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Abstract— The ‘threshold’ of a code ensemble can be defined The expression (2) provides a rather sharp answer to the

as the noise level at which the block error probability curve above questions, yielding accurate predictions already fo
crossesl /2. For ensembles of low-density parity check codes usedn ~ 103. As an example, we compare the threshold values

over the binary erasure channel, the behavior of the threshold ted f ical simulati ith th dicti
for large blocklengths is known in detail. It is characterized 95 COMPULET Irom numerical simulations, wi € prearctio

by an asymptotic threshold value, and a finite-blocklength shift Provided by the two leading terms in Eq. (2), for tf& 6)
parameter. Here we present a new method for computing the regular ensemble over the BEC, under iterative decoding.
shift parameter that can be applied to general binary memoryless

symmetric channels, and general message passing algorithms. We n €x(n) e (n)
check that the new approach recovers the known parameters fo 256 0.415+0.001 0.414138
erasure correction. 512 0.420 £0.001 0.419801
1024 0.423 £0.001 0.423368

. INTRODUCTION 2048 0.425 +£0.001  0.425615

_ Thethresholdis a key notion in the asymptotic analysis ofrpe motivation for developing such a sharp analytic corigol
iterative coding systems. The present paper treats thetaefin ;o <a it in ensemble optimization [2].

and characterization of thresholds in finite blocklengtts A The infinite block-length threshold, can be computed

shown in [1],finite-length scalingheory provides the correct ¢, general BMS channels, and message-passing decoders,
generalization of the .notion of threshold to this contexd aNysing density evolution [4]. Unhappily, both the method for
answers basic questions such as: qu does the t_hreSkEB%putingﬁ in [1], [2], and the proof in [3] were based on
change at moderate blocklength? Finite-length scaling W@, representation of the decoding process, through a-finite

initially applied to erasure correction. Here we develop @mensional Markov chain [5]. Such a representation only
computation method that allows to answer the above questiQfisis for erasure decoding.

on general binary memoryless symmetric (BMS) channels. Tpis paper develops a new method for computihgthat
To be definite, consider communication over a smoofhes not rely on the Markov chain representation, and is
channel family BM$c), ordered by physical degradation withy, s applicable to general channels. The method is describe
respect to the parameterc [0, 1]. Canonical examples arej section 11, and is based on a simplified model for the
the binary erasure channel BEG and the binary symmet- performance curve that allows to connect the parametera
ric channel BSC). Given an (ensemble) of codeS(n) gifferent quantity that is more directly computable. Thedelo
with blocklengthn and a decoding algorithm, we denote bys expected to be exact for large blocklengths and close to
Pg(n,€) its average block error probability. We define thenreshold. Section Il also describes a way to carry out the
threshold of such an ensemble as the smallest noise levg}|cylation using a branching process representation.
such that the average error probability is at least one half.gjnce the method is based on a few unproven assumptions,
In formulae: it is important to validate it by checking its results. In Sec
_ B [l we recover the known results for the BEC. Applications
c(m)=inf{e st Pene=>1/2}. @) to other channel models will be reported in a forthcoming
How does. (n) behave for moderately large blocklengths (sagublication.
n = 102 to 10°)? Does it increase with? How quickly?
Let us focus on the irregular low-density parity check code
ensemble LDP(u, A, p), and assume it to be ‘unconditionally
stable’ (i.e.\'(0)p’(1) < 1.) It was conjectured in Ref. [1]

II. A NEW METHOD

Our approach is based on a model for the ‘performance
curves.’ Consider, to be definite, a quantized messagengassi
decoder, where the ‘soft decision’ fésth bit, to be denoted
e.(n) = e+ 0723 £ o(n=3). (2) by v;, takes values in a finite alphabdt, and assume that
the all-zeros codeword has been transmitted. Given a famcti
The same paper described a method to compute the s?if;M — R, and the set of decision{s/i(t)} achieved after

parameters, for regular ensembles over the erasure channglessage passing iterations, we define the performance value
The method was generalized to irregular ensembles in [2].

The conjecture was subsequently proved in [3] for the case of B (€) = 1 Z f(y(t)) _ ©)
Poisson left degrees using strong approximation techeique ni= ’



h Here X is a standard normal random variable, aid(-)
a two-sided brownian motion. The performance curve is ob-
tained by selecting the upper branch of this curkg(e) =
sup{h : €,(h) < e}. This behavior is sketched in Fig. 1.
Assuming this model, we can expand the error probability
Pg(n,€) = P{miny e,(h) < €} for e = ¢, + zn~ /2. Using
the results of Ref. [8] on the distribution of the minimum of
€ a Brownian motion with parabolic drift, we get

- ,y4/SQ

| | Pi(n,€) = Q(2/a) + 75 @ (2/a) + O(n /%),
Fig. 1. Sketch of the performance curve for a given code andreia AllBan
realization. Left: channel parameter as a function of the performance whereQ is an universal consta"nalready introduced in [1] We
parameter. The dashed line corresponds to the deterministigp@nent . . . . Lo
h. + LA(e — €,)2 + .... Right: performance versus noise. The actuaimproved our numerical evaluation of this constant obtajni
performances follow the upper branch (thick line.) O =0.996 + 0.001.

Matching the above expression B3 (n, €) with the defi-

tions, or the bit-error rate. Throughout, we will assumt )

be a very large value, such that message passing process has B/ = yBATIE, )

reached a stationary state (not necessarily a fixed point [6] The asymptotic curvé:(e) and hence the constat can
For anye € [0, 1], the quantityh,(¢) is a random variable pe evaluated using density evolution. In order to estimate

because of the graph and of the channel randomness. We WajMsider two noise levelsande + Ae, and letAh = B (e +

instead to think the whole function,, : [0,1] — R as a A¢)—h,,(e). It follows from our model that\k ~ R’ (¢) Ae+

random process, i.e. to defirtg,(¢) and i, (¢') on the same 1/ (¢)3/27 | /Ae/n, where Z is a standard normal random

probability space for any twe, ¢’ (to couplethem.) variable. Therefore, is determined as:
There is a ‘natural’ way for doing this. First draw a random nVar(Ah)
factor graph from the code ensemble: this will be used for alh? = lim lim lim (24)%%(e — ¢,)%/? ——~—
the values ofe. Then recall that the channel family BMS slex Aemfn—roo Ae
is ordered by physical degradation. For any two values of the this formulaAh can be interpreted as the changehin(e)
noise levelss < e+ & there exists a channel(€ §) such that when each symboy; of the received message is transmitted
transmitting through BM& + 6) is equivalent to transmitting through the channel @€, A¢) defined above. In order to obtain
through BMSe) and then e, §). Therefore, one can couplea more explicit expression, lehH; denote the change in
channel realizations on an arbitrarily fine meshe,,...,ex nhn(e) when the symbol received at positiéns transmitted
by transmitting in sequence through BX$), C(e1, ez —€;), through Ge, Ae). Then we expect
C(e2,€3 — €2).... This definesh, (¢) on the mesh. The full L&
function can be defined through a limiting procedure (a more Var(Ah) = — ZVar(AHZ-) + o(Ae).
formal definition uses Markov semigroups [7].) [,
Let us finally mention that the curvie,(¢) can also be de- If the channel family is smooth, we can also take the limit
fined in terms of messages, to be denotedzzﬁ/a (variable to Ae — 0. Let R, ac(z|y) be the transition probability kernel
check node) 08" _, for instance as (here the sum runs over aipr C(e, Ae) (for notational simplicity, we assume the channel

a—1"

the edges in the factor graph) (¢) = n~—' raren f(Vi(t—)>a)' to be discrete.) For smalle, this admits the Taylor expansion

We shall further discuss this point in Section Il Rene(zly) = I(z = y) + AeLe(2]y) + o(Ae). If AHy(z)
denotes the change i, (¢) when the received symbol at
A. Shift from variance is changed to;, we get, forb = 1,2

In the infinite block-length limit, the performance curve is E{(AH;)"} = Ae > " E{Lc(z[y;) AH;(2)"} + o(Ae).
expected to converge to a non-random lif{t). For uncon- z

ditionally stable ensembles, this limit curve exhibit a @gu Using these results in the expression f@rwe get

root singularity at the critical pointa(e) = h. + ©(y/e — €.). .

It is therefore natural to think of as a function ofh with (in 7= lim (24)°%(e — e)*2 3 TE{Le(=lya) AH(2)} . (6)
the simplest case) a decreasing and an increasing brarech: th i

inverse of the latter give rise to the functidrfc). Near the Here it is understood that the expectation &ff;(z)* is
critical point we have(h) = e, +2 A(h—h.)?+O((h—h.)?). computed in the large blocklength limit. If changing the
Our model for the performance curve at blocklengtis (up
to higher order terms)

A
en(h) ~ e, + 3 (h —h.)? +

!Defined by = [5*[1 — K(2)]>dz and

du.

[ Ai(u)Bi(2'/32 + du) — Ai(2Y/32 + iu)Bi(iu)
vy K(z) = / 2Ai(iu)

%X—F%W(h—h*). @)



received value at nodeimplies a bounded number of changes
in other decisions, this expectation only involves the loca
structure of the factor graph that defines the code. As a
consequence, its limit is obtained through a tree compmuitati

In Section 1I-C we’ll see how to do this computation, and
hence obtairs via a branching process representation. Before
this, a brief intermezzo on this topic is probably helpful.

B. Multi-type branching processes
A d-type branching process is a Markov chain with state

spaceN?. It is defined byd random variablesx ("), X(2) Az
..., X with values inN? as well, Given the current state
_ i ; ; Fig. 2. The neighborhood of variable nodén the factor graph. Changing

Zr = (Zt’l’ "Zt’d)’ Its state at ime + 1 Is the received symbol frond to 1 induces a change in one of the outgoing

d Zes messages fromw; to vo. In this caselV = 1. In Section IlI-B, to compute

- i) /- the variance recursively, the factor graph is divided inibteee B;’s.
Zipa = > X9, 7 '
i=1 j=1

First, as stressed above the computation can be done by

where thex () (4)’s are iid copies ofX (). The initial condition assuming the factor graph is an infinite random tree, rooted
will be Z© L W for some random variablg’. at ¢, whose distribution models the local structure of the

The trajectory of a branching process can be representedc’dég?'nal graph. Consider, to be specific, random codes fiuen t
a rooted tree whose vertices takdistinct colors. The defining LPPC(A; p,n) ensemble (hera, p are the variable and check
property of a branching process is the following. The numb8Pdes degree distributions from edge perspective.) Then th
of offsprings of each vertex, and their colors is conditigna tree is |ts.elf a branching process with offspring distribos
independent from the rest of the tree, given the parentsrcol* (for variable nodes) and (check nodes) except at the root
We will be interested in branching processes that termind#'0Se degree distribution (generating polynomial\ig’) =
almost surely. The total number of elements of typie the Jo A(w)du/ [y A(u)du.
process, defined a& = Y,., Z:; is then almost surely Consider a realization of the channel output= {y;}
finite. A special role is played by thé x d matrix K with (whereby each variable node is associated a sympoland

entries K;; = I,; — M;; where M;; = E{X;i)}. The the one obtained by replz_acirm with z. Imagine to run in
expectation ofl" = (Ty,Ts,...,Ty) (that is a vector inR%) parallel the message passing decoder for these two reafisat
and its covariance (d x d matrix) are then given by At time t, a subset of the outbound messages will differ
between the two, and a subset of the decisions on nodes
E{T} = (K")"'E{W}, adjacent to those messages will differ as well. Focus, to be
L d o definite, on check-to-variable messages. The branchirgepso
Cov(T,T) = Cov(W,W)+ Y E{Ti}Cov(X,X™). e want to construct has vertices in correspondence with
i=1 the messages of this type that differ in the two realizations
where W = (KT)~'w, X = (KT)~1 X, The ‘color’ of each vertex encodes the type of change. More

The branching process terminates almost surely Rfecisely, assume that both messages and decisions tales val

lp(M)]|| < 1. We will consider the case in which the largest of? the same finite alphabett, and leta — j be a check-

its singular values is close to Call ¢ this value, letu, v € R¢  to-variable edge whose message Changaf’l(fﬁj = v in

be its left and right eigenvectors (with’v = 1), and 7, = the first realization ands in the second, while the decision
gT'T for some vectory € RY. ThenE{T,} ~ Cy(1 — &)1, is 1{]() = 1 in the first realization and’, in the second,
Var(T,) ~ Co(1—£)~2 (here~ indicates equality up to lower then the corresponding vertex in the branching process will

order terms ag — 1) and be of type (v, v, 1, 9). Therefore the number of types is
. . d = [M[*(|]M]| — 1)2. This can be significantly reduced in
C1 = (u gE{v" W}, (8)  specific cases.
d . . .
, It is convenient to denote b¥.(y,z) a random variable
_ T \2 T T 7
Gy = (uTg)’E{u"W}Y uiVar(w'XW). (9) gistributed as\ H,(z) conditional ony; = y. Its moments can

=1 be computed along the lines discussed in the previous Bectio

C. Variance computation through branching processes provided:

Consider the computation dt{AH;(z)?} that enters the (1) The initial condition\W (y, z) is distributed as the number
definition ofv2, cf. Eqg. (6). With the notation of the previousof changes in the messages outgoing from the check nodes
Section, we will show that\ H;(z) = T for a properly chosen adjacent tai, cf. Fig. 2.
branching process and vectarThe branching process will be (2) The random variableX ) is distributed as the number of
identified by describing its representative tree, and shgwichanges in messages outgoing from check nodes at distance
that offsprings at any two different vertices are indepede ¢+ 1 from ¢, when their parent was of type= (v, 12, 171, 12)



(3) The vectorg has entrieg)(vy, va, 1, 1) = f(v2) — f(11)

call it j, and callc the function node betweenand ;. Denote

(if the performance curve is defined with respect to mes3agéy « (resp.b) the probability that variable-to-check (check-to-

or = f(2) — f(1) (if it is defined with respect to nodes.)

variable) messages are erased, at the density evolution fixe

We shall denote byC;.(y,z) the constants defined inpoint. Recall that these quantities satisfy the equations

Egs. (8), (9). We then hav%% = E{L(2|yi)Tu(yi, 2)} ~

> E{Lc(2|y;)Ci(yi, 2) }(1 — €)1, This expression provides

eA(d), b=1—-p(1 —a).
The probability that the decision gt changes when the

a relation betweerC'; = Y E{L.(z,y;)Ci(y;,2)} and the received value at: changes is the product of three factors:
constantA introduced in Section 1l-A. Using this relation in(7) the probability that the message frointo ¢ is * when
Egs. (5) and (6) in conjunction with the expressions (8) antle received messagesais = (equal toa); (i) the probability

(9) we obtain our final formula

3/2 _ V28
E{vTW}

d
Z u;Var(vT X)) |
i=1

where W = > L(z|y))W(yi, 2)
limeje. ve—e./(1—&(e)).

IIl. THE BINARY ERASURE CHANNEL REVISITED

(8/) (10)

and S

In this Section we apply the formulae derived above to the.m
BEC(¢), and check that the result agrees with the ones
[1], [2]. We further recompute the variance of the numbe
of changes in Section 1lI-B through an elementary methq

that all the messages comingddrom variable nodes different
fromi andj are0’s (this isp’(1—a)); (i#4) The probability that
the received symbol at is x alongside with all the messages
to j different from the one fronme (this is A(b)). Collecting
these factors, we get:

EW(0,%) = A'(1)A(b)ap’ (1 — a). (12)
Arguing along the same lines, one can show that S
.—, Bi where theB;’s are iid Bernoulli random variables
th meanap’'(1 — a)/[1 — p(1 — a)], andP{M = m} =
+10™/A(b). It is then straightforward to compute the first
0 moments:

that does not use the branching process representation. In

both approaches it turns out to be important to define the E{X} = e\ (b)p/(1 - a)
performance curvé,(e) through node rather than message
guantities. We suspect this to be a peculiarity of the esasur N
channel, related to the fact that a message can change value +(ap' (1 —a)/b)? ( )

without any influence on the node reliabilities. We shaltlier
discuss this point in [7].

; (13)

Var(X) = e\ (b)p' (1 —a) (1 —ap'(1 —a)/b) + (14)
(b)  yN(b) 52)\’(5)2)

A(b) A(b)?

Obviously(e) = eX (b)p' (1 — a), whence by simple calculus

Ab)

For reference the asymptotic threshold and shift parameter

for a few (I, k) regular ensembles aré¢3,4), e, ~ 0.6473,
B/ ~ 0.5936; (3,5), €. ~ 0.5176, 3/Q ~ 0.6161; (3,6),
€. ~ 0.4294, B/Q ~ 0.6169; (4,5), €. =~ 0.6001, 3/Q
0.5716; (6,6), €. ~ 0.5061, 3/Q ~ 0.5743; (5,6), €.
0.5510, 5/§2 ~ 0.5596.

The general formula for regular ensembles is

B_(l-2 2/361/3 l +(I<;—2)c1*72
Q oll-1 1—a,

wherea,, b, > 0 solve the density evolution equations=
b1, b=1—(1—a)*! at the critical pointe,.

Qo

~1/3
, (112)

A. Shift via branching processes

S = V20, [N (a:)p/ (1 = a.)? = Ab)p" (1 — a)].

(herea,, b, refer to the density evolution fixed pointat e,.)
Finally, the shift parameter is obtained by specializing @Q)

to the present case/Q = {v/2S Var(X)/EW (0, +)}?/3, and
substituting Egs. (12), (14) and (15). The result can be show
to coincide with the one reported in [2] and with Eq. (11) for
regular ensembles.

(15)

B. Shift via correlations

Consider a regulafl, k) ensemble and lefA H; denote the
number of variable nodes whose decisions change when the
received symbol at root nodepasses from to 0. In order to

Two simplifications arise for the BEQi) Messages only check the branching process representation, and to deselop
take two valuegx, 0} and only change from to 0 if noise is  gjternative route, we computédar(AH;) via a more direct
decreased(ii) The branching process keeps its conditiongbcyrsive approach. The result can be used to compute
independence property even if the type only involves thfrough Egs. (6) and (5). In Fig. 3 we compare the result

node decision. As a consequence, the branching process dfagis calculation with numerical simulations on i, 6)
d = 1 type of vertices, corresponding to variable nodes whoggsemble.

decision changes from to 0.

Let us now sketch the direct approach, focusing on the

Formally, we have a single scalar variabte and a scalar gading terms as | e.. Denote by #,(y) the message

W. Two channel realizations for BE€) and BEGe+ A¢) are
coupled using an erasure channel with kerRgla.(x|*) =1
and R, ac(s|s) =1 — Ae/(1 —€), Reac(x|s) = Ae/(1 —¢),
whenceE{vTW} = EW (0, ).

In order to comput& W (0, *), notice that has, on average,
A'(1)p' (1) neighboring variable nodes. Consider one of them,

passing decision at variable noglevhen the vector of received
symbols isy. Further, lety(?), y(*) be the same vector, where
y; has been replaced (respectively)bgndx. To each variable
node; we associate the value

f(j) = Ha;(y ) = 0} — I{a;(y™) = 0} (16)



07— all the incoming messages tdrom check nodes other than

: arex's (this isb!~1); (ii) the probability that all the incoming
messages ta; from variable nodes different from and j
are0's (this is (1 — a)*~2); (iii) the probability the received
symbol atj with all the incoming messages from check nodes
other thana; andb, are «'s (this is eb'~2). Collecting these
terms, using the density evolution equations, we get

rescaled VAR( H)

BfB)? = SO pea) =1
B8ae o5 06 oj£7 08 0.9 1 { ( 1) } B eb(l _a) { ( 1) | (Vi_”h) B }
a(l —b) 9
Fig. 3. Rescaled variancd/ar(AH;)(1 — &(e))3, for the (3,6) regular = b(1 — a) E{f(4:)7}, (19)

ensemble over BEE). Comparison of the variance determined via simula- ) )
tions (dots with95% confidence intervals) with the prediction given by thewhere the second identity can be shown to follow from the

recursive approach. The blocklengthris= 50000. definition Off(u- )

1—ay )
For any set of variable node§ C V, we let f(U) = The second term in Eq. (18) is treated similarly Notice that
eu f(7). Then we haveAH; = f(V). f(B1) andf(B,) are conditionally independent given that mes-

As above, we shall comput®ar(f(1)) on a tree rooted S2ges frony tob, andb, change. FUrthek{f(B:)|f(vi—a,) =
at nodei, cf. Fig. 2. The root node hasneighboring check 1} can be computed using the methods from [2],
nodes denoted by;, j = 1,...,l, and each of these node is a?(1—b) )
the root of an identical subtree denoted Ay. Decomposing E{f(B1)f(B2)} = HE{‘C(&)“(W—’@J =1}
V' into these identical subtrees, we get, (1 - b) < £(6)
1

Var(f(V)) =1 Var(f(A;)) + 1(I — 1) Cov(f(4;1),f(42)) . (17) (1 —a)(l—1)2 - {(e)) - (20)

Using the computation methods from [2], one can show th@fith these results, to finBl{f(A;)?}, substitute Egs. (19) and
Cov(A1, Az) = O((1 — £(e))72), where&(e) = eX'(b)p'(1 —  (20) to (18), and solve the recursion. Neglecting lower prde
a). This is a lower order term, hence negligible @3 €.. terms we get
Further, sinceE{f(A4;)} can be shown to be of orddil — 5 5
£(¢))~1, we can focus on computing{f(A4;)?}. E{f(A;)?} ~ (k—D=2)a"(1-b) ¢&() = (21)

This quantity can be decomposed into further subtrees. The (=1 e(l—a) (1-¢()
root of A; (which we calleds;) has(I—1)(k—1) neighboring Finally Var{AH;} = Var{f(V)} ~ IE{f(A;)?} plus lower
check nodest;, which we denoté;, j = 1,...,(I—1)(k—1), order terms.
each of them being the root of subtrég. We thus get
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