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Abstract—We present a simple and efficient algorithm for
randomly generating Tanner-graphs with given symbol-node and
check-node degrees and without small cycles. These graphs can
be used to design high performance Low-Density Parity-Check
(LDPC) codes.
Our algorithm generates a graph by sequentially adding the

edges to an empty graph. Recently, these types of sequential
methods for counting and random generation have been very
successful [35], [18], [11], [7], [4], [6].

I. INTRODUCTION
We present an efficient algorithm for generating random

bipartite graphs with given node degrees and with cycles of
size larger than a constant k 1. The main motivation for this
work comes from the design of high performance Low-Density
Parity-Check (LDPC) codes [31].
Our algorithm is based on the algorithm S presented in

[5]. For positive integers m, n, k, Algorithm S generates a
random graph with n vertices and m edges that has no cycles
with length less than or equal to k using O(n2m) operations.
Algorithm S starts with an empty graph and sequentially adds
m edges between pairs of non-adjacent vertices. In every step
of the procedure, an edge can be added between two distinct
vertices i and j that are of distance at least k. The probability
of adding an edge between i and j, denoted by pij , changes in
every step of the algorithm. In order to get a uniform sampling,
pij should be proportional to the number of extensions of the
current graph to graphs with m edges that contain (ij) and
have no small cycles. Algorithm S estimates the number of
such valid extensions by computing the expected number of
small cycles if the rest of edges are added uniformly at random
(see Sections 3-4 of [5] for more details).
The main objective of this paper is to provide the extension

of Algorithm S from [5] to graphs with given degrees.
From a theoretical perspective, our work and [5] are related

to the following problem. Given a graph property P that
is preserved by removal of any edge from the graph. A
random maximal P-graph is obtained from n isolated vertices
by randomly adding those edges (at each stage choosing
uniformly among edges whose inclusion would not destroy
property P ) until no further edges can be added. The question
of finding the number of edges of a random maximal P -
graph for several properties P is well studied [33], [16],

1Our algorithm can be applied to non-bipartite graphs as well.

[38], [8], [27]. In particular, when P is the property that
the graph has girth greater than k, [27] shows that the above
process of sequentially growing the graph leads to graphs with
m = O(n1+ 1

k−1 log n) edges.
Unfortunately, these random maximal P -graphs may have

distribution that are far from uniform. In fact it has been
shown (e.g. [36]) that when P is the property of having no
triangle, the maximal triangle free graphs are close to bipartite.
The analysis of [5] show that the Algorithm S guarantee
asymptotically uniform distribution at the expense of reducing
the number of edges to m = O(n1+ 1

2k(k+3) ).
Recently, sequential algorithms have been shown, empiri-

cally ([11], [7]) and theoretically ([35], [18], [6], [4]), to be
very successful for designing fast algorithms for counting and
generating random graphs with given degrees.

A. Application in designing LDPC Codes
It has been shown that LDPC codes can approach Shan-

non capacity asymptotically for large size codes, when their
associated graph representations (Tanner graphs) are selected
uniformly at random from the set of bipartite graphs with
a properly optimized degree sequences [12], [21]. However,
in practice, the maximum graph size is between 103 and
105 (depending on the delay sensitivity and on the hardware
constraints). In this range, it is well known that the existence
of a small number of subgraphs with a certain structure (in
particular, small cycles) spoil the code performances [28], [30],
[20].
Different approaches have been developed within the coding

theory community to deal with this problem. For example,
deterministic constructions of graph sequences with large girth
[26], [32] have been studied. However, numerical studies
have shown that known deterministic constructions can have
poor performance [22]. From a theoretical point of view, no
deterministic graph sequence is known that asymptotically
outperforms random graphs.
One can also stick to random constructions and grow the

graph by adding random edges sequentially while avoiding
short cycles. This method has been very popular in practice
and is known by the name of progressive edge growth (PEG)
algorithm [14]. We will describe the main intuition behind
PEG and show its limitations with respect to two standard
performance measures for the codes: (i) bit error rate or



expected fraction of wrong bits; and (ii) block error rate or
probability that at least one bit in the message was received
incorrectly.
Let Citer be the maximum rate achievable by random LDPC

codes (empirically Citer is indistinguishable from the channel
capacity). It is known that uniformly random graphs contain
a random number (of order O(1)) of cycles of size k or
smaller. These cycles are responsible for non-vanishing block
error probability that is bounded away from 0 at small noise.
The main goal of PEG is to reduce this error, to a value that
vanishes with k, by removing the cycles of length up to k. But
the final distribution of PEG is not necessarily uniform which
may affect the other performance measure (bit error rate). In
fact preliminary simulations suggest that our new algorithm
produces codes with lower bit error rate.
In this paper we define the first code generation algorithm

that overcomes both problems. We show that there exists a
graph sequence that (1) can be generated efficiently; (2) has
vanishing bit error rate at any rate below Citer (this follows by
the standard density evolution analysis [31] using optimized
degree sequences [12], [21]); and (3) has girth larger than k
(therefore has low block error rate probability).

II. DEFINITIONS AND PROBLEM STATEMENT
The girth of a graph G is defined to be the length of its

shortest cycle. The degree of a node v of graph G is denoted
by dv(G).
Consider two sequences of positive integers r̄ = r1, . . . , rn

and c̄ = c1, . . . , cm for node-degrees such that e =
∑n

i=1 ri =
∑m

j=1 cj . We would like to generate a random bipartite graph
G(V1, V2) with degree sequence (r̄, c̄), (i.e. for symbol nodes
V1 = {u1, . . . , un}, check nodes V2 = {v1, . . . , vm} we need
deg(ui) = ri and deg(vj) = cj) that has also girth greater
than k (assume k is a constant and is an even number). We
denote the set of all such graphs by Gr̄,c̄,k.
A naı̈ve approach would be to use configuration model to

obtain a bipartite graph with degree sequence r̄, c̄. Let us
quickly review the configuration model (for more details see
[9]).
Configuration model. Let W (R) = ∪n

i=1W
(R)
i (W (C) =

∪m
i=1W

(C)
i ) be a set of e labeled mini-vertices with |W (R)

i | =
ri (|W (C)

j | = cj). Consider a procedure that finds a random
perfect matchingM between mini-vertices ofW (R) and mini-
vertices of W (C) by choosing pairs of mini-vertices form
W (R) × W (C) sequentially and uniformly at random. Such
a matching is also called a configuration on W (R) ∪ W (C).
We can see that the number of all distinct configurations is
equal to e!. Given a configuration M, we can obtain a graph
GM with degree sequence r̄, c̄ by combining the mini-vertices
of each W (R)

i (W (C)
j ) to form a vertex ui (vj).

However, the resulting graph GM is in Gr̄,c̄,k with very
small probability which makes this approach impractical for
generating codes with n, m very large.
Our sequential algorithm to sample uniformly from Gr̄,c̄,k

works as follows.

Algorithm Bip-S

(1) Set G0 to be a graph over vertex sets V1 = {u1, . . . , un},
V2 = {v1, . . . , vm} and with no edges. Let also r̂ =
{r̂1, . . . , r̂n} and ĉ = {ĉ1, . . . , ĉm} be two ordered set
of integers that are initialized by r̂ = r̄ and ĉ = c̄. For
t = 0, . . . , e − 1, repeat the following steps:
– If there is no suitable edges (any edge uivj where
the graph Gt ∪ (uivj) has no cycle of length at most
k), stop and return FAIL.

– Consider the probability distribution p(uivj |Gt)
given by equation (1) below on the set of all suitable
edges (uivj). Sample a suitable edge (uivj) with
distribution p(uivj |Gt) and set Gt+1 = Gt ∪ (uivj).

– Set r̂i = r̂i − 1 and ĉj = ĉj − 1.
(2) If the algorithm does not halt before t = e − 1, return

Ge.

Here each probability p(uivj |Gt) is an approximation to
the probability that a uniformly random extension of graph
Gt ∪ (uivj) has girth larger than k (see Section III for the
intuition behind this). In order to find this approximation,
we will consider a configuration model representation for the
graphs with degree sequence (r̄, c̄). Then we use a similar
argument to the one in Section 4 of [5], to find the following
Poisson approximation for p(uivj |Gt):

p(uivj |Gt) =
r̂iĉje−Ek(Gt,uivj)

Z(Gt)
(1)

where Z(Gt) is a normalization constant, and r̂i, ĉj , denote
the remaining degrees of i and j. Furthermore,

Ek(Gt, ui, vj) =

k/2
∑

r=1

∑

γ∈C2r

I{(uivj)∈γ}P
t
ij(γ) (2)

where C2r is the set of all simple cycles of length 2r in the
complete bipartite graph on vertices of V1 and V2, and P t

ij(γ)
is roughly the probability that γ is in a random extension of
Gt. More precisely

P t
ij(γ) =

(e − t − 2r + |γ ∩ Gt|)!
∏

u!∈γ U t
ij(u", γ)

∏

v!∈γ V t
ij(v", γ)

(e − t − 1)!
,

where

U t
ij(u", γ) =



















r̂"(r̂" − 1) If du!

(

γ ∩
(

Gt ∪ (uivj)
)

)

= 0,

r̂" If du!

(

γ ∩
(

Gt ∪ (uivj)
)

)

= 1,

1 If du!

(

γ ∩
(

Gt ∪ (uivj)
)

)

= 2.

Similarly,

V t
ij(v", γ) =



















ĉ"(ĉ" − 1) If dv!

(

γ ∩
(

Gt ∪ (uivj)
)

)

= 0,

ĉ" If dv!

(

γ ∩
(

Gt ∪ (uivj)
)

)

= 1,

1 If dv!

(

γ ∩
(

Gt ∪ (uivj)
)

)

= 2.

We explain the intuition and explanation of the above
formula for p(uivj |Gt) in Section III.



III. THE INTUITION BEHIND ALGORITHM BIP-S

Define the execution tree T of the naı̈ve algorithm described
in Section II as follows. Consider a rooted m-level tree where
the root (the vertex in level zero) corresponds to the empty
graph in the beginning of the algorithm and level r vertices
correspond to all couples (Gr,πr) where Gr is a partial graph
that can be constructed after r steps, and πr is an ordering
of its r edges. There is a link in T between a partial graph
(Gr,πr) from level r to a partial graph (Gr+1,πr+1) from
level r + 1 if Gr ⊂ Gr+1 and πr, πr+1 coincide on the first
r positions. Any path from the root to a leaf at level e of T
corresponds to one possible way of generating a random graph
in Gr̄,c̄,k.
Let us denote those partial graphs Gr that have girth greater

than k by “valid” graphs. Our goal is to reach a valid leaf in T,
uniformly at random, by starting from the root and going down
the tree. It is known that [34] in order to achieve this goal,
at any step r, one needs to choose Gr+1 = Gr ∪ {(ij)} with
probability proportional to the number of valid leaves of T that
are descendant of (Gr+1,πr+1) (see [4] for a similar analysis
in more details). Denote this probability by p(Gr+1,πr+1).
The main technical contribution of this paper is deriv-

ing a new approximation p̂(Gr+1,πr+1) for the true prob-
abilities p(Gr+1,πr+1), selecting (Gr+1,πr+1) with prob-
ability p̂(Gr+1,πr+1). For the case of general graphs
with n vertices and m edges (no restriction on de-
grees) it was proven in [5] that the accumulated error
∏m−1

r=0 [p̂(Gr+1,πr+1)/p(Gr+1,πr+1)] is small. Similar argu-
ment can be used here as well.
Consider a random variable nk(Gr+1,πr+1) that is

the number of cycles of length at most k in a leaf
chosen uniformly at random from the descendants of
(Gr+1,πr+1) in T. We can assume that the distribution of
nk(Gr+1,πr+1) behaves like Poisson2. That is the probabil-
ity of nk(Gr+1,πr+1) = 0 (i.e. reaching a valid leaf) is
approximately exp (−E[nk(Gr+1,πr+1)]). That explains the
term e−Ek(Gt,uivj) in (1) and the first term r̂iĉj in (1) shows
the number of ways to match ui and vj in a configuration
model.
In order to calculate Ek(Gt, uivj), due to additivity of the

expectation we need to add the probabilities P t
ij(γ) that each

cycle γ of length 2r (r = 2, ..., k/2), containing (uivj), is in
a random extension of Gt ∪ {(uivj)} to a graph with degree
sequence r̄, c̄.
The total number of configurations that lead to a random

extension of Gt ∪ {(uivj)} is (e− t− 1)!. On the other hand,
For any fixed cycle γ with (uivj) ∈ γ, there are exactly
(e − t − 2r + |γ ∩ Gt|)!

∏

u!∈γ U t
ij(u", γ)

∏

v!∈γ V t
ij(v", γ)

configurations that lead to a random extension which contains
γ. The number U t

ij(u", γ) (V t
ij(v", γ)) is the number of ways

to choose the mini-nodes from W (R)
" (W (C)

" ). Hence, P t
ij(γ)

is the ratio of these two products.

2This can be shown using Janson’s inequality [2] (see [5] for a similar
argument).

IV. RUNNING TIME AND PRACTICAL IMPLEMENTATIONS

In this section we explain how to calculate the edge selection
probabilities p(uivj |Gt) in algorithm Bip-S. The dependence
of the right-hand side of (1) on counting cycles, suggests the
use of matrix multiplication. At each step t consider an 4(e−
t) + 2m + 2n by 4(e − t) + 2m + 2n square matrix denoted
by Mt = Mt(uivj) that is constructed as follows. To simplify
the notation let d̂ = {d̂1, . . . , d̂m+n} be the complete degree
sequence {r̂, ĉ}. That is d̂i = r̂i for 1 ≤ i ≤ n and d̂i = ĉi−n

for n + 1 ≤ i ≤ n + m.
Consider Mt as an n+m by n+m matrix of blocks where

its r, s block, M rs
t , has size 2d̂r + 2 by 2d̂s + 2.

(a) M rs
t is a 0-1 matrix. For r = s, all (a, b)-entries of M rs

t

are equal to zero except when a < d̂r+1 and b > d̂s+2,
or when a = d̂r +1 and b > d̂s +1, or when a < d̂r +2
and b = d̂s + 2 that the (a, b)-entries are equal to 1.

(b) If (urvs−n) ∈ Gt∪(uivj) then all (a, b)-entries of M rs
t

are equal to zero except the entry a = d̂r +2, b = d̂s +1
which is equal to 1. Similarly,M st

t is an all zeros matrix
except the entry with a = d̂s + 2, b = d̂r + 1 which is
equal to 1.

(c) If (urvs−n) /∈ Gt∪(uivj) then all (a, b)-entries of M rs
t

are equal to zero except the entries with a > d̂r +2 and
b < d̂s +1 which are equal to λt = 1/(e− t). Similarly,
M sr

t is all zeros except the entries with a > d̂s + 2 and
b < d̂r + 1 which are equal to λt = 1/(e − t).

(d) All blocks M rs
t with both r and s less than n + 1 or

both r and s greater than n is equal to zeros.
Now, if we approximate the factor (e − t − 2r + |γ ∩

Gt|)!/(e − t − 1)! by (e − t)−(2r−|γ∩Gt|), it is not hard to
see that

∑k/2
r=1

∑

γ∈C2r
I{(uivj)∈γ}P

t
ij(γ) is roughly equal to

the (a, b)-entry of the matrix

1

2

k/2
∑

f=0

[

(Mt)
4f+3 +

(

(Mt)
T
)4f+3

]

where a =
∑i−1

r=1(2d̂r + 2) + d̂i + 1 and b =
∑n+j−1

s=1 (2d̂s +
2) + d̂j + 2.3
The fact that Algorithms Bip-S has polynomial running

time is clear since the probabilities, p(uivj |Gt), at any step
can be calculated using matrix multiplication. In fact a naı̈ve
calculation shows that p(uivj |Gt) can be calculated with
O(ke3) = O(e3) operations. This is because (Mt)4f+3 for
any t, f takes O(fe3) operations to compute. So we obtain the
simple bound of O(e4) for the running time of the algorithm
Bip-S. But one can improve this running time by at least a
factor e with exploiting the structure of the matrices. This is
due to the fact the matrixMt can be written asMt = xT

t yt+St

where xt, yt are 4(e − t) + 2n + 2m by 1 vectors and St is
a sparse matrix with O(e) entries. Thus, we obtain a bound
of O(e3) for the running time of Algorithm Bip-S. We leave
a detailed analysis of the running time and implementation of
the algorithms to the longer version of the paper.
3The use of transpose is because Mt is not a symmetric matrix and

∑k/2

f=0
(Mt)4f+3 only counts the directed paths.



Similar to [5], in order to check whether a pair (uivj) is
suitable or Gt ∪ (uivj) has no cycles of length at most k,
we can use the adjacency matrix, At, of graph Gt. The pair
(uivj) is suitable if and only if the i, (j+n) entry of the matrix
∑k/2

r=0(At)2r+1 is zero. This is equivalent to say that if and
only if there is no path of length less than k between ui and
vj . The same argument as in [5], shows that this can be done
with O(e2) operations at each iteration. Therefore, Algorithm
Bip-S can be implemented with a total running time of O(e3)
which is O(n3) when the graph has bounded degrees.

V. DISCUSSION
We defer a more complete discussion of the codes generated

by this algorithm to a complete version of the paper. Here we
limit ourselves to a few remarks:
(a) Several definitions have been proposed for the substruc-

tures responsible for the decoding errors at high signal-
to-noise ratio. Our algorithm can be adapted to exclude
any of these substructures (instead of cycles) as well.

(b) In any of these definitions, the cycles play a dominant
role. Therefore the above algorithm should be a good
starting point.

(c) In practical code design it can be preferable to partially
structure the ensemble for facilitating the layout (as, for
instance, in protograph codes [31]). Our graph gener-
ation procedure can be adapted to partially structured
ensembles as well.
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