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Abstract— The ‘threshold’ of a code ensemble can be defined
as the noise level at which the block error probability curve
crosses1/2. For ensembles of low-density parity check codes used
over the binary erasure channel, the behavior of the threshold
for large blocklengths is known in detail. It is characterized
by an asymptotic threshold value, and a finite-blocklength shift
parameter. Here we present a new method for computing the
shift parameter that can be applied to general binary memoryless
symmetric channels, and general message passing algorithms. We
check that the new approach recovers the known parameters for
erasure correction.

I. I NTRODUCTION

The thresholdis a key notion in the asymptotic analysis of
iterative coding systems. The present paper treats the definition
and characterization of thresholds in finite blocklength. As
shown in [1],finite-length scalingtheory provides the correct
generalization of the notion of threshold to this context and
answers basic questions such as: How does the threshold
change at moderate blocklength? Finite-length scaling was
initially applied to erasure correction. Here we develop a
computation method that allows to answer the above question
on general binary memoryless symmetric (BMS) channels.

To be definite, consider communication over a smooth
channel family BMS(ǫ), ordered by physical degradation with
respect to the parameterǫ ∈ [0, 1]. Canonical examples are
the binary erasure channel BEC(ǫ) and the binary symmet-
ric channel BSC(ǫ). Given an (ensemble) of codesC(n)
with blocklengthn and a decoding algorithm, we denote by
PB(n, ǫ) its average block error probability. We define the
threshold of such an ensemble as the smallest noise level
such that the average error probability is at least one half.
In formulae:

ǫ∗(n) ≡ inf
{

ǫ s.t. PB(n, ǫ) ≥ 1/2
}

. (1)

How doesǫ∗(n) behave for moderately large blocklengths (say
n = 102 to 105)? Does it increase withn? How quickly?

Let us focus on the irregular low-density parity check code
ensemble LDPC(n, λ, ρ), and assume it to be ‘unconditionally
stable’ (i.e.λ′(0)ρ′(1) < 1.) It was conjectured in Ref. [1]

ǫ∗(n) = ǫ∗ + β n−2/3 + o(n−2/3) . (2)

The same paper described a method to compute the shift
parameterβ, for regular ensembles over the erasure channel.
The method was generalized to irregular ensembles in [2].
The conjecture was subsequently proved in [3] for the case of
Poisson left degrees using strong approximation techniques.

The expression (2) provides a rather sharp answer to the
above questions, yielding accurate predictions already for
n ≈ 103. As an example, we compare the threshold values
as computed from numerical simulations, with the prediction
provided by the two leading terms in Eq. (2), for the(3, 6)
regular ensemble over the BEC, under iterative decoding.

n ǫ∗(n) ǫasym
∗ (n)

256 0.415 ± 0.001 0.414138
512 0.420 ± 0.001 0.419801
1024 0.423 ± 0.001 0.423368
2048 0.425 ± 0.001 0.425615

The motivation for developing such a sharp analytic controlis
to use it in ensemble optimization [2].

The infinite block-length thresholdǫ∗ can be computed
for general BMS channels, and message-passing decoders,
using density evolution [4]. Unhappily, both the method for
computingβ in [1], [2], and the proof in [3] were based on
the representation of the decoding process, through a finite-
dimensional Markov chain [5]. Such a representation only
exists for erasure decoding.

This paper develops a new method for computingβ, that
does not rely on the Markov chain representation, and is
thus applicable to general channels. The method is described
in Section II, and is based on a simplified model for the
performance curve that allows to connect the parameterβ to a
different quantity that is more directly computable. The model
is expected to be exact for large blocklengths and close to
threshold. Section II also describes a way to carry out the
calculation using a branching process representation.

Since the method is based on a few unproven assumptions,
it is important to validate it by checking its results. In Section
III we recover the known results for the BEC. Applications
to other channel models will be reported in a forthcoming
publication.

II. A NEW METHOD

Our approach is based on a model for the ‘performance
curves.’ Consider, to be definite, a quantized message passing
decoder, where the ‘soft decision’ fori-th bit, to be denoted
by νi, takes values in a finite alphabetM, and assume that
the all-zeros codeword has been transmitted. Given a function
f : M → R, and the set of decisions{ν(t)

i } achieved aftert
message passing iterations, we define the performance value

hn(ǫ) =
1

n

n∑

i=1

f(ν
(t)
i ) . (3)
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Fig. 1. Sketch of the performance curve for a given code and channel
realization. Left: channel parameterǫ as a function of the performance
parameter. The dashed line corresponds to the deterministic component
h∗ + 1

2
A(ǫ − ǫ∗)2 + . . . . Right: performance versus noise. The actual

performances follow the upper branch (thick line.)

Well-known examples would be the EXIT or GEXIT func-
tions, or the bit-error rate. Throughout, we will assumet to
be a very large value, such that message passing process has
reached a stationary state (not necessarily a fixed point [6].)

For anyǫ ∈ [0, 1], the quantityhn(ǫ) is a random variable
because of the graph and of the channel randomness. We want
instead to think the whole functionhn : [0, 1] → R as a
random process, i.e. to definehn(ǫ) and hn(ǫ′) on the same
probability space for any twoǫ, ǫ′ (to couplethem.)

There is a ‘natural’ way for doing this. First draw a random
factor graph from the code ensemble: this will be used for all
the values ofǫ. Then recall that the channel family BMS(ǫ)
is ordered by physical degradation. For any two values of the
noise levelsǫ < ǫ + δ there exists a channel C(ǫ, δ) such that
transmitting through BMS(ǫ + δ) is equivalent to transmitting
through BMS(ǫ) and then C(ǫ, δ). Therefore, one can couple
channel realizations on an arbitrarily fine meshǫ1, ǫ2, . . . , ǫK

by transmitting in sequence through BMS(ǫ1), C(ǫ1, ǫ2 − ǫ1),
C(ǫ2, ǫ3 − ǫ2). . . . This defineshn(ǫ) on the mesh. The full
function can be defined through a limiting procedure (a more
formal definition uses Markov semigroups [7].)

Let us finally mention that the curvehn(ǫ) can also be de-
fined in terms of messages, to be denoted byν

(t)
i→a (variable to

check node) or̂ν(t)
a→i, for instance as (here the sum runs over all

the edges in the factor graph)hn(ǫ) ≡ n−1
∑

(i,a)∈E f(ν
(t)
i→a).

We shall further discuss this point in Section III.

A. Shift from variance

In the infinite block-length limit, the performance curve is
expected to converge to a non-random limith(ǫ). For uncon-
ditionally stable ensembles, this limit curve exhibit a square
root singularity at the critical point:h(ǫ) = h∗ +Θ(

√
ǫ − ǫ∗).

It is therefore natural to think ofǫ as a function ofh with (in
the simplest case) a decreasing and an increasing branch: the
inverse of the latter give rise to the functionh(ǫ). Near the
critical point we haveǫ(h) = ǫ∗+ 1

2A(h−h∗)
2+O((h−h∗)

3).
Our model for the performance curve at blocklengthn is (up
to higher order terms)

ǫn(h) ≃ ǫ∗ +
A

2
(h − h∗)

2 +
α√
n

X +
γ√
n

W (h − h∗) . (4)

Here X is a standard normal random variable, andW ( · )
a two-sided brownian motion. The performance curve is ob-
tained by selecting the upper branch of this curve:hn(ǫ) =
sup{h : ǫn(h) ≤ ǫ}. This behavior is sketched in Fig. 1.

Assuming this model, we can expand the error probability
PB(n, ǫ) ≡ P{minh ǫn(h) ≤ ǫ} for ǫ = ǫ∗ + zn−1/2. Using
the results of Ref. [8] on the distribution of the minimum of
a Brownian motion with parabolic drift, we get

PB(n, ǫ) = Q(z/α) +
γ4/3Ω

A1/3αn1/6
Q′(z/α) + O(n−1/3) .

whereΩ is an universal constant1 already introduced in [1]. We
improved our numerical evaluation of this constant obtaining
Ω = 0.996 ± 0.001.

Matching the above expression forPB(n, ǫ) with the defi-
nition of the shift parameter, cf. Eq. (2), we get

β/Ω = γ4/3A−1/3 . (5)

The asymptotic curveh(ǫ) and hence the constantA can
be evaluated using density evolution. In order to estimateγ,
consider two noise levelsǫ andǫ + ∆ǫ, and let∆h ≡ hn(ǫ +
∆ǫ)−hn(ǫ). It follows from our model that∆h ≃ h′(ǫ)∆ǫ+
γh′(ǫ)3/2Z

√
∆ǫ/n, where Z is a standard normal random

variable. Thereforeγ is determined as:

γ2 = lim
ǫ↓ǫ∗

lim
∆ǫ→0

lim
n→∞

(2A)3/2(ǫ − ǫ∗)
3/2 nVar(∆h)

∆ǫ
.

In this formula∆h can be interpreted as the change inhn(ǫ)
when each symbolyi of the received message is transmitted
through the channel C(ǫ,∆ǫ) defined above. In order to obtain
a more explicit expression, let∆Hi denote the change in
nhn(ǫ) when the symbol received at positioni is transmitted
through C(ǫ,∆ǫ). Then we expect

Var(∆h) =
1

n2

n∑

i=1

Var(∆Hi) + o(∆ǫ) .

If the channel family is smooth, we can also take the limit
∆ǫ → 0. Let Rǫ,∆ǫ(z|y) be the transition probability kernel
for C(ǫ,∆ǫ) (for notational simplicity, we assume the channel
to be discrete.) For small∆ǫ, this admits the Taylor expansion
Rǫ,∆ǫ(z|y) = I(z = y) + ∆ǫ Lǫ(z|y) + o(∆ǫ). If ∆Hi(z)
denotes the change innhn(ǫ) when the received symbol ati
is changed toz, we get, forb = 1, 2

E{(∆Hi)
b} = ∆ǫ

∑

z

E{Lǫ(z|yi)∆Hi(z)b} + o(∆ǫ) .

Using these results in the expression forγ2 we get

γ2 = lim
ǫ↓ǫ∗

(2A)3/2(ǫ − ǫ∗)
3/2

∑

z

E{Lǫ(z|yi)∆Hi(z)2} . (6)

Here it is understood that the expectation of∆Hi(z)2 is
computed in the large blocklength limit. If changing the

1Defined byΩ =
R

∞

0
[1 −K(z)]2dz and

K(z) ≡

Z

Ai(iu)Bi(21/3z + iu) − Ai(21/3z + iu)Bi(iu)

2Ai(iu)
du .



received value at nodei implies a bounded number of changes
in other decisions, this expectation only involves the local
structure of the factor graph that defines the code. As a
consequence, its limit is obtained through a tree computation.

In Section II-C we’ll see how to do this computation, and
hence obtainβ via a branching process representation. Before
this, a brief intermezzo on this topic is probably helpful.

B. Multi-type branching processes

A d-type branching process is a Markov chain with state
spaceN

d. It is defined byd random variablesX(1), X(2),
. . . , X(d) with values inN

d as well, Given the current state
Zt = (Zt,1, . . . , Zt,d), its state at timet + 1 is

Zt+1 =

d∑

i=1

Zt,i∑

j=1

X(i)(j) , (7)

where theX(i)(j)’s are iid copies ofX(i). The initial condition

will be Z(0) d
= W , for some random variableW .

The trajectory of a branching process can be represented by
a rooted tree whose vertices taked distinct colors. The defining
property of a branching process is the following. The number
of offsprings of each vertex, and their colors is conditionally
independent from the rest of the tree, given the parent’s color.

We will be interested in branching processes that terminate
almost surely. The total number of elements of typei in the
process, defined asTi =

∑
t≥0 Zt,i, is then almost surely

finite. A special role is played by thed × d matrix K with
entries Kij ≡ Ii,j − Mij where Mij ≡ E{X(i)

j }. The
expectation ofT = (T1, T2, . . . , Td) (that is a vector inRd

+)
and its covariance (ad × d matrix) are then given by

E{T} = (KT )−1
E{W} ,

Cov(T, T ) = Cov(W̃ , W̃ ) +

d∑

i=1

E{Ti}Cov(X̃(i), X̃(i)) .

whereW̃ ≡ (KT )−1W , X̃(i) ≡ (KT )−1X(i).
The branching process terminates almost surely if

||ρ(M)|| < 1. We will consider the case in which the largest of
its singular values is close to1. Call ξ this value, letu, v ∈ R

d

be its left and right eigenvectors (withuT v = 1), andT∗ ≡
gT T for some vectorg ∈ R

d. Then E{T∗} ≃ C1(1 − ξ)−1,
Var(T∗) ≃ C2(1−ξ)−3 (here≃ indicates equality up to lower
order terms asξ → 1) and

C1 = (uT g)E{vT W} , (8)

C2 = (uT g)2E{vT W}
d∑

i=1

uiVar(vT X(i)) . (9)

C. Variance computation through branching processes

Consider the computation ofE{∆Hi(z)2} that enters the
definition ofγ2, cf. Eq. (6). With the notation of the previous
Section, we will show that∆Hi(z) = T∗ for a properly chosen
branching process and vectorg. The branching process will be
identified by describing its representative tree, and showing
that offsprings at any two different vertices are independent.

i
j

b1

Bk

B2

B1

A1

A2

0→ 1 ν1 → ν2

Fig. 2. The neighborhood of variable nodei in the factor graph. Changing
the received symbol from0 to 1 induces a change in one of the outgoing
messages fromν1 to ν2. In this caseW = 1. In Section III-B, to compute
the variance recursively, the factor graph is divided into subtreeBi’s.

First, as stressed above the computation can be done by
assuming the factor graph is an infinite random tree, rooted
at i, whose distribution models the local structure of the
original graph. Consider, to be specific, random codes from the
LDPC(λ, ρ, n) ensemble (hereλ, ρ are the variable and check
nodes degree distributions from edge perspective.) Then the
tree is itself a branching process with offspring distributions
λ (for variable nodes) andρ (check nodes) except at the root
whose degree distribution (generating polynomial) isΛ(x) =∫ x

0
λ(u)du/

∫ 1

0
λ(u)du.

Consider a realization of the channel outputy = {yj}
(whereby each variable node is associated a symbolyj), and
the one obtained by replacingyi with z. Imagine to run in
parallel the message passing decoder for these two realizations.
At time t, a subset of the outbound messages will differ
between the two, and a subset of the decisions on nodes
adjacent to those messages will differ as well. Focus, to be
definite, on check-to-variable messages. The branching process
we want to construct has vertices in correspondence with
the messages of this type that differ in the two realizations.
The ‘color’ of each vertex encodes the type of change. More
precisely, assume that both messages and decisions take values
in the same finite alphabetM, and leta → j be a check-
to-variable edge whose message change. Ifν̂

(t)
a→j = ν1 in

the first realization andν2 in the second, while the decision
is ν

(t)
j = ν̄1 in the first realization and̄ν2 in the second,

then the corresponding vertex in the branching process will
be of type(ν1, ν2, ν̄1, ν̄2). Therefore the number of types is
d = |M|2(|M| − 1)2. This can be significantly reduced in
specific cases.

It is convenient to denote byT∗(y, z) a random variable
distributed as∆Hi(z) conditional onyi = y. Its moments can
be computed along the lines discussed in the previous Section
provided:
(1) The initial conditionW (y, z) is distributed as the number
of changes in the messages outgoing from the check nodes
adjacent toi, cf. Fig. 2.
(2) The random variableX(j) is distributed as the number of
changes in messages outgoing from check nodes at distance
ℓ+1 from i, when their parent was of typej = (ν1, ν2, ν̄1, ν̄2)



(3) The vectorg has entriesg(ν1, ν2, ν̄1, ν̄2) = f(ν2)− f(ν1)
(if the performance curve is defined with respect to messages)
or = f(ν̄2) − f(ν̄1) (if it is defined with respect to nodes.)

We shall denote byC1,2(y, z) the constants defined in
Eqs. (8), (9). We then havedh

dǫ =
∑

z E{Lǫ(z|yi)T∗(yi, z)} ≃∑
z E{Lǫ(z|yi)C1(yi, z)}(1− ξ)−1. This expression provides

a relation betweenC1 ≡ ∑
z E{Lǫ(z, yi)C1(yi, z)} and the

constantA introduced in Section II-A. Using this relation in
Eqs. (5) and (6) in conjunction with the expressions (8) and
(9) we obtain our final formula

(β/Ω)
3/2

=

√
2S

E{vT W}

d∑

i=1

uiVar(vT X(i)) , (10)

where W ≡ ∑
z Lǫ(z|yi)W (yi, z) and S ≡

limǫ↓ǫ∗

√
ǫ − ǫ∗/(1 − ξ(ǫ)).

III. T HE BINARY ERASURE CHANNEL REVISITED

In this Section we apply the formulae derived above to the
BEC(ǫ), and check that the result agrees with the ones of
[1], [2]. We further recompute the variance of the number
of changes in Section III-B through an elementary method
that does not use the branching process representation. In
both approaches it turns out to be important to define the
performance curvehn(ǫ) through node rather than message
quantities. We suspect this to be a peculiarity of the erasure
channel, related to the fact that a message can change value
without any influence on the node reliabilities. We shall further
discuss this point in [7].

For reference the asymptotic threshold and shift parameters
for a few (l, k) regular ensembles are:(3, 4), ǫ∗ ≈ 0.6473,
β/Ω ≈ 0.5936; (3, 5), ǫ∗ ≈ 0.5176, β/Ω ≈ 0.6161; (3, 6),
ǫ∗ ≈ 0.4294, β/Ω ≈ 0.6169; (4, 5), ǫ∗ ≈ 0.6001, β/Ω ≈
0.5716; (6, 6), ǫ∗ ≈ 0.5061, β/Ω ≈ 0.5743; (5, 6), ǫ∗ ≈
0.5510, β/Ω ≈ 0.5596.

The general formula for regular ensembles is

β

Ω
=

(
l − 2

lbl
∗

)2/3

ǫ
1/3
∗

[
l

l − 1
+

(k − 2)a∗

1 − a∗

− 2

]−1/3

, (11)

wherea∗, b∗ > 0 solve the density evolution equationsa =
ǫbl−1, b = 1 − (1 − a)k−1 at the critical pointǫ∗.

A. Shift via branching processes

Two simplifications arise for the BEC:(i) Messages only
take two values{∗, 0} and only change from∗ to 0 if noise is
decreased.(ii) The branching process keeps its conditional
independence property even if the type only involves the
node decision. As a consequence, the branching process has
d = 1 type of vertices, corresponding to variable nodes whose
decision changes from∗ to 0.

Formally, we have a single scalar variableX, and a scalar
W . Two channel realizations for BEC(ǫ) and BEC(ǫ+∆ǫ) are
coupled using an erasure channel with kernelRǫ,∆ǫ(∗|∗) = 1
andRǫ,∆ǫ(s|s) = 1 − ∆ǫ/(1 − ǫ), Rǫ,∆ǫ(∗|s) = ∆ǫ/(1 − ǫ),
whenceE{vT W} = E W (0, ∗).

In order to computeEW (0, ∗), notice thati has, on average,
Λ′(1)ρ′(1) neighboring variable nodes. Consider one of them,

call it j, and callc the function node betweeni andj. Denote
by a (resp.b) the probability that variable-to-check (check-to-
variable) messages are erased, at the density evolution fixed
point. Recall that these quantities satisfy the equationsa =
ǫλ(b), b = 1 − ρ(1 − a).

The probability that the decision atj changes when the
received value atx changes is the product of three factors:
(i) the probability that the message fromi to c is ∗ when
the received message ati is ∗ (equal toa); (ii) the probability
that all the messages coming toc from variable nodes different
from i andj are0’s (this isρ′(1−a)); (iii) The probability that
the received symbol atj is ∗ alongside with all the messages
to j different from the one fromc (this is λ(b)). Collecting
these factors, we get:

E W (0, ∗) = Λ′(1)λ(b)aρ′(1 − a) . (12)

Arguing along the same lines, one can show thatX
d
=∑M

i=1 Bi where theBi’s are iid Bernoulli random variables
with meanaρ′(1 − a)/[1 − ρ(1 − a)], and P{M = m} =
λm+1b

m/λ(b). It is then straightforward to compute the first
two moments:

E{X} = ǫλ′(b)ρ′(1 − a) , (13)

Var(X) = ǫλ′(b)ρ′(1 − a) (1 − aρ′(1 − a)/b) + (14)

+(aρ′(1 − a)/b)2
(

b2λ′′(b)

λ(b)
+

yλ′(b)

λ(b)
− b2λ′(b)2

λ(b)2

)
.

Obviouslyξ(ǫ) = ǫλ′(b)ρ′(1− a), whence by simple calculus

S =
√

2a∗[λ′′(a∗)ρ′(1 − a∗)2 − λ(b∗)ρ′′(1 − a∗)] . (15)

(herea∗, b∗ refer to the density evolution fixed point atǫ = ǫ∗.)
Finally, the shift parameter is obtained by specializing Eq. (10)
to the present caseβ/Ω = {

√
2S Var(X)/EW (0, ∗)}2/3, and

substituting Eqs. (12), (14) and (15). The result can be shown
to coincide with the one reported in [2] and with Eq. (11) for
regular ensembles.

B. Shift via correlations

Consider a regular(l, k) ensemble and let∆Hi denote the
number of variable nodes whose decisions change when the
received symbol at root nodei passes from∗ to 0. In order to
check the branching process representation, and to developan
alternative route, we computedVar(∆Hi) via a more direct
recursive approach. The result can be used to computeβ
through Eqs. (6) and (5). In Fig. 3 we compare the result
of this calculation with numerical simulations on the(3, 6)
ensemble.

Let us now sketch the direct approach, focusing on the
leading terms asǫ ↓ ǫ∗. Denote by x̂j(y) the message
passing decision at variable nodej when the vector of received
symbols isy. Further, lety(0), y(∗) be the same vector, where
yi has been replaced (respectively) by0 and∗. To each variable
nodej we associate the value

f(j) ≡ I{x̂j(y
(0)) = 0} − I{x̂j(y

(∗)) = 0} . (16)
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Fig. 3. Rescaled variance,Var(∆Hi)(1 − ξ(ǫ))3, for the (3, 6) regular
ensemble over BEC(ǫ). Comparison of the variance determined via simula-
tions (dots with95% confidence intervals) with the prediction given by the
recursive approach. The blocklength isn = 50000.

For any set of variable nodesU ⊆ V , we let f(U) =∑
j∈U f(j). Then we have∆Hi = f(V ).
As above, we shall computeVar(f(V )) on a tree rooted

at nodei, cf. Fig. 2. The root node hasl neighboring check
nodes denoted byaj , j = 1, . . . , l, and each of these node is
the root of an identical subtree denoted byAj . Decomposing
V into these identical subtrees, we get,

Var(f(V )) = l Var(f(A1)) + l(l − 1)Cov(f(A1), f(A2)) . (17)

Using the computation methods from [2], one can show that
Cov(A1, A2) = O((1 − ξ(ǫ))−2), whereξ(ǫ) = ǫλ′(b)ρ′(1 −
a). This is a lower order term, hence negligible asǫ ↓ ǫ∗.
Further, sinceE{f(A1)} can be shown to be of order(1 −
ξ(ǫ))−1, we can focus on computingE{f(A1)

2}.
This quantity can be decomposed into further subtrees. The

root of A1 (which we calleda1) has(l−1)(k−1) neighboring
check nodesA1, which we denotebj , j = 1, . . . , (l−1)(k−1),
each of them being the root of subtreeBj . We thus get

E{f(A1)
2} ≃ (l − 1)(k − 1)E{f(B1)

2} + (18)

+(l − 1)(l − 2)(k − 1)E{f(B1)f(B2)}
+(l − 1)2(k − 1)(k − 2)E{f(B1)f(Bk)} .

Here it is understood that the second term in the expansion
involves correlations between subtrees whose roots are off-
springs of the same variable node, and third term involves
correlations between subtrees whose roots are offsprings of
two distinct variable nodes. Further we neglected the contri-
bution of the variable node that is inA1 but not inBj as it is
again of lower order.

Since only one of the messages coming out ofa1 can change
as the message received at the root nodei changes from0 to
∗, E{f(B1)f(Bk)} vanishes.

To compute the first term, observe that the treesA1 and
B1 have same structure and only differ in the distance from
the root nodei. Let the variable node betweena1 and b1

be denotedj. Conditional on the event that the messages
from i to a1, νi→a1

, and fromj to b1, νj→b1 , change as the
received message at the root node changes,f(A1) and f(B1)
are identically distributed.

The probability thatνj→b1 changes when the received value
at i changes is the product of three factors:(i) the probability

all the incoming messages toi from check nodes other thana1

are∗’s (this is bl−1); (ii) the probability that all the incoming
messages toa1 from variable nodes different fromi and j
are0’s (this is (1 − a)k−2); (iii) the probability the received
symbol atj with all the incoming messages from check nodes
other thana1 and b1 are ∗’s (this is ǫbl−2). Collecting these
terms, using the density evolution equations, we get

E{f(B1)
2} =

a2(1 − b)

ǫb(1 − a)
E{f(A1)

2|f(νi→a1
) = 1}

=
a(1 − b)

b(1 − a)
E{f(A1)

2} , (19)

where the second identity can be shown to follow from the
definition of f(νi→a1

).
The second term in Eq. (18) is treated similarly Notice that

f(B1) andf(B2) are conditionally independent given that mes-
sages fromj to b1 andb2 change. FurtherE{f(B1)|f(νi→a1

) =
1} can be computed using the methods from [2],

E{f(B1)f(B2)} =
a2(1 − b)

ǫ(1 − a)
E{f(B1)|f(νi→a1

) = 1}2

=
a2(1 − b)

ǫ(1 − a)(l − 1)2

(
ξ(ǫ)

1 − ξ(ǫ)

)2

. (20)

With these results, to findE{f(A1)
2}, substitute Eqs. (19) and

(20) to (18), and solve the recursion. Neglecting lower order
terms we get

E{f(A1)
2} ≃ (k − 1)(l − 2)

(l − 1)

a2(1 − b)

ǫ(1 − a)

ξ(ǫ)2

(1 − ξ(ǫ))3
. (21)

Finally Var{∆Hi} = Var{f(V )} ≃ lE{f(A1)
2} plus lower

order terms.
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