after all the answers are obtained.

Formally, consider a scenario where there are m tasks to
complete and a target accuracy ε ∈ (0, 1/2). To measure
accuracy, we use the average probability of error per task.
We will show that Ω

(
(1/q) log(1/ε)

)
assignments per task

is necessary to achieve the target error rate:

1

m

∑
i∈[m]

P(si 6= ŝi) ≤ ε .

To design a system that can achieve the target error rate
using a number of assignments close to this fundamental
limit, we utilize the vanilla version of the graph assignment
and inference algorithm described thus far to design an
budget-optimal crowdsourcing system. The main idea is to
obtain T independent estimates using T independent graphs
and T independent sets of workers. Then, we can aggregate
these independent estimates to achieve optimal performance.

Budget-optimal Crowdsourcing
Input: m tasks, task degree l, number of groups T .
Output: estimate vector ŝ.
1: For all t ∈ [T] do

Recruit m workers;
Generate an independent (l, l)-regular graph G(t)

from the configuration model;
Assign m tasks to m workers according to G(t);
Run the Low-rank Approximation algorithm;
Set ŝ(t) as the estimation vector thus obtained;

2: Output ŝi = sign(
∑
t∈[T] ŝ

(t)
i).

Notice that this algorithm does not violate the one-shot
scenario, since we can generate a single large graph G =
∪tG(t) in advance. In particular, no information from one
group is used in generating the graph for other group.

We state the following optimality result (x ∼ y indicates
that x scales as y, i.e. x = Θ(y)).

Theorem II.3. Under the one-shot scenario, the following
statements are true.
(a) Let ∆LB the minimum cost per task necessary to achieve

a target accuracy ε ∈ (0, 1/2) using any graph and any
possible algorithm. Then

∆LB ∼
1

q
log
(1

ε

)
. (5)

(b) Let ∆Lowrank the minimum cost per task sufficient to
achieve a target accuracy ε using the Budget-optimal
Crowdsourcing system. Then there exists a universal
constant M such that for all m ≥M ,

∆Lowrank ∼
1

q
log
(1

ε

)
. (6)

(c) Let ∆Majority be the minimum cost per task necessary
to achieve a target accuracy ε using the Majority voting
scheme on any graph. Then

∆Majority ∼
1

q2
log
(1

ε

)
. (7)

The above (cf. (5) & (6)) establish the optimality of our
algorithm. It is indeed surprising that regular graphs are
sufficient to achieve this optimality. Further, the scaling of
Majority voting is (1/q2) log(1/ε) which significantly worse
than the optimal scaling of (1/q) log(1/ε) of our algorithm.
Finally, we emphasize that the low-rank approximation algo-
rithm is quite efficient: it requires O

(
(1/q) log(m) log(1/ε)

)
operations per task to achieve the target accuracy ε. It
takes O

(
(1/q2) log(1/ε)

)
operations for the simple majority

voting to achieve the same reliability.

D. Discussions

It is worth pointing out some limitations and variations of
our results, and interesting research directions:

Knowledge of q. We assumed the knowledge of q in
selecting the degree l = Θ(1/q) in the design of the graph in
the Budget-optimal Crowdsourcing system. Here is a simple

way to overcome this limitation at the loss of only additional
constant factor, i.e. scaling of cost per task still remains
Θ(1/q log(1/ε)). To that end, consider an incremental design
in which at iteration k the system is designed assuming
q = 2−k for k ≥ 1. At iteration k, we design two replicas
of the system as per the Budget-optimal Crowdsourcing for
q = 2−k. Now compare the estimates obtained by these two
replicas for all m tasks. If they agree amongst m(1 − 2ε)
tasks, then we stop and declare that as the final answer.
Or else, we increase k to k + 1 and repeat. Note that by
our optimality result, it follows that if 2−k is less than the
actual q then the iteration must stop with high probability.
Therefore, the total cost paid is Θ(1/q log(1/ε)) with high
probability. Thus, even lack of knowledge of q does not affect
the optimality of our algorithm.

More general models. For simplicity we assumed the
spammer-hammer model, where pj ∈ {1/2, 1}. A natural
generalization of this is to allow any pj ∈ [0, 1]. We expect
that our algorithm and analysis can be strengthened to prove
a bound on the error rate in this more general case.

An underlying assumption in our model is that the error
probability of a worker does not depend on the particular task
and all the tasks share an equal level of difficulty. Another
underlying assumption in our model is that the workers are
unbiased: the error probability of a worker does not depend
whether the correct answer is a +1 or a −1. There is a more
general model investigated in [WRW+09], which relaxes
both of these assumptions. In formula, a worker j’s response
to a binary task i can be modeled as

Aij = sign(Zi,j) ,

where Zi,j ∼ N (si + αj , ri + βj). Here, si ∈ {+1,−1}
represents the correct binary answer of task i, ri represents
the level of difficulty of task i, αj represents the bias of
worker j, and βj represents the reliability of worker j.
Most of the crowdsourcing models introduced so far can be
reduced to a special case of this model. For example, the
first crowdsourcing model introduced by Dawid and Skene
[DS79] is equivalent to the above Gaussian model with
ri = 0 for all i ∈ [m]. The model we study in this paper is
equivalent to the above Gaussian model with αj = 0 for
all j ∈ [n] and ri = 0 for all i ∈ [m]. It is desirable
to characterize how our algorithm works under this more
general model.

III. INTUITION AND PROOFS

In this section, we present intuitions behind the low-rank
approximation algorithm and provide a proof of Theorem
II.1. We then provide a proof of optimality of our algorithm.

A. Low-rank approximation

A low-rank model is often used to capture the impor-
tant aspects of datasets in matrix form. The data analysis
technique using low-rank approximations of data matrices is
referred to as principal component analysis (PCA) [Jol86].
PCA often reveals hidden structures in the data and has been

successfully applied to applications including latent semantic
indexing and spectral clustering.

A rank-1 approximation of our data matrix A can be easily
computed using singular value decomposition (SVD). Let the
singular value decomposition of A be

A =

min{m,n}∑
i=1

uiσiv
T
i ,

where ui ∈ Rm and vi ∈ Rn are the i-th left and right
singular vectors, and σi ∈ R is the i-th singular value.
Here and after, (·)T denotes the transpose of a matrix or
a vector. For simplicity, we use u = u1 for the first left
singular vector and v = v1 for the first right singular vector.
Singular values are typically assumed to be sorted in a non-
increasing order satisfying σ1 ≥ σ2 ≥ · · · ≥ 0. Then, the
optimal rank-1 approximation is given by a rank-1 projector
P1(·) : Rm×n → Rm×n such that

P1(A) = σ1uv
T , (8)

It is a well known fact that P1(A) minimizes the mean
squared error. In formula,

P1(A) = arg min
X:rank(X)≤1

∑
i,j

(Aij −Xij)
2

In the problem of estimating the solutions of m tasks
via crowdsourcing, it turns out that PCA provides good
estimates. Consider an ideal case where G is a complete
graph, and all the workers are hammers and provide the
correct answers. Hence, there is no randomness in this
example. Then, A = s1Tn , where s ∈ {±1}m is the vector
of correct solutions and 1n ∈ Rn is the all ones vector.
It is simple to see that A is a rank-1 matrix, since it is a
multiplication of two ‘rank-1’ vectors. Therefore, u is equal
to the correct solution s up to a scaling and sign (both
(1/
√
m)s and −(1/

√
m)s are valid singular vectors).

Now, consider a case where all the workers are hammers
but the graph is a (l, r)-regular graph. In this case, it is also
true that u is equal to the correct solution s up to a scaling.
Here is a sketch of the proof of this claim. Start with an
all ones task vector s = 1m. Then, 1m is an eigenvector
of AAT as AAT1m = lr1m. It follows from the Perron-
Frobenius theorem [HJ90] that (1/

√
m)1m is a left singular

vector corresponding to the largest singular value of A. In
other words, u = (1/

√
m)1m.

Now, if s is not all ones vector, then s = S1m, where
S is a diagonal matrix with Sii = si. Note that S is also
a orthogonal matrix such that SST = STS = Im, where
Im is the m dimensional identity matrix. Recall that for any
orthogonal matrix Q, Qu is the first left singular vector of
QA. Then, since we know that S is an orthogonal matrix and
the first left singular vector of SA is (1/

√
m)1m, it follows

that the first singular vector of A is u = (1/
√
m)ST1m =

(1/
√
m) s. This proves the claim that u is equal to s up to

a scaling. One important implication of the above argument
is that the accuracy of this estimate does not depend on a
particular choice of s ∈ {±1}m.

In the presence of spammers, the problem is more compli-
cated since some workers can make errors. We get a random
matrix A where the randomness comes from the construction
of the graph G and the submitted answers on the edges
of the graph. On expectation, a low-rank approximation of
the random matrix A provides a good estimate. Recall that
p = [pj] ∈ {1/2, 1}n. Since E[Aij] = (l/n)si(2pj − 1), the
expectation E[A] = (l/n)s(2p − 1n)T is a rank-1 matrix
whose first left singular vector is equal to s up to a scaling.
We can consider the random matrix A as a perturbation of a
rank-1 matrix: A = E[A]+Z, where the perturbation Z will
be small in an appropriate sense if the number of spammers
are small and the degree l is large. Building on this intuition,
next we make this statement rigorous and provide a proof of
the performance guarantee for the Low-rank Approximation
algorithm.

1) Proof of Theorem II.1: Let u = (u1, . . . , um)T be a
left singular vector corresponding to the leading singular
value of A. Ideally, we want to track each entry ui for
most realizations of the random matrix A, which is diffi-
cult. Instead, we track the Euclidean distance between two
vectors: ‖ 1√

m
s−u‖. The following lemma upper bounds the

Hamming distance by the Euclidean distance.

Lemma III.1. For any s ∈ {±1}m and the Hamming
distance d(·) defined in (3),

d(s, sign(u)) ≤
∥∥∥ 1√

m
s− u

∥∥∥2

. (9)

Proof. The above lemma follows from a series of inequities:
1

m

∑
i

I(si 6= sign(ui)) ≤ 1

m

∑
i

I(siui ≤ 0)

≤ 1

m

∑
i

(si −
√
mui)

2 .

�

To upper bound the Euclidean distance, we apply the next
proposition to two rank-1 matrices: P1(A) and E[A|p]. For
the proof of this proposition, we refer to the proof of a more
general statement for general low-rank matrices in [KMO10,
Remark 6.3].

Proposition III.2. For two rank-1 matrices with singular
value decomposition M = xσyT and M ′ = x′σ′(y′)T , we
have min{‖x+x′‖, ‖x−x′‖} ≤ (

√
2/σ)‖M−M ′‖F , where

‖x‖ =
√∑

i x
2
i denotes the Euclidean norm and ‖X‖F =√∑

i,j(Xij)2 denotes the Frobenius norm. By symmetry this
bound also holds with σ′ in the denominator.

For a given (random) quality vector p = (p1, . . . ,pn)T

and any solution vector s ∈ {±1}m, E[A|p] = (l/m)s(2p−
1n)T is a rank-1 matrix. Here, 1n denotes the n-dimensional
all-ones vector. This matrix has a left singular vector
(1/
√
m)s and a singular value σ =

√
lr/n‖2p−1n‖. Recall

that pj = 1 with probability q and 1/2 with probability
1−q, and pj’s are independent of one another. Since σ2 is a
sum of i.i.d. bounded random variables, we can applying

Hoeffding’s inequality to show that σ ≥
√
lrq/2 with

probability 1− e−Ω(nq2).
P1(A) is a rank-1 projection defined in (8). Notice that

we have two choices for the left singular vector. Both u and
−u are valid singular vectors of P1(A) and we do not know
a priori which one is closer to (1/

√
m)s. For now, let us

assume that u is the one closer to the correct solution, such
that ‖(1/

√
m)s−u‖ ≤ ‖(1/

√
m)s+u‖. Later in this section,

we will explain how we can identify u with high probability
of success.

Applying Proposition III.2 to P1(A) and E[A|p], we get
that, with high probability,∥∥∥ 1√

m
s− u

∥∥∥ ≤ 2√
lrq

∥∥E[A|p]− P1(A)
∥∥
F
. (10)

For any matrix X of rank-2, ‖X‖F ≤
√

2‖X‖2, where
‖X‖2 ≡ max‖x‖,‖y‖≤1 x

TXy denotes the operator norm.
Therefore, by triangular inequity,∥∥E[A|p]− P1(A)

∥∥
F

≤
√

2
∥∥E[A|p]− P1(A)

∥∥
2

≤
√

2
∥∥E[A|p]−A

∥∥
2

+
√

2
∥∥A− P1(A)

∥∥
2

≤ 2
√

2
∥∥E[A|p]−A

∥∥
2
, (11)

where in the last inequity we used the fact that P1(A) is the
minimizer of ‖A−X‖2 among all matrices X of rank one,
whence ‖A− P1(A)‖2 ≤ ‖A− E[A|p]‖2.

The following key technical lemma provides a bound on
the operator norm of the difference between random matrix
A and its (conditional) expectation. This lemma general-
izes a celebrated bound on the second largest eigenvalue
of d-regular random graphs by Friedman-Kahn-Szemerédi
[FKS89], [FO05], [KMO10]. The proofs of this lemma is
skipped here due to space limitations.

Lemma III.3. Assume that an (l, r)-regular random bipar-
tite graph G with m left nodes and n = Θ(m) right nodes
is generated according to the configuration model. A is
the weighted adjacency matrix of G with random weight
Aij assigned to each edge (i, j) ∈ E. With probability
1−m−Ω(

√
l),

‖A− E[A]‖2 ≤ C ′(ρ)Amax(lr)1/4 , (12)

where |Aij | ≤ Amax almost surely and C ′(ρ) is a constant
that only depends on ρ ≡ m/n.

Under our model, Amax = 1 since Aij ∈ {±1}. We then
apply this lemma to each realization of p and substitute this
bound in (11). Together with (10) and (9), this finishes the
proof Theorem II.1.

Now, we are left to prove that between u and −u we
can choose the one closer to (1/

√
m)s. Given a rank-

1 matrix P1(A), there are two possible pairs of left and
right ‘normalized’ singular vectors: (u, v) and (−u,−v). Let
P+(·) : Rn 7→ Rn denote the projection onto the positive
orthant such that P+(v)i = I(vi ≥ 0)vi. Our strategy is
to choose u to be our estimate if ‖P+(v)‖2 ≥ 1/2 (and

−u otherwise). We claim that with high probability the pair
(u, v) chosen according to our strategy satisfies

‖(1/
√
m)s− u‖ ≤ ‖(1/

√
m)s+ u‖ . (13)

Assume that the pair (u, v) is the one satisfying the
above inequality. Denote the singular vectors of E[A|p] by
x = (1/

√
m)s and y = (1/‖2p − 1n‖)(2p − 1n), and

singular value σ′ = ‖E[A|p]‖2. Let σ = ‖P1(A)‖2. Then,
by Proposition III.2 and the triangular inequality,

‖y − v‖ =
∥∥∥ 1

σ′
E[A|p]Tx− 1

σ
P1(A)Tu

∥∥∥
≤
∥∥∥ 1

σ′
E[A|p]T (x− u)

∥∥∥+
∥∥∥ 1

σ′
(E[A|p]− P1(A))Tu

∥∥∥
+
∥∥∥(1

σ′
− 1

σ

)
P1(A)Tu

∥∥∥
≤ C1

(lrq2)1/4
.

The first term is upper bounded by ‖(1/σ′)E[A|p]T (x −
u)‖ ≤ ‖x − u‖, which is again upper bounded by
C2/(lrq

2)1/4 using (10). The second term is upper bounded
by ‖(1/σ′)(E[A|p] − P1(A))Tu‖ ≤ (1/σ′)‖E[A|p] −
P1(A)‖2, which is again upper bounded by C3/(lrq

2)1/4

using (12) and σ′ ≥ (1/2)
√
lrq. The third term is up-

per bounded by ‖
(

1
σ′ − 1

σ

)
P1(A)Tu‖ ≤ |σ − σ′|/σ′,

which is again upper bounded by C4/(lrq
2)1/4 using

triangular inequality: (1/σ′)
∣∣‖E[A|p]‖2 − ‖P1(A)‖2

∣∣ ≤
(1/σ′)‖E[A|p]− P1(A)‖2.

This implies that

‖P+(v)‖ ≥ ‖y‖ − ‖y − P+(v)‖
≥ 1− ‖y − v‖
≥ 1− C1/(lrq

2)1/4 ,

where the second inequality follows from the fact that pj ≥
1/2 which implies that all entries of y are non-negative.
Notice that we can increase the constant C(ρ) in the bound
(4) of the main theorem such that we only need to restrict
our attention to (lrq2)1/4 > 4C1. This proves that the pair
(u, v) chosen according to our strategy satisfy (13), which
is all we need in order to prove Theorem II.1.

2) Proof of Lemma II.2: Power iteration is a simple
procedure for computing the singular vector of a matrix A
corresponding to the largest singular value. Power iteration
is especially efficient when A sparse, since it iterates by ap-
plying the matrix twice at each iteration. We denote the i-th
largest singular value by σi(A), such that σ1(A) ≥ σ2(A) ≥
. . . ≥ 0. Let u be the left singular vector corresponding to
the largest singular value. Then, our estimate of u after k
iterations is

x̃(k) = AATx(k−1) ,

x(k) =
1

‖x̃(k)‖
x̃(k) ,

with a random initialization x(0). The convergence of the se-
quence x(k) to u is not sensitive to a particular initialization,

and we can initialize each entry of x(0), for example, as i.i.d.
Gaussian random variable.

Let Pu(x) = (uTx)u denote the projection onto the
subspace spanned by u, and Pu⊥(x) = x − (uTx)u
be the projection onto the complement subspace. Then,
by singular value decomposition of A, it follows that
Pu(x̃(k)) = (σ1(A))2Pu(x(k−1)) and Pu⊥(x̃(k)) ≤
(σ2(A))2Pu⊥(x(k−1)). Then,

‖Pu⊥(x(k))‖
‖Pu(x(k))‖

≤
(σ2(A)

σ1(A)

)2 ‖Pu⊥(x(k−1))‖
‖Pu(x(k−1))‖

. (14)

Since ‖Pu⊥(x(k))‖ is the error in our estimate, this implies
that the error in our estimation of the vector u decays
exponentially given that σ2(A) is strictly smaller than σ1(A).
Under the crowdsourcing model, we can even show a
stronger result than just a strict inequality. Namely,

σ2(A)

σ1(A)
≤ C1

(lrq2)1/4
, (15)

with high probability. From the proof of Theorem II.1, recall
that E[A] is a rank-1 matrix with ‖E[A]‖2 ≥ (1/2)

√
lrq

with high probability. By Lemma III.3, we know that
‖A−E[A]‖2 ≤ C2(lr)1/4. Now applying Weyl’s inequality
[HJ90, Theorem 4.3.1], it immediately follows from that
σ1(A) ≥ (1/2)

√
lrq − C2(lr)1/4 ≥ C3

√
lrq and σ2(A) ≤

C2(lr)1/4. Here we used the fact that in the regime where
Theorem II.1 is non-trivial, we can assume that

√
lrq2 ≥

C(ρ). Weyl’s inequality applied to non-symmetric matrices
states that for two matrices M and M ′ of the same dimen-
sions, σk(M)−σ1(M ′) ≤ σk(M+M ′) ≤ σk(M)+σ1(M ′).

Substituting (15) in (14), we get that

‖Pu⊥(x(k))‖
‖Pu(x(k))‖

≤
(C1

(lrq2)1/4

)2k

2
√
m , (16)

with high probability. Here we used the concentra-
tion of measure result on Gaussian random variables:
(‖Pu⊥(x(0))‖)/(‖Pu(x(0))‖) ≤ 2

√
m with high probability.

Now, for the error bound in Theorem II.1 to hold after
a finite k iterations, all we need is for our estimate x(k) to
satisfy, ‖x(k) − (1/‖s‖)s‖ ≤ C5/(lrq

2)1/4. By triangular
inequality,

‖x(k) − (1/‖s‖)s‖ ≤ ‖(1/‖s‖)s− u‖+ ‖x(k) − u‖ .

We already proved in Section III-A.1 that the first term is
bounded with appropriate bound. For the second term, notice
that ‖x(k) − u‖2 = 2‖Pu⊥(x(k))‖. By (16), it follows that
k = O(log(m)/ log(lrq2)) is sufficient to guarantee that the
error bound in Theorem II.1 holds with high probability.

B. Optimality under One-Shot: Proof of Theorem II.3

In order to compute the fundamental limit on cost-
accuracy tradeoff, we need a lower bound on the achievable
accuracy using any possible scheme. Let us consider an
oracle estimator that makes the optimal decision based on
information provided by an oracle. Further, assume that the
oracle gives information on which workers are hammers and
which are spammers. This estimator only makes mistakes on

tasks whose neighbors are all spammers, in which case the
estimator flips a fair coin to make a decision. If we denote
the degree of node i by li, the error rate P(ŝi 6= si) is
(1/2)(1−q)li . Note that no algorithm with only information
on {Aij} can produce more accurate estimate than the oracle
estimator. Therefore, for any estimate ŝ that is a function of
{Aij}(i,j)∈E , we have the following minimax bound.

inf
ŝ

sup
s∈{±1}m

P(s 6= ŝ) ≥ 1

m

∑
i∈[m]

1

2
(1− q)li

≥ 1

2
(1− q)|E|/m ,

where the second inequality follows by convexity and |E| =∑
i li is the total number of edges. This implies that in order

to achieve a target accuracy ε using any possible algorithm,
it is necessary to have |E| ∼ (m/q) log(1/ε). This gives
∆LB ∼ (1/q) log(1/ε). Let us emphasize that the necessary
condition on the budget in (5) is completely general and
holds for any graph, regular or irregular.

Next, consider the proposed Budget-optimal Crowdsourc-
ing algorithm. To achieve the optimal performance, we run
T independent estimation procedure to get T independent
estimates of each si. Let ŝ(t)

i denote the estimate of si pro-
duces by the t-th group of workers for t ∈ [T]. Set l ∼ 1/q
with large enough constant such that (1/m)

∑
i∈[m] I(si 6=

ŝ
t)
i) ≤ 1/8 with probability 1 −m−Ω(

√
l) by Theorem II.1.

By symmetry of the graph selection procedure, the estimate
accuracy is invariant of a particular choice of task i. Then,
P(si 6= ŝ

(t)
i) ≤ 1/8 + m−Ω(

√
l). Then for m ≥ eΩ(1/

√
l),

P(si 6= ŝ
(t)
i) ≤ 1/4. Note that eΩ(1/

√
l) = O(1). Further,

{ŝ(t)
i }t∈[T] are independent given si.
Our final estimate after T runs is ŝi = sign

(∑T
t=1 ŝ

(t)
i

)
.

By concentration of measure result, the error rate is upper
bounded by P(ŝi 6= si) ≤ e−(1/8)T . To achieve accuracy ε
we need to have T ∼ log(1/ε). The minimum cost per task
sufficient to achieve a target accuracy ε scales as lT , which
gives ∆Lowrank ∼ (1/q) log

(
1/ε
)
.

Now, consider a naive majority voting algorithm. Majority
voting simply follows what the majority of workers agree
on. In formula, ŝi = sign(

∑
j∈∂iAij), where ∂i denotes

the neighborhood of node i in the graph. It makes a random
choice when there is a tie. When we have many spammers in
the crowd, majority voting is prone to make mistakes since
it gives the same weight to both the estimates provided by
spammers and those of hammers. This limitation is captured
in the following lower bound.

Lemma III.4. There exists a numerical constant C2 such
that the error rate achieved using majority voting scheme is
lower bounded by P(ŝi 6= si) ≥ e−C2(liq

2+1), where li is
the degree of node i.

The proof of this Lemma is skipped due to space limita-
tions. Now from convexity it follows that

1

m

∑
i∈[m]

P(si 6= ŝi) ≥ e−C2((1/m)|E|q2+1) .

Then, with majority voting scheme, the minimum cost per
task necessary to achieve a target accuracy ε is ∆Majority ∼
(1/q2) log

(
1/ε
)
.

REFERENCES

[Ber92] M. W. Berry, Large scale sparse singular value computations,
International Journal of Supercomputer Applications 6 (1992),
13–49.

[Bol01] B. Bollobás, Random Graphs, Cambridge University Press,
January 2001.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum
likelihood from incomplete data via the em algorithm, Journal
of the Royal Statistical Society. Series B (Methodological) 39
(1977), no. 1, pp. 1–38.

[DS79] A. P. Dawid and A. M. Skene, Maximum likelihood estimation
of observer error-rates using the em algorithm, Journal of
the Royal Statistical Society. Series C (Applied Statistics) 28
(1979), no. 1, 20–28.

[FKS89] J. Friedman, J. Kahn, and E. Szemerédi, On the second eigen-
value in random regular graphs, Proceedings of the Twenty-
First Annual ACM Symposium on Theory of Computing
(Seattle, Washington, USA), ACM, may 1989, pp. 587–598.

[FO05] U. Feige and E. Ofek, Spectral techniques applied to sparse
random graphs, Random Struct. Algorithms 27 (2005), no. 2,
251–275.

[HJ90] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge
University Press, 1990.

[JG03] R. Jin and Z. Ghahramani, Learning with multiple labels,
Advances in neural information processing systems (2003),
921–928.

[Jol86] I. T. Jolliffe, Principal component analysis, Springer-Verlag,
1986.

[KMO10] R. H. Keshavan, A. Montanari, and S. Oh, Matrix completion
from a few entries, IEEE Trans. Inform. Theory 56 (2010),
no. 6, 2980–2998.

[RU08] T. Richardson and R. Urbanke, Modern Coding Theory, Cam-
bridge University Press, march 2008.

[RYZ+10] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin,
L. Bogoni, and L. Moy, Learning from crowds, J. Mach. Learn.
Res. 99 (2010), 1297–1322.

[WBBP10] P. Welinder, S. Branson, S. Belongie, and P. Perona, The
Multidimensional Wisdom of Crowds, 2424–2432.

[WRW+09] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movellan,
Whose vote should count more: Optimal integration of labels
from labelers of unknown expertise, Advances in Neural
Information Processing Systems 22 (2009), 2035–2043.

