The power of two samples for Generative Adversarial Networks

Sewoong Oh

Department of Industrial and Enterprise Systems Engineering University of Illinois at Urbana-Champaign

joint work with Zinan Lin(CMU), Ashish Khetan(UIUC), Giulia Fanti(CMU)

Generative models

• A generative model is a black box that takes a random vector $Z \in \mathbb{R}^k$ and produces a sample vector $G(Z) \in \mathbb{R}^n$

["Progressive Growing of GANs for Improved Quality, Stability, and Variation", T. Karras, T. Aila, S. Laine, J. Lehtinen 2017]

Generative models

• A generative model is a black box that takes a random vector $Z \in \mathbb{R}^k$ and produces a sample vector $G(Z) \in \mathbb{R}^n$

^{[&}quot;Progressive Growing of GANs for Improved Quality, Stability, and Variation", T. Karras, T. Aila, S. Laine, J. Lehtinen 2017]

Generative models

 $G(Z) \in \mathbb{R}^{1024 \times 1024 \times 3}$

• A generative model is a black box that takes a random vector $Z \in \mathbb{R}^k$ and produces a sample vector $G(Z) \in \mathbb{R}^n$

^{[&}quot;Progressive Growing of GANs for Improved Quality, Stability, and Variation", T. Karras, T. Aila, S. Laine, J. Lehtinen 2017]

Generative models learn fundamental representations

GAN: a breakthrough in training generative models

GAN: a breakthrough in training generative models

Generative Adversarial Networks (GAN)

 $\min_{G} \ \max_{D} \ V(G,D)$

"Mode collapse" is a main challenge

"Mode collapse" is a main challenge

Target samples

Generated samples

"Mode collapse" is a main challenge

• "A man in a orange jacket with sunglasses and a hat ski down a hill."

• "This guy is in black trunks and swimming underwater."

• "A tennis player in a blue polo shirt is looking down at the green court."

^{[&}quot;Generating interpretable images with controllable structure", by Reed et al., 2016]

Lack of diversity is easier to detect if the discriminator sees multiple sample jointly

New framework: PacGAN

- lightweight overhead
- experimental results
- principled

Benchmark tests

	Modes	
	(Max 25)	
GAN	17.3	
PacGAN2	23.8	
PacGAN3	24.6	
PacGAN4	24.8	

Benchmark datasets from VEEGAN paper

	Modes (Max 1000)
DCGAN	99.0
ALI	16.0
Unrolled GAN	48.7
VEEGAN	150.0
PacDCGAN2	1000.0
PacDCGAN3	1000.0
PacDCGAN4	1000.0

Intuition behind packing via toy example

Intuition behind packing via toy example

12 / 26

Intuition behind packing via toy example

12/26

Evolution of TV distances

Evolution of TV distances through the prism of packing

Through packing, the target-generator pairs are expanded over the strengths of the mode collapse

• we focus on m=2 for this talk

Definition [mode collapse region]

We say a pair (P,Q) of a target distribution P and a generator distribution Q has (ε, δ) -mode collapse if there exists a set S such that

 $P(S) \geq \delta \ , \qquad \text{and} \qquad Q(S) \leq \varepsilon \ .$

Definition [mode collapse region]

We say a pair (P,Q) of a target distribution P and a generator distribution Q has (ε, δ) -mode collapse if there exists a set S such that

Definition [mode collapse region]

We say a pair (P,Q) of a target distribution P and a generator distribution Q has (ε,δ) -mode collapse if there exists a set S such that

Definition [mode collapse region]

We say a pair (P,Q) of a target distribution P and a generator distribution Q has (ε, δ) -mode collapse if there exists a set S such that

Definition [mode collapse region]

We say a pair (P,Q) of a target distribution P and a generator distribution Q has (ε, δ) -mode collapse if there exists a set S such that

Definition [mode collapse region]

We say a pair (P,Q) of a target distribution P and a generator distribution Q has (ε,δ) -mode collapse if there exists a set S such that

Definition [mode collapse region]

We say a pair (P,Q) of a target distribution P and a generator distribution Q has (ε, δ) -mode collapse if there exists a set S such that

Definition [mode collapse region]

We say a pair (P,Q) of a target distribution P and a generator distribution Q has (ε,δ) -mode collapse if there exists a set S such that

Definition [mode collapse region]

We say a pair (P,Q) of a target distribution P and a generator distribution Q has (ε,δ) -mode collapse if there exists a set S such that

Definition [mode collapse region]

We say a pair (P,Q) of a target distribution P and a generator distribution Q has (ε, δ) -mode collapse if there exists a set S such that

$$\max_{P,Q} \quad d_{\text{TV}}(P^2,Q^2)$$

subject to
$$d_{\text{TV}}(P,Q) = \tau$$

$$\label{eq:transformation} \begin{split} \max_{P,Q} & d_{\mathrm{TV}}(P^2,Q^2) \\ \text{subject to} & d_{\mathrm{TV}}(P,Q) = \tau \end{split}$$

$$\mathcal{R}(P,Q) \subseteq \mathcal{R}_{outer}(\tau)$$

$$\label{eq:transformation} \begin{split} \max_{P,Q} & \quad d_{\mathrm{TV}}(P^2,Q^2) \\ \text{subject to} & \quad d_{\mathrm{TV}}(P,Q) = \tau \end{split}$$

$$\mathcal{R}(P,Q) \subseteq \mathcal{R}_{outer}(\tau)$$

$$\min_{P,Q} \quad d_{\mathrm{TV}}(P^2,Q^2)$$

subject to
$$d_{\mathrm{TV}}(P,Q) = \tau$$

$$\min_{P,Q} \qquad d_{\mathrm{TV}}(P^2,Q^2)$$
 subject to
$$\qquad d_{\mathrm{TV}}(P,Q) = \tau$$

$$\mathcal{R}_{inner}(\tau, \alpha) \subseteq \mathcal{R}(P, Q)$$

$$\min_{P,Q} \quad d_{\mathrm{TV}}(P^2,Q^2)$$
 subject to
$$d_{\mathrm{TV}}(P,Q) = \tau$$

$\mathcal{R}_{inner}(\tau, \alpha) \subseteq \mathcal{R}(P, Q)$

$$\begin{array}{ll} \max_{P,Q} & d_{\mathrm{TV}}(P^2,Q^2) \\ \text{subject to} & d_{\mathrm{TV}}(P,Q) = \tau \\ & \mathrm{no} \; (\varepsilon_0,\delta_0) \text{-mode collapse} \end{array}$$

 $\begin{array}{ll} \max_{P,Q} & d_{\mathrm{TV}}(P^2,Q^2) \\ \text{subject to} & d_{\mathrm{TV}}(P,Q) = \tau \\ & \mathrm{no} \; (\varepsilon_0,\delta_0) \text{-mode collapse} \end{array}$

 $\begin{array}{ll} \max_{P,Q} & d_{\mathrm{TV}}(P^2,Q^2) \\ \text{subject to} & d_{\mathrm{TV}}(P,Q) = \tau \\ & \mathrm{no} \; (\varepsilon_0,\delta_0) \text{-mode collapse} \end{array}$

 $\mathcal{R}(P,Q) \subseteq \mathcal{R}_{outer}(\tau,\varepsilon_0,\delta_0,\alpha)$

 $\begin{array}{ll} \max_{P,Q} & d_{\mathrm{TV}}(P^2,Q^2) \\ \text{subject to} & d_{\mathrm{TV}}(P,Q) = \tau \\ & \mathrm{no} \; (\varepsilon_0,\delta_0) \text{-mode collapse} \end{array}$

 $\mathcal{R}(P,Q) \subseteq \mathcal{R}_{outer}(\tau,\varepsilon_0,\delta_0,\alpha)$

 $\begin{array}{ll} \max_{P,Q} & d_{\mathrm{TV}}(P^2,Q^2) \\ \text{subject to} & d_{\mathrm{TV}}(P,Q) = \tau \\ & \mathrm{no} \; (\varepsilon_0,\delta_0) \text{-mode collapse} \end{array}$

 $\begin{aligned} \mathcal{R}(P,Q) &\subseteq \mathcal{R}_{\text{outer}}(\tau,\varepsilon_0,\delta_0,\alpha) \\ \mathcal{R}(P^2,Q^2) &\subseteq \mathcal{R}(P^2_{\text{outer}},Q^2_{\text{outer}}) \end{aligned}$

Blackwell's theorem $\mathcal{R}(P,Q) \subseteq \mathcal{R}(P',Q')$ $\Rightarrow \mathcal{R}(P^2,Q^2) \subseteq \mathcal{R}(P'^2,Q'^2)$

 $\begin{array}{ll} \max_{P,Q} & \ d_{\mathrm{TV}}(P^2,Q^2) \\ \text{subject to} & \ d_{\mathrm{TV}}(P,Q) = \tau \\ & \ \mathrm{no} \ (\varepsilon_0,\delta_0) \text{-mode collapse} \end{array}$

 $\begin{array}{rcl} \mathcal{R}(P,Q) &\subseteq & \mathcal{R}_{\mathrm{outer}}(\tau,\varepsilon_{0},\delta_{0},\alpha) \\ \mathcal{R}(P^{2},Q^{2}) &\subseteq & \mathcal{R}(P^{2}_{\mathrm{outer}},Q^{2}_{\mathrm{outer}}) \\ d_{\mathrm{TV}}(P^{2},Q^{2}) &\leq & \underbrace{\max_{\alpha} \ d_{\mathrm{TV}}(P^{2}_{\mathrm{outer}},Q^{2}_{\mathrm{outer}})}_{\text{simple to evaluate}} \end{array}$

Blackwell's theorem $\mathcal{R}(P,Q) \subseteq \mathcal{R}(P',Q')$ $\Rightarrow \mathcal{R}(P^2,Q^2) \subseteq \mathcal{R}(P'^2,Q'^2)$

$$\begin{array}{ll} \min_{P,Q} & d_{\mathrm{TV}}(P^2,Q^2) \\ \text{subject to} & d_{\mathrm{TV}}(P,Q) = \tau \\ & (\varepsilon_1,\delta_1)\text{-mode collapse} \end{array}$$

$$\begin{split} \min_{P,Q} & \quad d_{\mathrm{TV}}(P^2,Q^2) \\ \text{subject to} & \quad d_{\mathrm{TV}}(P,Q) = \tau \\ & \quad (\varepsilon_1,\delta_1)\text{-mode collapse} \end{split}$$

 $\begin{array}{ll} \min_{P,Q} & d_{\mathrm{TV}}(P^2,Q^2) \\ \text{subject to} & d_{\mathrm{TV}}(P,Q) = \tau \\ & (\varepsilon_1,\delta_1)\text{-mode collapse} \end{array}$

 $\mathcal{R}_{inner}(\tau, \alpha, \varepsilon_1, \delta_1) \subseteq \mathcal{R}(P, Q)$

$$\begin{split} \min_{P,Q} & \quad d_{\mathrm{TV}}(P^2,Q^2) \\ \text{subject to} & \quad d_{\mathrm{TV}}(P,Q) = \tau \\ & \quad (\varepsilon_1,\delta_1)\text{-mode collapse} \end{split}$$

 $\mathcal{R}_{inner}(\tau, \alpha, \varepsilon_1, \delta_1) \subseteq \mathcal{R}(P, Q)$

 $\begin{array}{ll} \min_{P,Q} & \ d_{\mathrm{TV}}(P^2,Q^2) \\ \text{subject to} & \ d_{\mathrm{TV}}(P,Q) = \tau \\ & (\varepsilon_1,\delta_1) \text{-mode collapse} \end{array}$

$$\begin{aligned} &\mathcal{R}_{\text{inner}}(\tau, \alpha, \varepsilon_1, \delta_1) &\subseteq & \mathcal{R}(P, Q) \\ &\mathcal{R}(P_{\text{inner}}^2, Q_{\text{inner}}^2) &\subseteq & \mathcal{R}(P^2, Q^2) \end{aligned}$$

Blackwell's theorem $\mathcal{R}(P,Q) \subseteq \mathcal{R}(P',Q')$ $\Rightarrow \mathcal{R}(P^2,Q^2) \subseteq \mathcal{R}(P'^2,Q'^2)$

 $d_{\rm TV}(P^2,Q^2)$ $\min_{P,Q}$ subject to $d_{\mathrm{TV}}(P,Q) = \tau$ $(\varepsilon_1, \delta_1)$ -mode collapse $\mathcal{R}_{\text{inner}}(\tau, \alpha, \varepsilon_1, \delta_1) \subseteq \mathcal{R}(P, Q)$ $\mathcal{R}(P_{inner}^2, Q_{inner}^2) \subseteq \mathcal{R}(P^2, Q^2)$ $\min d_{\rm TV}(P_{\rm inner}^2, Q_{\rm inner}^2) \leq d_{\rm TV}(P^2, Q^2)$ simple to evaluate

Blackwell's theorem $\mathcal{R}(P,Q) \subseteq \mathcal{R}(P',Q')$ $\Rightarrow \mathcal{R}(P^2,Q^2) \subseteq \mathcal{R}(P'^2,Q'^2)$

Achievable TV distances for distributions

with packing, the discriminator naturally penalizes $\left(P,Q\right)$ with severe mode collapses

1. Discriminator size

PacGAN2

GAN

1. Discriminator size

modes captured

2. Minibatch size

GAN

2. Minibatch size

PacGAN2

24 / 26

2. Minibatch size

	Modes
DCGAN	99.0
PacDCGAN2	1000.0

Theoretical challenges in GAN

Designing Loss $D_{\rm JS}(P,Q)$ Jansen-Shannon $D_f(P,Q)$ f-divergence $D_{\rm W}(P,Q)$ Wasserstein

[FeiziSuhXiaTse 2017]

Theoretical challenges in GAN

Designing LossEvaluation $D_{\rm JS}(P,Q)$ Jansen-Shannon $D_f(P,Q)$ f-divergence $D_{\rm W}(P,Q)$ Wasserstein $D(P^m,Q^m) \succ D(P,Q)$ (ε, δ)-mode collapse

Theoretical challenges in GAN

Our paper is available at: https://arxiv.org/abs/1712.04086

All codes for the experiments at: https://github.com/fjxmlzn/PacGAN

Zinan Lin (CMU) Ashish Khetan (UIUC) Giulia Fanti (CMU)