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Abstract— Scaling laws are a powerful way to analyze the
performance of moderately sized iteratively decoded sparse
graph codes. Our aim is to provide an easily usable finite-
length optimization tool that is applicable to the wide variety
of channels, blocklengths, error probability requirements, and
decoders that one encounters for practical systems. The tool is
aimed at non-experts in the field, who need to quickly find code
designs that are comparable with the best known codes available
today but do not have the luxury of spending months in doing
so. In previous work we have shown how to compute scaling
parameters for transmission over the binary erasure channel,
as well as general channels and general quantized message-
passing decoders when applied toregular ensembles. In this
paper we show how to compute the message variance for a
fixed number of iterations for irregular low-density parity-check
ensembles. From these calculations the basic scaling parameter α

can be deduced by determining the leading term of the limiting
expression when the number of iterations tends to infinity and the
channel parameter approaches the density evolution threshold.

I. I NTRODUCTION

Let us first trace the past developments in our effort to use
scaling laws for the efficient optimization of moderately sized
and iteratively decoded sparse graph codes. In Section II we
then present the recent progress.

The idea of scaling laws was introduced to coding theory
by Montanari [9]. By means of a specific example (regular
ensemble, binary symmetric channel with parameterǫ) he
showed that if one plots the block error probability as a
function of the “scaled variable”z =

√
n(ǫBP−ǫ) (whereǫBP is

the density evolution threshold), then the curves correspond-
ing to increasing blocklengths quickly converge to a single
“mother curve”. This common curve is called thescaling
function. A particular example can be seen in the right-hand
side graph in Figure 1. This suggested that if one were able
to analytically determine the scaling function as well as the
scaling parameters for a given system (degree distribution,
channel, decoder) then it would be possible to efficiently and
accurately predict the finite-length performance of iterative
coding systems.

The first analytic result was derived by Amraoui, Montanari,
Richardson, and Urbanke [2], [1]. They showed that, for
transmission over the binary erasure channel (BEC) with
parameterǫ, the block error probability behaves like

PB(z) = Q
( z

α

)

(1 + on(1)),

wherez =
√

n(ǫBP − ǫ) and whereǫBP is the threshold of the
ensemble under BP decoding. They further conjectured that,
more accurately,

PB(z) = Q
( z

α

)

(1 + O(n− 1
3 )), (1)

wherez =
√

n(ǫBP − βn− 2
3 − ǫ), and where the termβn− 2

3

represents afinite-length shiftof the threshold (the point where
the block error probability takes on the value one-half). This
refined scaling law was shown to be correct for left-regular
right-Poisson ensembles by Dembo and Montanari [5].

Analytically, the scaling law promises the convergence of
PB(z) for a fixedz andn tending to infinity. In practice, the
scaling law provides accurate predictions already for moderate
blocklengths and also away from the threshold; see e.g., the
middle graph in Figure 1. The analysis put forward in [2],
[1] was based on the so calledpeeling decoderby Luby,
Mitzenmacher, Shokrollahi, Spielman, and Steman, [8]. This
decoder is equivalent to the standard BP decoder but represents
the decoding process as a sequence of discrete steps, where
each step corresponds to determining a previously erased bit
from its known neighbors. It was shown in [2], [1] how to
determine the scaling parameterα from the solution of a sys-
tem of differential equations, which were dubbed covariance
evolution. Unfortunately no analytic solution of this system is
known to date; therefore,α had to be computed numerically.

An alternative way to determineα for the BEC case was
proposed in [3]. Recall that density evolution computes the
average number of erased messages as a function of the
iteration number. It was shown in [3] thatα can be computed
by determining thevarianceof the number of erased messages.
This computation was accomplished in [4] and an explicit
value forα as a function of the degree distribution pair(λ, ρ)
was given. Further, explicit expressions forβ were derived.
Given these explicit expressions of the scaling parameters, it
is then easy to accomplish a finite-length optimization.

All these developments were restricted to the BEC. The
first step towards extending the scaling law to more general
channels was accomplished in [6]. In this paper the authors
considered transmission over the binary symmetric channel
(BSC) and decoding via the Gallager algorithm A. This algo-
rithm has the property that for most ensembles the thresholdis
given by a fixed point at thebeginningof the decoding process.



This somewhat simplifies the determination of the scaling law
and the scaling parameter.

As explained above, the derivation ofα for the BEC in [4]
is based on the peeling decoder. Unfortunately, no general-
ization of the peeling decoder to general channels is known.
Ezri, Montanari, and Urbanke proposed in [7] an alternative
computation model to determine the scaling parameterα.
This is based on an EXIT-like curve, a concept which is
easily extended to general BMS channel. In more detail,
consider transmission over a BMS channel characterized by
its channel entropyh and decoded with a generic quantized
MP decoder which satisfies the standard message-passing
symmetry conditions [10]. To be concrete, assume that the
messages sent in the decoder are quantized and that they take
their values in a real-valued finite alphabet{−wm, . . . , wm},
m ∈ N, where 0 = w0 < w1 < · · · < wm. This
representation is particularly convenient for the important class
of quantized belief propagation (BP) decoders. In this case
we assume that the messages represent actual log-likelihood
values. The decoding rules are then the standard BP decoding
rules followed by a quantization to the nearest element of the
alphabet.

Given the symmetry of the channel and the decoder, we
can assume that the all-zero codeword was transmitted. Leta

denote the fixed point message density of density evolution.
(This density is of course a function of the channel parameter,
but to simplify notation we omit this dependence.) More
precisely, this is the variable to check node message density.
Pick a functionE, E : R

2m+1 7→ R. Although many choices
are possible, for the sake of definiteness, let us assume that
for a densityv ∈ R

2m+1, E(v) = vm, wherevm is the value
of the maximum component ofv. Define x = E(a), which
“measures” the performance of the decoder. The special case
xMP is the value ofx corresponding to the density evolution
threshold. Define an EXIT-like curve as the curve which
representsx as a function ofh as depicted on the left-hand
side of Figure 1.

In order to be suitable for the derivation of a scaling law we
require that the slope of the EXIT-like curve at the threshold
h

MP must be infinite and that its second derivative must be
strictly non-zero at this point. It was shown in [7] that in this
caseα can be expressed as

α =
∂2
h(x)

∂x2

∣

∣

∣

∣

MP

lim
x↓xMP

(x − xMP)

√

V
Λ′(1)

, (2)

where V = limℓ→∞ limn→∞ V(ℓ)
n , and whereV(ℓ)

n is the
messagevariance. More precisely, let us number all edges
in the graph from1 to nΛ′(1). Defineµ

(ℓ)
i = 1 if the variable

to check node message along edgei equalswm in iteration
ℓ and 0 otherwise. To lighten the notation, let also define
E = {1, . . . nΛ′(1)}. In this case,

V(ℓ)
n =

Var
(

∑

i∈E µ
(ℓ)
i

)

nΛ′(1)
.

As mentioned above, we are interested in the value of
this variance in the limit asℓ tends to infinity and when
the channel parameter approaches the threshold from above.
For each fixed channel parameter unequal to the threshold the
limit limℓ→∞ limn→∞ V(ℓ)

n exists and is finite. But the value
of this variance diverges when we let the channel parameter
approach the threshold from above. One can show that the
limit limx↓xMP limℓ→∞ V(ℓ)(x− xMP)2 = ξ exists and is finite.
In other words, close to the critical valuexMP, limℓ→∞ V(ℓ)

behaves likeξ/(x−xMP)2. For the determination of the scaling
parameterα one needs to determine the constantξ. This has
been accomplished forregular ensemble in [7]. Therefore, for
regular ensembles the scaling parameterα can be computed
and can be used to predict the performance. Figure 1 shows
the prediction given by the scaling law for a(3, 4)-regular
ensemble used over a BAWGN channel and decoded with a
quantized BP decoder.
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Fig. 1. Left: EXIT-like curve for the (3,6)-code over the BEC:hMP ≈
0.42944. Note that we plot1−x (and notx) versush so that the curve looks
like a standard EXIT curve.Middle: Block error probability of a (3,4)-code
transmitted over an AWGNC and decoded with a 15-quantization levels BP
where the messages are bounded by±8.12: σBP

15,8.12 = 1.2043. Comparison
of the block error probabilityE

G∈LDPC(nx3, 3
4

nx4)[P
BP
B

(G, σ)] (crosses with

95% confidence intervals) determined via simulations with the curves given
by the scaling law forα ≃ 0.97. The lengths aren = 1024, 2048, 4096, and
8192, respectively. Since the scaling law predicts only large-sized errors, the
ensembles were expurgated: only error events of size at least 25, 50, 100, and
200, respectively, were counted.Right: Rescaled block error probability with
respect toz =

√
n(h−h

MP +βn−
2
3 ), whereh = h2(σ) and whereh2(·) is

the binary entropy function. Note that the simulations points all cluster around
the singlemothercurve. This curve is the standardQ-function.

II. VARIANCE FOR A FIXED NUMBER OF ITERATIONS

As explained above, the key to computing the scaling
parameterα is to compute the varianceV(ℓ) = limn→∞ V(ℓ)

n

and from this the limitV = limℓ→∞ V(ℓ). Although strictly
speaking we only need the dominant term ofV , we opted to
compute the exact expressionV(ℓ). This makes it possible to
verify the expressions against simulations before taking the
limit. The derivation is outlined in Section IV.

The final expressions forV(ℓ) are unwieldy and also not very
insightful. We therefore do not reproduce them here. Rather,
let us give a few examples.

Example 1:As a first example, we consider the (3,4)-
regular ensemble used over a BAWGN channel. The decoding
is performed by a quantized BP decoder with15-quantization
levels where the reliability in the decoder is bounded by8.12.
More precisely, the15 quantization levels are chosen equally
spaced in the domain[−8.12, 8.12]. The message-passing rules
are the standard BP message-passing rules (applied always to
pairs of incoming messages) followed by a quantization to the



nearest level. The threshold of this decoder for a BAWGN
channel isσBP

15,8.12 ≈ 1.2043. The left-hand side of Figure 2
represents the varianceV(ℓ) as a function of the channel
after ℓ = 0, . . . , 6 iterations. The crosses represent empirical
measurements ofV(ℓ) for n = 104. We see that there is an
excellent agreement with the analytic expressions.

Example 2: In our second example, we consider the irregu-
lar ensemble characterized byλ(x) = 0.06x+0.82x2+0.12x3

and ρ(x) = 0.075x2 + 0.8x3 + 0.125x4. Again we consider
transmission over a BAWGN channel. Assume a quantized
BP decoder with15-quantization levels, where the messages
are bounded by±13.96. The corresponding threshold is
σBP

15,13.96 ≈ 1.0489. We plot on the right-hand side in Figure 2
the varianceV(ℓ) as a function of the channel afterℓ = 0, . . . , 5
iterations. We also plot some points which correspond to an
empirical evaluation of the variance forn = 104. Again we
see an excellent agreement.
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Fig. 2. Left: The varianceV(ℓ) as a function of the channel parameterσ
for ℓ = 0, . . . , 6. The ensemble is(3, 4)-regular, transmission takes place
over a BAWGN channel, and decoding is accomplished by a quantized BP
decoder with15-quantization levels and a maximum message of±8.12. The
threshold of this combination isσBP

15,8.12 ≈ 1.2043. The crosses represent
the empirically computed variances forn = 104. Right: The varianceV(ℓ)

as a function of the channel parameterσ for ℓ = 0, . . . , 5. The ensemble
has degree distributionλ(x) = 0.06x + 0.82x2 + 0.12x3 and ρ(x) =
0.075x2 + 0.8x3 + 0.125x4. Transmission takes place over a BAWGN
channel and decoding by a quantized BP decoder with15-quantization levels
and a maximum message of±13.96. The threshold of this combination
is σBP

15,13.96 ≈ 1.0489. The crosses represent the empirically computed
variances forn = 104.

III. F UTURE WORK

As we discussed above, we now know how to compute the
varianceV(ℓ) = limn→∞ V(ℓ)

n for a general quantized MP
decoder and general irregular ensembles. In order to compute
the scaling parameterα, it remains to determine

ξ = lim
x↓x∗

lim
ℓ→∞

V(ℓ)(x − xMP)2.

As might be gleaned from Figure 2 it is difficult to nu-
merically approximate the dominant term from the variance
curves for moderate values ofℓ; close to the threshold the
variance grows very rapidly as a function of the iteration
number and computational approximations quickly run into
numerical difficulties.

It is therefore necessary to extract the dominant behavior
of the finite-ℓ expressions analytically. For regular ensembles
it was shown in [7] how this can be done. Unhappily the
finite-ℓ expressions are considerably more complicated for the
irregular case, as it will be explained in the next section. So
it remains to be seen how the desired limit can be computed.

A further necessary prerequisite in order to be able to effect
a meaningful finite-length optimization is the development
of efficient expressions to determine the error-floor. Little is
currently known on this subject despite its importance for
practical applications.

IV. COMPUTATION OF VARIANCE FOR FIXED ℓ – OUTLINE

Consider the standard LDPC(n, λ, ρ) = LDPC(n, Λ, P )

ensemble. Recall thatE[µ
(ℓ)
i ] = x(ℓ), wherex(ℓ) = E(a(ℓ)).

As we have seen in Section II, we are interested in computing

V(ℓ) = lim
n→∞

E

[

(

∑

i∈E µ
(ℓ)
i

)2
]

− E

[

∑

i∈E µ
(ℓ)
i

]2

nΛ′(1)

= lim
n→∞

∑

j,i∈E E

[

µ
(ℓ)
j µ

(ℓ)
i

]

−
∑

j,i∈E E

[

µ
(ℓ)
j

]

E

[

µ
(ℓ)
i

]

nΛ′(1)

= lim
n→∞

∑

i∈E
E

[

µ
(ℓ)
1 µ

(ℓ)
i

]

− E

[

µ
(ℓ)
1

]

∑

iE
E

[

µ
(ℓ)
i

]

= lim
n→∞

∑

i∈E
E

[

µ
(ℓ)
1 µ

(ℓ)
i

]

− nΛ′(1)(x(ℓ))2. (3)

Let T(ℓ) be the set of indices of all messages whose com-
putation treeℓ intersect the computation tree ofµ

(ℓ)
1 , where

both trees have depthℓ. For convenience, we also add toT(ℓ),
indices of edges which are connected to the same variable
node as an edge already inT(ℓ). For instance, the edges (b)
and (f) in the left-hand side graph of Figure 3 are added to
T
(ℓ), even though their computation trees do not intersect the

computation tree of the root edge. LetG
(ℓ)
T

be the tree formed
by all edges which belong toT(ℓ). Thus,G(ℓ)

T
is formed by

ℓ variable node layers “above” the root variable node and2ℓ
variable nodes layers “below” the root variable, as depicted in
the right-hand side of Figure 3.

Let us partitionT(ℓ) into four sets. Orient all edges inG
from variable node to check node. LetT(ℓ)

1 denote the set of
edges which are in the “future” as seen by the root edge and
which are directed in the same direction as the root edge itself.
More precisely, these are the edges withinG

(ℓ)
T

which can be
reached by paths starting at the root edge and which point in
the same direction as the root edge. Next, letT

(ℓ)
2 denote the

set of edges in the future of the root edge but which point
in the opposite direction. LetT(ℓ)

3 be the set of edges in the
past of the root edge and which point in same direction and,
finally, let T(ℓ)

4 be the set of edges which are in the past of the
root and in which point in the opposite direction. These four
types of edges are depicted in the left of Figure 3. Let(T(ℓ))c

be the complement ofT(ℓ) in {1, . . . , nΛ′(1)} and let(G(ℓ)
T

)c

be the corresponding graph. We can then expand (3) as



V(ℓ) = lim
n→∞

E

[

(µ
(ℓ)
1 )2

]

+ lim
n→∞

E

[

∑

i∈T(ℓ)1

µ
(ℓ)
1 µ

(ℓ)
i

]

+ lim
n→∞

E

[

∑

i∈T(ℓ)2

µ
(ℓ)
1 µ

(ℓ)
i

]

+ lim
n→∞

E

[

∑

i∈T(ℓ)3

µ
(ℓ)
1 µ

(ℓ)
i

]

+ lim
n→∞

E

[

∑

i∈T(ℓ)4

µ
(ℓ)
1 µ

(ℓ)
i

]

+ lim
n→∞

(

E

[

∑

i∈(T(ℓ))c

µ
(ℓ)
1 µ

(ℓ)
i

]

− nΛ′(1)(x(ℓ))2
)

. (4)

(a) µ
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1
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Fig. 3. Left: Graph representing the four types of edges contained inT
(2):

(a) root edge, (b) element ofT1, (c) element ofT2, (d) and (f) are elements
of T3 and (e) and (g) are elements ofT4; Right: The graphG(ℓ)

T
. It contains

ℓ layers of variable nodes “above” the root node and2ℓ “below.” The gray
area represents the computation tree of the root edge.

For i ∈ T
(ℓ), it is clear thatµ(ℓ)

1 and µ
(ℓ)
i are correlated

since their computation trees intersect and thus they are based
on some common received values. It was shown in [7] how
to compute the first five terms in (4) for the case of regular
ensembles (more precisely, it was shown how to compute the
leading order term; in our current context we compute the
exact such expressions). The computation of these terms for
the irregular case is similar and, hence, we skip the details.

Let us rather concentrate on the sixth term, denote it by

Sc = lim
n→∞

(

E

[

∑

i∈(T(ℓ))c

µ
(ℓ)
1 µ

(ℓ)
i

]

− nΛ′(1)(x(ℓ))2
)

.

At first one might think that the root message and a message
on an edge in(T(ℓ))c are uncorrelated since their computation
graphs do not intersect. Indeed, this is the case for a regular
ensemble, for whichSc is equal to− | T(ℓ) | (x(ℓ))2. The
computation ofSc for irregular ensembles on the other hand
is considerably more challenging; let us discuss this now.

A. Degree Distribution Correction

The message of the root node is a function of the specific
realization ofG(ℓ)

T
. For the regular case, if we consider a fixed

number of iterations and the limit ofn tending to infinity, there
is only oneG

(ℓ)
T

which has a positive probability (namely a
regular tree of the appropriate height). But for the irregular

case many such computation graphs have a strictly positive
probability in the asymptotic limit. Suppose, e.g., thatG

(ℓ)
T

contains an unusual large number of variable nodes of high
degree (as compared toλ(x)). In this case we expect the
average (over the noise realization) reliability of the message
emitted by the root node to be higher than what is predicted
by density evolution. ButG(ℓ)

T
indirectly also influences the

messages in(G(ℓ)
T

)c. This is true since the total number of
nodes of a given degree is fixed. Therefore, in the above case
we know that(G(ℓ)

T
)c contains fewer variable nodes of high

degree than expected. This causes a small deviation of the
degree distribution of(G(ℓ)

T
)c as compared toλ(x) and, hence,

a small deviation of average message in(G
(ℓ)
T

)c as compared
to density evolution. Even though this deviation is only of
order1/n, there are of ordern messages inside(G(ℓ)

T
)c and

so this deviation gives a non-vanishing contribution even in
the limit of infinite blocklengths.

Let us write down this effect explicitly. Given the degree
distribution polynomialsλ(x) and ρ(x), define the operators
λ(x) =

∑

i λix
⋆(i−1) and ρ(x) =

∑

i ρix
�(i−1), wherex is

a density,⋆ is the convolution at variable nodes and� is
the convolution at check nodes. This extends to the respective
derivatives in the natural way:λ′(x) =

∑

i(i−1)λix
⋆(i−2) and

ρ′(x) =
∑

i(i− 1)ρix
�(i−2). Let us also define the two func-

tions V G
(ℓ)
T (x) =

∑

i V
G

(ℓ)
T

i x
⋆i andCG

(ℓ)
T (x) =

∑

i C
G

(ℓ)
T

i x
�i,

whereV
G

(ℓ)
T

i andC
G

(ℓ)
T

i are the number of variable nodes and
check nodes inG(ℓ)

T
, respectively.

Consider the degree distribution of(G
(ℓ)
T

)c. We know the
overall degree distribution and we are given the degree dis-
tribution of G

(ℓ)
T

itself. Therefore, by removingG(ℓ)
T

from
the overall bipartite graph we see that the distribution of

(G
(ℓ)
T

)c changes by∆λ(x) = V (G
(ℓ)
T

)′ (1)λ(x)−V (G
(ℓ)
T

)′ (x)
nΛ′(1) +

O(1/n2) at the variable node side and∆ρ(x) =
C(G

(ℓ)
T

)′ (1)ρ(x)−C(G
(ℓ)
T

)′ (x)
nΛ′(1) + O(1/n2) at the check node side.

Consider the effect on density evolution which is caused by
this small deviation of the degree distribution. Leta

(j) be the
density of messages from variable to check nodes in iteration j
and let∆̃a

(j) be the deviation of this quantity due to the devia-
tion of the degree distribution. The density evolution recursion
in (G

(ℓ)
T

)c at time j becomesa(j) − ∆̃a
(j) = λ(ρ(a(j−1) −

∆̃a
(j−1))−∆ρ(a(j−1)−∆̃a

(j−1)))−∆λ(ρ(a(j−1)−∆̃a
(j−1))−

∆ρ(a(j−1) − ∆̃a
(j−1))), with ∆̃a

(0) = 0. By expanding this
expression, we obtain

∆̃a
(j) =

1

nΛ′(1)

(

V (G
(ℓ)
T

)′(1)a(j) − aBMS ⋆ V (G
(ℓ)
T

)′(b(j))

+ C(G
(ℓ)
T

)′(1)aBMS ⋆ λ′(b(j)) ⋆ b
(j)

− aBMS ⋆ λ′(b(j)) ⋆ C(G
(ℓ)
T

)′(a(j−1))
)

+ aBMS ⋆ λ′(b(j)) ⋆
(

∆̃a
(j−1)

� ρ′(a(j−1))
)

+ O(1/n2),

whereb
(j) is the density of messages from check to variable

nodes in iterationj andaBMS is the channel density.



B. Messages Correction

The second term which gives a non-vanishing contribution
in the irregular case is due to messages that flow across the
boundary fromG

(ℓ)
T

to (G
(ℓ)
T

)c. These messages influence the
neighbors ofG(ℓ)

T
and thus the average densities in(G

(ℓ)
T

)c.
Indeed, assume that the average density of messages which
flow from G

(ℓ)
T

across the boundary to(G(ℓ)
T

)c at time j < ℓ

is not a(j) but a
(j)
⋆ . This influences messages up to a distance

ℓ − j away from the boundary.
Let ∆̂a

(ℓ) be the deviation ofa(ℓ) due to the deviation of
density which flows out ofG(ℓ)

T
. Due to space constraints we

skip the derivation of̂∆a
(ℓ) but rather discuss how both these

terms influence the computation of the variance.

C. Putting it Together

We have seen above thatµ
(ℓ)
1 andµ

(ℓ)
i , with i ∈ (T(ℓ))c, are

both influenced by the realization ofG
(ℓ)
T

through the degree
distribution correction and the messages correction. We can
thus writeSc as

= lim
n→∞

(

E
G

(ℓ)
T

[

∑

i∈(T(ℓ))c

E

[

µ
(ℓ)
1 µ

(ℓ)
i | G

(ℓ)
T

]]

− nΛ′(1)(x(ℓ))2
)

= lim
n→∞

(

E
G

(ℓ)
T

[

(nΛ′(1) − |T(ℓ)|)E
[

µ
(ℓ)
1 |G(ℓ)

T

]

E

[

µ
(ℓ)
i |G(ℓ)

T

]]

− nΛ′(1)(x(ℓ))2
)

, i ∈ (T(ℓ))c

= lim
n→∞

nΛ′(1)
(

E
G

(ℓ)
T

[

E

[

µ
(ℓ)
1 |G(ℓ)

T

]

E

[

µ
(ℓ)
i |G(ℓ)

T

]]

−(x(ℓ))2
)

− lim
n→∞

E
G

(ℓ)
T

[

| T(ℓ) | E

[

µ
(ℓ)
1 | G

(ℓ)
T

]

E

[

µ
(ℓ)
i | G

(ℓ)
T

]]

, (5)

wherei ∈ (T(ℓ))c and where in the second equality we have
used the fact thatµ(ℓ)

1 and µ
(ℓ)
i are independent once we

condition onG
(ℓ)
T

. Write

E

[

µ
(ℓ)
i | G

(ℓ)
T

]

= x(ℓ) − ∆̃x(ℓ) − ∆̂x(ℓ), i ∈ (T(ℓ))c,

where∆̃x(ℓ) is due to the degree distribution correction and
∆̂x(ℓ) to the message correction. Now note thatE

G
(ℓ)
T

[

E

[

µ
(ℓ)
1 |

G
(ℓ)
T

]]

= x(ℓ). Further,∆̃x(ℓ) = O(1/n) = ∆̂x(ℓ). We can
therefore expand (5) as

− lim
n→∞

nΛ′(1)
(

E
G

(ℓ)
T

[

E

[

µ
(ℓ)
1 | G

(ℓ)
T

]

∆̃x(ℓ) + ∆̂x(ℓ)
])

− lim
n→∞

E
G

(ℓ)
T

[

| T(ℓ) | E

[

µ
(ℓ)
1 | G

(ℓ)
T

]

x(ℓ)
]

= − lim
n→∞

nΛ′(1)
(

E
G

(ℓ)
T

[

E

[

µ
(ℓ)
1 | G

(ℓ)
T

]

E(∆̃a
(ℓ))

]

+ E
G

(ℓ)
T

[

E

[

µ
(ℓ)
1 | G

(ℓ)
T

]

E(∆̂a
(ℓ))

])

− lim
n→∞

x(ℓ)
E

[

V (G
(ℓ)
T

)′(1)µ
(ℓ)
1

]

= − lim
n→∞

nΛ′(1)E
(

E

[

µ
(ℓ)
1 ∆̃a

(ℓ)
])

− lim
n→∞

nΛ′(1)E
(

E

[

µ
(ℓ)
1 ∆̂a

(ℓ)
])

− lim
n→∞

x(ℓ)
E

[

V (G
(ℓ)
T

)′(1)µ
(ℓ)
1

]

,

where we have used the fact thatV (G
(ℓ)
T

)′(1) is equal to| T(ℓ) |,
the number of edges inG(ℓ)

T
. To summarize, we have seen

that in the case of irregular ensembles, due to the degree
distribution correction and the message correction, we can
write Sc as

Sc = − lim
n→∞

nΛ′(1)E
(

E

[

µ
(ℓ)
1 ∆̃a

(ℓ)
])

− lim
n→∞

nΛ′(1)E
(

E

[

µ
(ℓ)
1 ∆̂a

(ℓ)
])

− lim
n→∞

x(ℓ)
E

[

V (G
(ℓ)
T

)′(1)µ
(ℓ)
1

]

.

It remains to express each of the three contributions in terms
of quantities that can be computed by DE. This indeed can be
accomplished. As remarked above, we do not write down the
final expression as it is rather long and not too illuminating.
But Figure 2 shows some sample evaluations.
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