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Abstract— Scaling laws are a powerful way to analyze the wherez = /n(e®® — ¢) and wheres®™ is the threshold of the

performance of moderately sized iteratively decoded spaes ensemble under BP decoding. They further conjectured that,
graph codes. Our aim is to provide an easily usable finite- more accurately

length optimization tool that is applicable to the wide variety
of channels, blocklengths, error probability requirements, and - z _1

decoders that one encounters for practical systems. The tbs Pp(2) =Q (a) (1+0(n"%)), @)
aimed at non-experts in the field, who need to quickly find code ) )
designs that are comparable with the best known codes avalile wherez = /n(e* — fn~5 — ¢€), and where the terngn 3
today but do not hale thehluxuryhof Sp‘;“d'ng months in d0||r}g represents &inite-length shifof the threshold (the point where
so. In previous work we have shown how to compute scaling yne pnck error probability takes on the value one-half)isTh
parameters for transmission over the binary erasure channke fined ling | h to b t for left |
as well as general channels and general gquantized message!®N€d Scaling law was shown 10 be correct for left-regular
passing decoders when applied taegular ensembles. In this right-Poisson ensembles by Dembo and Montanari [5].
paper we show how to compute the message variance for a Analytically, the scaling law promises the convergence of
fixed number of iterations for irregular low-density parity-check Pg(z) for a fixed = andn tending to infinity. In practice, the

ensembles. From these calculations the basic scaling parater o . . L
can be deduced by determining the leading term of the limitiry scaling law provides accurate predictions already for mate

expression when the number of iterations tends to infinity ad the ~ Plocklengths and also away from the threshold; see e.g., the
channel parameter approaches the density evolution thresiid. ~ middle graph in Figure 1. The analysis put forward in [2],
[1] was based on the so callgeeeling decodetby Luby,
Mitzenmacher, Shokrollahi, Spielman, and Steman, [8]sThi
Let us first trace the past developments in our effort to usRcoder is equivalent to the standard BP decoder but reypisese
scaling laws for the efficient optimization of moderatelgesi the decoding process as a sequence of discrete steps, where
and iteratively decoded sparse graph codes. In Section Il w&ch step corresponds to determining a previously erased bi
then present the recent progress. from its known neighbors. It was shown in [2], [1] how to
The idea of scaling laws was introduced to coding theogetermine the scaling parameterfrom the solution of a sys-
by Montanari [9]. By means of a specific example (regulaem of differential equations, which were dubbed covaréanc
ensemble, binary symmetric channel with paramejehe evolution. Unfortunately no analytic solution of this syt is
showed that if one plots the block error probability as Rnown to date; thereforey had to be computed numerically.
function of the “scaled variableZ = \/n(e" —¢) (Wwheree®™ is  An alternative way to determine for the BEC case was
the density evolution threshold), then the curves cornedpo proposed in [3]. Recall that density evolution computes the
ing to increasing blocklengths quickly converge to a singlgyerage number of erased messages as a function of the
“‘mother curve”. This common curve is called tisealing jteration number. It was shown in [3] thatcan be computed
function A particular example can be seen in the right-hangl, determining thearianceof the number of erased messages.
side graph in Figure 1. This suggested that if one were alfiis computation was accomplished in [4] and an explicit
to analytically determine the scaling function as well as thjajue fora as a function of the degree distribution paN; )
scaling parameters for a given system (degree distributiqas given. Further, explicit expressions férwere derived.
channel, decoder) then it would be possible to efficientlyf arsjven these explicit expressions of the scaling parameiters
accurately predict the finite-length performance of i®eat js then easy to accomplish a finite-length optimization.
coding systems. All these developments were restricted to the BEC. The
The first analytic result was derived by Amraoui, Montanarfirst step towards extending the scaling law to more general
Richardson, and Urbanke [2], [1]. They showed that, fQihannels was accomplished in [6]. In this paper the authors
transmission over the binary erasure channel (BEC) wiglynsidered transmission over the binary symmetric channel

I. INTRODUCTION

parametek, the block error probability behaves like (BSC) and decoding via the Gallager algorithm A. This algo-
B z rithm has the property that for most ensembles the thresbkold
Pp(z) =@ ( ) (14 0a(1)), given by a fixed point at thieeginningof the decoding process.



This somewhat simplifies the determination of the scaling la As mentioned above, we are interested in the value of
and the scaling parameter. this variance in the limit ag tends to infinity and when

As explained above, the derivation affor the BEC in [4] the channel parameter approaches the threshold from above.
is based on the peeling decoder. Unfortunately, no generabr each fixed channel parameter unequal to the threshold the
ization of the peeling decoder to general channels is knowimit lim,_, ., lim,, V,(f) exists and is finite. But the value
Ezri, Montanari, and Urbanke proposed in [7] an alternativa& this variance diverges when we let the channel parameter
computation model to determine the scaling parameter approach the threshold from above. One can show that the
This is based on an EXIT-like curve, a concept which imit lim, | ,ve lim,_,o VO (z — 2")? = ¢ exists and is finite.
easily extended to general BMS channel. In more detalih other words, close to the critical value®, lim,_, ., V©
consider transmission over a BMS channel characterized lghaves like /(z —2"")2. For the determination of the scaling
its channel entropy and decoded with a generic quantizegparametery one needs to determine the constanthis has
MP decoder which satisfies the standard message-pasdsiegn accomplished faegular ensemble in [7]. Therefore, for
symmetry conditions [10]. To be concrete, assume that thegular ensembles the scaling parametetan be computed
messages sent in the decoder are quantized and that they #adde can be used to predict the performance. Figure 1 shows
their values in a real-valued finite alphalfetw,,, ..., w,}, the prediction given by the scaling law for @, 4)-regular
m € N, where0 = wy < w; < --- < wy. This ensemble used over a BAWGN channel and decoded with a
representation is particularly convenient for the impottdass quantized BP decoder.
of quantized belief propagation (BP) decoders. In this case

we assume that the messages represent actual log-likdliho Tz f;’i 10
values. The decoding rules are then the standard BP decodi—"
rules followed by a quantization to the nearest element ef th ;4,/ 107 107
alphabet. | S o® |95
Given the symmetry of the channel and the decoder, we h Lo 11 1.2 ¢ o pMP L g~ F)

can assume that the all-zero codeword was transmitteca Let 1 Left EXITik for the (3,6)-cod the BEGH
- . . . . L ert. -lIke curve ftor e ,0)-Ccode over e ~
denpte the_ f')fed point message_denSIty of density evoluti .42944. Note that we plotl — 2 (and notz) versush so that the curve looks
(This density is of course a function of the channel parametgke a standard EXIT curveMiddle: Block error probability of a (3,4)-code
but to simplify notation we omit this dependence.) Mor&ansmitted over an AWGNC and decoded with a 15-quantizaevels BP
. . . . N BP = i
precisely, this is the variable to check node message dens“iﬂire gl'e oo Ereb.?.o””demu' 015*8'12P3p1'2043' Compa”s‘?ﬂ
. i 2mal . of the block error probal ”NEGGLDPC( 3m4)[ 2(G, )] (crosses wit
Pick a functiong, ¢ : R — R. Although many choices g

nz3,3
. T % confidence intervals) determined via4simulati0ns with theves given
are possible, for the sake of definiteness, let us assume thahe scaling law fory ~ 0.97. The lengths are, = 1024, 2048, 4096, and

fora densit € R, €(v) = un, Whereuy, is e valle S e 0 Sy v st o e s 1o
of the maximum component of. Definer = @(a), Whl(_:h 200, respectively, Wzregcoun-teﬂtiyht: Rescaled block error grok’)abili’ty with
“measures” the performance of the decoder. The special Ca8@ect to. — \/n(h— 1" + Bn=3 ), whereh — ha(0) and wherdha(-) is
™ is the value ofz corresponding to the density evolutiornthe binary entropy function. Note that the simulations peoadl cluster around
threshold. Define an EXIT-like curve as the curve WhiCPﬂe singlemothercurve. This curve is the standaé@-function.
represents: as a function ofh as depicted on the left-hand
side of Figure 1.

In order to be suitable for the derivation of a scaling law we
require that the slope of the EXIT-like curve at the thredhol AS explained above, the key to computing the scaling
" must be infinite and that its second derivative must Harametex: is to compute the variancg® = lim,, . V5"
strictly non-zero at this point. It was shown in [7] that irigh and from this the limit) = lim; .., V(). Although strictly

II. VARIANCE FOR A FIXED NUMBER OF I TERATIONS

casex can be expressed as speaking we only need the dominant termgfwe opted to
compute the exact expressioi). This makes it possible to
0%h(x) ) e Vv verify the expressions against simulations before takhmy t
“T T | wlllg}p(ff —a™) ALY (2) limit. The derivation is outlined in Section IV.

The final expressions fa?(¥) are unwieldy and also not very
insightful. We therefore do not reproduce them here. Rather
%et us give a few examples.

Example 1:As a first example, we consider the (3,4)-
regular ensemble used over a BAWGN channel. The decoding
performed by a quantized BP decoder wifiiquantization
vels where the reliability in the decoder is bounde®bi2.

More precisely, the 5 quantization levels are chosen equally

var (Z*eg N@) spaced in the domair-8.12, 8.12]. Thg message—pagsing rules
! v are the standard BP message-passing rules (applied always t

nA’(1) pairs of incoming messages) followed by a quantization ¢o th

where V = limy_ o lim,_ o ff), and whereV,(f) is the
messagevariance More precisely, let us number all edge
in the graph froml to nA’(1). Defineyl(.e) = 1 if the variable
to check node message along edgequalsw,, in iteration .
¢ and 0 otherwise. To lighten the notation, let also deﬁn+eS
E={1,...nA'(1)}. In this case, €

Vo =



nearest level. The threshold of this decoder for a BAWGN A further necessary prerequisite in order to be able to effec
channel isof; ¢ 1, =~ 1.2043. The left-hand side of Figure 2 a meaningful finite-length optimization is the development
represents the variance”) as a function of the channelof efficient expressions to determine the error-floor. &itis
after¢ = 0,...,6 iterations. The crosses represent empiricalrrently known on this subject despite its importance for
measurements op¥) for n = 10*. We see that there is anpractical applications.
excellent agreement with the analytic expressions.

Example 2:In our second example, we consider the irregu-
lar ensemble characterized Ayz) = 0.062+0.822%4-0.122°
and p(z) = 0.07522 + 0.82% + 0.125z*. Again we consider V. COMPUTATION OF VARIANCE FORFIXED ¢ — OUTLINE
transmission over a BAWGN channel. Assume a quantized
BP decoder withl 5-quantization levels, where the messages
are bounded by+13.96. The corresponding threshold is Consider the standard LDR@ \,p) = LDPC(n, A, P)
0% 14 06 ~ 1.0489. We plot on the right-hand side in Figure 2ensemble. Recall tha[u”] = 2, wherez(® = ¢(a®).
the variance’¥) as a function of the channel aftee= 0,...,5 As we have seen in Section II, we are interested in computing
iterations. We also plot some points which correspond to an
empirical evaluation of the variance far = 10*. Again we

0\ 012
see an excellent agreement. . E [(Zieg ! )) _E {Zieg i )}
©) () V&= 1
145 1% s nA/(1)
501 407 o (0 @) ®
404 30} I YjieeE {/‘j Hi } ~2jiec E [/‘j }]E {“z‘ }
= lim
;’8" B 20} s n—oo nA’(1)
| o 10} . Y ©, 0] @l ® )
(1)0« ' ' / ' mbr«; 0 ' ' ! ' mb‘_‘; _nli»HOlO Z]E |:/1’]_ /1‘1 :| E |:/J1 :| Z]E |:/1’l :|
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Fig. 2. Left: The varianceV(®) as a function of the channel parameter B nlLHOIO ZE {“1 i } nA (1)(x ) ’ (3)
for £ = 0,...,6. The ensemble i3, 4)-regular, transmission takes place €€

over a BAWGN channel, and decoding is accomplished by a qeshBP
decoder withl5-quantization levels and a maximum message:8f12. The

tEfeShO"_j_Of”miS Combi“dation. is‘i’?,s.;z ~ 1.2043. ;he :ross‘?s fepr‘fgem Let T be the set of indices of all messages whose com-
the empirically computed variances far= 10*. Right: The varianceV : : - £)
as a function of the channel parameterfor £ = 0,...,5. The ensemble putation tree/ intersect the compgtatlon tree ’m“ ! Whe;e
has degree distributior\(z) = 0.06z + 0.82z% + 0.1223 and p(z) = both trees have depth For convenience, we also add 1),
0-h075502| + é’-d&v& b 0-}325504- Transmission ta'ées y%'f;e over & BAWGNindices of edges which are connected to the same variable
channel an ecoding by a quantize ecoaer uantization levels nel) .
and a maximum message d@f13.96. The threshold of this combination node ag an edge a"eadYW . For mStance’ the edges (b)
is 0% 14 95 ~ 1.0489. The crosses represent the empirically compute@nd (f) in the left-hand side graph of Figure 3 are added to
variances fom = 10%. T, even though their computation trees do not intersect the
computation tree of the root edge. L(éff) be the tree formed
I1l. FUTURE WORK by all edges which belong to(®. Thus, G\ is formed by
As we discussed above, we now know how to compute thevariable node Iayers“ abov? the root variable node and
varianceV® = lim,, ., fo) for a general quantized MP variable nodes layers “below” the root variable, as depliate

decoder and general irregular ensembles. In order to campti® fight-hand side of Figure 3.
the scaling parameter, it remains to determine Let us partitionT) into four sets. Orient all edges i@
€= lim lim V“)(x g2 from variable node to check node. L"ef) denote the set of
zla* —oo ' edges which are in the “future” as seen by the root edge and
As might be gleaned from Figure 2 it is difficult to nu-Which are directed in the same direction as the root edgié itse

merically approximate the dominant term from the varianddOre precisely, these are the edges wittiff) which can be
curves for moderate values df close to the threshold ther€ached by paths starting at the root edge and which point in
variance grows very rapidly as a function of the iteratiofl€ same direction as the root edge. NextTigt denote the

number and computational approximations quickly run intget of edges in the future of the root edge but which point

numerical difficulties. in the opposite direction. Lerge) be the set of edges in the

It is therefore necessary to extract the dominant behavigast of the root edge and which point in same direction and,
of the finite£ expressions analytically. For regular ensembldinally, let Tff) be the set of edges which are in the past of the
it was shown in [7] how this can be done. Unhappily theoot and in which point in the opposite direction. These four
finite-¢ expressions are considerably more complicated for thgpes of edges are depicted in the left of Figure 3. (1t)°
irregular case, as it will be explained in the next sectiom. $e the complement of*) in {1,...,nA’(1)} and Iet((}g))c
it remains to be seen how the desired limit can be computédx the corresponding graph. We can then expand (3) as



case many such computation graphs have a strictly positive

o _ 7 ()2 0 (/) probability in the asymptotic limit. Suppose, e.g., t
V= lim E {(“1 ) } +,}LIEOE{ > m } contains an unusual large number of variable nodes of high
iet}” degree (as compared t&(z)). In this case we expect the

4 lim IE{ 3 189 146 )} 4 lim E[ 3 e (4)] average (over the noise realization) reliability of the sagg
n—o0 n—oo emitted by the root node to be higher than what is predicted

(Z) 7 (l) . . . . .

St o €T3 by density evolution. BuGg) indirectly also influences the
+n1LH;OE{ Z ,LLl :U“z } messages ir(Gg))C. This is true since the total number of

et nodes of a given degree is fixed. Therefore, in the above case

we know that(Gé‘f))C contains fewer variable nodes of high
> (4) degree than expected. This causes a small deviation of the
ie(T®)e degree distribution of G\ )¢ as compared ta(z) and, hence,
a small deviation of average message(@{f))C as compared
to density evolution. Even though this deviation is only of
order1/n, there are of orden messages insid(zs.é‘f))c and
¢ so this deviation gives a non-vanishing contribution even i

e the limit of infinite blocklengths.

1 Let us write down this effect explicitly. Given the degree
distribution polynomials\(x) and p(z), define the operators
Ax) = Y A and p(x) = Y, pixB0E-Y, wherex is
20 / A a density,x is the convolution at variable nodes amd is
the convolution at check nodes. This extends to the resgecti
derivatives in the natural way’(x) = >, (i—1)\;x*(=2 and
p(x)=3,6G-1)p x'(i 2> Let us also define the two func-

i eI ! i alf oy G mi
Fig. 3. Left: Graph representing the four types of edges containetf3h tions V= ( ) Z V and C™r (X) - Zz Oz‘ X

(€3} y4
(a) root edge, (b) element af;, (c) element ofTy, (d) and (f) are elements whereV T andO are the number of variable nodes and

of T3 and (e) and (g) are elements Df; Right: The grathg). It contains (i
¢ layers of variable nodes “above” the root node &td‘below.” The gray check nodes "GT , respectively.

area represents the computation tree of the root edge. Consider the degree distribution (JI;_EFZ))C, We know the
overall degree distribution and we are given the degree dis-

Fori € T, it is clear thatu!” and x{”) are correlated tribution of G\ itself. Therefore, by removing:" from

since their computation trees intersect and thus they aied)athe overall bipartite graph we see that the distribution of

on some common received values. It was shown in [7] ho e changes byAA(z) — V(G"A('K))/(1))\(13)—V(G1('K))/(z) N

to compute the first five terms in (4) for the case of regul nA(1)

ensembles (more precisely, it was shown how to compute t él/" at the variable node side andip(z) =

leading order term; in our current context we compute the D )( )C( ' (@) + O(1/n?) at the check node side.

+ lim< [ Z u(/) (/)} —nA'(1)(z9)?

n—oo

nA

exact such expressions). The computation of these terms foConsider the effect on density evolution which is caused by
the irregular case is similar and, hence, we skip the detailsthis small deviation of the degree distribution. L&t be the
Let us rather concentrate on the sixth term, denote it by density of messages from variable to check nodes in iteratio
and letAa¥) be the deviation of this quantity due to the devia-
S¢ = lim <E{ > Mg‘})uf’;)} — nA’(l)(x“)F). tion of the degree distribution. The density evolution msmn
TN Nieoye in (G{”)e at time j becomesal) — Aal) = A(p(ali—1) —

Aali—1D)_ (=1 _A 1) ( D _AaU-1y_
At first one might think that the root message and a mess a’ G _)1) ap A(a (Jj_l) Aa 'jth A))(O)Ai( O(aBj Aadj. )th'
on an edge ir{T®))¢ are uncorrelated since their computatio p(ay™" — Aa bt ). wi ar’ = 0. by expanding this
graphs do not intersect. Indeed, this is the case for a regﬁépressmn we obtain
ensemble, for whichS¢ is equal to— | T¢) | (z(9)2. The 1 o , ©
computation ofS¢ for irregular ensembles on the other hand 2 Aa) = WA (V(GT )(1)a") — agus x V() (b))
is considerably more challenging; let us discuss this now.

+ G (1agus « V(D) b
A. Degree Distribution Correction b(J))*C(Gm) (a (j—l)))
The message of the root node is a function of the specific
realization ofG{”). For the regular case, if we consider a fixed + asms x X' (b)) x (Aa(j_l) p’(a(j_l))) +O(1/n?),
number of iterations and the limit af tending to infinity, there
is only oneGg) which has a positive probability (namely awhereb®) is the density of messages from check to variable
regular tree of the appropriate height). But for the irregul nodes in iterationj andagums is the channel density.

)
(

— aBMs*)\



B. Messages Correction where we have used the fact tﬁé(tcge))'(l) is equal tg T |,

(0 .
The second term which gives a non-vanishing contributidA® number of edges 6" To summarize, we have seen

in the irregular case is due to messages that flow across tat in the case of irregular ensembles, due to the degree
boundary fromGgé) to (Ggé))c_ These messages influence thdistribution correction and the message correction, we can
neighbors ofG{”) and thus the average densities(i@{)c. Write 5° as
Indeed, assume that the average dens;ty of messages which §¢ = lim nA'(1)¢ (IE {A@Aa(@)})
flow from G% ) across the boundary t((G% ))C at timej < ¢ e

(E[ 0 A <e>D

Hy - /a

is nota®@ butal”’. This influences messages up to a distance — lim nA’(1)€

¢ — j away from the boundary. e ON
A o - T () (Gr7) (0)
Let Aal® be the deviation ob(® due to the deviation of Jim z*VE {V (g } :

. . ) .

density which flows out fGT - Due to space constraints Wey; remains to express each of the three contributions ingerm
skip the derivation of\a'®) but rather discuss how both thesg, quantities that can be computed by DE. This indeed can be
terms influence the computation of the variance. accomplished. As remarked above, we do not write down the
final expression as it is rather long and not too illuminating

C. Putting it Together . .
But Figure 2 shows some sample evaluations.

We have seen above thaf’ and”, with i € (T(9)°, are
both influenced by the realization 6£\” through the degree ACKNOWLEDGMENT
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= lim
n—oo
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wherei € (T(¥)¢ and where in the second equality we have4]
used the fact thap:(f) and HEZ) are independent once we [5]

condition onGg). Write "
6
E [ul(-e) | Gg)} =20 — Az® — Az e (1),
~ [7]
where Az is due to the degree distribution correction and
Az to the message correction. Now note tRat.) [IE {Mgé) | (8]

Ggﬂl — 2O, Further,Az(® = O(1/n) = Az®. We can
therefore expand (5) as

El

— tim (1) (Eger [E[uf? | 687 Ba® 4 Az)])
- Jim B [IT0 1B [ 647 o] 0
=— lim nA'(1) (EG@ [E W) | Gg@] @(Aaw))}

g [ 40 16] e
~ lim 2R [V<G5“>’(1) Mg@)}

=~ lim nA'(1)€ (E [N@Aa(f)])
~ lim nA'(1)e (E M‘”Aaﬂ)
~ lim 2R [V<G5“>’(1) Mg@)} :
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