Eliminating Sharp Minima with Truncated Heavy-tailed Noise

Xingyu Wang*, Sewoong Oh[†], Chang-Han Rhee*

Northwestern University*, University of Washington[†]

DeepMath 2021

• Generalization of DNN

Training Set

• Generalization of DNN

Training Set

Test Set

• Generalization of DNN

• Generalization Mystery of Stochastic Gradient Descent (SGD)

- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Nonconvex Landscape, Numerous Local Minima

- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Nonconvex Landscape, Numerous Local Minima

- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Empirical Observations: Flat minima (as opposed to sharp minima) generalize better.

- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Empirical Observations: Flat minima (as opposed to sharp minima) generalize better.
 - Among 40+ metrics, sharpness metrics predict generalization best. (Jiang et al., 2020)

• Generalization of DNN

- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Empirical Observations: Flat minima (as opposed to sharp minima) generalize better.
 - Among 40+ metrics, sharpness metrics predict generalization best. (Jiang et al., 2020)

• Q: SGD prefers flat minima?

$$\mathsf{GD} \qquad X_j = X_{j-1} - \eta \ \nabla f(X_{j-1})$$

$$SGD$$
 $X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

$$\mathsf{SGD} \qquad \mathsf{X}_{j} = \mathsf{X}_{j-1} - \eta ig(
abla f(\mathsf{X}_{j-1}) + \mathbf{Z}_{j} ig)$$

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

 \searrow Heavy-tailed

Traditional Assumption: Light-tailed~

$$SGD \qquad X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

• Heavy-tailed Noises: $\mathbb{E}Z_j = 0$, $Z_j \in RV_{-\alpha}$ with $\alpha > 1$

Traditional Assumption: Light-tailed~

$$SGD \qquad X_{j} = X_{j-1} - \eta \big(\nabla f(X_{j-1}) + Z_{j} \big)$$

$$\stackrel{\scriptstyle \scriptstyle \leftarrow}{} Heavy-tailed$$

• Heavy-tailed Noises: $\mathbb{E}Z_j = 0$, $\mathbb{P}(||Z_j|| > x)$ resembles power law $x^{-\alpha}$

Traditional Assumption: Light-tailed~

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

 \searrow Heavy-tailed

• Heavy-tailed Noises: $\mathbb{E}Z_j = 0$, $\mathbb{P}(||Z_j|| > x)$ resembles power law $x^{-\alpha}$

• Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);

Traditional Assumption: Light-tailed~

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

K Heavy-tailed

• Heavy-tailed Noises: $\mathbb{E}Z_j = 0$, $\mathbb{P}(||Z_j|| > x)$ resembles power law $x^{-\alpha}$

- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

K Heavy-tailed

- Heavy-tailed Noises: $\mathbb{E}Z_j = 0$, $\mathbb{P}(||Z_j|| > x)$ resembles power law $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

 \searrow Heavy-tailed

- Heavy-tailed Noises: $\mathbb{E}Z_j = 0$, $\mathbb{P}(||Z_j|| > x)$ resembles power law $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

 \searrow Heavy-tailed

- Heavy-tailed Noises: $\mathbb{E}Z_j = 0$, $\mathbb{P}(||Z_j|| > x)$ resembles power law $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)

Traditional Assumption: Light-tailed~

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

 \searrow Heavy-tailed

- Heavy-tailed Noises: $\mathbb{E}Z_j = 0$, $\mathbb{P}(||Z_j|| > x)$ resembles power law $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)

Our Work: Complete Elimination of Sharp Minima

$$X_j = X_{j-1} - \varphi_b \big(\eta \nabla f(X_{j-1}) + \eta Z_j \big); \quad \varphi_b(x) = \min\{b, \|x\|\} \cdot \frac{x}{\|x\|}$$

Gradient Clipping

$$X_{j} = X_{j-1} - \varphi_{b} \left(\eta \nabla f(X_{j-1}) + \eta Z_{j} \right); \quad \varphi_{b}(x) = \min\{b, \|x\|\} \cdot \frac{x}{\|x\|}$$

Gradient Clipping

$$\downarrow^{\downarrow} X_{j} = X_{j-1} - \varphi_{b} \left(\eta \nabla f(X_{j-1}) + \eta Z_{j} \right); \quad \varphi_{b}(x) = \min\{b, \|x\|\} \cdot \frac{x}{\|x\|}$$

Q: How does truncated heavy-tailed noise help?

Gradient Clipping

$$\downarrow^{\downarrow} X_{j} = X_{j-1} - \varphi_{b} (\eta \nabla f(X_{j-1}) + \eta Z_{j}); \quad \varphi_{b}(x) = \min\{b, \|x\|\} \cdot \frac{x}{\|x\|}$$

Q: How does truncated heavy-tailed noise help?

Gradient Clipping

$$\downarrow^{\downarrow} X_{j} = X_{j-1} - \varphi_{b} (\eta \nabla f(X_{j-1}) + \eta Z_{j}); \quad \varphi_{b}(x) = \min\{b, \|x\|\} \cdot \frac{x}{\|x\|}$$

Q: Why does truncated heavy-tailed noise help?

Light-Tailed Distributions

- Extreme Values are Very Rare
- Normal, Exponential, etc

Heavy-Tailed Distributions

- Extreme Values are Frequent
- Power Law, Weibull, etc

Light-Tailed Distributions

- Extreme Values are Very Rare
- Normal, Exponential, etc

Heavy-Tailed Distributions

- Extreme Values are Frequent
- Power Law, Weibull, etc

Structural difference in the way systemwide rare events arise.

Light-Tailed Distributions

- Extreme Values are Very Rare
- Normal, Exponential, etc

Systemwide rare events

arise because

EVERYTHING goes wrong.

(Conspiracy Principle)

Heavy-Tailed Distributions

- Extreme Values are Frequent
- Power Law, Weibull, etc

Structural difference in the way systemwide rare events arise.

Light-Tailed Distributions

- Extreme Values are Very Rare
- Normal, Exponential, etc

Systemwide rare events

arise because

EVERYTHING goes wrong.

(Conspiracy Principle)

Heavy-Tailed Distributions

- Extreme Values are Frequent
- Power Law, Weibull, etc

Systemwide rare events

arise because of

A FEW Catastrophes.

(Catastrophe Principle)

Structural difference in the way systemwide rare events arise.

Typical Behavior of SGD

$$X_{j}^{\eta} = X_{j-1}^{\eta} - \eta (
abla f(X_{j-1}^{\eta}) + Z_{j})$$

Typical Behavior of SGD

$$X_j^\eta = X_{j-1}^\eta - \eta ig(
abla f(X_{j-1}^\eta) + Z_j ig)$$

Typical Behavior of SGD

$$X_{j}^{\eta} = X_{j-1}^{\eta} - \eta \left(
abla f(X_{j-1}^{\eta}) + Z_{j} \right)$$

$$X_{j}^{\eta} = X_{j-1}^{\eta} - \eta \left(
abla f(X_{j-1}^{\eta}) + Z_{j} \right)$$

$$X_j^\eta = X_{j-1}^\eta - \eta ig(
abla f(X_{j-1}^\eta) + Z_j ig)$$

$$X_j^\eta = X_{j-1}^\eta - \eta ig(
abla f(X_{j-1}^\eta) + Z_j ig)$$

$$X_{j}^{\eta} = X_{j-1}^{\eta} - \eta \left(\nabla f(X_{j-1}^{\eta}) + Z_{j} \right)$$

Trajectory of SGD X^{η} :

 $\eta = 1/10$ & noises are light-tailed

Trajectory of SGD X^{η} :

 $\eta = 1/10$ & noises are heavy-tailed

Typical Behavior of SGD

Trajectory of SGD X^{η} :

 $\eta = 1/100$ & noises are heavy-tailed

Typical Behavior of SGD

Trajectory of SGD X^{η} :

 $\eta = 1/150$ & noises are heavy-tailed

Typical Behavior of SGD

Trajectory of SGD X^{η} :

 $\eta = 1/200$ & noises are heavy-tailed

How does SGD escape local minima?

(Su, Wang, Rhee, 2021+) For "rare event" A,

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e. $\mathbb{P}(X^{\eta} \in A) \rightarrow 0$ as $\eta \downarrow 0$)

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e. $\mathbb{P}(X^{\eta} \in A) \to 0$ as $\eta \downarrow 0$)

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e. $\mathbb{P}(X^{\eta} \in A) \to 0$ as $\eta \downarrow 0$)

• $\mathbb{P}(X^{\eta} \in A) \approx \eta^{(\alpha-1)^{\prime}(A)}$

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e. $\mathbb{P}(X^{\eta} \in A) \to 0$ as $\eta \downarrow 0$)

- $\mathbb{P}(X^{\eta} \in A) \approx \eta^{(\alpha-1)^{\prime}(A)}$
- Conditioned on $\{X^{\eta} \in A\}$, X^{η} resembles piece-wise gradient flow with $I^{*}(A)$ jumps

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e. $\mathbb{P}(X^{\eta} \in A) \to 0$ as $\eta \downarrow 0$)

P(X^η ∈ A) ≈ η^{(α-1)/*(A)}
Typical Behavior γ
Conditioned on {X^η ∈ A}, X^η resembles piece-wise gradient flow with /*(A) jumps

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e. $\mathbb{P}(X^{\eta} \in A) \to 0$ as $\eta \downarrow 0$)

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e. $\mathbb{P}(X^{\eta} \in A) \to 0$ as $\eta \downarrow 0$)

- $I^*(A)$: Min # of jumps (catastrophes) to cause event A

Most likely path under heavy-tailed noises: with $I^* = 1$ jump

Most likely path under heavy-tailed noises: with $I^* = 1$ jump

Trajectory of SGD X^{η} conditional on exit:

Trajectory of SGD X^{η} conditional on exit:

heavy-tailed noises with $\eta = 1/75$

Trajectory of SGD X^{η} conditional on exit:

Trajectory of SGD X^{η} conditional on exit:

Trajectory of SGD X^{η} conditional on exit:

$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$

$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$

$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$

$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$

$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$

$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$

$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$

$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$

$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$

$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$

$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$

$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$

$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$

$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$

$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$

Most likely path under heavy-tailed noises: with $I^* = 2$ jumps

$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/2, r)$$

Trajectory of SGD X^{η} conditional on exit:

Trajectory of SGD X^{η} conditional on exit:

Trajectory of SGD X^{η} conditional on exit:

Trajectory of SGD X^{η} conditional on exit:

Trajectory of SGD X^{η} conditional on exit:

Trajectory of SGD X^{η} conditional on exit:

Trajectory of SGD X^{η} conditional on exit:

Trajectory of SGD X^{η} conditional on exit:

Trajectory of SGD X^{η} conditional on exit:

 $X_{j}^{\eta} = X_{j-1}^{\eta} + \varphi_{b} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_{j} \big), \overset{\checkmark}{b} \in (r/3, r/2)$

 $X_{j}^{\eta} = X_{j-1}^{\eta} + \varphi_{b} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_{j} \big), \overset{\checkmark}{b} \in (r/3, r/2)$

$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \boldsymbol{b} \in (r/4, r/3)$$

$$X_j^{\eta} = X_{j-1}^{\eta} + \varphi_{\boldsymbol{b}} \big(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j \big), \overset{\checkmark}{\boldsymbol{b}} \in (r/4, r/3)$$

$$X_j^\eta = X_{j-1}^\eta + arphi_{m{b}}ig(- \eta
abla f(X_{j-1}^\eta) + \eta Z_j ig), igbbed{b} \in (r/4, r/3)$$

$$X_j^\eta = X_{j-1}^\eta + arphi_{m{b}}ig(- \eta
abla f(X_{j-1}^\eta) + \eta Z_j ig), igbbed{b} \in (r/4, r/3)$$

• First Exit Time: $\sigma^{\eta} \triangleq \min\{j \ge 0 : X_i^{\eta} \notin \Omega\}$

- First Exit Time: $\sigma^{\eta} \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- Effective Width (Min Distance for Escape): $r \triangleq \inf_{x \notin \Omega} |x m|$.

- First Exit Time: $\sigma^{\eta} \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- Effective Width (Min Distance for Escape): $r \triangleq \inf_{x \notin \Omega} |x m|$.
- **Relative Width** (Min # of jumps for Escape): $l^* \triangleq \lceil r/b \rceil$.

- First Exit Time: $\sigma^{\eta} \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- Effective Width (Min Distance for Escape): $r \triangleq \inf_{x \notin \Omega} |x m|$.
- **Relative Width** (Min # of jumps for Escape): $I^* \triangleq \lceil r/b \rceil$.
- (Wang, Oh, Rhee, 2021+) As $\eta \downarrow 0$, $\sigma^{\eta}\lambda(\eta) \Rightarrow Exp(q)$.

- First Exit Time: $\sigma^{\eta} \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- Effective Width (Min Distance for Escape): $r \triangleq \inf_{x \notin \Omega} |x m|$.
- **Relative Width** (Min # of jumps for Escape): $I^* \triangleq \lceil r/b \rceil$.
- (Wang, Oh, Rhee, 2021+) As $\eta \downarrow 0$, $\sigma^{\eta} \lambda(\eta) \Rightarrow Exp(q)$. $(\lambda(\eta) \approx O(\eta^{\alpha+(l^*-1)(\alpha-1)})$, deterministic)

- First Exit Time: $\sigma^{\eta} \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- Effective Width (Min Distance for Escape): $r \triangleq \inf_{x \notin \Omega} |x m|$.
- **Relative Width** (Min # of jumps for Escape): $I^* \triangleq \lceil r/b \rceil$.

$$\sigma^\eta \sim O(1/\lambda(\eta)) pprox O(1/\eta^{lpha + (l^* - 1)(lpha - 1)})$$

Without Clipping

Without Clipping

With Clipping

• Min # of jumps for escape: l_i^*

• Min # of jumps for escape: l_i^* (Example: set b = 0.5)

• Min # of jumps for escape: l_i^* (Example: set b = 0.5)

- Min # of jumps for escape: I_i^* (Example: set b = 0.5)
- Set of Widest Minima: $m_i \in M^{\text{wide}}$ iff $l_i^* = \max_j l_j^*$.

- Min # of jumps for escape: I_i^* (Example: set b = 0.5)
- Set of Widest Minima: $m_i \in M^{\text{wide}}$ iff $l_i^* = \max_j l_i^*$.

Theorem (Wang, Oh, Rhee, 2021+)

Under structural conditions on loss landscape, for any t > 0 and $\beta > 1 + (\alpha - 1) \max_{i} l_{i}^{*}$,

$$\frac{1}{\lfloor t/\eta^{\beta} \rfloor} \int_{0}^{\lfloor t/\eta^{\beta} \rfloor} \mathbb{1} \Big\{ X^{\eta}_{\lfloor u \rfloor} \in \bigcup_{j: m_{j} \notin M^{wide}} \Omega_{j} \Big\} du \xrightarrow{\mathbb{P}} 0 \text{ as } \eta \downarrow 0.$$

- Min # of jumps for escape: I_i^* (Example: set b = 0.5)
- Set of Widest Minima: $m_i \in M^{\text{wide}}$ iff $l_i^* = \max_j l_i^*$.

Theorem (Wang, Oh, Rhee, 2021+)

Under structural conditions on loss landscape, for any t > 0 and $\beta > 1 + (\alpha - 1) \max_{i} l_{i}^{*}$,

$$\frac{1}{\lfloor t/\eta^{\beta} \rfloor} \int_{0}^{\lfloor t/\eta^{\beta} \rfloor} \mathbb{1} \Big\{ X^{\eta}_{\lfloor u \rfloor} \in \bigcup_{j: m_{j} \notin M^{wide}} \Omega_{j} \Big\} du \xrightarrow{\mathrm{P}} 0 \text{ as } \eta \downarrow 0.$$

[∧]Proportion of time at narrow minima

• Same Elimination Effect in \mathbb{R}^d

New Training Algorithm

Truncated Heavy-tailed SGD in Deep Learning

• Our Method: $X \leftarrow X - \varphi_b(\eta \cdot g_{heavy}(X))$ where

Truncated Heavy-tailed SGD in Deep Learning

- X: current weights;
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$ where

Truncated Heavy-tailed SGD in Deep Learning

- X: current weights; Cradient Clipping
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$ where
Truncated Heavy-tailed SGD in Deep Learning

- X: current weights;
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$ where

 $g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + \text{``Heavy-tailed Noise''}$

- X: current weights; **GD**: gradient descent; **SB**: small batch; g_{XX} : gradient under method XX.
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$ where

 $g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + \text{``Heavy-tailed Noise''}$

- X: current weights; **GD**: gradient descent; **SB**: small batch; g_{XX} : gradient under method XX.
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$ where

$$g_{\mathsf{heavy}}(X) riangleq g_{\mathsf{SB}}(X) +$$
 "Heavy-tailed Noise"

• Gradient noise: $g_{SB}(X) - g_{GD}(X)$

- X: current weights; **GD**: gradient descent; **SB**: small batch; g_{XX} : gradient under method XX.
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$ where

$$g_{\mathsf{heavy}}(X) riangleq g_{\mathsf{SB}}(X) +$$
 "Heavy-tailed Noise"

- Gradient noise: $g_{SB}(X) g_{GD}(X)$
- Heavy-tail Inflation: $Z(g_{SB}(X) g_{GD}(X))$ for some heavy-tailed Z

- X: current weights; **GD**: gradient descent; **SB**: small batch; g_{XX} : gradient under method XX.
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$ where

$$g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + Z(-g_{\text{GD}}(X) + g_{\text{SB}*}(X))$$

- Gradient noise: $g_{SB}(X) g_{GD}(X)$
- Heavy-tail Inflation: $Z(g_{SB}(X) g_{GD}(X))$ for some heavy-tailed Z

- X: current weights; **GD**: gradient descent; **SB**: small batch; g_{XX} : gradient under method XX.
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$ where

$$g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + Z(-g_{\text{LB}}(X) + g_{\text{SB}*}(X))$$

- Gradient noise: $g_{SB}(X) g_{GD}(X)$
- Heavy-tail Inflation: $Z(g_{SB}(X) g_{GD}(X))$ for some heavy-tailed Z

- X: current weights; **GD**: gradient descent; **SB**: small batch; g_{XX} : gradient under method XX.
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$ where

$$g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + Z(-g_{\text{LB}}(X) + g_{\text{SB}*}(X))$$

• Gradient noise: $g_{SB}(X) - g_{GD}(X)$ Same or independent batches?

• Heavy-tail Inflation: $Z(g_{SB}(X) - g_{GD}(X))$ for some heavy-tailed Z

- X: current weights; **GD**: gradient descent; **SB**: small batch; g_{XX} : gradient under method XX.
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{heavy}(X))$ where

$$g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + Z(-g_{\text{LB}}(X) + g_{\text{SB}*}(X))$$

• Gradient noise: $g_{SB}(X) - g_{GD}(X)$ Same or independent batches? \Rightarrow two versions

• Heavy-tail Inflation: $Z(g_{SB}(X) - g_{GD}(X))$ for some heavy-tailed Z

Test accuracy	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	68.66%	69.20%	68.77%	64.43%	69.47%	70.06%
SVHN, VGG11	82.87%	85.92%	85.95%	38.85%	88.42%	88.37%
CIFAR10, VGG11	69.39%	74.42%	74.38%	40.50%	75.69%	75.87%
Expected Sharpness	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	0.032	0.008	0.009	0.047	0.003	0.002
SVHN, VGG11	0.694	0.037	0.041	0.012	0.002	0.005
CIFAR10, VGG11	2.043	0.050	0.039	2.046	0.024	0.037

Test accuracy	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	68.66%	69.20%	68.77%	64.43%	69.47%	70.06%
SVHN, VGG11	82.87%	85.92%	85.95%	38.85%	88.42%	88.37%
CIFAR10, VGG11	69.39%	74.42%	74.38%	40.50%	75.69%	75.87%
Expected Sharpness	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	0.032	800.0	0.009	0.047	0.003	0.002
SVHN, VGG11	0.694	0.037	0.041	0.012	0.002	0.005
CIFAR10, VGG11	2.043	0.050	0.039	2.046	0.024	0.037

• Expected Sharpness: Zhu et al. (2019); Neyshabur et al. (2017b)

Test accuracy	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	68.66%	69.20%	68.77%	64.43%	69.47%	70.06%
SVHN, VGG11	82.87%	85.92%	85.95%	38.85%	88.42%	88.37%
CIFAR10, VGG11	69.39%	74.42%	74.38%	40.50%	75.69%	75.87%
Expected Sharpness	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	0.032	800.0	0.009	0.047	0.003	0.002
SVHN, VGG11	0.694	0.037	0.041	0.012	0.002	0.005
CIFAR10, VGG11	2.043	0.050	0.039	2.046	0.024	0.037

- Expected Sharpness: Zhu et al. (2019); Neyshabur et al. (2017b)
 - Consistent results under other sharpness metrics

Test accuracy	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	68.66%	69.20%	68.77%	64.43%	69.47%	70.06%
SVHN, VGG11	82.87%	85.92%	85.95%	38.85%	88.42%	88.37%
CIFAR10, VGG11	69.39%	74.42%	74.38%	40.50%	75.69%	75.87%
Expected Sharpness	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	0.032	800.0	0.009	0.047	0.003	0.002
SVHN, VGG11	0.694	0.037	0.041	0.012	0.002	0.005
CIFAR10, VGG11	2.043	0.050	0.039	2.046	0.024	0.037

- Expected Sharpness: Zhu et al. (2019); Neyshabur et al. (2017b)
 - Consistent results under other sharpness metrics
- Flatter geometry & Improved generalization performance

Test accuracy	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	68.66%	69.20%	68.77%	64.43%	69.47%	70.06%
SVHN, VGG11	82.87%	85.92%	85.95%	38.85%	88.42%	88.37%
CIFAR10, VGG11	69.39%	74.42%	74.38%	40.50%	75.69%	75.87%
Expected Sharpness	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	0.032	800.0	0.009	0.047	0.003	0.002
SVHN, VGG11	0.694	0.037	0.041	0.012	0.002	0.005
CIFAR10, VGG11	2.043	0.050	0.039	2.046	0.024	0.037

- Expected Sharpness: Zhu et al. (2019); Neyshabur et al. (2017b)
 - Consistent results under other sharpness metrics
- Flatter geometry & Improved generalization performance
- Requires both heavy-tailed noise and truncation

CIFAR10-VGG11	SB + Clip	Our 1	Our 2
Test Accuracy	89.54%	90.76%	90.45%
Expected Sharpness	0.167	0.085	0.096
PAC-Bayes Sharpness	$1.31 imes 10^4$	$9 imes 10^3$	10 ⁴
Maximal Sharpness	$1.66 imes10^4$	$1.29 imes 10^4$	$1.22 imes 10^4$
CIFAR100-VGG16	SB + Clip	Our 1	Our 2
Test Accuracy	56.32%	65.44%	62.99%
Expected Sharpness	0.857	0.441	0.479
PAC-Bayes Sharpness	$2.49 imes10^4$	$1.9 imes10^4$	$1.98 imes10^4$
Maximal Sharpness	$2.75 imes10^4$	$2.12 imes 10^4$	$2.16 imes10^4$

• More training techniques: Data augmentation, learning rate scheduler.

• Theoretical Contribution

- Rigorously established that truncated heavy-tailed noises can eliminate sharp minima
- Catastrophe principle, first exit time analysis, and metastability for heavy-tailed SGD

• Algorithmic Contribution

• Proposed a tail-inflation strategy to find flatter solution with better generalization

• "Regularity conditions"

• "Regularity conditions"

• "Regularity conditions"

• "Regularity conditions": Irreducibility

• "Regularity conditions": Irreducibility

• We established similar results for the reducible case.

• "Regularity conditions": Irreducibility

- We established similar results for the reducible case.
- \mathbb{R}^d Extension
 - First exit time results in \mathbb{R}^d

• "Regularity conditions": Irreducibility

- We established similar results for the reducible case.
- \mathbb{R}^d Extension
 - First exit time results in \mathbb{R}^d
 - \mathbb{R}^d simulation experiments

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \ge 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

• $I^* \triangleq \lceil r/b \rceil$

Theorem (Wang, Oh, Rhee, 2021)

For (Lebesgue) almost every b > 0, there exist some q > 0 and $\lambda(\eta) \in RV_{\alpha+(l^*-1)(\alpha-1)}(\eta)$ such that

 $\sigma(\eta)\lambda(\eta) \Rightarrow Exp(q) \text{ as } \eta \downarrow 0.$

Theorem (Wang, Oh, Rhee, 2021)

For (Lebesgue) almost every b > 0, there exist some q > 0 and $\lambda(\eta) \approx O(\eta^{\alpha + (l^* - 1)(\alpha - 1)})$ such that

 $\sigma(\eta)\lambda(\eta) \Rightarrow Exp(q) \text{ as } \eta \downarrow 0.$

Theorem (Wang, Oh, Rhee, 2021)

For (Lebesgue) almost every b > 0, there exist some q > 0 and $\lambda(\eta) \approx O(\eta^{\alpha + (l^* - 1)(\alpha - 1)})$ such that

 $\sigma(\eta)\lambda(\eta) \Rightarrow Exp(q) \text{ as } \eta \downarrow 0.$

 $\sigma(\eta) \sim O(1/\lambda(\eta)) \approx O(1/\eta^{\alpha + (l^* - 1)(\alpha - 1)})$