# Eliminating Sharp Minima with Truncated Heavy-tailed Noise

Xingyu Wang\*, Sewoong Oh<sup>†</sup>, Chang-Han Rhee\*

Northwestern University\*, University of Washington<sup>†</sup>

DeepMath 2021

• Generalization of DNN



Training Set

• Generalization of DNN



Training Set

Test Set



#### • Generalization of DNN

• Generalization Mystery of Stochastic Gradient Descent (SGD)



- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Nonconvex Landscape, Numerous Local Minima

- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Nonconvex Landscape, Numerous Local Minima



- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Empirical Observations: Flat minima (as opposed to sharp minima) generalize better.



- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Empirical Observations: Flat minima (as opposed to sharp minima) generalize better.
  - Among 40+ metrics, sharpness metrics predict generalization best. (Jiang et al., 2020)



### • Generalization of DNN

- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Empirical Observations: Flat minima (as opposed to sharp minima) generalize better.
  - Among 40+ metrics, sharpness metrics predict generalization best. (Jiang et al., 2020)



• Q: SGD prefers flat minima?

$$\mathsf{GD} \qquad X_j = X_{j-1} - \eta \ \nabla f(X_{j-1})$$

$$SGD$$
  $X_j = X_{j-1} - \eta \left( \nabla f(X_{j-1}) + Z_j \right)$ 

SGD 
$$X_j = X_{j-1} - \eta \left( \nabla f(X_{j-1}) + Z_j \right)$$

$$\mathsf{SGD} \qquad \mathsf{X}_{j} = \mathsf{X}_{j-1} - \eta ig( 
abla f(\mathsf{X}_{j-1}) + \mathbf{Z}_{j} ig)$$

SGD 
$$X_j = X_{j-1} - \eta \left( \nabla f(X_{j-1}) + Z_j \right)$$
  
 $\searrow$  Heavy-tailed

Traditional Assumption: Light-tailed~

$$SGD \qquad X_j = X_{j-1} - \eta \left( \nabla f(X_{j-1}) + Z_j \right)$$

• Heavy-tailed Noises:  $\mathbb{E}Z_j = 0$ ,  $Z_j \in RV_{-\alpha}$  with  $\alpha > 1$ 

Traditional Assumption: Light-tailed~

$$SGD \qquad X_{j} = X_{j-1} - \eta \big( \nabla f(X_{j-1}) + Z_{j} \big)$$

$$\stackrel{\scriptstyle \scriptstyle \leftarrow}{} Heavy-tailed$$

• Heavy-tailed Noises:  $\mathbb{E}Z_j = 0$ ,  $\mathbb{P}(||Z_j|| > x)$  resembles power law  $x^{-\alpha}$ 

Traditional Assumption: Light-tailed~

SGD 
$$X_j = X_{j-1} - \eta \left( \nabla f(X_{j-1}) + Z_j \right)$$
  
 $\searrow$  Heavy-tailed

• Heavy-tailed Noises:  $\mathbb{E}Z_j = 0$ ,  $\mathbb{P}(||Z_j|| > x)$  resembles power law  $x^{-\alpha}$ 

• Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);

Traditional Assumption: Light-tailed~

SGD 
$$X_j = X_{j-1} - \eta \left( \nabla f(X_{j-1}) + Z_j \right)$$
  
K Heavy-tailed

• Heavy-tailed Noises:  $\mathbb{E}Z_j = 0$ ,  $\mathbb{P}(||Z_j|| > x)$  resembles power law  $x^{-\alpha}$ 

- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);

SGD 
$$X_j = X_{j-1} - \eta \left( \nabla f(X_{j-1}) + Z_j \right)$$
  
K Heavy-tailed

- Heavy-tailed Noises:  $\mathbb{E}Z_j = 0$ ,  $\mathbb{P}(||Z_j|| > x)$  resembles power law  $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)

SGD 
$$X_j = X_{j-1} - \eta \left( \nabla f(X_{j-1}) + Z_j \right)$$
  
 $\searrow$  Heavy-tailed

- Heavy-tailed Noises:  $\mathbb{E}Z_j = 0$ ,  $\mathbb{P}(||Z_j|| > x)$  resembles power law  $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)



SGD 
$$X_j = X_{j-1} - \eta \left( \nabla f(X_{j-1}) + Z_j \right)$$
  
 $\searrow$  Heavy-tailed

- Heavy-tailed Noises:  $\mathbb{E}Z_j = 0$ ,  $\mathbb{P}(||Z_j|| > x)$  resembles power law  $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)



Traditional Assumption: Light-tailed~

SGD 
$$X_j = X_{j-1} - \eta \left( \nabla f(X_{j-1}) + Z_j \right)$$
  
 $\searrow$  Heavy-tailed

- Heavy-tailed Noises:  $\mathbb{E}Z_j = 0$ ,  $\mathbb{P}(||Z_j|| > x)$  resembles power law  $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)

# **Our Work: Complete Elimination of Sharp Minima**



$$X_j = X_{j-1} - \varphi_b \big( \eta \nabla f(X_{j-1}) + \eta Z_j \big); \quad \varphi_b(x) = \min\{b, \|x\|\} \cdot \frac{x}{\|x\|}$$

Gradient Clipping

$$X_{j} = X_{j-1} - \varphi_{b} \left( \eta \nabla f(X_{j-1}) + \eta Z_{j} \right); \quad \varphi_{b}(x) = \min\{b, \|x\|\} \cdot \frac{x}{\|x\|}$$

Gradient Clipping  

$$\downarrow^{\downarrow} X_{j} = X_{j-1} - \varphi_{b} \left( \eta \nabla f(X_{j-1}) + \eta Z_{j} \right); \quad \varphi_{b}(x) = \min\{b, \|x\|\} \cdot \frac{x}{\|x\|}$$

**Q:** How does truncated heavy-tailed noise help?

Gradient Clipping  

$$\downarrow^{\downarrow} X_{j} = X_{j-1} - \varphi_{b} (\eta \nabla f(X_{j-1}) + \eta Z_{j}); \quad \varphi_{b}(x) = \min\{b, \|x\|\} \cdot \frac{x}{\|x\|}$$

Q: How does truncated heavy-tailed noise help?



Gradient Clipping  

$$\downarrow^{\downarrow} X_{j} = X_{j-1} - \varphi_{b} (\eta \nabla f(X_{j-1}) + \eta Z_{j}); \quad \varphi_{b}(x) = \min\{b, \|x\|\} \cdot \frac{x}{\|x\|}$$

Q: Why does truncated heavy-tailed noise help?



#### **Light-Tailed Distributions**

- Extreme Values are Very Rare
- Normal, Exponential, etc



#### **Heavy-Tailed Distributions**

- Extreme Values are Frequent
- Power Law, Weibull, etc





### **Light-Tailed Distributions**

- Extreme Values are Very Rare
- Normal, Exponential, etc



### **Heavy-Tailed Distributions**

- Extreme Values are Frequent
- Power Law, Weibull, etc





Structural difference in the way systemwide rare events arise.

#### **Light-Tailed Distributions**

- Extreme Values are Very Rare
- Normal, Exponential, etc

Systemwide rare events

arise because

EVERYTHING goes wrong.

(Conspiracy Principle)

### **Heavy-Tailed Distributions**

- Extreme Values are Frequent
- Power Law, Weibull, etc





Structural difference in the way systemwide rare events arise.

#### **Light-Tailed Distributions**

- Extreme Values are Very Rare
- Normal, Exponential, etc

Systemwide rare events

arise because

EVERYTHING goes wrong.

(Conspiracy Principle)

#### **Heavy-Tailed Distributions**

- Extreme Values are Frequent
- Power Law, Weibull, etc

Systemwide rare events

arise because of

A FEW Catastrophes.

(Catastrophe Principle)

Structural difference in the way systemwide rare events arise.

# **Typical Behavior of SGD**



$$X_{j}^{\eta} = X_{j-1}^{\eta} - \eta (
abla f(X_{j-1}^{\eta}) + Z_{j})$$

# **Typical Behavior of SGD**



$$X_j^\eta = X_{j-1}^\eta - \eta ig( 
abla f(X_{j-1}^\eta) + Z_j ig)$$

# **Typical Behavior of SGD**




$$X_{j}^{\eta} = X_{j-1}^{\eta} - \eta \left( 
abla f(X_{j-1}^{\eta}) + Z_{j} \right)$$



$$X_{j}^{\eta} = X_{j-1}^{\eta} - \eta \left( 
abla f(X_{j-1}^{\eta}) + Z_{j} \right)$$



$$X_j^\eta = X_{j-1}^\eta - \eta ig( 
abla f(X_{j-1}^\eta) + Z_j ig)$$



$$X_j^\eta = X_{j-1}^\eta - \eta ig( 
abla f(X_{j-1}^\eta) + Z_j ig)$$



$$X_{j}^{\eta} = X_{j-1}^{\eta} - \eta \left( \nabla f(X_{j-1}^{\eta}) + Z_{j} \right)$$















































Trajectory of SGD  $X^{\eta}$ :

 $\eta = 1/10$  & noises are light-tailed





Trajectory of SGD  $X^{\eta}$ :

 $\eta = 1/10$  & noises are heavy-tailed








# **Typical Behavior of SGD**



Trajectory of SGD  $X^{\eta}$ :

 $\eta = 1/100$  & noises are heavy-tailed



# **Typical Behavior of SGD**



Trajectory of SGD  $X^{\eta}$ :

 $\eta = 1/150$  & noises are heavy-tailed



# **Typical Behavior of SGD**



Trajectory of SGD  $X^{\eta}$ :

 $\eta = 1/200$  & noises are heavy-tailed



How does SGD escape local minima?

(Su, Wang, Rhee, 2021+) For "rare event" A,

**(Su, Wang, Rhee, 2021+)** For "rare event" A, (i.e.  $\mathbb{P}(X^{\eta} \in A) \rightarrow 0$  as  $\eta \downarrow 0$ )

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e.  $\mathbb{P}(X^{\eta} \in A) \to 0$  as  $\eta \downarrow 0$ )

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e.  $\mathbb{P}(X^{\eta} \in A) \to 0$  as  $\eta \downarrow 0$ )

•  $\mathbb{P}(X^{\eta} \in A) \approx \eta^{(\alpha-1)^{\prime}(A)}$ 

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e.  $\mathbb{P}(X^{\eta} \in A) \to 0$  as  $\eta \downarrow 0$ )

- $\mathbb{P}(X^{\eta} \in A) \approx \eta^{(\alpha-1)^{\prime}(A)}$
- Conditioned on  $\{X^{\eta} \in A\}$ ,  $X^{\eta}$  resembles piece-wise gradient flow with  $I^{*}(A)$  jumps

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e.  $\mathbb{P}(X^{\eta} \in A) \to 0$  as  $\eta \downarrow 0$ )

P(X<sup>η</sup> ∈ A) ≈ η<sup>(α-1)/\*(A)</sup>
Typical Behavior γ
Conditioned on {X<sup>η</sup> ∈ A}, X<sup>η</sup> resembles piece-wise gradient flow with /\*(A) jumps

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e.  $\mathbb{P}(X^{\eta} \in A) \to 0$  as  $\eta \downarrow 0$ )

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e.  $\mathbb{P}(X^{\eta} \in A) \to 0$  as  $\eta \downarrow 0$ )

- $I^*(A)$ : Min # of jumps (catastrophes) to cause event A
















































Most likely path under heavy-tailed noises: with  $I^* = 1$  jump



Most likely path under heavy-tailed noises: with  $I^* = 1$  jump







Trajectory of SGD  $X^{\eta}$  conditional on exit:







Trajectory of SGD  $X^{\eta}$  conditional on exit:

heavy-tailed noises with  $\eta = 1/75$ 





Trajectory of SGD  $X^{\eta}$  conditional on exit:





Trajectory of SGD  $X^{\eta}$  conditional on exit:





Trajectory of SGD  $X^{\eta}$  conditional on exit:





$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$



$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$



$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$



$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$



$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$



$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$



$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$



$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$



$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$



$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$



$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$



$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$



$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$



$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$



$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$

Most likely path under heavy-tailed noises: with  $I^* = 2$  jumps



$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$



Trajectory of SGD  $X^{\eta}$  conditional on exit:





 $X_{j}^{\eta} = X_{j-1}^{\eta} + \varphi_{b} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_{j} \big), \overset{\checkmark}{b} \in (r/3, r/2)$ 



 $X_{j}^{\eta} = X_{j-1}^{\eta} + \varphi_{b} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_{j} \big), \overset{\checkmark}{b} \in (r/3, r/2)$


















$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/4, r/3)$$







$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big( -\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \overset{\checkmark}{\boldsymbol{b}} \in (r/4, r/3)$$



$$X_j^\eta = X_{j-1}^\eta + arphi_{m{b}}ig( - \eta 
abla f(X_{j-1}^\eta) + \eta Z_j ig), igbbed{b} \in (r/4, r/3)$$



$$X_j^\eta = X_{j-1}^\eta + arphi_{m{b}}ig( - \eta 
abla f(X_{j-1}^\eta) + \eta Z_j ig), igbbed{b} \in (r/4, r/3)$$







• First Exit Time:  $\sigma^{\eta} \triangleq \min\{j \ge 0 : X_i^{\eta} \notin \Omega\}$ 



- First Exit Time:  $\sigma^{\eta} \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- Effective Width (Min Distance for Escape):  $r \triangleq \inf_{x \notin \Omega} |x m|$ .



- First Exit Time:  $\sigma^{\eta} \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- Effective Width (Min Distance for Escape):  $r \triangleq \inf_{x \notin \Omega} |x m|$ .
- **Relative Width** (Min # of jumps for Escape):  $l^* \triangleq \lceil r/b \rceil$ .



- First Exit Time:  $\sigma^{\eta} \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- Effective Width (Min Distance for Escape):  $r \triangleq \inf_{x \notin \Omega} |x m|$ .
- **Relative Width** (Min # of jumps for Escape):  $I^* \triangleq \lceil r/b \rceil$ .
- (Wang, Oh, Rhee, 2021+) As  $\eta \downarrow 0$ ,  $\sigma^{\eta}\lambda(\eta) \Rightarrow Exp(q)$ .



- First Exit Time:  $\sigma^{\eta} \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- Effective Width (Min Distance for Escape):  $r \triangleq \inf_{x \notin \Omega} |x m|$ .
- **Relative Width** (Min # of jumps for Escape):  $I^* \triangleq \lceil r/b \rceil$ .
- (Wang, Oh, Rhee, 2021+) As  $\eta \downarrow 0$ ,  $\sigma^{\eta} \lambda(\eta) \Rightarrow Exp(q)$ .  $(\lambda(\eta) \approx O(\eta^{\alpha+(l^*-1)(\alpha-1)})$ , deterministic)



- First Exit Time:  $\sigma^{\eta} \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- Effective Width (Min Distance for Escape):  $r \triangleq \inf_{x \notin \Omega} |x m|$ .
- **Relative Width** (Min # of jumps for Escape):  $I^* \triangleq \lceil r/b \rceil$ .

$$\sigma^\eta \sim O(1/\lambda(\eta)) pprox O(1/\eta^{lpha + (l^* - 1)(lpha - 1)})$$



Without Clipping



Without Clipping



With Clipping



• Min # of jumps for escape:  $l_i^*$ 



• Min # of jumps for escape:  $l_i^*$  (Example: set b = 0.5)



• Min # of jumps for escape:  $l_i^*$  (Example: set b = 0.5)



- Min # of jumps for escape:  $I_i^*$  (Example: set b = 0.5)
- Set of Widest Minima:  $m_i \in M^{\text{wide}}$  iff  $l_i^* = \max_j l_j^*$ .



- Min # of jumps for escape:  $I_i^*$  (Example: set b = 0.5)
- Set of Widest Minima:  $m_i \in M^{\text{wide}}$  iff  $l_i^* = \max_j l_i^*$ .

#### Theorem (Wang, Oh, Rhee, 2021+)

Under structural conditions on loss landscape, for any t > 0 and  $\beta > 1 + (\alpha - 1) \max_{i} l_{i}^{*}$ ,

$$\frac{1}{\lfloor t/\eta^{\beta} \rfloor} \int_{0}^{\lfloor t/\eta^{\beta} \rfloor} \mathbb{1} \Big\{ X^{\eta}_{\lfloor u \rfloor} \in \bigcup_{j: m_{j} \notin M^{wide}} \Omega_{j} \Big\} du \xrightarrow{\mathbb{P}} 0 \text{ as } \eta \downarrow 0.$$



- Min # of jumps for escape:  $I_i^*$  (Example: set b = 0.5)
- Set of Widest Minima:  $m_i \in M^{\text{wide}}$  iff  $l_i^* = \max_j l_i^*$ .

#### Theorem (Wang, Oh, Rhee, 2021+)

Under structural conditions on loss landscape, for any t > 0 and  $\beta > 1 + (\alpha - 1) \max_{i} l_{i}^{*}$ ,

$$\frac{1}{\lfloor t/\eta^{\beta} \rfloor} \int_{0}^{\lfloor t/\eta^{\beta} \rfloor} \mathbb{1} \Big\{ X^{\eta}_{\lfloor u \rfloor} \in \bigcup_{j: m_{j} \notin M^{wide}} \Omega_{j} \Big\} du \xrightarrow{\mathrm{P}} 0 \text{ as } \eta \downarrow 0.$$

#### <sup>∧</sup>Proportion of time at narrow minima



#### • Same Elimination Effect in $\mathbb{R}^d$



New Training Algorithm

## Truncated Heavy-tailed SGD in Deep Learning

• Our Method:  $X \leftarrow X - \varphi_b(\eta \cdot g_{heavy}(X))$  where

## Truncated Heavy-tailed SGD in Deep Learning

- X: current weights;
- Our Method:  $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$  where

## Truncated Heavy-tailed SGD in Deep Learning

- X: current weights; Cradient Clipping
- Our Method:  $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$  where
## Truncated Heavy-tailed SGD in Deep Learning

- X: current weights;
- Our Method:  $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$  where

 $g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + \text{``Heavy-tailed Noise''}$ 

- X: current weights; **GD**: gradient descent; **SB**: small batch;  $g_{XX}$ : gradient under method XX.
- Our Method:  $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$  where

 $g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + \text{``Heavy-tailed Noise''}$ 

- X: current weights; **GD**: gradient descent; **SB**: small batch;  $g_{XX}$ : gradient under method XX.
- Our Method:  $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$  where

$$g_{\mathsf{heavy}}(X) riangleq g_{\mathsf{SB}}(X) +$$
 "Heavy-tailed Noise"

• Gradient noise:  $g_{SB}(X) - g_{GD}(X)$ 

- X: current weights; **GD**: gradient descent; **SB**: small batch;  $g_{XX}$ : gradient under method XX.
- Our Method:  $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$  where

$$g_{\mathsf{heavy}}(X) riangleq g_{\mathsf{SB}}(X) +$$
 "Heavy-tailed Noise"

- Gradient noise:  $g_{SB}(X) g_{GD}(X)$
- Heavy-tail Inflation:  $Z(g_{SB}(X) g_{GD}(X))$  for some heavy-tailed Z

- X: current weights; **GD**: gradient descent; **SB**: small batch;  $g_{XX}$ : gradient under method XX.
- Our Method:  $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$  where

$$g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + Z(-g_{\text{GD}}(X) + g_{\text{SB}*}(X))$$

- Gradient noise:  $g_{SB}(X) g_{GD}(X)$
- Heavy-tail Inflation:  $Z(g_{SB}(X) g_{GD}(X))$  for some heavy-tailed Z

- X: current weights; **GD**: gradient descent; **SB**: small batch;  $g_{XX}$ : gradient under method XX.
- Our Method:  $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$  where

$$g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + Z(-g_{\text{LB}}(X) + g_{\text{SB}*}(X))$$

- Gradient noise:  $g_{SB}(X) g_{GD}(X)$
- Heavy-tail Inflation:  $Z(g_{SB}(X) g_{GD}(X))$  for some heavy-tailed Z

- X: current weights; **GD**: gradient descent; **SB**: small batch;  $g_{XX}$ : gradient under method XX.
- Our Method:  $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$  where

$$g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + Z(-g_{\text{LB}}(X) + g_{\text{SB}*}(X))$$

• Gradient noise:  $g_{SB}(X) - g_{GD}(X)$  Same or independent batches?

• Heavy-tail Inflation:  $Z(g_{SB}(X) - g_{GD}(X))$  for some heavy-tailed Z

- X: current weights; **GD**: gradient descent; **SB**: small batch;  $g_{XX}$ : gradient under method XX.
- Our Method:  $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$  where

$$g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + Z(-g_{\text{LB}}(X) + g_{\text{SB}*}(X))$$

• Gradient noise:  $g_{SB}(X) - g_{GD}(X)$  Same or independent batches?  $\Rightarrow$ two versions

• Heavy-tail Inflation:  $Z(g_{SB}(X) - g_{GD}(X))$  for some heavy-tailed Z

| Test accuracy          | LB     | SB     | SB + Clip | SB + Noise | Our 1  | Our 2  |
|------------------------|--------|--------|-----------|------------|--------|--------|
| CorrputedFMNIST, LeNet | 68.66% | 69.20% | 68.77%    | 64.43%     | 69.47% | 70.06% |
| SVHN, VGG11            | 82.87% | 85.92% | 85.95%    | 38.85%     | 88.42% | 88.37% |
| CIFAR10, VGG11         | 69.39% | 74.42% | 74.38%    | 40.50%     | 75.69% | 75.87% |
| Expected Sharpness     | LB     | SB     | SB + Clip | SB + Noise | Our 1  | Our 2  |
| CorrputedFMNIST, LeNet | 0.032  | 0.008  | 0.009     | 0.047      | 0.003  | 0.002  |
| SVHN, VGG11            | 0.694  | 0.037  | 0.041     | 0.012      | 0.002  | 0.005  |
| CIFAR10, VGG11         | 2.043  | 0.050  | 0.039     | 2.046      | 0.024  | 0.037  |

| Test accuracy          | LB     | SB     | SB + Clip | SB + Noise | Our 1  | Our 2  |
|------------------------|--------|--------|-----------|------------|--------|--------|
| CorrputedFMNIST, LeNet | 68.66% | 69.20% | 68.77%    | 64.43%     | 69.47% | 70.06% |
| SVHN, VGG11            | 82.87% | 85.92% | 85.95%    | 38.85%     | 88.42% | 88.37% |
| CIFAR10, VGG11         | 69.39% | 74.42% | 74.38%    | 40.50%     | 75.69% | 75.87% |
| Expected Sharpness     | LB     | SB     | SB + Clip | SB + Noise | Our 1  | Our 2  |
| CorrputedFMNIST, LeNet | 0.032  | 800.0  | 0.009     | 0.047      | 0.003  | 0.002  |
| SVHN, VGG11            | 0.694  | 0.037  | 0.041     | 0.012      | 0.002  | 0.005  |
| CIFAR10, VGG11         | 2.043  | 0.050  | 0.039     | 2.046      | 0.024  | 0.037  |

• Expected Sharpness: Zhu et al. (2019); Neyshabur et al. (2017b)

| Test accuracy          | LB     | SB     | SB + Clip | SB + Noise | Our 1  | Our 2  |
|------------------------|--------|--------|-----------|------------|--------|--------|
| CorrputedFMNIST, LeNet | 68.66% | 69.20% | 68.77%    | 64.43%     | 69.47% | 70.06% |
| SVHN, VGG11            | 82.87% | 85.92% | 85.95%    | 38.85%     | 88.42% | 88.37% |
| CIFAR10, VGG11         | 69.39% | 74.42% | 74.38%    | 40.50%     | 75.69% | 75.87% |
| Expected Sharpness     | LB     | SB     | SB + Clip | SB + Noise | Our 1  | Our 2  |
| CorrputedFMNIST, LeNet | 0.032  | 800.0  | 0.009     | 0.047      | 0.003  | 0.002  |
| SVHN, VGG11            | 0.694  | 0.037  | 0.041     | 0.012      | 0.002  | 0.005  |
| CIFAR10, VGG11         | 2.043  | 0.050  | 0.039     | 2.046      | 0.024  | 0.037  |

- Expected Sharpness: Zhu et al. (2019); Neyshabur et al. (2017b)
  - Consistent results under other sharpness metrics

| Test accuracy          | LB     | SB     | SB + Clip | SB + Noise | Our 1  | Our 2  |
|------------------------|--------|--------|-----------|------------|--------|--------|
| CorrputedFMNIST, LeNet | 68.66% | 69.20% | 68.77%    | 64.43%     | 69.47% | 70.06% |
| SVHN, VGG11            | 82.87% | 85.92% | 85.95%    | 38.85%     | 88.42% | 88.37% |
| CIFAR10, VGG11         | 69.39% | 74.42% | 74.38%    | 40.50%     | 75.69% | 75.87% |
| Expected Sharpness     | LB     | SB     | SB + Clip | SB + Noise | Our 1  | Our 2  |
| CorrputedFMNIST, LeNet | 0.032  | 800.0  | 0.009     | 0.047      | 0.003  | 0.002  |
| SVHN, VGG11            | 0.694  | 0.037  | 0.041     | 0.012      | 0.002  | 0.005  |
| CIFAR10, VGG11         | 2.043  | 0.050  | 0.039     | 2.046      | 0.024  | 0.037  |

- Expected Sharpness: Zhu et al. (2019); Neyshabur et al. (2017b)
  - Consistent results under other sharpness metrics
- Flatter geometry & Improved generalization performance

| Test accuracy          | LB     | SB     | SB + Clip | SB + Noise | Our 1  | Our 2  |
|------------------------|--------|--------|-----------|------------|--------|--------|
| CorrputedFMNIST, LeNet | 68.66% | 69.20% | 68.77%    | 64.43%     | 69.47% | 70.06% |
| SVHN, VGG11            | 82.87% | 85.92% | 85.95%    | 38.85%     | 88.42% | 88.37% |
| CIFAR10, VGG11         | 69.39% | 74.42% | 74.38%    | 40.50%     | 75.69% | 75.87% |
| Expected Sharpness     | LB     | SB     | SB + Clip | SB + Noise | Our 1  | Our 2  |
| CorrputedFMNIST, LeNet | 0.032  | 800.0  | 0.009     | 0.047      | 0.003  | 0.002  |
| SVHN, VGG11            | 0.694  | 0.037  | 0.041     | 0.012      | 0.002  | 0.005  |
| CIFAR10, VGG11         | 2.043  | 0.050  | 0.039     | 2.046      | 0.024  | 0.037  |

- Expected Sharpness: Zhu et al. (2019); Neyshabur et al. (2017b)
  - Consistent results under other sharpness metrics
- Flatter geometry & Improved generalization performance
- Requires both heavy-tailed noise and truncation

| CIFAR10-VGG11       | SB + Clip         | Our 1             | Our 2             |
|---------------------|-------------------|-------------------|-------------------|
| Test Accuracy       | 89.54%            | 90.76%            | 90.45%            |
| Expected Sharpness  | 0.167             | 0.085             | 0.096             |
| PAC-Bayes Sharpness | $1.31 	imes 10^4$ | $9	imes 10^3$     | 10 <sup>4</sup>   |
| Maximal Sharpness   | $1.66	imes10^4$   | $1.29 	imes 10^4$ | $1.22 	imes 10^4$ |
| CIFAR100-VGG16      | SB + Clip         | Our 1             | Our 2             |
| Test Accuracy       | 56.32%            | 65.44%            | 62.99%            |
| Expected Sharpness  | 0.857             | 0.441             | 0.479             |
| PAC-Bayes Sharpness | $2.49	imes10^4$   | $1.9	imes10^4$    | $1.98	imes10^4$   |
| Maximal Sharpness   | $2.75	imes10^4$   | $2.12 	imes 10^4$ | $2.16	imes10^4$   |

• More training techniques: Data augmentation, learning rate scheduler.

#### • Theoretical Contribution

- Rigorously established that truncated heavy-tailed noises can eliminate sharp minima
- Catastrophe principle, first exit time analysis, and metastability for heavy-tailed SGD

#### • Algorithmic Contribution

• Proposed a tail-inflation strategy to find flatter solution with better generalization

• "Regularity conditions"



• "Regularity conditions"



• "Regularity conditions"



• "Regularity conditions": Irreducibility



• "Regularity conditions": Irreducibility



• We established similar results for the reducible case.

• "Regularity conditions": Irreducibility



- We established similar results for the reducible case.
- $\mathbb{R}^d$  Extension
  - First exit time results in  $\mathbb{R}^d$

• "Regularity conditions": Irreducibility



- We established similar results for the reducible case.
- $\mathbb{R}^d$  Extension
  - First exit time results in  $\mathbb{R}^d$
  - $\mathbb{R}^d$  simulation experiments





- First Exit Time:  $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$



- First Exit Time:  $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$



- First Exit Time:  $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$



- First Exit Time:  $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$



- First Exit Time:  $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$



- First Exit Time:  $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$



- First Exit Time:  $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$



- First Exit Time:  $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$



- First Exit Time:  $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$



- First Exit Time:  $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$



- First Exit Time:  $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$



- First Exit Time:  $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$



- First Exit Time:  $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$



- First Exit Time:  $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$


- First Exit Time:  $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$



- First Exit Time:  $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$



- First Exit Time:  $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$



•  $I^* \triangleq \lceil r/b \rceil$ 





### Theorem (Wang, Oh, Rhee, 2021)

For (Lebesgue) almost every b > 0, there exist some q > 0 and  $\lambda(\eta) \in RV_{\alpha+(l^*-1)(\alpha-1)}(\eta)$  such that

 $\sigma(\eta)\lambda(\eta) \Rightarrow Exp(q) \text{ as } \eta \downarrow 0.$ 



### Theorem (Wang, Oh, Rhee, 2021)

For (Lebesgue) almost every b > 0, there exist some q > 0 and  $\lambda(\eta) \approx O(\eta^{\alpha + (l^* - 1)(\alpha - 1)})$  such that

 $\sigma(\eta)\lambda(\eta) \Rightarrow Exp(q) \text{ as } \eta \downarrow 0.$ 



#### Theorem (Wang, Oh, Rhee, 2021)

For (Lebesgue) almost every b > 0, there exist some q > 0 and  $\lambda(\eta) \approx O(\eta^{\alpha + (l^* - 1)(\alpha - 1)})$  such that

 $\sigma(\eta)\lambda(\eta) \Rightarrow Exp(q) \text{ as } \eta \downarrow 0.$ 

 $\sigma(\eta) \sim O(1/\lambda(\eta)) \approx O(1/\eta^{\alpha + (l^* - 1)(\alpha - 1)})$