Eliminating Sharp Minima with Truncated Heavy-tailed Noise

Xingyu Wang*, Sewoong Oh ${ }^{\dagger}$, Chang-Han Rhee*
Northwestern University*, University of Washington ${ }^{\dagger}$
DeepMath 2021

Intro: Generalization Gap and Flat Minima

- Generalization of DNN

Intro: Generalization Gap and Flat Minima

- Generalization of DNN

Training Set

Intro: Generalization Gap and Flat Minima

- Generalization of DNN

Training Set

Intro: Generalization Gap and Flat Minima

- Generalization of DNN

Training Set

Test Set

Training/Test Error

Intro: Generalization Gap and Flat Minima

- Generalization of DNN
- Generalization Mystery of Stochastic Gradient Descent (SGD)

Training Set

Test Set

Training/Test Error

Intro: Generalization Gap and Flat Minima

- Generalization of DNN
- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Nonconvex Landscape, Numerous Local Minima

Intro: Generalization Gap and Flat Minima

- Generalization of DNN
- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Nonconvex Landscape, Numerous Local Minima

Intro: Generalization Gap and Flat Minima

- Generalization of DNN
- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Empirical Observations: Flat minima (as opposed to sharp minima) generalize better.

Intro: Generalization Gap and Flat Minima

- Generalization of DNN
- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Empirical Observations: Flat minima (as opposed to sharp minima) generalize better.
- Among $40+$ metrics, sharpness metrics predict generalization best. (Jiang et al., 2020)

Intro: Generalization Gap and Flat Minima

- Generalization of DNN
- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Empirical Observations: Flat minima (as opposed to sharp minima) generalize better.
- Among $40+$ metrics, sharpness metrics predict generalization best. (Jiang et al., 2020)

- Q: SGD prefers flat minima?

Intro: Heavy-tailed SGD Prefers Flat Minima

$$
\mathrm{GD} \quad X_{j}=X_{j-1}-\eta \nabla f\left(X_{j-1}\right)
$$

Intro: Heavy-tailed SGD Prefers Flat Minima

$$
\text { SGD } \quad X_{j}=X_{j-1}-\eta\left(\nabla f\left(X_{j-1}\right)+Z_{j}\right)
$$

Intro: Heavy-tailed SGD Prefers Flat Minima

Traditional Assumption: Light-tailed \searrow

SGD $\quad X_{j}=X_{j-1}-\eta\left(\nabla f\left(X_{j-1}\right)+Z_{j}\right)$

Intro: Heavy-tailed SGD Prefers Flat Minima

Traditional Assumption: Light tailed

$S G D \quad X_{j}=X_{j-1}-\eta\left(\nabla f\left(X_{j-1}\right)+Z_{j}\right)$

Intro: Heavy-tailed SGD Prefers Flat Minima

Traditional Assumption: Light tailed

$$
\text { SGD } \quad X_{j}=X_{j-1}-\eta\left(\nabla f\left(X_{j-1}\right)+Z_{j}\right)
$$

Heavy-tailed

Intro: Heavy-tailed SGD Prefers Flat Minima

Traditional Assumption: Lifht tailed

$$
\text { SGD } \quad X_{j}=X_{j-1}-\eta\left(\nabla f\left(X_{j-1}\right)+Z_{j}\right)
$$

Heavy-tailed

- Heavy-tailed Noises: $\mathbb{E} Z_{j}=0, Z_{j} \in R V_{-\alpha}$ with $\alpha>1$

Intro: Heavy-tailed SGD Prefers Flat Minima

Traditional Assumption: Light tailed

$$
S G D \quad X_{j}=X_{j-1}-\eta\left(\nabla f\left(X_{j-1}\right)+Z_{j}\right)
$$

Heavy-tailed

- Heavy-tailed Noises: $\mathbb{E} Z_{j}=0, \mathbb{P}\left(\left\|Z_{j}\right\|>x\right)$ resembles power law $x^{-\alpha}$

Intro: Heavy-tailed SGD Prefers Flat Minima

Fraditional Assumption Light tailed

$$
S G D \quad X_{j}=X_{j-1}-\eta\left(\nabla f\left(X_{j-1}\right)+Z_{j}\right)
$$

Heavy-tailed

- Heavy-tailed Noises: $\mathbb{E} Z_{j}=0, \mathbb{P}\left(\left\|Z_{j}\right\|>x\right)$ resembles power law $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);

Intro: Heavy-tailed SGD Prefers Flat Minima

Fraditional Assumption Light tailed

$$
S G D \quad X_{j}=X_{j-1}-\eta\left(\nabla f\left(X_{j-1}\right)+Z_{j}\right)
$$

Heavy-tailed

- Heavy-tailed Noises: $\mathbb{E} Z_{j}=0, \mathbb{P}\left(\left\|Z_{j}\right\|>x\right)$ resembles power law $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson \& Mahoney (2020);

Intro: Heavy-tailed SGD Prefers Flat Minima

$$
S G D \quad X_{j}=X_{j-1}-\eta\left(\nabla f\left(X_{j-1}\right)+Z_{j}\right)
$$

Heavy-tailed

- Heavy-tailed Noises: $\mathbb{E} Z_{j}=0, \mathbb{P}\left(\left\|Z_{j}\right\|>x\right)$ resembles power law $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson \& Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)

Intro: Heavy-tailed SGD Prefers Flat Minima

$$
S G D \quad X_{j}=X_{j-1}-\eta\left(\nabla f\left(X_{j-1}\right)+Z_{j}\right)
$$

Heavy-tailed

- Heavy-tailed Noises: $\mathbb{E} Z_{j}=0, \mathbb{P}\left(\left\|Z_{j}\right\|>x\right)$ resembles power law $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson \& Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)

Intro: Heavy-tailed SGD Prefers Flat Minima

$$
S G D \quad X_{j}=X_{j-1}-\eta\left(\nabla f\left(X_{j-1}\right)+Z_{j}\right)
$$

Heavy-tailed

- Heavy-tailed Noises: $\mathbb{E} Z_{j}=0, \mathbb{P}\left(\left\|Z_{j}\right\|>x\right)$ resembles power law $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson \& Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)

Intro: Heavy-tailed SGD Prefers Flat Minima

Fratill Assumple light

$$
S G D \quad X_{j}=X_{j-1}-\eta\left(\nabla f\left(X_{j-1}\right)+Z_{j}\right)
$$

Heavy-tailed

- Heavy-tailed Noises: $\mathbb{E} Z_{j}=0, \mathbb{P}\left(\left\|Z_{j}\right\|>x\right)$ resembles power law $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson \& Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)

Our Work: Complete Elimination of Sharp Minima

Intro: Truncated Heavy-tailed SGD

$$
X_{j}=X_{j-1}-\varphi_{b}\left(\eta \nabla f\left(X_{j-1}\right)+\eta Z_{j}\right) ; \quad \varphi_{b}(x)=\min \{b,\|x\|\} \cdot \frac{x}{\|x\|}
$$

Intro: Truncated Heavy-tailed SGD

$$
X_{j}=X_{j-1} \stackrel{\substack{\text { Gradient Clipping } \\ \varphi_{b}}}{ }\left(\eta \nabla f\left(X_{j-1}\right)+\eta Z_{j}\right) ; \quad \varphi_{b}(x)=\min \{b,\|x\|\} \cdot \frac{x}{\|x\|}
$$

Intro: Truncated Heavy-tailed SGD

$$
\begin{aligned}
& \quad \begin{array}{c}
\text { Gradient Clipping } \\
\downarrow \\
X_{j-1}
\end{array}=\chi_{b}\left(\eta \nabla f\left(X_{j-1}\right)+\eta Z_{j}\right) ; \quad \varphi_{b}(x)=\min \{b,\|x\|\} \cdot \frac{x}{\|x\|}
\end{aligned}
$$

Q: How does truncated heavy-tailed noise help?

Intro: Truncated Heavy-tailed SGD

$$
\begin{aligned}
& \quad \begin{array}{c}
\text { Gradient Clipping } \\
\downarrow \\
X_{j}
\end{array}=X_{j-1}-\varphi_{b}\left(\eta \nabla f\left(X_{j-1}\right)+\eta Z_{j}\right) ; \quad \varphi_{b}(x)=\min \{b,\|x\|\} \cdot \frac{x}{\|x\|}
\end{aligned}
$$

Q: How does truncated heavy-tailed noise help?

Intro: Truncated Heavy-tailed SGD

$$
\begin{aligned}
& \quad \begin{array}{c}
\text { Gradient Clipping } \\
\downarrow \\
X_{j}
\end{array}=X_{j-1}-\varphi_{b}\left(\eta \nabla f\left(X_{j-1}\right)+\eta Z_{j}\right) ; \quad \varphi_{b}(x)=\min \{b,\|x\|\} \cdot \frac{x}{\|x\|}
\end{aligned}
$$

Q: Why does truncated heavy-tailed noise help?

Rare Events depend on "Tail Behaviors"

Light-Tailed Distributions

- Extreme Values are Very Rare
- Normal, Exponential, etc

Heavy-Tailed Distributions

- Extreme Values are Frequent
- Power Law, Weibull, etc

Instagram

Rare Events depend on "Tail Behaviors"

Light-Tailed Distributions

- Extreme Values are Very Rare
- Normal, Exponential, etc

Heavy-Tailed Distributions

- Extreme Values are Frequent
- Power Law, Weibull, etc

Instagram

Structural difference in the way systemwide rare events arise.

Rare Events depend on "Tail Behaviors"

Light-Tailed Distributions

- Extreme Values are Very Rare
- Normal, Exponential, etc

Systemwide rare events
arise because
EVERYTHING goes wrong.
(Conspiracy Principle)

Heavy-Tailed Distributions

- Extreme Values are Frequent
- Power Law, Weibull, etc

Instagram

Structural difference in the way systemwide rare events arise.

Rare Events depend on "Tail Behaviors"

Light-Tailed Distributions

- Extreme Values are Very Rare
- Normal, Exponential, etc

Systemwide rare events
arise because

EVERYTHING goes wrong.
(Conspiracy Principle)

Heavy-Tailed Distributions

- Extreme Values are Frequent
- Power Law, Weibull, etc

Systemwide rare events arise because of A FEW Catastrophes.
(Catastrophe Principle)

Structural difference in the way systemwide rare events arise.

Typical Behavior of SGD

$$
X_{j}^{\eta}=X_{j-1}^{\eta}-\eta\left(\nabla f\left(X_{j-1}^{\eta}\right)+Z_{j}\right)
$$

Typical Behavior of SGD

$$
X_{j}^{\eta}=X_{j-1}^{\eta}-\eta\left(\nabla f\left(X_{j-1}^{\eta}\right)+Z_{j}\right)
$$

Typical Behavior of SGD

$$
X_{j}^{\eta}=X_{j-1}^{\eta}-\eta\left(\nabla f\left(X_{j-1}^{\eta}\right)+Z_{j}\right)
$$

Typical Behavior of SGD

$$
X_{j}^{\eta}=X_{j-1}^{\eta}-\eta\left(\nabla f\left(X_{j-1}^{\eta}\right)+Z_{j}\right)
$$

Typical Behavior of SGD

Typical Behavior of SGD

$$
X_{j}^{\eta}=X_{j-1}^{\eta}-\eta\left(\nabla f\left(X_{j-1}^{\eta}\right)+Z_{j}\right)
$$

Typical Behavior of SGD

$$
X_{j}^{\eta}=X_{j-1}^{\eta}-\eta\left(\nabla f\left(X_{j-1}^{\eta}\right)+Z_{j}\right)
$$

Typical Behavior of SGD

$$
X_{j}^{\eta}=X_{j-1}^{\eta}-\eta\left(\nabla f\left(X_{j-1}^{\eta}\right)+Z_{j}\right)
$$

Typical Behavior of SGD

Typical Behavior of SGD

Typical Behavior of SGD

Trajectory of SGD $X^{\eta}: \quad \eta=1 / 10$ \& noises are light-tailed

Typical Behavior of SGD

Trajectory of SGD X^{η} :
$\eta=1 / 10$ \& noises are light-tailed

Typical Behavior of SGD

Trajectory of SGD X^{η} :
$\eta=1 / 10$ \& noises are light-tailed

Trajectory of SGD X^{η} :
$\eta=1 / 10$ \& noises are heavy-tailed

Typical Behavior of SGD

Trajectory of SGD X^{η} :
$\eta=1 / 10$ \& noises are light-tailed

Trajectory of SGD X^{η} :
$\eta=1 / 10$ \& noises are heavy-tailed

Typical Behavior of SGD

Trajectory of SGD X^{η} :
$\eta=1 / 25$ \& noises are light-tailed

Trajectory of SGD X^{η} :
$\eta=1 / 25$ \& noises are heavy-tailed

Typical Behavior of SGD

Trajectory of SGD X^{η} :
$\eta=1 / 50 \&$ noises are light-tailed

\rightarrow (

Trajectory of SGD X^{η} :
$\eta=1 / 50$ \& noises are heavy-tailed

Typical Behavior of SGD

Trajectory of SGD X^{η} :
$\eta=1 / 75$ \& noises are light-tailed

Trajectory of SGD X^{η} :
$\eta=1 / 75 \&$ noises are heavy-tailed

Typical Behavior of SGD

Trajectory of SGD $X^{\eta}: \quad \eta=1 / 100 \&$ noises are light-tailed

Trajectory of SGD X^{η} :
$\eta=1 / 100 \&$ noises are heavy-tailed

Typical Behavior of SGD

Trajectory of SGD X^{η} :
$\eta=1 / 150$ \& noises are light-tailed

Trajectory of SGD X^{η} :
$\eta=1 / 150 \&$ noises are heavy-tailed

Typical Behavior of SGD

Trajectory of SGD X^{η} : $\quad \eta=1 / 200$ \& noises are light-tailed

Trajectory of SGD X^{η} :
$\eta=1 / 200 \&$ noises are heavy-tailed

How does SGD escape local minima?

Catastrophe Principle in Heavy-tailed SGD

(Su, Wang, Rhee, 2021+) For " rare event" A,

Catastrophe Principle in Heavy-tailed SGD

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e. $\mathbb{P}\left(X^{\eta} \in A\right) \rightarrow 0$ as $\left.\eta \downarrow 0\right)$

Catastrophe Principle in Heavy-tailed SGD

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e. $\mathbb{P}\left(X^{\eta} \in A\right) \rightarrow 0$ as $\left.\eta \downarrow 0\right)$

Catastrophe Principle in Heavy-tailed SGD

\measuredangle SGD path
(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e. $\mathbb{P}\left(X^{\eta} \in A\right) \rightarrow 0$ as $\left.\eta \downarrow 0\right)$

- $\mathbb{P}\left(X^{\eta} \in A\right) \approx \eta^{(\alpha-1) /^{*}(A)}$

Catastrophe Principle in Heavy-tailed SGD

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e. $\mathbb{P}\left(\not X^{\eta} \in A\right) \rightarrow 0$ as $\left.\eta \downarrow 0\right)$

- $\mathbb{P}\left(X^{\eta} \in A\right) \approx \eta^{(\alpha-1))^{*}(A)}$
- Conditioned on $\left\{X^{\eta} \in A\right\}, X^{\eta}$ resembles piece-wise gradient flow with $I^{*}(A)$ jumps

Catastrophe Principle in Heavy-tailed SGD

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e. $\mathbb{P}\left(x^{\chi} \in A\right) \rightarrow 0$ as $\left.\eta \downarrow 0\right)$

- $\mathbb{P}\left(X^{\eta} \in A\right) \approx \eta^{(\alpha-1) l^{*}(A)}$

Typical Behavior

- Conditioned on $\left\{X^{\eta} \in A\right\}, X^{\eta}$ resembles piece-wise gradient flow with $I^{*}(A)$ jumps

Catastrophe Principle in Heavy-tailed SGD

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e. $\mathbb{P}\left(x^{\chi} \in A\right) \rightarrow 0$ as $\left.\eta \downarrow 0\right)$

- $\mathbb{P}\left(X^{\eta} \in A\right) \approx \eta^{(\alpha-1) l^{*}(A)}$
- Conditioned on $\left\{X^{\eta} \in A\right\}, X^{\eta}$ resembles piece-wise gradient flow with $I^{*}(A)$ jumps

Catastrophe Principle in Heavy-tailed SGD

(Su, Wang, Rhee, 2021+) For " rare event" A, (i.e. $\mathbb{P}\left(\swarrow^{\swarrow}\right.$ SGD path

- $\mathbb{P}\left(X^{\eta} \in A\right) \approx \eta^{(\alpha-1) l^{*}(A)}$
- Conditioned on $\left\{X^{\eta} \in A\right\}, X^{\eta}$ resembles piece-wise gradient flow with $I^{*}(A)$ jumps
- $I^{*}(A)$:Min \# of jumps (catastrophes) to cause event A

Catastrophe Principle Dictates SGD's Escape Route

This way?

Catastrophe Principle Dictates SGD's Escape Route

This way?

Catastrophe Principle Dictates SGD's Escape Route

This way?

Catastrophe Principle Dictates SGD's Escape Route

This way?

Catastrophe Principle Dictates SGD's Escape Route

This way?

Catastrophe Principle Dictates SGD's Escape Route

This way?

Catastrophe Principle Dictates SGD's Escape Route

This way?

Catastrophe Principle Dictates SGD's Escape Route

This way?

Catastrophe Principle Dictates SGD's Escape Route

This way?

Catastrophe Principle Dictates SGD's Escape Route

This way?

Catastrophe Principle Dictates SGD's Escape Route

This way?

Catastrophe Principle Dictates SGD's Escape Route

This way?

Catastrophe Principle Dictates SGD's Escape Route

This way?

Catastrophe Principle Dictates SGD's Escape Route

This way?

Catastrophe Principle Dictates SGD's Escape Route

This way?

Catastrophe Principle Dictates SGD's Escape Route

This way?

Catastrophe Principle Dictates SGD's Escape Route

This way?

Catastrophe Principle Dictates SGD's Escape Route

Most likely path under heavy-tailed noises: with $/^{*}=1$ jump

Catastrophe Principle Dictates SGD's Escape Route

Most likely path under heavy-tailed noises: with $I^{*}=1$ jump

Catastrophe Principle Dictates SGD's Escape Route

Most likely path under heavy-tailed noises: with $I^{*}=1$ jump

Catastrophe Principle Dictates SGD's Escape Route

Most likely path under heavy-tailed noises: with $I^{*}=1$ jump

Catastrophe Principle Dictates SGD's Escape Route

Most likely path under heavy-tailed noises: with $/^{*}=1$ jump

Catastrophe Principle Dictates SGD's Escape Route

Most likely path under heavy-tailed noises: with $/^{*}=1$ jump

Catastrophe Principle Dictates SGD's Escape Route

Most likely path under heavy-tailed noises: with $/^{*}=1$ jump

Catastrophe Principle Dictates SGD's Escape Route

Most likely path under heavy-tailed noises: with $I^{*}=1$ jump

Catastrophe Principle Dictates SGD's Escape Route

Most likely path under heavy-tailed noises: with $I^{*}=1$ jump

Catastrophe Principle Dictates SGD's Escape Route

Trajectory of SGD X^{η} conditional on exit:
light-tailed noises with $\eta=1 / 10$

Trajectory of SGD X^{η} conditional on exit:
heavy-tailed noises with $\eta=1 / 10$

Catastrophe Principle Dictates SGD's Escape Route

Trajectory of SGD X^{η} conditional on exit:
light-tailed noises with $\eta=1 / 25$

Trajectory of SGD X^{η} conditional on exit:
heavy-tailed noises with $\eta=1 / 25$

Catastrophe Principle Dictates SGD's Escape Route

Trajectory of SGD X^{η} conditional on exit:
light-tailed noises with $\eta=1 / 50$

Trajectory of SGD X^{η} conditional on exit:
heavy-tailed noises with $\eta=1 / 50$

Catastrophe Principle Dictates SGD's Escape Route

Trajectory of SGD X^{η} conditional on exit:

light-tailed noises with $\eta=1 / 75$

Trajectory of SGD X^{η} conditional on exit:
heavy-tailed noises with $\eta=1 / 75$

Catastrophe Principle Dictates SGD's Escape Route

Trajectory of SGD X^{η} conditional on exit:
light-tailed noises with $\eta=1 / 100$

Trajectory of SGD X^{η} conditional on exit:
heavy-tailed noises with $\eta=1 / 100$

Catastrophe Principle Dictates SGD's Escape Route

Trajectory of SGD X^{η} conditional on exit:
light-tailed noises with $\eta=1 / 150$

Trajectory of SGD X^{η} conditional on exit:
heavy-tailed noises with $\eta=1 / 150$

Catastrophe Principle Dictates SGD's Escape Route

Trajectory of SGD X^{η} conditional on exit:
light-tailed noises with $\eta=1 / 200$

Trajectory of SGD X^{η} conditional on exit:
heavy-tailed noises with $\eta=1 / 200$

SGD's Escaping Route under Gradient Clipping

$$
X_{j}^{\eta}=X_{j-1}^{\eta}+\varphi_{b}\left(-\eta \nabla f\left(X_{j-1}^{\eta}\right)+\eta Z_{j}\right), \quad \begin{gathered}
\quad \text { Clipping threshold } \\
b \in(r / 2, r)
\end{gathered}
$$

SGD's Escaping Route under Gradient Clipping

$$
X_{j}^{\eta}=X_{j-1}^{\eta}+\varphi_{b}\left(-\eta \nabla f\left(X_{j-1}^{\eta}\right)+\eta Z_{j}\right), \quad \begin{gathered}
\quad \text { Clipping threshold } \\
b \in(r / 2, r)
\end{gathered}
$$

SGD's Escaping Route under Gradient Clipping

$$
X_{j}^{\eta}=X_{j-1}^{\eta}+\varphi_{b}\left(-\eta \nabla f\left(X_{j-1}^{\eta}\right)+\eta Z_{j}\right), \quad \begin{gathered}
\quad \text { Clipping threshold } \\
b \in(r / 2, r)
\end{gathered}
$$

SGD's Escaping Route under Gradient Clipping

$$
X_{j}^{\eta}=X_{j-1}^{\eta}+\varphi_{b}\left(-\eta \nabla f\left(X_{j-1}^{\eta}\right)+\eta Z_{j}\right), \quad \begin{gathered}
\quad \text { Clipping threshold } \\
b \in(r / 2, r)
\end{gathered}
$$

SGD's Escaping Route under Gradient Clipping

$$
X_{j}^{\eta}=X_{j-1}^{\eta}+\varphi_{b}\left(-\eta \nabla f\left(X_{j-1}^{\eta}\right)+\eta Z_{j}\right), b \in(r / 2, r)
$$

SGD's Escaping Route under Gradient Clipping

$$
X_{j}^{\eta}=X_{j-1}^{\eta}+\varphi_{b}\left(-\eta \nabla f\left(X_{j-1}^{\eta}\right)+\eta Z_{j}\right), b \in(r / 2, r)
$$

SGD's Escaping Route under Gradient Clipping

$$
X_{j}^{\eta}=X_{j-1}^{\eta}+\varphi_{b}\left(-\eta \nabla f\left(X_{j-1}^{\eta}\right)+\eta Z_{j}\right), \quad \begin{gathered}
\quad \text { Clipping threshold } \\
b \in(r / 2, r)
\end{gathered}
$$

SGD's Escaping Route under Gradient Clipping

$$
X_{j}^{\eta}=X_{j-1}^{\eta}+\varphi_{b}\left(-\eta \nabla f\left(X_{j-1}^{\eta}\right)+\eta Z_{j}\right), \quad \begin{gathered}
\quad \text { Clipping threshold } \\
b \in(r / 2, r)
\end{gathered}
$$

SGD's Escaping Route under Gradient Clipping

$$
X_{j}^{\eta}=X_{j-1}^{\eta}+\varphi_{b}\left(-\eta \nabla f\left(X_{j-1}^{\eta}\right)+\eta Z_{j}\right), \quad \begin{gathered}
\quad \text { Clipping threshold } \\
b \in(r / 2, r)
\end{gathered}
$$

SGD's Escaping Route under Gradient Clipping

$$
X_{j}^{\eta}=X_{j-1}^{\eta}+\varphi_{b}\left(-\eta \nabla f\left(X_{j-1}^{\eta}\right)+\eta Z_{j}\right), \quad \begin{gathered}
\quad \text { Clipping threshold } \\
b \in(r / 2, r)
\end{gathered}
$$

SGD's Escaping Route under Gradient Clipping

$$
X_{j}^{\eta}=X_{j-1}^{\eta}+\varphi_{b}\left(-\eta \nabla f\left(X_{j-1}^{\eta}\right)+\eta Z_{j}\right), \quad \begin{gathered}
\quad \text { Clipping threshold } \\
b \in(r / 2, r)
\end{gathered}
$$

SGD's Escaping Route under Gradient Clipping

$$
X_{j}^{\eta}=X_{j-1}^{\eta}+\varphi_{b}\left(-\eta \nabla f\left(X_{j-1}^{\eta}\right)+\eta Z_{j}\right), \quad \begin{gathered}
\quad \text { Clipping threshold } \\
b \in(r / 2, r)
\end{gathered}
$$

SGD's Escaping Route under Gradient Clipping

$$
X_{j}^{\eta}=X_{j-1}^{\eta}+\varphi_{b}\left(-\eta \nabla f\left(X_{j-1}^{\eta}\right)+\eta Z_{j}\right), \quad \begin{gathered}
\quad \text { Clipping threshold } \\
b \in(r / 2, r)
\end{gathered}
$$

SGD's Escaping Route under Gradient Clipping

$$
X_{j}^{\eta}=X_{j-1}^{\eta}+\varphi_{b}\left(-\eta \nabla f\left(X_{j-1}^{\eta}\right)+\eta Z_{j}\right), b^{\swarrow} \in(r / 2, r)
$$

SGD's Escaping Route under Gradient Clipping

$$
X_{j}^{\eta}=X_{j-1}^{\eta}+\varphi_{b}\left(-\eta \nabla f\left(X_{j-1}^{\eta}\right)+\eta Z_{j}\right), b^{\swarrow} \in(r / 2, r)
$$

SGD's Escaping Route under Gradient Clipping

Most likely path under heavy-tailed noises: with $I^{*}=2$ jumps

$$
X_{j}^{\eta}=X_{j-1}^{\eta}+\varphi_{b}\left(-\eta \nabla f\left(X_{j-1}^{\eta}\right)+\eta Z_{j}\right), b \in(r / 2, r)
$$

SGD's Escaping Route under Gradient Clipping

Trajectory of SGD X^{η} conditional on exit:
light-tailed noises with $\eta=1 / 10$

Trajectory of SGD X^{η} conditional on exit:
heavy-tailed noises with $\eta=1 / 10$

SGD's Escaping Route under Gradient Clipping

Trajectory of SGD X^{η} conditional on exit:

light-tailed noises with $\eta=1 / 25$

Trajectory of SGD X^{η} conditional on exit:
heavy-tailed noises with $\eta=1 / 25$

SGD's Escaping Route under Gradient Clipping

Trajectory of SGD X^{η} conditional on exit:

light-tailed noises with $\eta=1 / 50$

Trajectory of SGD X^{η} conditional on exit:
heavy-tailed noises with $\eta=1 / 10$

SGD's Escaping Route under Gradient Clipping

Trajectory of SGD X^{η} conditional on exit:

light-tailed noises with $\eta=1 / 75$

SGD's Escaping Route under Gradient Clipping

Trajectory of SGD X^{η} conditional on exit:
light-tailed noises with $\eta=1 / 100$

Trajectory of SGD X^{η} conditional on exit:
heavy-tailed noises with $\eta=1 / 100$

SGD's Escaping Route under Gradient Clipping

Trajectory of SGD X^{η} conditional on exit:

light-tailed noises with $\eta=1 / 150$

Trajectory of SGD X^{η} conditional on exit:
heavy-tailed noises with $\eta=1 / 150$

SGD's Escaping Route under Gradient Clipping

Trajectory of SGD X^{η} conditional on exit:
light-tailed noises with $\eta=1 / 200$

Trajectory of SGD X^{η} conditional on exit:
heavy-tailed noises with $\eta=1 / 200$

SGD's Escaping Route under Gradient Clipping

Trajectory of SGD X^{η} conditional on exit:
light-tailed noises with $\eta=1 / 200$

Trajectory of SGD X^{η} conditional on exit:

SGD's Escaping Route under Gradient Clipping

Trajectory of SGD X^{η} conditional on exit:
light-tailed noises with $\eta=1 / 200$

Trajectory of SGD X^{η} conditional on exit:

SGD's Escaping Route under Gradient Clipping

SGD's Escaping Route under Gradient Clipping

(Min \# of jumps for escape) $I^{*}=\left\lceil r / b^{\swarrow}\right\rceil^{\text {Clipping threshold }}$

First Exit Time Analysis

First Exit Time Analysis

- First Exit Time: $\sigma^{\eta} \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$

First Exit Time Analysis

- First Exit Time: $\sigma^{\eta} \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- Effective Width (Min Distance for Escape): $r \triangleq \inf _{x \notin \Omega}|x-m|$.

First Exit Time Analysis

- First Exit Time: $\sigma^{\eta} \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- Effective Width (Min Distance for Escape): $r \triangleq \inf _{x \notin \Omega}|x-m|$.
- Relative Width (Min \# of jumps for Escape): $l^{*} \triangleq\lceil r / b\rceil$.

First Exit Time Analysis

- First Exit Time: $\sigma^{\eta} \triangleq \min \left\{j \geq 0: \quad X_{j}^{\eta} \notin \Omega\right\}$
- Effective Width (Min Distance for Escape): $r \triangleq \inf _{x \notin \Omega}|x-m|$.
- Relative Width (Min \# of jumps for Escape): $I^{*} \triangleq\lceil r / b\rceil$.
- (Wang, Oh, Rhee, 2021+) As $\eta \downarrow 0, \sigma^{\eta} \lambda(\eta) \Rightarrow \operatorname{Exp}(q)$.

First Exit Time Analysis

- First Exit Time: $\sigma^{\eta} \triangleq \min \left\{j \geq 0: \quad X_{j}^{\eta} \notin \Omega\right\}$
- Effective Width (Min Distance for Escape): $r \triangleq \inf _{x \notin \Omega}|x-m|$.
- Relative Width (Min \# of jumps for Escape): $I^{*} \triangleq\lceil r / b\rceil$.
- (Wang, Oh, Rhee, 2021+) As $\eta \downarrow 0, \sigma^{\eta} \lambda(\eta) \Rightarrow \operatorname{Exp}(q)$.

$$
\left(\lambda(\eta) \approx O\left(\eta^{\alpha+\left(l^{*}-1\right)(\alpha-1)}\right), \text { deterministic }\right)
$$

First Exit Time Analysis

- First Exit Time: $\sigma^{\eta} \triangleq \min \left\{j \geq 0: \quad X_{j}^{\eta} \notin \Omega\right\}$
- Effective Width (Min Distance for Escape): $r \triangleq \inf _{x \notin \Omega}|x-m|$.
- Relative Width (Min \# of jumps for Escape): $I^{*} \triangleq\lceil r / b\rceil$.

$$
\sigma^{\eta} \sim O(1 / \lambda(\eta)) \approx O\left(1 / \eta^{\alpha+\left(/^{*}-1\right)(\alpha-1)}\right)
$$

Elimination of Narrow Minima

Without Clipping

Elimination of Narrow Minima

Without Clipping

Elimination of Narrow Minima

$$
O\left(1 / \eta^{\alpha}\right) \searrow O\left(1 / \eta^{\alpha+\left(I^{*}-1\right)(\alpha-1)}\right) \swarrow O\left(1 / \eta^{\alpha}\right)
$$

With Clipping

Elimination of Narrow Minima

- Min \# of jumps for escape: l_{i}^{*}

Elimination of Narrow Minima

- Min \# of jumps for escape: l_{i}^{*} (Example: set $b=0.5$)

Elimination of Narrow Minima

- Min \# of jumps for escape: l_{i}^{*} (Example: set $b=0.5$)

Elimination of Narrow Minima

- Min \# of jumps for escape: l_{i}^{*} (Example: set $b=0.5$)
- Set of Widest Minima: $m_{i} \in M^{\text {wide }}$ iff $l_{i}^{*}=\max _{j} l_{j}^{*}$.

Elimination of Narrow Minima

- Min \# of jumps for escape: l_{i}^{*} (Example: set $b=0.5$)
- Set of Widest Minima: $m_{i} \in M^{\text {wide }}$ iff $l_{i}^{*}=\max _{j} l_{j}^{*}$.

Theorem (Wang, Oh, Rhee, 2021+)

Under structural conditions on loss landscape, for any $t>0$ and $\beta>1+(\alpha-1) \max _{i} l_{i}^{*}$,

$$
\frac{1}{\left\lfloor t / \eta^{\beta}\right\rfloor} \int_{0}^{\left\lfloor t / \eta^{\beta}\right\rfloor} 1\left\{X_{\lfloor u\rfloor}^{\eta} \in \bigcup_{j: m_{j} \notin M^{\text {mide }}} \Omega_{j}\right\} d u \xrightarrow{\mathrm{P}} 0 \text { as } \eta \downarrow 0 .
$$

Elimination of Narrow Minima

- Min \# of jumps for escape: l_{i}^{*} (Example: set $b=0.5$)
- Set of Widest Minima: $m_{i} \in M^{\text {wide }}$ iff $l_{i}^{*}=\max _{j} l_{j}^{*}$.

Theorem (Wang, Oh, Rhee, 2021+)

Under structural conditions on loss landscape, for any $t>0$ and $\beta>1+(\alpha-1) \max _{i} l_{i}^{*}$,

$$
\frac{1}{\left\lfloor t / \eta^{\beta}\right\rfloor} \int_{0}^{\left\lfloor t / \eta^{\beta}\right\rfloor} 1\left\{X_{\lfloor u\rfloor}^{\eta} \in \bigcup_{j: m_{j} \notin M^{\text {wide }}} \Omega_{j}\right\} d u \xrightarrow{\mathrm{P}} 0 \text { as } \eta \downarrow 0
$$

\mathbb{R}^{d} Case

- Same Elimination Effect in \mathbb{R}^{d}

New Training Algorithm

Truncated Heavy-tailed SGD in Deep Learning

- Our Method: $X \leftarrow X-\varphi_{b}\left(\eta \cdot g_{\text {heavy }}(X)\right)$ where

Truncated Heavy-tailed SGD in Deep Learning

- X : current weights;
- Our Method: $X \leftarrow X-\varphi_{b}\left(\eta \cdot g_{\text {heavy }}(X)\right)$ where

Truncated Heavy-tailed SGD in Deep Learning

- X : current weights; \quad Gradient Clipping
- Our Method: $X \leftarrow X-\varphi_{b}\left(\eta \cdot g_{\text {heavy }}(X)\right)$ where

Truncated Heavy-tailed SGD in Deep Learning

- X : current weights;
- Our Method: $X \leftarrow X-\varphi_{b}\left(\eta \cdot g_{\text {heavy }}(X)\right)$ where

$$
g_{\text {heavy }}(X) \triangleq g_{\mathrm{SB}}(X)+\text { "Heavy-tailed Noise" }
$$

Truncated Heavy-tailed SGD in Deep Learning

- X: current weights; GD: gradient descent; SB: small batch; gxx: gradient under method XX.
- Our Method: $X \leftarrow X-\varphi_{b}\left(\eta \cdot g_{\text {heavy }}(X)\right)$ where

$$
g_{\text {heavy }}(X) \triangleq g_{\mathrm{SB}}(X)+\text { "Heavy-tailed Noise" }
$$

Truncated Heavy-tailed SGD in Deep Learning

- X: current weights; GD: gradient descent; SB: small batch; $g_{x x}$: gradient under method XX.
- Our Method: $X \leftarrow X-\varphi_{b}\left(\eta \cdot g_{\text {heavy }}(X)\right)$ where

$$
g_{\text {heavy }}(X) \triangleq g_{\mathrm{SB}}(X)+\text { "Heavy-tailed Noise" }
$$

- Gradient noise: $g_{\mathrm{SB}}(X)-g_{\mathrm{GD}}(X)$

Truncated Heavy-tailed SGD in Deep Learning

- X: current weights; GD: gradient descent; SB: small batch; $g_{x x}$: gradient under method XX.
- Our Method: $X \leftarrow X-\varphi_{b}\left(\eta \cdot g_{\text {heavy }}(X)\right)$ where

$$
g_{\text {heavy }}(X) \triangleq g_{\mathrm{SB}}(X)+\text { "Heavy-tailed Noise" }
$$

- Gradient noise: $g_{\mathrm{SB}}(X)-g_{\mathrm{GD}}(X)$
- Heavy-tail Inflation: $Z\left(g_{S B}(X)-g_{G D}(X)\right)$ for some heavy-tailed Z

Truncated Heavy-tailed SGD in Deep Learning

- X: current weights; GD: gradient descent; SB: small batch; $g_{x x}$: gradient under method XX.
- Our Method: $X \leftarrow X-\varphi_{b}\left(\eta \cdot g_{\text {heavy }}(X)\right)$ where

$$
g_{\text {heavy }}(X) \triangleq g_{\mathrm{SB}}(X)+Z\left(-g_{\mathrm{GD}}(X)+g_{\mathrm{SB}}(X)\right)
$$

- Gradient noise: $g_{\mathrm{SB}}(X)-g_{\mathrm{GD}}(X)$
- Heavy-tail Inflation: $Z\left(g_{S B}(X)-g_{G D}(X)\right)$ for some heavy-tailed Z

Truncated Heavy-tailed SGD in Deep Learning

- X: current weights; GD: gradient descent; SB: small batch; $g_{x x}$: gradient under method XX.
- Our Method: $X \leftarrow X-\varphi_{b}\left(\eta \cdot g_{\text {heavy }}(X)\right)$ where

$$
g_{\text {heavy }}(X) \triangleq g_{\mathrm{SB}}(X)+Z\left(-g_{\mathrm{LB}}(X)+g_{\mathrm{SB}}(X)\right)
$$

- Gradient noise: $g_{\mathrm{SB}}(X)-g_{\mathrm{GD}}(X)$
- Heavy-tail Inflation: $Z\left(g_{S B}(X)-g_{G D}(X)\right)$ for some heavy-tailed Z

Truncated Heavy-tailed SGD in Deep Learning

- X: current weights; GD: gradient descent; SB: small batch; $g_{x x}$: gradient under method XX.
- Our Method: $X \leftarrow X-\varphi_{b}\left(\eta \cdot g_{\text {heavy }}(X)\right)$ where

$$
g_{\text {heavy }}(X) \triangleq g_{\mathrm{SB}}(X)+Z\left(-g_{\mathrm{LB}}(X)+g_{\mathrm{SB}}(X)\right)
$$

- Gradient noise: $g_{\mathrm{SB}}(X)-g_{\mathrm{GD}}(X)$

Same or independent batches?

- Heavy-tail Inflation: $Z\left(g_{\mathrm{SB}}(X)-g_{\mathrm{GD}}(X)\right)$ for some heavy-tailed Z

Truncated Heavy-tailed SGD in Deep Learning

- X: current weights; GD: gradient descent; SB: small batch; g_{xx} : gradient under method XX.
- Our Method: $X \leftarrow X-\varphi_{b}\left(\eta \cdot g_{\text {heavy }}(X)\right)$ where

$$
g_{\text {heavy }}(X) \triangleq g_{\mathrm{SB}}(X)+Z\left(-g_{\mathrm{LB}}(X)+g_{\mathrm{SB}}(X)\right)
$$

- Gradient noise: $g_{\mathrm{SB}}(X)-g_{\mathrm{GD}}(X)$

Same or independent batches? \Rightarrow two versions

- Heavy-tail Inflation: $Z\left(g_{S B}(X)-g_{G D}(X)\right)$ for some heavy-tailed Z

Experiments

Test accuracy	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	68.66%	69.20%	68.77%	64.43%	69.47%	$\mathbf{7 0 . 0 6 \%}$
SVHN, VGG11	82.87%	85.92%	85.95%	38.85%	$\mathbf{8 8 . 4 2 \%}$	88.37%
CIFAR10, VGG11	69.39%	74.42%	74.38%	40.50%	75.69%	$\mathbf{7 5 . 8 7 \%}$
Expected Sharpness	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	0.032	0.008	0.009	0.047	0.003	$\mathbf{0 . 0 0 2}$
SVHN, VGG11	0.694	0.037	0.041	0.012	$\mathbf{0 . 0 0 2}$	0.005
CIFAR10, VGG11	2.043	0.050	0.039	2.046	$\mathbf{0 . 0 2 4}$	0.037

Experiments

Test accuracy	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	68.66%	69.20%	68.77%	64.43%	69.47%	$\mathbf{7 0 . 0 6 \%}$
SVHN, VGG11	82.87%	85.92%	85.95%	38.85%	$\mathbf{8 8 . 4 2 \%}$	88.37%
CIFAR10, VGG11	69.39%	74.42%	74.38%	40.50%	75.69%	$\mathbf{7 5 . 8 7 \%}$
Expected Sharpness	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	0.032	0.008	0.009	0.047	0.003	$\mathbf{0 . 0 0 2}$
SVHN, VGG11	0.694	0.037	0.041	0.012	$\mathbf{0 . 0 0 2}$	0.005
CIFAR10, VGG11	2.043	0.050	0.039	2.046	$\mathbf{0 . 0 2 4}$	0.037

- Expected Sharpness: Zhu et al. (2019); Neyshabur et al. (2017b)

Experiments

Test accuracy	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	68.66%	69.20%	68.77%	64.43%	69.47%	$\mathbf{7 0 . 0 6 \%}$
SVHN, VGG11	82.87%	85.92%	85.95%	38.85%	$\mathbf{8 8 . 4 2 \%}$	88.37%
CIFAR10, VGG11	69.39%	74.42%	74.38%	40.50%	75.69%	$\mathbf{7 5 . 8 7 \%}$
Expected Sharpness	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	0.032	0.008	0.009	0.047	0.003	$\mathbf{0 . 0 0 2}$
SVHN, VGG11	0.694	0.037	0.041	0.012	$\mathbf{0 . 0 0 2}$	0.005
CIFAR10, VGG11	2.043	0.050	0.039	2.046	$\mathbf{0 . 0 2 4}$	0.037

- Expected Sharpness: Zhu et al. (2019); Neyshabur et al. (2017b)
- Consistent results under other sharpness metrics

Experiments

Test accuracy	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	68.66%	69.20%	68.77%	64.43%	69.47%	$\mathbf{7 0 . 0 6 \%}$
SVHN, VGG11	82.87%	85.92%	85.95%	38.85%	$\mathbf{8 8 . 4 2 \%}$	88.37%
CIFAR10, VGG11	69.39%	74.42%	74.38%	40.50%	75.69%	$\mathbf{7 5 . 8 7 \%}$
Expected Sharpness	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	0.032	0.008	0.009	0.047	0.003	$\mathbf{0 . 0 0 2}$
SVHN, VGG11	0.694	0.037	0.041	0.012	$\mathbf{0 . 0 0 2}$	0.005
CIFAR10, VGG11	2.043	0.050	0.039	2.046	$\mathbf{0 . 0 2 4}$	0.037

- Expected Sharpness: Zhu et al. (2019); Neyshabur et al. (2017b)
- Consistent results under other sharpness metrics
- Flatter geometry \& Improved generalization performance

Experiments

Test accuracy	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	68.66%	69.20%	68.77%	64.43%	69.47%	$\mathbf{7 0 . 0 6 \%}$
SVHN, VGG11	82.87%	85.92%	85.95%	38.85%	$\mathbf{8 8 . 4 2 \%}$	88.37%
CIFAR10, VGG11	69.39%	74.42%	74.38%	40.50%	75.69%	$\mathbf{7 5 . 8 7 \%}$
Expected Sharpness	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	0.032	0.008	0.009	0.047	0.003	$\mathbf{0 . 0 0 2}$
SVHN, VGG11	0.694	0.037	0.041	0.012	$\mathbf{0 . 0 0 2}$	0.005
CIFAR10, VGG11	2.043	0.050	0.039	2.046	$\mathbf{0 . 0 2 4}$	0.037

- Expected Sharpness: Zhu et al. (2019); Neyshabur et al. (2017b)
- Consistent results under other sharpness metrics
- Flatter geometry \& Improved generalization performance
- Requires both heavy-tailed noise and truncation

Experiments

CIFAR10-VGG11	SB + Clip	Our 1	Our 2
Test Accuracy	89.54%	$\mathbf{9 0 . 7 6 \%}$	90.45%
Expected Sharpness	0.167	$\mathbf{0 . 0 8 5}$	0.096
PAC-Bayes Sharpness	1.31×10^{4}	$\mathbf{9} \times \mathbf{1 0}^{\mathbf{3}}$	10^{4}
Maximal Sharpness	1.66×10^{4}	1.29×10^{4}	$\mathbf{1 . 2 2} \times \mathbf{1 0}^{4}$
CIFAR100-VGG16	SB + Clip	Our 1	Our 2
Test Accuracy	56.32%	$\mathbf{6 5 . 4 4 \%}$	62.99%
Expected Sharpness	0.857	$\mathbf{0 . 4 4 1}$	0.479
PAC-Bayes Sharpness	2.49×10^{4}	$\mathbf{1 . 9} \times \mathbf{1 0}^{4}$	1.98×10^{4}
Maximal Sharpness	$2.75 \times \mathbf{1 0}^{4}$	$\mathbf{2 . 1 2} \times \mathbf{1 0}^{4}$	2.16×10^{4}

- More training techniques: Data augmentation, learning rate scheduler.

Conclusion

- Theoretical Contribution

- Rigorously established that truncated heavy-tailed noises can eliminate sharp minima
- Catastrophe principle, first exit time analysis, and metastability for heavy-tailed SGD
- Algorithmic Contribution
- Proposed a tail-inflation strategy to find flatter solution with better generalization

Remarks on Technical Results

- "Regularity conditions"

Remarks on Technical Results

- "Regularity conditions"

Irreducible

Remarks on Technical Results

- "Regularity conditions"

Irreducible

Reducible

Remarks on Technical Results

- "Regularity conditions": Irreducibility

Irreducible

Reducible

Remarks on Technical Results

- "Regularity conditions": Irreducibility

- We established similar results for the reducible case.

Remarks on Technical Results

- "Regularity conditions": Irreducibility

- We established similar results for the reducible case.
- \mathbb{R}^{d} Extension
- First exit time results in \mathbb{R}^{d}

Remarks on Technical Results

- "Regularity conditions": Irreducibility

- We established similar results for the reducible case.
- \mathbb{R}^{d} Extension
- First exit time results in \mathbb{R}^{d}
- \mathbb{R}^{d} simulation experiments

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $\iota^{*} \triangleq\lceil r / b\rceil$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $\iota^{*} \triangleq\lceil r / b\rceil$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $\iota^{*} \triangleq\lceil r / b\rceil$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $\iota^{*} \triangleq\lceil r / b\rceil$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $\iota^{*} \triangleq\lceil r / b\rceil$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $\iota^{*} \triangleq\lceil r / b\rceil$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $\iota^{*} \triangleq\lceil r / b\rceil$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $I^{*} \triangleq\lceil r / b\rceil$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $\iota^{*} \triangleq\lceil r / b\rceil$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $\iota^{*} \triangleq\lceil r / b\rceil$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $\iota^{*} \triangleq\lceil r / b\rceil$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $\iota^{*} \triangleq\lceil r / b\rceil$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $\iota^{*} \triangleq\lceil r / b\rceil$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $\iota^{*} \triangleq\lceil r / b\rceil$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $\iota^{*} \triangleq\lceil r / b\rceil$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $l^{*} \triangleq\lceil r / b\rceil$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$

Exit Prob.: $O\left(\eta^{\left(I^{*}-1\right)(\alpha-1)}\right)$

- $\iota^{*} \triangleq\lceil r / b\rceil$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$

Exit Prob.: $O\left(\eta^{\left(l^{*}-1\right)(\alpha-1)}\right)$ Duration: $O\left(1 / \eta^{\alpha}\right)$

- $\iota^{*} \triangleq\lceil r / b\rceil$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $l^{*} \triangleq\lceil r / b\rceil$

Exit Prob.: $O\left(\eta^{\left(l^{*}-1\right)(\alpha-1)}\right)$
Duration: $O\left(1 / \eta^{\alpha}\right)$
$\Rightarrow \sigma(\eta) \sim O\left(1 / \eta^{\alpha+\left(l^{*}-1\right)(\alpha-1)}\right)$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $I^{*} \triangleq\lceil r / b\rceil$

Exit Prob.: $O\left(\eta^{\left(l^{*}-1\right)(\alpha-1)}\right)$
Duration: $O\left(1 / \eta^{\alpha}\right)$
$\Rightarrow \sigma(\eta) \sim O\left(1 / \eta^{\alpha+\left(l^{*}-1\right)(\alpha-1)}\right)$

Theorem (Wang, Oh, Rhee, 2021)

For (Lebesgue) almost every $b>0$, there exist some $q>0$ and $\lambda(\eta) \in R V_{\alpha+\left(I^{*}-1\right)(\alpha-1)}(\eta)$ such that

$$
\sigma(\eta) \lambda(\eta) \Rightarrow \operatorname{Exp}(q) \text { as } \eta \downarrow 0 .
$$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $I^{*} \triangleq\lceil r / b\rceil$

Exit Prob.: $O\left(\eta^{\left(l^{*}-1\right)(\alpha-1)}\right)$
Duration: $O\left(1 / \eta^{\alpha}\right)$
$\Rightarrow \sigma(\eta) \sim O\left(1 / \eta^{\alpha+\left(l^{*}-1\right)(\alpha-1)}\right)$

Theorem (Wang, Oh, Rhee, 2021)

For (Lebesgue) almost every $b>0$, there exist some $q>0$ and $\lambda(\eta) \approx O\left(\eta^{\alpha+\left(l^{*}-1\right)(\alpha-1)}\right)$ such that

$$
\sigma(\eta) \lambda(\eta) \Rightarrow \operatorname{Exp}(q) \text { as } \eta \downarrow 0
$$

First Exit Time Analysis

- First Exit Time: $\sigma(\eta) \triangleq \min \left\{j \geq 0: X_{j}^{\eta} \notin \Omega\right\}$
- $I^{*} \triangleq\lceil r / b\rceil$

Exit Prob.: $O\left(\eta^{\left(l^{*}-1\right)(\alpha-1)}\right)$
Duration: $O\left(1 / \eta^{\alpha}\right)$
$\Rightarrow \sigma(\eta) \sim O\left(1 / \eta^{\alpha+\left(l^{*}-1\right)(\alpha-1)}\right)$

Theorem (Wang, Oh, Rhee, 2021)

For (Lebesgue) almost every $b>0$, there exist some $q>0$ and $\lambda(\eta) \approx O\left(\eta^{\alpha+\left(l^{*}-1\right)(\alpha-1)}\right)$ such that

$$
\sigma(\eta) \lambda(\eta) \Rightarrow \operatorname{Exp}(q) \text { as } \eta \downarrow 0
$$

$$
\sigma(\eta) \sim O(1 / \lambda(\eta)) \approx O\left(1 / \eta^{\alpha+\left(l^{*}-1\right)(\alpha-1)}\right)
$$

