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Preface

Low-rank models provide low-dimensional representations capturing the important

aspects of data naturally described in matrix form. Examples range from users’

preferences on movies to similarities between pairs of items. Naturally, the low-rank

representations serve as a tool for data compression and efficient computation. But

more importantly, they are used in data analysis to learn hidden structures of the

data, which is at the heart of machine learning and data mining. Applications include

latent semantic analysis, factor analysis, and clustering high-dimensional data.

While singular value decomposition provides an efficient way to construct a low-

rank model of a fully observed data matrix, finding a low-rank model becomes chal-

lenging when we only have a partial knowledge about the matrix. When we observe

a subset of the entries, we show that the singular value decomposition is sub-optimal

and can be significantly improved upon.

In this work, we investigate the possibility of learning a low-rank model from a

partial observation of a data matrix. We develop a novel and efficient algorithm that

finds a near-optimal solution. Further, we prove that the proposed algorithm achieves

performance close to the fundamental limit under a number of noise scenarios. This

provides a solution to many practical problems including collaborative filtering and

positioning.
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Chapter 1

Introduction

A wide range of datasets are naturally organized in matrix form. Consider the exam-

ple of a movie-rental service collecting its customers’ ratings on movies. This dataset

can be represented as a movie-ratings matrix where each customer is represented by

a row and each movie is represented by a column. Each entry of this matrix rep-

resents the preference of the associated customer for a particular movie. Similarly,

the frequencies of words used in a collection of documents can be represented as a

term-document matrix, where each entry corresponds to the number of times the

associated term appears in the indicated document.

A low-rank model is often used to capture the important aspects of such a data ma-

trix thus providing a low-dimensional representation. Traditionally, low-rank models

have been used for data compression and efficient computation. Low-rank represen-

tations require less resources to be stored compared to the full matrix. Moreover,

traditional computational tasks, such as matrix multiplication and inversion, can be

performed more efficiently when working with the reduced representation.

The data analysis method that approximates a data matrix by a low-rank model is

referred to as principal component analysis (PCA). The singular vectors of the data

matrix corresponding to the leading singular values are often called the principal

components. PCA provides the means to understand the hidden structures in the

data, which is at the heart of machine learning and data mining. Examples include

latent semantic indexing and spectral clustering.

1



2 CHAPTER 1. INTRODUCTION

Latent semantic indexing [29] is a technique for analyzing the relationships be-

tween a collection of documents and the terms they contain. A low-rank approxima-

tion of the term-document matrix allows us to identify a set of concepts reflecting

the hidden relationships. Each principal component represents a concept. An entry

of a principal component corresponding to a specific document gives the relation be-

tween the document and the concept represented by the principal component. Using

a small number of principal components, each document can be represented by a low

dimensional vector corresponding to the entries in the principal components. In this

‘concept space’, semantically related documents are placed near one another. This

can be used to see how related two documents are in this concept space and to search

for documents conceptually related to a given query.

In unsupervised learning, low-rank model is used for partitioning a collection

of objects so that similar objects are placed in the same cluster. Given a notion

of similarity between all pairs of objects, we can define a similarity matrix. Each

entry of this matrix represents the similarity between two objects associated with its

row and its column. After an appropriate scaling of each row and each column, we

can use a small number of principal components to represent each object by a low

dimensional vector corresponding to the entries in the principal components. Similar

objects are placed near one another in this low dimensional space [75]. Once we

have this reduced representation, we can apply standard clustering techniques such

as k-means algorithm [65].

If all the entries of a data matrix are available, computing a low-rank model of

the data matrix is easy. We denote the singular value decomposition (SVD) of the

data matrix M with

M =
∑
i

σiuiv
T
i ,

where σi’s are the singular values and ui and vi are the left and right singular vectors

corresponding to the ith singular value. A common convention is to order the singular

values in descending order, i.e., σ1 ≥ σ2 ≥ · · · > 0. Then, a low-rank approximation

L =
∑r

i=1 σiuiv
T
i minimizes the sum of squares of the residual errors among all
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matrices that have the same predefined rank. In other words, L is the optimal solution

to the problem:

minimize
∑
i,j

(Mij −Xij)
2

subject to rank(X) ≤ r .

In many practical applications, we do not have all the entries of the data matrix

available. Entries might be missing due to failure in the data acquisition process, or

it might be too costly to measure all the entries. Consider an example of a partially

revealed rank-1 matrix below.

? ? −1 ? ?

? 1 ? ? ?

1 1 −1 1 −1

1 ? ? ? −1

? ? −1 ? ?


A naive approach based on SVD is to first fill in the missing entries with the average

value and then compute the SVD of the resulting full matrix. Then we can use the

first singular value and the corresponding left and right singular vectors to compute

the rank-1 approximation:

0.24 0.20 −0.24 0.17 −0.24

0.20 0.16 −0.20 0.14 −0.20

1.09 0.89 −1.09 0.75 −1.09

0.48 0.39 −0.48 0.33 −0.48

0.24 0.20 −0.24 0.17 −0.24


This naive approach is sub-optimal and can be significantly improved upon. Since

the original matrix has rank one, all the rows must span a 1-dimensional subspace.

It is not difficult to see that all the rows with missing entries should be the same as
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the third row. Further, this defines a unique rank-1 model achieving zero error:

1 1 −1 1 −1

1 1 −1 1 −1

1 1 −1 1 −1

1 1 −1 1 −1

1 1 −1 1 −1


Matrix completion concerns this problem of predicting the missing entries in a

partially observed data matrix by learning a low-rank model. The above example

of completing a rank-1 matrix seems trivial, but the problem changes dramatically

when we have matrices of higher ranks.

Many applications are captured within the framework of matrix completion. This

could be used, for example, by a movie-rental service to provide personalized recom-

mendations based on the past ratings provided by its customers. A movie-ratings

matrix can be modelled as an approximately low-rank matrix: customers who agreed

in the past tend to agree in the future and only a few factors determine a customer’s

taste in movies. Solving matrix completion provides predictions on the unobserved

ratings, which in turn can be used to make customized recommendations. A well-

known example of this collaborative filtering problem is the Netflix prize [59, 3].

Similarly, in a network of wireless devices, we could apply matrix completion

schemes to find positions of the devices. If we know distances between all pairs of

devices then we can reconstruct all the positions up to a rigid motion by applying a

simple technique known as multidimensional scaling [26]. In practice, due to attenua-

tion and interference, only measurements between close-by devices are available. This

defines a partially revealed distance matrix, the rank of which is determined by the

ambient dimension. To be precise, let each entry of a distance matrix be the squared

Euclidean distance between two devices associated with the row and the column.

Then, it is known that the rank of this distance matrix is at most five [93]. Hence,

we can find the positions of the devices up to a rigid motion by first completing this

distance matrix with a rank-5 matrix and then applying multidimensional scaling.

When it is costly to measure an entry of the data matrix, matrix completion
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schemes could be used to reduce the number of measurements significantly. One

might be interested in monitoring temperature at hard-to-reach locations or traffic

on all the links in a network [120]. Define a traffic matrix where each row represents

each link and each column represents each time interval. Each entry represents the

volume of traffic on a particular link at the associated time interval. Since monitoring

all the links at all times is costly, we could instead measure a subset of the links at

a time interval and measure a different subset of the links at the next time interval.

Collecting all these partial traffic measurements over time, we can estimate the rest

of the traffic matrix using matrix completion schemes.

Matrix completion schemes could also be used to predict missing data points

possibly resulting from failures in the data acquisition process. Missing data points are

common in applications with large datasets, such as microarray [111] and structure-

from-motion [24]. Once all the missing values have been predicted, the complete

dataset can be analyzed using standard statistical techniques. We are concerned with

problems where most of the values are missing as well as problems where only a few

values are missing. For instance, about 99% of the movie-ratings are missing in the

Netflix prize dataset.

In this work, we study the problem of learning a low-rank model from a partially

revealed matrix to predict the missing entries. We introduce an algorithmic solution

to this matrix completion problem and analyze how well we can learn the low-rank

model with this algorithm.

Chapter 2 introduces the novel and efficient algorithm for solving matrix comple-

tion problems. Assuming the samples are drawn uniformly at random and corrupted

by noise, we provide strong performance guarantees. In the process, we obtain a gen-

eralization of a celebrated result by Friedman, Kahn, and Szemerédi [42], and Feige

and Ofek [40] on the spectrum of sparse random graphs. The algorithm can easily

deal with massive datasets with billions of entries.

The performance guarantees proved in Chapter 2 are quite general and hold for

any noise. In Chapter 3 we consider the quality of our estimation and prove order-

optimality under two important scenarios: the noiseless setting and the additive

Gaussian noise setting. When we don’t have any noise in the samples, if enough
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number of entries are sampled then we can correctly reconstruct a low-rank matrix.

Candès and Tao [22] proved a lower bound on the necessary number of samples, below

which no algorithm can guarantee correct reconstruction. With a small number of

samples close to this lower bound, we show that our algorithm correctly recovers a

low-rank matrix. In the case when we have i.i.d. Gaussian noise, Candès and Plan [19]

and Negahban and Wainwright [74] proved lower bounds on the achievable estimation

error. We show that our algorithm finds a near-optimal estimation with error close

to these lower bounds. Further, we review related results in matrix completion and

compare them to our performance guarantees. Then, we show numerical results on

artificial and real datasets supporting the theoretical guarantees.

Chapter 4 deals with the problem of positioning wireless devices. We formulate

this problem as a matrix completion problem, and discuss the main challenges in

applying matrix completion schemes directly. As a first step to overcome these chal-

lenges, we focus on understanding and analyzing existing positioning algorithms and

provide strong performance guarantees. Although this chapter is motivated by matrix

completion, it is mostly self-contained.
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Notations

Throughout this manuscript, we use the following notations. For a vector x ∈ Rn, we

use ‖x‖ = (
∑n

i=1 x
2
i )

1/2 for its Euclidean norm. For a matrix X ∈ Rm×n, we use XT

for the transpose of X, and Tr(X) ≡
∑

iXii for the trace of X. ‖X‖F denotes the

Frobenius norm defined as ‖X‖F ≡
√∑

i,j X
2
ij. We use ‖X‖2 to denote the operator

norm (or the maximum singular value) defined as ‖X‖2 ≡ supa6=0

{
‖Xa‖/‖a‖

}
. For

a given positive integer n, we use [n] = {1, . . . , n} to denote the set of first n integers.

In the following, whenever we write that a property A holds with high probability

(w.h.p.), we mean that there exists a function f(n) such that P(A) ≥ 1 − f(n) and

f(n)→ 0 as n→∞.
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Chapter 2

Matrix Completion

In collaborative filtering, we want to predict the missing ratings of a partially re-

vealed movie-ratings matrix in order to provide personalized recommendations [59].

In positioning, we want to find the missing distance measurements in a partially re-

vealed distance matrix in order to find the positions of the wireless devices [97]. Both

of these examples share a common fundamental challenge: How can we recover, or

complete, a data matrix from a small number of revealed entries? Without further

hypothesis on the structure of the data, we cannot hope to find the missing entries.

A common hypothesis is that the matrix is well approximated by a low-rank ma-

trix. Low-rank matrices are commonly used to model collaborative filtering datasets

[59]. In the positioning problem, the rank of the data matrix is comparable with the

ambient dimension which is three.

In Section 2.1, we start with a mathematical model for the problem of matrix

completion which will be used throughout this chapter. We assume that the matrix

to be reconstructed has low-rank and the entries are revealed uniformly at random.

Some matrices are easier to complete than other matrices of the same rank, and ‘inco-

herence’ of a data matrix characterizes how difficult it is to complete the matrix from

random samples. In Section 2.2, we provide a formal definition of this incoherence

property which was introduced in [20]. Section 2.3 introduces an algorithm which

efficiently finds provably near-optimal solutions to matrix completion problems. The

9
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proposed algorithm starts with ‘trimming’ the sampled data matrix to prevent over-

fitting and then computes the singular value decomposition to get an initial guess.

Then, starting from this initial estimate, the algorithm iteratively performs gradi-

ent descent on a Cartesian product of two Grassmann manifolds. The role of the

trimming step is further explained with an example in Section 2.4, and Section 2.5

discusses the geometry of the Grassmann manifold which will be useful in the proof

of main results. The main result of this chapter is a near-optimal performance guar-

antee of the proposed algorithm and is presented in Section 2.6. The proof of this

result is provided in Section 2.7. This chapter is based on joint work with Keshavan

and Montanari [56, 57].

2.1 Mathematical model

This section provides a mathematical model and sets up notations that are going to

be used throughout this chapter. We denote by M the unknown low-rank matrix that

we want to reconstruct. In the context of collaborative filtering, the (i, j)th entry of

M is the rating the user i would assign to the movie j. We assume that M ∈ Rm×n

has rank r which is much smaller than its dimensions m or n. Notice that we can

always assume to have m ≥ n, since, in the other case, we can instead consider the

transpose of the matrix M . In the following, therefore, we define α ≡ m/n and

assume α ≥ 1.

The singular value decomposition (SVD) of M can be expressed as

M = UΣV T ,

where U ∈ Rm×r and V ∈ Rn×r are orthonormal matrices corresponding to the left

and right singular vectors. The singular values are collected in a diagonal matrix

Σ = diag(Σ1, . . . ,Σr), where Σi is the ith largest singular value of M , i.e., Σ1 ≥
Σ2 ≥ · · · ≥ Σr > 0.

To model the noise in the revealed entries, we assume that each entry of M is
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perturbed, thus producing an approximately low-rank matrix N . Let

Nij = Mij + Zij ,

where the noise matrix Z will be assumed to be small in an appropriate sense. Notice

that in a more practical case, the matrix to be reconstructed might not be exactly

low-rank but only approximately low-rank. Then, the weaker spectral features can

be modelled with Z and the same algorithm and our analysis applies to that case as

well.

Out of the m × n entries of N , a subset E ⊆ [m] × [n] is revealed. Here and

below [k] = {1, . . . , k} denotes the set of first k integers. In the collaborative filtering

dataset, E is the user/movie pairs for which a rating Nij is available, and Zij models

the noise in the sampled ratings. Let NE denote the revealed matrix where all the

missing entries are filled with 0’s.

NE
ij =

{
Nij if (i, j) ∈ E ,

0 otherwise.

In the future, we use the terms ‘observed’, ‘revealed’, or ‘sampled’ matrix interchange-

ably to refer to this NE. Notice that we can also write NE = ME + ZE, where the

superscript (·)E of a matrix denotes that we set to zero all the missing entries (all the

entries in the complement of E).

The set E is assumed to be uniformly random given its size |E|. From the random

sample NE, we want to find a low-rank estimation of M . The accuracy of our estima-

tion depends on the structure of the original matrix M . We need the singular vectors

U and V to be sufficiently “spread out” or “incoherent” in order to reconstruct M

from a small number of samples. This notion is formalized by the incoherence property

introduced by Candès and Recht [20], and defined in the following section.
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2.2 Incoherence property

We need a simple characterization of M which conveys how difficult it is to recover

the matrix from a small number of sampled entries. For instance, let ei denote a

standard basis vector which has 1 in the ith entry and 0’s everywhere else. Let us take

an extreme example where M = eie
T
j and there is no noise, Z = 0. Then the original

matrix M can be recovered exactly only if the (i, j)th entry is actually sampled, which

happens with large probability only if we sample a significant fraction of the entries.

Therefore, to complete a matrix from a small number of samples, we need the singular

vectors to be sufficiently unstructured or incoherent in an appropriate sense.

Recall that Σi is the ith largest singular value of M , and ui and vi are the

corresponding left and right singular vectors. We write U = [u1, u2, . . . , ur] and

V = [v1, v2, . . . , vr]. Then, a rank-r matrix M has incoherence property with param-

eter µ if it satisfies the following properties:

A0. For all i ∈ [m], j ∈ [n], we have
∑

a∈[r] U
2
ia ≤ µr/m,

∑
a∈[r] V

2
ja ≤ µr/n.

A1. For all i ∈ [m], j ∈ [n], we have |Mij| ≤ µr1/2Σ1/
√
mn.

We also refer to M as µ-incoherent. In particular, we say a family of matrices are

µ-incoherent if the above conditions are uniformly satisfied. Further, with a slight

abuse of terminology, we say a matrix or a family of matrices are incoherent if the

conditions are satisfied with polylogarithmic µ, i.e., µ = O((log n)a).

This definition of incoherence was first introduced by Candès and Recht [20], and

proved to be crucial in characterizing the accuracy of matrix completion [22]. The

first assumption A0 coincides with the corresponding assumption in [20]. Further,

[20] makes an assumption that |
∑

a∈[r] UiaVja| ≤ µr1/2/
√
mn. This is analogous to

A1, although it does not coincide with it. The two versions of assumption A1 coincide

in the case of equal singular values Σ1 = Σ2 = · · · = Σr. In the general case, they do

not coincide but neither one implies the other. For instance, in the case the vectors

(Ui1, . . . , Uir) and (Vj1, . . . , Vjr) are collinear, our condition is weaker, and is implied

by the assumption of [20].

For any M , we can always find a µ ∈ [1,m/
√
r] which satisfies the incoherence
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property. Let U⊥ be an orthonormal basis spanning the subspace orthogonal to the

span of U . Since ‖eTi U‖2 ≤ ‖eTi [U U⊥]‖2 = 1, A0 holds for any M with µ = m/r.

Since Σ1 ≥ maxi,j |Mij|, A1 holds for any M with µ ≤ m/
√
r. Hence for any M we

can find a µ ≤ m/
√
r such that M is µ incoherent. Intuitively, µ is large if the the

singular vectors of M are coherent with the standard basis. In the previous example

where M = eie
T
j , µ is equal to m and r = 1.

A number of families of random matrices are incoherent. For instance, let M =

XY T where X ∈ Rm×r and Y ∈ Rn×r are random matrices with i.i.d. bounded

entries. Then, the incoherence condition is satisfied with µ = O(min{
√
r,
√

log n}),
with high probability. Also, if X and Y are drawn uniformly at random among all

orthonormal matrices of dimensions m × r and n × r, then µ = O(log n) with high

probability [20].

2.3 Algorithm

Consider an example where the noise is zero mean and each entry is sampled indepen-

dently with probability p = |E|/mn. Then, given NE, the following rescaling ensures

that the sampled matrix has mean M .

(
1

p

)
NE
ij =

{
(1/p)(Mij + Zij), with probability p,

0, otherwise.

Indeed E[(1/p)NE
ij ] = Mij. Intuitively, the rescaling compensates for the smaller

average size of the entries of NE with respect to M . Achlioptas and McSherry [4]

showed that this rescaled and sampled matrix has spectral features very close to

M when enough entries are samples, namely p ≥ (8 log n)4/n. Based on the spectral

properties of this matrix, a naive algorithm for estimating M from a random sampling

NE consists of the following projection operation.

Projection. Compute the singular value decomposition (SVD) of (mn/|E|)NE (with

σ1 ≥ σ2 ≥ · · · ≥ 0) (
mn

|E|

)
NE =

n∑
i=1

σixiy
T
i ,
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Figure 2.1: Histogram of the singular values of a partially revealed matrix ME before
trimming (left) and after trimming (right) for 104 × 104 random rank-3 matrix M with
|E|/mn = 0.003 and Σ = diag(1, 1.1, 1.2). After trimming, the underlying rank-3 structure
becomes clear. Here the number of revealed entries per row follows a heavy tail distribution
with P{N = k} = const./k3.

and return the matrix

Pr(NE) =
r∑
i=1

σixiy
T
i ,

obtained by setting to 0 all but the r largest singular values. Notice that, apart from

the rescaling factor (mn/|E|), Pr(NE) is the orthogonal projection of NE onto the

set of rank-r matrices.

It turns out that, if |E| = Θ(n), this algorithm performs very poorly. The reason

is that the matrix NE contains columns and rows with Θ(log n/ log log n) non-zero

(revealed) entries. The number of revealed entries in each row and each cloumn is dis-

tributed as i.i.d. binomial with bounded mean. It is known that among n i.i.d. bino-

mial random variables with bounded mean the largest one is at least C log n/ log log n

with high probability. We refer to Section 2.4 for the proof. These over-represented

rows/columns alter the spectrum of NE as will be discussed in Section 2.4. This moti-

vates a preprocessing of the input data according to the following operation (hereafter

the degree of a column or of a row is the number of its revealed entries).

Trimming. Set to zero all columns in NE with degree larger that 2|E|/n. Set to

zero all rows with degree larger than 2|E|/m. Let the matrix thus obtained be ÑE.
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We can similarly define M̃E from M and Z̃E from Z, such that ÑE = M̃E + Z̃E.

Figure 2.1 illustrates the role of trimming. We randomly generate a rank-3 matrix

M . To emphasize the effect of trimming, we sample the entries from a heavy-tailed

distribution. We let the degree of the ith row be a random variable Xi distributed

as P{Xi = k} = C/k3 for k ≥ k0. The constants C and k0 are chosen appropriately

such that the probability sums to one and the average degree is 30. Then, given

{Xi}i∈[m], the entries are sampled uniformly at random from each row. The histogram

of the singular values of the resulting sampled matrix ME is shown in the left figure.

Most of the information about the original matrix M is captured in the singular

values {σ2(ME), σ3(ME), σ4(ME)} and the corresponding singular vectors, while the

leading singular value σ1(ME) is a ‘spurious’ one due to an over-represented row.

After trimming (right figure), we can see a sharp separation between the leading three

singular values revealing the structure of the original matrix M and the spurious ones.

This effect becomes even more important when the number of revealed entries per

row/column follows a heavy tail distribution, as is the case for real data.

After trimming and an appropriate rescaling, (mn/|E|)ÑE has spectral properties

close to the original matrix M . We can, therefore, apply the rank-r projection to this

trimmed matrix to get a good estimation of the original matrix M . In the future,

we refer to this procedure as trimming-plus-SVD. The operation of trimming seems

counter-intuitive, because we are ‘throwing out’ valuable information. However, let

us emphasize two facts here: (i) In the last step of our algorithm, to be explained in

the following, the trimmed entries are actually incorporated in the cost function and

hence the full information is exploited; (ii) Trimming is not the only way to treat

over-represented rows/columns in NE, and probably not the optimal one. Another

popular way to balance out the rows and columns, for instance, is to rescale each

row/column by the inverse of its degree. Similar rescaling techniques are often used

in collaborative filtering [101, 59, 84, 103, 86]. We stick to trimming because we can

prove it actually works. The role of trimming is crucial and is further explained in

Section 2.4.

In terms of the above routines, our algorithm has the following structure. We call

our algorithm OptSpace because we perform optimization over a lower dimensional
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space that can be described as the Cartesian product of two Grassmann manifolds.

(We refer to Section 2.5 for background and references.)

OptSpace

Input: sampled matrix NE, sample set E, target rank r

Output: estimated matrix M̂

1: Trim NE, and let ÑE be the output;

2: Project ÑE to X0S0Y
T

0 = Pr(ÑE);

3: Clean residual errors by minimizing F (X, Y )

using manifold optimization starting from (X0, Y0).

The last step of the above algorithm allows to reduce (or eliminate) small dis-

crepancies between Pr(ÑE) and M , and is described below. Note that the entries

discarded in the trimming step are incorporated back into the algorithm in this clean-

ing step.

Cleaning. Various implementations are possible, but we found the following one

particularly appealing. Given orthonormal matrices X ∈ Rm×r, Y ∈ Rn×r with

XTX = Ir and Y TY = Ir where Ir denotes the identity matrix, we define

F (X, Y ) ≡ min
S∈Rr×r

F(X, Y, S) , (2.1)

F(X, Y, S) ≡ 1

2

∑
(i,j)∈E

(Nij − (XSY T )ij)
2 .

In the cleaning step, we minimize F (X, Y ) locally starting from (X0, Y0), where

X0 and Y0 are the orthogonal matrices resulting from the previous steps satisfying

X0S0Y
T

0 = Pr(ÑE).

Notice that F (X, Y ) is easy to evaluate since it is defined by minimizing the

quadratic function S 7→ F(X, Y, S) over the low-dimensional matrix S. Further,

F (X, Y ) depends on X and Y only through their column spaces. In geometric terms,

F is a function defined over the Cartesian product of two Grassmann manifolds. We
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refer to Section 2.5 for background and references on this manifold optimization step.

Optimization over Grassmann manifolds is a well understood topic [36] and efficient

algorithms (in particular Newton and conjugate gradient method) can be applied.

To be definite, we propose using the gradient descent method with line search to

minimize F (X, Y ). The gradient descent method is described in detail in Section

2.5.3.

The function F(X, Y, S) is a natural error function to minimize. Similar objective

functions have been used for collaborative filtering in [101, 82, 84, 86]. The crucial

differences in our algorithm and analysis are that, first, we introduce a novel trim-

ming and projection step and, second, instead of minimizing F(X, Y, S) directly we

minimize F (X, Y ) defined over the Cartesian product of two Grassmann manifolds.

We refer to Section 3.4 for further comparisons.

The implementation proposed here implicitly assumes that the target rank r is

known. In many practical applications, such as positioning [32, 97] or structure-from-

motion [24, 109], the target rank is known in advance and is small. However, in some

applications, such as collaborative filtering [82], the target rank is unknown. A very

simple algorithm for estimating the rank of the matrix M from the revealed entries is

introduced in Section 3.6.1. It is proved that the algorithm recovers the correct rank

with high probability under the hypotheses of Theorem 2.6.2 in the noiseless case.

2.4 Role of trimming

The trimming step of OptSpace is somewhat counter-intuitive in that we seem

to be wasting information. In this section, we want to clarify its role through a

simple example. Assume, for the sake of simplicity, M ∈ Rn×n to be a square all-

ones matrix, the entries of M are sampled independently with probability p, and

the samples are noiseless. Let ε = np denote the average number of samples per

row/column. If ε ≥ 15 log n, no row or column is over-represented with probability

larger than 1 − 1/n4. Using the Chernoff bound, we get that each of the rows and

the columns is over-represented with probability smaller than (e/4)ε. For ε ≥ 15 log n

this is smaller than 1/(2n5). Applying the union bound over all 2n rows and columns,
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the claim follows. Since we are interested in the regime where trimming is crucial, we

assume ε to be O(1).

The number of non-zero entries in a row is Binomial(n, ε/n) and is independent of

other rows. There exists a constant C such that the row with the largest number of

entries has more than C log n/ log log n entries with probability larger than 1/n. A

simple proof of this claim is provided in [69] using the Poisson approximation. Let Xi’s

be independent Poisson random variables with mean ε. Also we let pk = P(Xi ≥ k).

Then, P(maxiXi < k) = (1 − pk)
n ≤ exp{−pkn}. Note that pk ≥ 1/(ek!). For

k = C log n/ log log n with small enough C and ε = O(1), it follows that exp{−pkn} ≤
1/n.

Let imax be the index of this column, and consider the test vector e(imax) whose

imaxth entry is equal to one and all the others are equal to zero. By comput-

ing ‖MEe(imax)‖, we conclude that the largest singular value of ME, is at least

C
√

log n/ log log n. In particular, this is very different from the largest singular value

of E[ME] which is ε. Approximating M with the projection Pr(ME), therefore, leads

to a large error.

Our first main result in Theorem 2.6.1 indeed confirms this expectation. In the

process of showing that Pr(M̃E) is close to M , we require the leading singular values

of (1/p)M̃E to be close to the ones of M . This is only true if we assume trimming.

Following arguments similar to the ones in the proof, it is indeed possible to show

that the root mean squared error of the untrimmed estimation Pr(ME) is increasing

with n when ε is bounded.

1

n

∥∥M − Pr(ME)
∥∥
F
≥ C ′

ε

( log n

log log n

)1/2

,

where ‖A‖F = (
∑

i,j A
2
ij)

1/2 denotes the Frobenius norm of a matrix. It is clear that

this phenomenon is indeed general, as illustrated by Figure 2.1. Also, the phenomenon

is more severe in real datasets where the number of revealed entries per row/column

follows a heavy tail distribution. For instance, in the case of the Netflix prize dataset

[3], the maxium degree of a movie is more than 200, 000 while the average number

of samples per movie is about 5, 627 [9]. These over-represented movies alter the
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spectrum of the movie-ratings matrix significantly.

To summarize, Theorem 2.6.1 simply does not hold without trimming, or a similar

procedure to normalize rows/columns of ME. Trimming allows to overcome the above

phenomenon by setting to 0 over-represented rows/columns. On the other hand,

this makes the analysis technically non-trivial. Indeed, while ME is a matrix with

independent (but not identically distributed) entries, this is not the case for M̃E. As

a consequence we cannot rely on standard concentration-of-measure results.

2.5 Manifold optimization

The function F (X, Y ) defined in (2.1) and to be minimized in the last part of

OptSpace can naturally be viewed as defined on the Grassmann manifold. Here

we recall from [36] a few important facts on the geometry of the Grassmann mani-

fold and related optimization algorithms in Section 2.5.1. Then, we give the explicit

formulae for the gradient in Section 2.5.2. In Section 2.5.3, we use these formulae to

precisely describe the manifold optimization step.

2.5.1 Grassmann manifold

The orthogonal group O(r) consists of r-by-r orthogonal matrices and the orthonormal

group O(n, r) consists of n-by-r orthonormal matrices. In formulae, O(r) = {Q ∈
Rr×r : QQT = QTQ = Ir} and O(n, r) = {A ∈ Rn×r : ATA = Ir}. The Grassmann

manifold G(n, r) is defined as the set of all r-dimensional subspaces of Rn. In other

words, a point on the manifold is the equivalence class of an n-by-r orthonormal

matrix A ∈ O(n, r)

[A] = {AQ : Q ∈ O(r)} .

Two n-by-r orthonormal matrices are equivalent if their columns span the same sub-

spaces. Hence, a point in the Grassmann manifold is a specific subset of the or-

thogonal matrices, and the Grassmann manifold is the collection of all these sub-

sets. Therefore the Grassmann manifold is also defined as the quotient G(n, r) =
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O(n)/(O(r) × O(n − r)), where the quotient O(n)/O(n − r) is the set of all n-by-r

orthonormal matrices. To represent a point in G(n, r), we will use an explicit repre-

sentative A to represent the equivalence class [A].

It is easy to see that F (X, Y ) depends on the matrices X and Y only through

their equivalence classes [X] and [Y ]. We will therefore interpret it as a function

defined on the manifold M(m,n) ≡ G(m, r)× G(n, r):

F : M(m,n) → R ,

([X], [Y ]) 7→ F (X, Y ) .

In the following, a point in this manifold will be represented as a pair x = (X, Y ),

with X an m-by-r orthogonal matrix and Y an n-by-r orthogonal matrix. Boldface

symbols will be reserved for elements of M(m,n) or of its tangent space, and we

shall use u = (U, V ) for the point corresponding to the matrix M = UΣV T to be

reconstructed.

Given x = (X, Y ) ∈ M(m,n), the tangent space at x is denoted by Tx and

can be identified with the vector space of matrix pairs w = (W,Z), W ∈ Rm×r,

Z ∈ Rn×r such that W TX = ZTY = 0. The ‘canonical’ Riemann metric on the

Grassmann manifold corresponds to the usual scalar product 〈W,W ′〉 ≡ Tr(W TW ′).

The induced scalar product on Tx and M(m,n) between w = (W,Z) and w′ =

(W ′, Z ′) is 〈w,w′〉 = 〈W,W ′〉+ 〈Z,Z ′〉.

This metric induces a canonical notion of distance on M(m,n) which we denote by

d(x1,x2) (geodesic or arc-length distance). If x1 = (X1, Y1) and x2 = (X2, Y2) then

d(x1,x2) ≡
√
d(X1, X2)2 + d(Y1, Y2)2

where the arc-length distances d(X1, X2) and d(Y1, Y2) on the Grassmann manifold

can be defined explicitly as follows. Let cos θ = (cos θ1, . . . , cos θr) for θi ∈ [−π/2, π/2]

be the singular values of XT
1 X2. Then for θ = (θ1, . . . , θr)

d(X1, X2) = ‖θ‖2 (geodesic or arc-length distance).
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The θi’s are called the ‘principal angles’ between the subspaces spanned by the

columns of X1 and X2. It is useful to introduce two equivalent notions of distance:

dc(X1, X2) = min
Q1,Q2∈O(r)

‖X1Q1 −X2Q2‖F (chordal distance),

dp(X1, X2) =
1√
2
‖X1X

T
1 −X2X

T
2 ‖F (projection distance).

Notice that d(X1, X2), dc(X1, X2) and dp(X1, X2) do not depend on the specific rep-

resentatives X1 and X2, but only on the equivalence classes [X1] and [X2]. Dis-

tances on M(m,n) are defined through Pythagorean theorem, e.g. dc(x1,x2) =√
dc(X1, X2)2 + dc(Y1, Y2)2.

Lemma 2.5.1. The geodesic, chordal and projection distance are equivalent, namely

1

π
d(X1, X2) ≤ 1√

2
dc(X1, X2) ≤ dp(X1, X2) ≤ dc(X1, X2) ≤ d(X1, X2) .

Proof. Let A(diag(cos θ))B be the singular value decomposition of XT
1 X2. Then,

θ = (θ1, . . . , θr) for θi ∈ [−π/2, π/2] are the principal angles between the planes

spanned by the columns of X1 and X2. It is known that dc(X1, X2) = ‖2 sin(θ/2)‖
and dp(X1, X2) = ‖ sin θ‖. The first identity follows from

dc(X1, X2)2 = 2r − 2 max
Q1,Q2∈O(r)

Tr(QT
1X

T
1 X2Q2)

= 2
∑
i∈[r]

(1− cos θi) = ‖2 sin(θ/2)‖2 .

The second identity follows from

dp(X1, X2)2 = r − Tr(X1X
T
1 X2X

T
2 )

=
∑
i∈[r]

(
1− (cos θi)

2
)

= ‖ sin θ‖2 .

The thesis follows from the elementary inequalities

1

π
z ≤
√

2 sin(z/2) ≤ sin z ≤ 2 sin(z/2) ≤ z ,
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valid for z ∈ [0, π/2]. �

An important remark is that geodesics with respect to the canonical Riemann

metric admit an explicit and efficiently computable form. Given u ∈ M(m,n), w ∈ Tu

the corresponding geodesic is a curve t 7→ x(t), with x(t) = u + wt + O(t2) which

minimizes the arc-length. If u = (U, V ) and w = (W,Z) then x(t) = (X(t), Y (t))

where X(t) can be expressed in terms of the singular value decomposition W = LΘRT

[36]:

X(t) = UR cos(Θt)RT + L sin(Θt)RT , (2.2)

which can be evaluated in time of order O(nr). Note that X(t) satisfy X(0) = U ,

Ẋ(0) = W , and X(t)TX(t) = Ir where Ir denotes the identity matrix. An analogous

expression holds for Y (t).

2.5.2 Gradient

In the following, we give an explicit expression for the gradient of the objective func-

tion, which in turn will be used in the manifold optimization step. The gradient of

the objective function F (·) at x is the pair of matrices gradF (x) ∈ Tx such that, for

any smooth curve t 7→ x(t) ∈ M(m,n) with x(t) = x + w t+O(t2), one has

F (x(t)) = F (x) + 〈gradF (x),w〉 t+O(t2) .

Let I denote the identity matrix. Then, the two components of the gradient of F (x)

on the Grassmann manifold are gradF (x)X = (I−XXT )∇XF (x) and gradF (x)Y =

(I− Y Y T )∇Y F (x) [36], where

(
∇XF (x)

)
ij

=
∂F (x)

∂Xij

,
(
∇Y F (x)

)
ij

=
∂F (x)

∂Yij
.
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In order to write an explicit representation of the gradient, it is convenient to introduce

the projector operator for sampling

PE(M)ij =

{
Mij if (i, j) ∈ E,

0 otherwise.
(2.3)

The two components of the gradient are then

gradF (x)X =
(
I−XXT

)
PE(XSY T −N)Y ST ,

gradF (x)Y =
(
I− Y Y T

)
PE(XSY T −N)TXS ,

where S is the minimizer in (2.1). Since, XTPE(XSY T −N)Y = 0 for the minimizer

S, the above formulae simplify to

gradF (x)X = PE(XSY T −N)Y ST , (2.4)

gradF (x)Y = PE(XSY T −N)TXS . (2.5)

2.5.3 Gradient descent

Now we have all the tools necessary to fully specify the gradient descent method

with line search. Let the SVD of the output from the projection step be Pr(ÑE) =

X0S0Y
T

0 . In the manifold optimization step, we take as input the left and right factors

denoted as x0 = (X0, Y0), and minimize a regularized cost function

F̃ (X, Y ) = F (X, Y ) + ρG(X, Y )

≡ F (X, Y ) + ρ
m∑
i=1

g

(
m‖X(i)‖2

3µr

)
+ ρ

n∑
j=1

g

(
n‖Y (j)‖2

3µr

)
, (2.6)

where X(i) denotes the i-th column of XT , and Y (j) the j-th column of Y T . The role

of the regularization is to force x to remain incoherent during the execution of the
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algorithm. To force (X, Y ) to satisfy the incoherence property A0 with 3µ, we define

g(z) =

{
0 if z < 1,

e(z−1)2 − 1 if z ≥ 1.

Various choices of the regularization function would work as well, but we find this

one particularly simple. Furthermore, the algorithm is quite insensitive to the regu-

larization coefficient ρ, and various choices work well in practice. The analysis of the

algorithm gives a whole range of correct values of ρ, and we can choose ρ = Θ(|E|2).

Let us stress that the regularization term is mainly introduced for our proof technique

to work (and a broad family of functions g would work as well). In numerical experi-

ments we did not find any performance loss in setting ρ = 0. Notice that G(X, Y ) is

again naturally defined on the Grassmann manifold, i.e. G(X, Y ) = G(XQ, Y Q′) for

any Q,Q′ ∈ O(r).

Manifold Optimization

Input: sampled matrix NE, sample set E, initial factors x0, kmax, γ

Output: estimated matrix M̂

1: For k = 0, 1, . . . , kmax do:

2: Compute Sk = arg minS F(xk, S);

3: Compute wk = grad F̃ (xk);

4: Let t 7→ xk(t) be the geodesic with xk(t) = xk + wkt+O(t2)

defined as in (2.2);

5: Set t = t0;

6: While F̃ (xk(t)) > F̃ (xk)− (1/2)t〈wk,wk〉 or d(xk(t),x0) > γ do:

7: t← t/2;

8: Set xk+1 = xk(t);

9: End For;

10: Output M̂ = XkSkY
T
k , where Sk is the minimizer.

Before passing to the main results, it is worth discussing a few important points

concerning the gradient descent algorithm.

(i) In the above, γ must be set in such a way that d(u,x0) ≤ γ and a simple value
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Figure 2.2: Prediction and fit errors as functions of the number of line minimizations
for rank-10 random matrices of dimension 1000 × 1000. The average number of
samples per row/column is ε for two values of ε: 100 and 200.

for γ is proposed in Section 2.7.3. The appropriate choice of γ might seem to

pose a difficulty. In reality, this parameter is introduced only to simplify the

proof. We will see that the constraint d(xk(t),x0) ≤ γ is, with high probability,

never saturated.

(ii) Similarly, there is no need to know the actual value of µ in the regularization

term. One can start with µ = 1 and then repeat the optimization doubling it at

each step. On the other hand, an algorithm for estimating the incoherence of an

unknown matrix by sampling its columns is proposed in [70]. A similar approach

can be extended to the case when we sample entries instead of columns.

(iii) The Hessian of F̃ can be computed explicitly as well. This opens the way to

quadratically convergent minimization algorithms (e.g. the Newton method).

However, due to the increased complexity, such algorithms are not practical for

large scale problems.

Figure 2.2 illustrates the rate of convergence of the manifold optimization step
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Figure 2.3: Prediction and fit errors as functions of the number of line minimizations
for random rank-2 600×600 matrices. The average number of samples per row/column
is ε: 80 and 160. The standard deviation of the i.i.d. Gaussian noise is 0.001.
Prediction error of an oracle estimator (3.8) is also shown for comparison.

when there is no noise in the samples. We present the results of a numerical experi-

ment for uniformly random matrices M . The fit error, ‖PE(M̂−M)‖F/
√
|E| and the

prediction error ‖M̂ −M‖F/n, are plotted with respect to the number of iterations

of the Manifold Optimization step and averaged over 10 instances. We can see

that the prediction error decays exponentially with the number of iterations. Also,

the prediction error is very close to the fit error, thus lending support to the validity

of using the fit error as the stopping criterion.

Figure 2.3 illustrates the rate of convergence of the manifold optimization step

in the presence of i.i.d. Gaussian noise. M is generated as in the previous example.

A small Gaussian noise was used in order to trace the RMSE evolution over many

iterations: Zij ∼ N (0, σ2) with σ = 0.001. Each point in the figure is averaged over

20 random instances. The prediction error converges to that of an oracle estimator

described in Section 3.2. The fit error is defined as ‖PE(M̂ − N)‖F/
√
|E|, and can

be easily evaluated since NE = PE(N) is always available at the estimator. The fit

error decays exponentially with the number iterations until it reaches the standard
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deviation of the noise which is 0.001.

For simplicity, consider the case when all the entries are revealed. SinceN = M+Z

and rank(M) = r,

min
A,rank(A)=r

‖N − A‖2
F ≥ min

A,rank(A)=2r
‖Z − A‖2

F

≥ ‖Z‖2
F − 2r‖Z‖2

2 .

From Theorem 2.6.3 we know that ‖Z‖2
2 ≤ Cσ2n with high probability. Also, since

E[‖Z‖2
F ] = σ2n2, we can apply the Chernoff bound to get ‖Z‖2

F ≥ (1 − δ)σ2n2 with

high probability for any positive δ > 0. Then,

min
A,rank(A)=r

1

n
‖N − A‖F ≥ σ

√
1− δ − Cr

n
.

For r � n, the fit error of the best rank-r estimation is lower bounded by a quantity

close to σ = 0.001.

2.6 Main results

The two main results of this chapter are performance guarantees for the simple

trimming-plus-SVD approach and the OptSpace algorithm. Since we are inter-

ested in very large datasets, we shall strive to prove performance guarantees that are

asymptotically optimal for large m and n. However, our main results are completely

non-asymptotic and provide concrete bounds for any m and n.

Trimming and rank-r projection can be done efficiently when we have NE which

is sparse. The following theorem establishes a bound on the quality of the estimation

using this simple procedure.

Theorem 2.6.1. Let M be a rank-r matrix of dimension nα×n that satisfies |Mi,j| ≤
Mmax for all i ∈ [m] and j ∈ [n]. Assume that the set of revealed entries E ⊆ [nα]×[n]

is uniformly random given its size |E| and the sampled matrix is NE = ME + ZE.
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Then there exists a numerical constant C such that

1

n
√
α

∥∥∥M − Pr(ÑE)
∥∥∥

F
≤ CMmax

(
n r α3/2

|E|

)1/2

+ 2
√

2
n
√
r α

|E|
∥∥Z̃E

∥∥
2
, (2.7)

with probability larger than 1− 1/n3.

Recall that ‖·‖F denotes the Frobenius norm and ‖·‖2 denotes the operator norm

or the largest singular value of a matrix. The architecture of the proof is described

in Section 2.7.2. The factor 1/(n
√
α) corresponds to the usual normalization by the

number of entries in the summation. Note that this bound does not depend on the

incoherence of M .

Projection onto rank-r matrices through SVD is a pretty standard tool, and is used

as the first analysis method for many practical problems. At a high-level, projection

onto rank-r matrices can be interpreted as ‘treat missing entries as zeros’. This

theorem shows that this approach is reasonably robust if the number of observed

entries is as large as the number of degrees of freedom (which is (m+n)r− r2) times

a large constant. The error bound in (2.7) is the sum of two contributions: the first

term can be interpreted as an undersampling effect (error induced by missing entries)

and the second as a noise effect. Let us stress that trimming is crucial for achieving

this guarantee when the sample size is comparable with the degrees of freedom.

Notice that the top r singular values and singular vectors of the sparse matrix

ÑE can be computed efficiently using subspace iteration [11]. Each iteration requires

O(|E|r) operations. The subspace iteration converges exponentially when there is a

gap between the rth singular value and the the (r + 1)th one.

The second main result of this chapter provides a performance guarantee for

OptSpace. By adding the ‘cleaning’ step, the performance improves systematically

over the simple trimming-plus-SVD approach. The following theorem establishes that

the ‘cleaning’ step eliminates all the effects from missing entries for large enough |E|.
This theorem is order optimal in a number of important circumstances including the

noiseless case and i.i.d. Gaussian noise case, and further comparisons are provided in

Chapter 3. For the proof of this theorem we refer to Section 2.7.3.
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Theorem 2.6.2. Let M be a rank-r matrix of dimension nα × n satisfying the in-

coherence property with parameter µ. Define Σk to be the k-th largest singular value

of M and let κ ≡ Σmax/Σmin where Σmax ≥ Σ1 ≥ · · · ≥ Σr ≥ Σmin. Assume that the

set of revealed entries E ⊆ [nα]× [n] is uniformly random given its size |E|. Let M̂

be the output of OptSpace on input NE = ME + ZE. Then, there exists numerical

constants C1 and C2 such that, if

|E| ≥ C1 nµ r α κ
2 max

{
log n , µr

√
ακ4

}
,

then, with probability larger than 1− 1/n3,

1

n
√
α

∥∥M − M̂∥∥
F
≤ C2

nκ2
√
rα

|E|
‖ZE‖2 , (2.8)

provided that the right-hand side is smaller than Σmin/(n
√
α).

The above guarantee only holds ‘up to numerical constants’ independent of the ma-

trix dimension or the incoherence parameter. One might wonder how good OptSpace

is in practice. While a detailed study is presented in Section 3.5, in Figure 2.4, we

present the results of a numerical experiment with randomly generated matrices. We

generate n× r random matrices U and V with i.i.d. Gaussian entries distributed as

N (0, 1), and let M = UV T be the rank-r random matrix to be reconstructed. We plot

the empirical reconstruction rate of OptSpace as a function of the average number

of revealed entries per row. Here, the sampled entries are noiseless and we declare a

matrix to be reconstructed if the relative error ‖M−M̂‖F/‖M‖F ≤ 10−4. The recon-

struction rate is the fraction of instances for which the matrix was reconstructed. For

comparison, we also plot the fundamental limit obtained using the algorithm from

[98] based on rigidity theory.

In Figure 2.5, the average root mean squared error RMSE = ‖M − M̂‖F/
√
mn

is shown for different sample size |E| and various number of line minimization in

the ‘cleaning’ step. The noise is i.i.d. Gaussian with Zij ∼ N (0, 1). We also plot

an information theoretic lower bound described in Section 3.2. After 10 iterations,

the RMSE achieved by OptSpace becomes indistinguishable from that of an oracle
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Figure 2.4: Reconstruction rates of OptSpace on 500 × 500 matrices. The solid
curves are the upper bounds on the reconstruction rate for different ranks proved in
[98].

estimator described in Section 3.2 for most values of |E|.

So far, we did not make any assumption about the noise matrix Z. Our results

are completely general and provide concrete bounds for any Z. However, in order to

make sense of the above results, it is convenient to consider a couple of simple models

for the noise matrix. For each of these models, we provide a bound on ‖Z̃E‖2, which

determines the accuracy of our estimation.

Independent entries model. We assume that Zij’s are i.i.d. random variables, with

zero mean E{Zij} = 0 and sub-Gaussian tails. The latter means that

P{|Zij| ≥ z} ≤ 2 e−
z2

2σ2 ,

for some constant σ2 uniformly bounded in n.

Worst case model. In this model Z is arbitrary, but we have a uniform bound on

the size of its entries: |Zij| ≤ Zmax.

The error bounds are determined by the operator norm ‖Z̃E‖2 and ‖ZE‖2. The
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Figure 2.5: RMSE achieved by OptSpace in reconstructing a 600×600 rank-2 matrix
using |E| sampled entries with Gaussian noise for different number of line minimiza-
tions. RMSE achieved by an oracle estimator (3.8) is also shown for comparison.

next theorem provides a bound on these quantities under the two noise models.

Theorem 2.6.3. If Z is a random matrix drawn according to the independent entries

model, then for |E| ≥ n there is a constant C such that,

∥∥Z̃E
∥∥

2
≤ Cσ

(
|E| log n

n

)1/2

, (2.9)

with probability at least 1− 1/n4. Further, if |E| ≥ nα log n then

∥∥Z̃E
∥∥

2
≤ Cσ

(
|E|
n

)1/2

, (2.10)

with probability at least 1− 1/n4.

If Z is a matrix from the worst case model, then

∥∥Z̃E
∥∥

2
≤ 2|E|
n
√
α
Zmax ,
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for any realization of E.

We showed that if |E| ≥ 15αn log n then no row or column is over-represented

with high probability. It follows that in the regime of |E| for which the conditions of

Theorem 2.6.2 are satisfied, we have ZE = Z̃E and hence the bounds apply to ‖ZE‖2

as well. Then, among other things, this result implies that for the independent entries

model the right-hand side of our error estimate, (2.8), is with high probability, smaller

than Σmin/(n
√
α), if |E| ≥ Crα2n3κ4(σ/Σmin)2. For the worst case model, the same

statement is true if Zmax ≤ Σmin/Cnκ
2
√
rα.

2.7 Proofs

In this section, we provide the proofs of the main results, which rely on a number of

key technical lemmas. For the sake of brevity, we refer to [56, 57] for the proofs of

some of the lemmas.

2.7.1 Independent sampling model

Under the uniform sampling model assumed in Section 2.1, each subset E is chosen

with probability 1/
(
mn
|E|

)
for a fixed |E|. Instead of proving that the main results

hold under the uniform sampling model, we prove that the results hold under an

independent sampling model, where each entry is independently sampled.

Define ε ≡ |E|/
√
mn. In the case m = n, ε corresponds to the average number of

revealed entries per row or per column. In practice, it is convenient to work with a

model in which each entry is revealed independently with probability ε/
√
mn. Ele-

mentary tail bounds on binomial random variables imply that, under the independent

sampling model (also called Bernoulli model [20]), there exists a constant A such that,

for all ε
√
α ≥ 1

P
{
|E| ∈ [nε

√
α − A

√
n log n, nε

√
α + A

√
n log n]

}
≥ 1− 1

n10
.

Since the success of the algorithm is a monotone function of |E| (we can always ‘throw

away’ entries) any guarantee proved within one model holds within the other model
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as well, if we allow for a vanishing shift in ε. This type of ensemble equivalence is

standard and heavily used in random graph theory [63, 14].

2.7.2 Proof of Theorem 2.6.1

We want to prove that Pr(ÑE) is a good estimation of M with bounded error as in

(2.7). Our key technical result is that the random matrix (αn2/|E|)M̃E has spectral

properties close to the original matrix M .

Lemma 2.7.1. There exists a numerical constant C > 0 such that, with probability

larger than 1− 1/n3,

∥∥∥M − αn2

|E|
M̃E

∥∥∥
2
≤ CMmax nα

√
n
√
α

|E|
. (2.11)

This lemma generalizes a celebrated result on the second eigenvalue of a random

graph by Friedman, Kahn, and Szemerédi [42], and Feige and Ofek [40]. The impli-

cation of this lemma is illustrated in Figure 2.1. The spectrum of M̃E clearly reveals

the rank-3 structure of M .

A main challenge in proving the above lemma is that the trimming step generates

dependencies among the entries of M̃E. To address this challenge, we use techniques

inspired by [42] and [40]. The proof of this lemma is somewhat cumbersome and, for

the sake of brevity, we refer to [56] for the proof. Notice that (2.11) does not depend

on the rank of M and, thus, generally holds for any M with any rank. Further, notice

that (2.11) does not depend on the incoherence of M .

To bound ‖M−Pr(ÑE)‖F , we start by noting thatM−Pr(ÑE) is a random matrix

with rank at most 2r. For any matrix A of rank at most 2r, we have ‖A‖F ≤
√

2r‖A‖2.

Hence it is sufficient to bound the operator norm ‖M − Pr(ÑE)‖2.

Define the singular values {σi} and the singular vectors {xi} and {yi} as

(αn2

|E|

)
ÑE =

∑
i∈[n]

σixiy
T
i ,
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where σ1 ≥ · · · ≥ σn. Recall that ÑE = M̃E + Z̃E and Pr(ÑE) = (αn2/|E|)ÑE −∑
i≥r+1 σixiy

T
i , whence

M − Pr(ÑE) =
(
M − αn2

|E|
M̃E

)
+
( ∑
i≥r+1

σixiy
T
i

)
− αn2

|E|
Z̃E .

Applying triangular inequality to the operator norm, we get

‖M − Pr(ÑE)‖2 ≤
∥∥∥M − αn2

|E|
M̃E

∥∥∥
2

+ σr+1 +
∥∥∥αn2

|E|
Z̃E
∥∥∥

2
. (2.12)

Let σ̃k(·) denote the kth largest singular value of a matrix. Then, applying Weyl’s

inequality [50] to bound σr+1 ≡ (αn2/|E|)σ̃r+1(M̃E + Z̃E), we get

σr+1 ≤ σ̃1

(αn2

|E|
M̃E −M

)
+ σ̃1

(αn2

|E|
Z̃E
)

+ σ̃r+1(M)

=
∥∥∥αn2

|E|
M̃E −M

∥∥∥
2

+
∥∥∥αn2

|E|
Z̃E
∥∥∥

2
,

Substituting it into (2.12) and applying ‖M −Pr(ÑE)‖F ≤
√

2r‖M −Pr(ÑE)‖2, we

have

‖M − Pr(ÑE)‖F ≤ 2
√

2r
∥∥∥M − αn2

|E|
M̃E

∥∥∥
2

+ 2
√

2r
∥∥∥αn2

|E|
Z̃E
∥∥∥

2
.

Together with Lemma 2.7.1, this finishes the proof of Theorem 2.6.1.

2.7.3 Proof of Theorem 2.6.2

Recall that the cost function is defined over the Riemannian manifold M(m,n) ≡
G(m, r) × G(n, r). The definitions given in Section 2.5.1 will be heavily used in this

section. We first present a few preliminary remarks that are useful, then we present

two key lemmas which are crucial in proving Theorem 2.6.2. In the proof, we will use

C, C ′, etc. to denote general numerical constants, and C1, C2, etc. to denote specific

numerical constants.
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Preliminary remarks and auxiliary lemmas

The next remark, together with Theorem 2.6.1, shows that we can get an initial esti-

mate (X0, Y0) close to the correct solution (U, V ) with trimming-plus-SVD approach.

Let Ir denote an r × r identity matrix.

Remark 2.7.2. Let U,X ∈ Rm×r with UTU = XTX = Ir, V, Y ∈ Rn×r with

V TV = Y TY = Ir, and M = UΣV T , M̂ = XSY T for Σ = diag(Σ1, . . . ,Σr) and

S ∈ Rr×r. If Σ1, . . . ,Σr ≥ Σmin, then

d(U,X) ≤ π√
2Σmin

‖M − M̂‖F , d(V, Y ) ≤ π√
2Σmin

‖M − M̂‖F .

Proof of Remark 2.7.2. We start by observing that d(V, Y ) ≤ πdp(V, Y ) from Lemma

2.5.1 and

dp(V, Y ) =
1√
2

min
A∈Rr×r

‖V − Y A‖F . (2.13)

Indeed the minimization on the right hand side can be performed explicitly (as ‖V −
Y A‖2

F is a quadratic function of A) and the minimum is achieved at A = Y TV . This

implies (2.13) from the definition of dp(·).

To prove the remark, take A = STXTUΣ−1. Then

‖V − Y A‖F = sup
B,‖B‖F≤1

〈B, (V − Y A)〉

= sup
B,‖B‖F≤1

〈BT ,Σ−1UT (UΣV T −XSY T )〉

= sup
B,‖B‖F≤1

〈UΣ−1BT , (M − M̂)〉

≤ sup
B,‖B‖F≤1

‖UΣ−1BT‖F ‖M − M̂‖F . (2.14)

On the other hand

‖UΣ−1BT‖2
F = Tr(BΣ−1UTUΣ−1BT ) = Tr(BTBΣ−2) ≤ Σ−2

min‖B‖2
F ,
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whereby the last inequality follows from the fact that Σ is a diagonal matrix. Together

with (2.13) and (2.14), this implies our claim. �

The following remark provides a bound on ‖ZE‖2. Let ε ≡ |E|/
√
mn.

Remark 2.7.3. By assumption that the right-hand side of (2.8) is smaller than

Σmin/(n
√
α), the following is true:

‖ZE‖2 ≤
εΣmin

C2κ2n
√
αr

, (2.15)

where C2 can be made as large as we want by modifying the constant appearing in the

statement of Theorem 2.6.2.

The main idea of the proof of Theorem 2.6.2 is that when Pr(ÑE) is close to M

the cost function is well approximated by a quadratic function plus some noise term.

The proof consists in controlling the behavior of F (·) in a neighborhood of u = (U, V )

(the point corresponding to the matrix M to be reconstructed). The proof is based

on the following two lemmas. Given S achieving the minimum in (2.1), it is also

convenient to introduce the notations

d−(x,u) ≡ 1

n
√
α

√
Σ2

mind(x,u)2 + ‖S − Σ‖2
F ,

d+(x,u) ≡ 1

n
√
α

√
Σ2

maxd(x,u)2 + ‖S − Σ‖2
F ,

and let K(µ) be the set of matrix couples (X, Y ) ∈ Rm×r×Rn×r such that ‖X(i)‖2 ≤
µr/m, ‖Y (j)‖2 ≤ µr/n for all i, j, where X(i) is the ith row of X and Y (j) is the jth

row of Y .

Lemma 2.7.4. There exists numerical constants C1, C3, C4, C5 such that the following

happens. Assume ε ≥ C1µr
√
α max{ log n ; µr

√
ακ4 } and δ ≤ 1/(C3κ). Then,

F (x)− F (u) ≥ C4εn
√
αd−(x,u)2 − C4n

√
rα‖ZE‖2d+(x,u) , (2.16)

F (x)− F (u) ≤ C5ε

n
√
α

Σ2
max d(x,u)2 + C5n

√
rα‖ZE‖2d+(x,u) , (2.17)
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for all x ∈ M(m,n) ∩ K(4µ) such that d(x,u) ≤ δ, with probability at least 1− 1/n4.

Here S ∈ Rr×r is the matrix realizing the minimum in (2.1).

For the proof of this lemma we refer to [57]. The next corollary follows from the

above lemma.

Corollary 2.7.5. There exists a constant C such that, under the hypotheses of Lemma

2.7.4,

‖S − Σ‖F ≤ CΣmaxd(x,u) + C
n
√
rα

ε
‖ZE‖2 .

Further, for an appropriate choice of the constants in Lemma 2.7.4, we have

σmax(S) ≤ 2Σmax + C
n
√
rα

ε
‖ZE‖2 , (2.18)

σmin(S) ≥ 1

2
Σmin − C

n
√
rα

ε
‖ZE‖2 . (2.19)

Proof of Corollary 2.7.5. By putting together (2.16) and (2.17) and using the defini-

tions of d+(x,u) and d−(x,u), we get

‖S − Σ‖2
F ≤ (C4 + C5)

C4

Σ2
maxd(x,u)2

+
(C4 + C5)n

√
αr

C4ε
‖ZE‖2

√
Σ2

maxd(x,u)2 + ‖S − Σ‖2
F .

To prove the bound on ‖S−Σ‖F , let x ≡ ‖S−Σ‖F , a2 ≡
(
(C4+C5)/C4

)
Σ2

maxd(x,u)2,

and b ≡
(
(C4 + C5)n

√
αr/C4ε

)
‖ZE‖2. The above inequality then takes the form

x2 ≤ a2 + b
√
x2 + a2 ≤ a2 + ab+ bx ,

which implies our claim x ≤ a+ b.

The singular value bounds (2.18) and (2.19) follow by triangular inequality. For

instance

σmin(S) ≥ Σmin − CΣmaxd(x,u)− Cn
√
αr

ε
‖ZE‖2 .
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which implies the inequality (2.19) for d(x,u) ≤ δ = Σmin/C3Σmax and C3 large

enough. An analogous argument proves (2.18). �

Further, using Corollary 2.7.5 in (2.16) and (2.17), we get the following corollary

after some algebra. Define

δ0,− ≡ C
nκ
√
rα

εΣmin

‖ZE‖2 , δ0,+ ≡ C
nκ
√
rα

εΣmax

‖ZE‖2 .

We can assume δ0,− ≤ δ/20 and δ0,+ ≤
√
C4/C5(δ/(20κ)) by substituting (2.15) with

large enough C2.

Corollary 2.7.6. There exists a constant C such that, under the hypotheses of Lemma

2.7.4,

F (x)− F (u) ≥ C4
εΣ2

min

n
√
α

{
d(x,u)2 − δ2

0,−
}
, (2.20)

F (x)− F (u) ≤ C5
εΣ2

max

n
√
α

{
d(x,u)2 + δ2

0,+

}
. (2.21)

The next lemma shows that, in a neighborhood of u, local minimizers satisfying

grad F̃ (x) = 0 are all close to u: d(x,u) ≤ (C7nκ
√
rα/(εΣmin))‖ZE‖2.

Lemma 2.7.7. There exists numerical constants C1, C3, C6, C7 such that the following

happens. Assume ε ≥ C1µr
√
ακ2 max{ log n ; µr

√
ακ4 } and δ ≤ 1/(C3κ). Then,

‖grad F̃ (x)‖2 ≥ C6
ε2Σ4

min

nα

[
d(x,u)− C7

nκ
√
rα

εΣmin

‖ZE‖2

]2

+

, (2.22)

for all x ∈ M(m,n) ∩ K(4µ) such that d(x,u) ≤ δ, with probability at least 1− 1/n4.

(Here [a]+ ≡ max(a, 0).)

For the proof of this lemma we refer to [57]. We can now turn to the proof of

Theorem 2.6.2.
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Proof of Theorem 2.6.2

Let δ = 1/(C3κ) with C3 large enough so that the hypotheses of Lemmas 2.7.4 and

2.7.7 are verified. The strategy for proving Theorem 2.6.2 is as follows. Call {xk}k≥0

the sequence of pairs (Xk, Yk) ∈ M(m,n) generated by k iterations of gradient descent.

First, we claim that we get a good starting point x0 with distance at most δ/10 from

u. Further, with this starting point, we can show that all the xk’s satisfy xk ∈ K(4µ)

and d(u,xk) ≤ δ/10. The proof of these claims are provided later in this section.

These claims imply that the lemmas 2.7.4 and 2.7.7 are satisfied for all xk and, in

particular, the sequence {xk} converges to

Ω =
{
x ∈ K(4µ0) ∩M(m,n) : d(x,u) ≤ δ , grad F̃ (x) = 0

}
.

By Lemma 2.7.7, for any x ∈ Ω we have

d(x,u) ≤ C7
nκ
√
αr

εΣmin

‖ZE‖2 . (2.23)

By triangular inequality,

‖M −XSY T‖2
F ≤ 3‖X(S − Σ)Y T‖2

F + 3‖XΣ(Y − V )T‖2
F + 3‖(X − U)ΣV T‖2

F

≤ 3‖S − Σ‖2
F + 3Σ2

max(‖X − U‖2
F + ‖Y − V ‖2

F )

≤ Cn2αd+(x,u)2 ,

Using Corollary 2.7.5, we have

d+(x,u) ≤ 1

n
√
α

(
Σmaxd(x,u) + ‖S − Σ‖F

)
≤ C

n
√
α

Σmaxd(x,u) +
C
√
r

ε
‖ZE‖2 .

Substituting (2.23) in the above series of inequalities, this implies for all x ∈ Ω,

1

n
√
α
‖M −XSY T‖F ≤ C

κ2
√
r

ε
‖ZE‖2 ,
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which proves Theorem 2.6.2.

Now we are left to prove the following three claims:

1. d(x0,u) ≤ δ/10.

First, we apply Theorem 2.6.1 to show that we get a good starting point x0

with distance at most δ/10 from u. From Remark 2.7.2 we have d(u,x0) ≤
(π/Σmin)‖M − X0S0Y

T
0 ‖F , where S0 is the minimizer in (2.1). Together with

Theorem 2.6.1 this implies

d(x0,u) ≤ CMmax nα

Σmin

(r
ε

)1/2

+
C ′ n
√
αr

εΣmin

‖Z̃E‖2 .

Since ε ≥ C1αµ
2r2κ4 as per our assumptions and Mmax ≤ µ

√
rΣmax/(n

√
α) for

incoherent M , the first term in the above bound is upper bounded by C/(C
1/2
1 κ).

For a given C3, we can choose large enough C1 such that C/(C
1/2
1 κ) ≤ 1/(20C3κ).

Using (2.15), with large enough constant C2, the second term in the above bound

is also upper bounded by 1/(20C3κ). This proves that if ε ≥ C1αµ
2r2κ4 then

for δ = 1/(C3κ),

d(u,x0) ≤ δ

10
.

2. xk ∈ K(4µ) for all k.

First we notice that we can assume x0 ∈ K(3µ). Indeed, if this does not hold,

we can ‘rescale’ those rows of X0, Y0 that violate the constraint. The following

remark shows that such rescaling is possible. For the proof of this remark we

refer to [56].

Remark 2.7.8. Let U,X ∈ Rn×r with UTU = XTX = Ir and U ∈ K(µ)

and d(X,U) ≤ δ ≤ 1
16

. Then there exists X ′ ∈ Rn×r such that X ′TX ′ = Ir,

X ′ ∈ K(3µ) and d(X ′, U) ≤ 4δ. Further, such an X ′ can be computed from X

in a time of O(nr2).

Since x0 ∈ K(3µ) , F̃ (x0) = F (x0) ≤ 4C5ε
2Σ2

maxδ
2/(100n

√
α), which follows

from (2.21) after some algebra. On the other hand F̃ (x) ≥ ρ(e1/9 − 1) for
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x 6∈ K(4µ). Since F̃ (xk) is a non-increasing sequence, the thesis follows provided

we take ρ ≥ Cε2Σ2
min/(n

√
α).

3. d(xk,u) ≤ δ/10 for all k.

Since ε ≥ C1αµ
2r2κ6 with large enough C1 as per our assumptions in Theorem

2.6.2, we have d(x0,u)2 ≤ (C4/C5κ
2)(δ/20)2. Also assuming (2.15) with large

enough C2, we have δ0,− ≤ δ/20 and δ0,+ ≤
√
C4/C5(δ/20κ). Then, by (2.21),

F (x0) ≤ F (u) + C4εΣ
2
min

2δ2

400n
√
α
.

Now, set the algorithm parameter to γ = δ/2 such that d(xk,u) ≤ δ. Using

(2.20), for all xk such that d(xk,u) ∈ [δ/10, δ], we have

F (x) ≥ F (u) + C4εΣ
2
min

3δ2

400n
√
α
.

Hence, for all xk such that d(xk,u) ∈ [δ/10, δ], we have F̃ (x) ≥ F (x) ≥ F (x0).

This contradicts the monotonicity of F̃ (x), and thus proves the claim.

2.7.4 Proof of Theorem 2.6.3

Proof. (Independent entries model ) We start with a claim that for any sampling set

E, we have

‖Z̃E‖2 ≤ ‖ZE‖2 .

It is, therefore, enough to show that the bounds hold for ‖ZE‖2, in which case the inde-

pendence of the entries can be exploited. To prove this claim, let x∗ and y∗ be m and n

dimensional vectors, respectively, achieving the optimum in max‖x‖≤1,‖y‖≤1{xT Z̃Ey}.
Equivalently, we have ‖Z̃E‖2 = x∗T Z̃Ey∗. Recall that, as a result of the trimming

step, all the entries in trimmed rows and columns of Z̃E are set to zero. Then, there

is no gain in maximizing xT Z̃Ey to have a non-zero entry x∗i if ith row is trimmed.

Analogous result holds for y∗. It follows that x∗T Z̃Ey∗ = x∗TZEy∗ ≤ ‖ZE‖2.

Now we are left to bound ‖ZE‖2. The strategy is to bound the expectation
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E
[
‖ZE‖2

]
and use the concentration inequality for Lipschitz functions on i.i.d. Gaus-

sian random variables.

Note that ‖·‖2 is a Lipschitz function with a Lipschitz constant 1. Indeed, for any

M and M ′,
∣∣‖M ′‖2 − ‖M‖2

∣∣ ≤ ‖M ′ −M‖2 ≤ ‖M ′ −M‖F , where the first inequality

follows from triangular inequality and the second inequality follows from the fact

that ‖ · ‖2
F is the sum of the squared singular values. To bound the probability of a

large deviation, we use Talagrand’s result on concentration inequality for Lipschitz

functions on i.i.d. sub-Gaussian random variables [104]. We have independent random

variables {ZE
ij}i∈[m],j∈[n] with zero mean and sub-Gaussian tails with parameter σ2.

For a 1-Lipschitz function ‖ · ‖2, it follows that

P
(
‖ZE‖2 − E[‖ZE‖2] > t

)
≤ exp

{
− t2

2σ2

}
.

Setting t =
√

8σ2 log n, this implies that ‖ZE‖2 ≤ E
[
‖Z‖2

]
+
√

8σ2 log n with prob-

ability larger than 1 − 1/n4. Now, we are left to bound the expectation E
[
‖ZE‖2

]
using the following lemma.

Lemma 2.7.9 (Expectation of the spectral norm). There exists a numerical constant

C > 0 such that, if |E| ≥ n then

E
[
‖ZE‖2

]
≤ Cσ

√
|E| log n

n
.

Further, if |E| ≥ αn log n, then

E
[
‖ZE‖2

]
≤ Cσ

√
|E|
n

.

The proof of this lemma uses a result from [92] on expected norm of a random

matrix. Together with Talagrand’s inequality, this proves the desired thesis. �

Proof of the Lemma 2.7.9. Our strategy to bound the expectation E
[
‖ZE‖2

]
is to

apply the result from [92] on expected norm of random matrices with i.i.d. symmetric
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random entries. First, we symmetrize the possibly asymmetric random variables ZE
ij .

Let Z ′ij’s be independent copies of Zij’s, and ξij’s be independent Bernoulli random

variables such that ξij = +1 with probability 1/2 and ξij = −1 with probability 1/2.

Then, by convexity of E
[
‖ZE − Z ′E‖2|Z ′E

]
and Jensen’s inequality,

E
[
‖ZE‖2

]
≤ E

[
‖ZE − Z ′E‖2

]
= E

[
‖{ξij(ZE

ij − Z ′Eij )}‖2

]
≤ 2E

[
‖{ξijZE

ij}‖2

]
,

where {ξijZE
ij} denotes an m× n matrix with entry ξijZ

E
ij in position (i, j). Thus, it

is enough to consider symmetric random variables Zij’s.

To this end, we apply the following bound on expected norm of random matrices

with i.i.d. symmetric random entries [92, Theorem 1.1].

E
[
‖ZE‖2

]
≤ C

(
E
[

max
i∈[m]
‖ZE

i•‖
]

+ E
[

max
j∈[n]
‖ZE
•j‖
])

, (2.24)

for a general numerical constant C where ZE
i• and ZE

•j denote the ith row and jth

column of ZE respectively. For a positive parameter β, which will be specified later,

the following is true.

E
[

max
j
‖ZE
•j‖2

]
≤ βσ2 |E|

n
+

∫ ∞
0

P
(

max
j
‖ZE
•j‖2 ≥ βσ2 |E|

n
+ z
)

dz . (2.25)

To bound the second term, we want to apply union bound on each of the n columns.

Further, we claim

P
( m∑
k=1

(ZE
kj)

2 ≥ βσ2 |E|
n

+ z
)
≤ exp

{
− 3

8

(
(β − 3)

|E|
n

+
z

σ2

)}
. (2.26)

To prove the above result, we apply Chernoff bound on the sum of independent

random variables. Recall that ZE
kj = ξ̃kjZkj where ξ̃’s are independent Bernoulli

random variables such that ξ̃ = 1 with probability |E|/mn and zero with probability
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1− |E|/mn. Then, for the choice of λ = 3/(8σ2) < 1/(2σ2),

E
[

exp
(
λ

m∑
k=1

(ξ̃kjZkj)
2
)]

=
(

1− |E|
mn

+
|E|
mn

E[eλZ
2
kj ]
)m

≤
(

1− |E|
mn

+
|E|

mn
√

(1− 2σ2λ)

)m
= exp

{
m log

(
1 +
|E|
mn

)}
≤ exp

{ |E|
n

}
,

where the first inequality follows from the definition of Zkj as a zero mean random

variable with sub-Gaussian tail and the second inequality follows from log(1+x) ≤ x.

By applying Chernoff bound, (2.26) follows. Note that an analogous result holds for

the Euclidean norm on the rows ‖ZE
i•‖2.

Substituting (2.26) and P
(

maxj ‖ZE
•j‖2 ≥ z

)
≤ mP

(
‖ZE
•j‖2 ≥ z

)
in (2.25), we get

E
[

max
j
‖ZE
•j‖2

]
≤ βσ2 |E|

n
+

8σ2m

3
e−(β−3)

3|E|
8n . (2.27)

The second term can be made arbitrarily small by taking β = C log n with large

enough C. Since E
[

maxj ‖ZE
•j‖
]
≤
√

E
[

maxj ‖ZE
•j‖2

]
, applying (2.27) with β =

C log n in (2.24) gives

E
[
‖ZE‖2

]
≤ Cσ

√
|E| log n

n
.

Together with (2.24), this proves the desired thesis for |E| ≥ n.

In the case when |E| ≥ αn log n, we can get a tighter bound by similar analysis.

Since |E| ≥ αn log n, the second term in (2.27) can be made arbitrarily small with a

large constant β. Hence, applying (2.27) with β = C in (2.24), we get

E
[
‖ZE‖2

]
≤ Cσ

√
|E|
n

.

This finishes the proof of the lemma.
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�

Proof. (Worst Case Model ) Let D be the m × n all-ones matrix. Then for any

matrix Z from the worst case model, we have ‖Z̃E‖2 ≤ Zmax‖D̃E‖2, since xT Z̃Ey ≤∑
i,j Zmax|xi|D̃E

ij |yj|, which follows from the fact that Zij’s are uniformly bounded.

Further, D̃E is an adjacency matrix of a corresponding bipartite graph with bounded

degrees. Then, for any choice of E the following is true for all positive integers k:

‖D̃E‖2k
2 ≤ max

x,‖x‖=1

∣∣∣xT ((D̃E)T D̃E)kx
∣∣∣ ≤ Tr

((
(D̃E)T D̃E

)k)
.

Now consider the bipartite graph with adjacency matrix D̃E. Then, Tr
((

(D̃E)T D̃E
)k)

is the sum of the number of paths that begin and end at node i for every i ∈ [n] and

has length 2k. Since this graph has degree bounded by 2|E|/
√
mn, we get

‖D̃E‖2k
2 ≤ n

( 2|E|√
mn

)2k

.

Taking k large, we get the desired thesis. �
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Chapter 3

Comparisons and Extensions

In the previous chapter, we introduced an efficient matrix completion algorithm–

OptSpace–and provided performance guarantees. One might wonder how good

these guarantees are and whether this algorithm is also suitable for practical use.

To answer these questions, we first present fundamental limits which coincide with

the error bounds achieved with OptSpace up to numerical constants under mild

assumptions. This proves that OptSpace achieves order-optimal performance un-

der the noiseless setting (Section 3.1) and under the Gaussian noise setting (Section

3.2). We also review recent results in matrix completion and compare them to the

performance guarantees of OptSpace. Next, to provide a new perspective on matrix

completion, we compare OptSpace with a line of work in numerical computations,

namely sampling-based algorithms for low-rank approximations (Section 3.3). In the

past two years, a number of novel and efficient matrix completion algortihms have

been developed. In Section 3.4, we review a subset of these recent developments, a

few of which are numerically compared on both synthetic and real datasets in Section

3.5. Section 3.6 discusses two important extensions to make OptSpace more suitable

in practice. Finally, we discuss some open problems and future research directions

in Section 3.7. This chapter is based on joint work with Keshavan and Montanari

[55, 56, 57, 58].

47
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b
a ?
c

i

j

[
a b
c ?

]

Figure 3.1: 2× 2 minor with one unique missing entry

3.1 Noiseless scenario

When the sampled entries are revealed without any noise, Theorem 2.6.2 states that

uniform random samples of size O(rµnmax{rµ, log n}) are sufficient to recover a

rank-r µ-incoherent m × n matrix. In this section, we first present the fundamental

limit on the number of samples that are necessary for exact recovery. Then, we

compare the error bound in Theorem 2.6.2 to the fundamental limit and analogous

results using a different algorithm, namely nuclear norm minimization.

3.1.1 Fundamental limit

We first investigate how many samples are necessary for exact recovery. As a warm-up

example, consider a rank-1 m × n matrix M to be recovered from a random sample

of entries. Assume that we know 3 entries of the matrix M that belong to the same

2 × 2 minor. Explicitly, the entries a,b, and c are known as in Figure 3.1. Unless

a = 0, the fourth entry is uniquely determined by bc/a. The case a = 0 can be treated

separately, but for the sake of simplicity we shall assume that all the entries of M are

non-zero.

This observation suggests a simple matrix completion algorithm: Recursively look

for a 2×2 minor with a unique unknown entry and complete it according to the above

rule. This algorithm has a nice graph-theoretic interpretation. Let R and C denote

the set of vertices corresponding to the rows and the columns of M . Consider the

bipartite graph G = (R,C,E) with vertices corresponding to the row and columns

of M and edges to the observed entries. If a 2 × 2 minor has a unique unknown

entry Mij, it means that the corresponding vertices i ∈ R, j ∈ C are connected by

a length-3 path in G. Hence the algorithm recursively adds edges to G connecting
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distance-3 vertices.

After at most O(n2) operations the process described halts on a graph that is

a disjoint union of cliques, corresponding to the connected components in G. Each

edge corresponds to a correctly predicted matrix entry. If the graph is connected

then there is a unique rank-1 matrix matching the sampled entries, and the above

recursion recovers M exactly. If it is disconnected then multiple rank-1 matrices

match the observations and no algorithm can distinguish the correct M . Clearly,

in the large n limit only the components with Θ(n) vertices matter (as they have

Θ(n2) edges). Recall that E is the set of indices of the sampled entries and is drawn

uniformly at random given sample size |E|. In the following, we let α ≡ (m/n) and

ε ≡ |E|/
√
mn. It is a fundamental result in random graph theory [38] that there is

no connected component with Θ(n) vertices for ε ≤ 1. For ε > 1 there is one such

component involving approximately nξε vertices in R and mζε vertices in C, where

(ξε, ζε) is the largest solution of

ξ = 1− e−ε
√
αζ , ζ = 1− e−

ε√
α
ξ
.

Applying the recursive completion algorithm, matrix element corresponding to

vertex pairs in distinct components are predicted to vanish. Therefore, for a rank-1

matrix M , there is an algorithm with O(n2) complexity which achieves the following

with high probability. We use a parameterization of ε =
√
α(logm+ w).

(i) If w →∞ as n→∞, then M is recovered exactly.

(ii) If w → −∞ as n→∞, then there exists multiple rank-1 matrices matching the

sampled entries, thus no algorithm can recover the original matrix M exactly.

(iii) The root mean squared error is bounded by

1√
mn
‖M − M̂‖F ≤

√
1− ξεζεMmax +O

(√ log n

n

)
,

where Mmax ≡ maxi,j{|Mij|} [55].
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When there is an isolated node in G = (R,C,E) there are multiple rank-1 matrices

matching all the observed entries. The property (ii) follows from the fact that if

w → −∞ then there exists isolated nodes in R. The number of isolated nodes in R

is asymptotically a Poisson random variable with mean e−w. Hence

P(∃ an isolated node in R)→ 1− e−e−w , (3.1)

which converges to one. In the G(n, p) model, where there are n nodes and each pair of

edges is connected independently with probability p, it is known that the probability

a random graph is connected is about the probability that it has no isolated node

[15]. Together with (3.1), the analysis can be generalized to bipartite random graphs

to prove the property (i).

The property (iii) implies that arbitrarily small root mean squared error is achieved

with a large enough constant ε, or equivalently |E| ≥ C(m+n). A very simple exten-

sion of this algorithm to general rank-r matrices is introduced and analyzed in [68]

under the assumption that all the r-by-r minors of U and V are full-rank (here U

and V are the left and right factors resulting from the SVD of M = USV T ).

Another argument to understand the log n factor in the necessary condition (ii)

is via coupon collector’s problem. As an example, assume that we do not observe

any samples in a particular row or column. Then there is no hope for correctly

reconstructing that row or column. Hence, for exact recovery of M , it is necessary to

sample every row and every column. Under the uniform sampling assumption, this

happens with high probability only if |E| ≥ Cn log n. This is the famous coupon

collector’s problem where we have n coupons (or columns) that we want to collect

and each time we collect one of those n coupons uniformly at random. It is well

known that we need on the order of n log n samples to sample all the rows.

Graph connectivity and coupon collector’s problem provide necessary conditions

for the uniqueness of the solution. For a general rank r > 1, a stronger necessary
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condition is proved assuming incoherence by Candès and Tao [22]. Under mild as-

sumptions on n, if

|E| < (3/4)n r µ log n , (3.2)

there exists a µ-incoherent matrix M such that there are multiple rank-r and µ-

incoherent matrices matching the samples in the set E, with probability larger than

1/2 [22, Theorem 1.7]. The definition of incoherence condition is provided in Section

2.2. In particular, this implies that if all we know about M is the rank r and the inco-

herence µ, then no algorithm can guarantee to succeed with less than (3/4)nrµ log n

random samples. The proof essentially uses the coupon collector’s argument, but

with a block diagonal structure on M . To get the factor rµ in the right-hand side of

the bound, each block is constructed with size bn/(rµ)c × bn/(rµ)c.

For a non-random sampling, a different approach based on rigidity theory gives

a necessary condition for exact matrix completion. In [98], Singer and Cucuringu

introduced an algorithm that checks if there exists multiple rank-r matrices that are

identical in the given sampled set E. If this algorithm detects that E is not rigid, then

there are multiple rank-r matrices that are identical on E. Therefore no algorithm can

guarantee to succeed if all we know about M is that it has rank-r. This algorithmic

bound is presented for comparison in Section 3.5.

3.1.2 Nuclear norm minimization

Assuming there is no noise in the samples, we want to compare the performance

guarantees of Theorem 2.6.2 with analogous guarantees for a different approach, i.e.,

nuclear norm minimization. Recall the projector operator for sampling PE(·) defined

in (2.3).

PE(M)ij =

{
Mij if (i, j) ∈ E,

0 otherwise.
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When there is no noise in the samples and the sample size is large enough, we can

try to recover M by solving the following optimization problem.

minimize rank(X) (3.3)

subject to PE(X) = PE(M) ,

where X is the variable matrix and rank(·) is the rank of a matrix. When M is

a unique rank-r matrix satisfying the condition, solving this problem recovers M .

However, this is an NP-hard problem and any known algorithm requires time doubly

exponential in the problem dimensions [25].

We can use the nuclear norm minimization heuristic, introduced by Fazel [39],

which consists solving a convex relaxation of (3.3), namely

minimize ‖X‖∗ (3.4)

subject to PE(X) = PE(M) ,

where ‖X‖∗ denotes the nuclear norm of X, i.e the sum of its singular values. The

nuclear norm is also known as the Ky-Fan n-norm or the trace norm, and is commonly

used as a convex relaxation of the rank(·) of a matrix. It has also been shown that

this problem can be formulated as a Semidefinite Program (SDP) which in turn can

be solved using off-the-shelf solvers with time complexity O(n4).

Nuclear norm minimization has a close relationship with compressed sensing [30,

21]. At the heart of compressed sensing is the problem of finding the sparsest vector

satisfying a set of affine constraints, i.e.,

minimize ‖x‖`0 (3.5)

subject to Ax = b ,

where ‖ · ‖`0 denotes the sparsity, the number of nonzero entries. To tackle this
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NP-hard problem, a common heuristic is to instead solve a convex relaxation:

minimize ‖x‖`1 (3.6)

subject to Ax = b ,

where ‖ · ‖`1 denotes the sum of absolute values of all the entries. `1 norm is the

tightest convex envelop of `0 norm and the `1 minimization is known to provide an

optimal solution to (3.5) under appropriate conditions on the measurement matrix

A.

In case of the rank minimization problem (3.3), the rank function counts the

number of nonzero singular values whereas, in the nuclear norm minimization (3.4),

the nuclear norm sums the magnitude of singular values. Hence, the rank(·) of a

matrix is analogous to the `0 norm of a vector, and the nuclear norm ‖·‖∗ corresponds

to the `1 norm. There are close connections between compressed sensing and rank

minimization, and a number of matrix completion algorithms are in fact based on

compressed sensing. Some of these algorithms are described in Section 3.4. Further

connections between rank minimization and compressed sensing are investigated in

[81], which also provides performance guarantees under appropriate conditions on the

constraints.

In a breakthrough paper [20], Candès and Recht analyzed the nuclear norm mini-

mization (3.4) in the context of matrix completion. A significant theoretical challenge

here is that the condition that is proven to be quite effective for compressed sens-

ing, namely the restricted isometry property, is not satisfied in the matrix completion

setting. To address this challenge, Candès and Recht introduced the incoherence prop-

erty which is a less restrictive condition and has proved to be very useful. Under the

simple noiseless setting and assuming the incoherence property and uniform sampling,

they proved that there exists a numerical constant C such that if |E| ≥ Cn6/5µr log n,

then solving (3.4) recovers M correctly with high probability. Here, µ is the incoher-

ence parameter of the original matrix M . For further details on incoherence we refer

to Section 2.2.

The sufficient condition was later tightened with contributions from [22, 46, 80].
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A major breakthrough came from the powerful ideas introduced by Gross [47] in

the context of quantum-state tomography. In particular, using the clever ‘golfing

scheme’, the most recent analysis shows that solving (3.4) recovers M correctly, with

high probability, if

|E| ≥ Cnµ r (log n)2 . (3.7)

For comparison, assume that there is no noise in the samples. Then the bound in

Theorem 2.6.2 guarantees exact recovery with OptSpace when

|E| ≥ Cnµ r κ2(log n+ µ r κ4) .

This improves over (3.7), when we have µr = O((log n)2) and bounded ‘condition

number’: κ ≡ (Σmax/Σmin) = O(1). Note that in many practical applications, such

as positioning or structure-from-motion [24, 97], r is known and is small (indeed it

is comparable with the ambient dimension that is 3). Further, comparing with the

lower bound in (3.2), both nuclear norm minimization and OptSpace achieve near-

optimal performance up to polylogarithmic factors. Theorem 2.6.2 is also suboptimal

in the following regimes:

(i) Large rank. The necessary number of samples for exact recovery scale linearly

in the rank rather than quadratically as in (3.2). As should be clear from Figure

2.4 (and from more extensive simulations in Section 3.5) this appears to be a

weakness of our proof technique rather than of the algorithm.

(ii) Large ‘condition number’ κ = (Σmax/Σmin). Indeed our bound depends explic-

itly on this quantity, while this is not the case in (3.7). This appears to be indeed

a limitation of the singular value decomposition step. However, in Section 3.6.2,

we discusses a simple modification of OptSpace, and shows empirically that

we can overcome this problem.
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3.2 Noisy scenario

For a more general setting where we have noisy samples, we start with an example of

an oracle estimator introduced by Candès and Plan and follow closely the analysis of

the estimation error in [19].

Assume that we have an oracle giving us information about U , where U is the

orthonormal basis spanning the column space of M . With this precious information,

the oracle estimator finds an estimation by projecting the observations onto the sub-

space spanned by U or equivalently by solving the following optimization problem.

For simplicity assume M to be a square matrix of dimensions n× n. Let PU = UUT

denote the self-adjoint projection operator onto the subspace spanned by U .

minimize
1

2
‖PE(X −N)‖2

F

subject to X ∈ TU ,

where TU = {UY T |Y ∈ Rn×r} is a rn dimensional subspace in Rn×n. Recall that

PE is the self-adjoint sampling operator defined in (2.3), and let TE ≡ {X |Xij =

0 for (i, j) /∈ E} be a |E| dimensional subspace in Rn×n. Then the least-squares

solution to the above problem is given by M̂U = (A∗A)−1A∗(NE), where

A : Rn×n → TE ,

X 7→ PEPU(X) ,

and A∗ is the adjoint of the linear operator A. Under the hypotheses of Theo-

rem 2.6.2, A∗A = PUPEPU is invertible and the inverse is well defined. Since,

(A∗A)−1A∗(NE) = M + (A∗A)−1A∗(Z),

‖M − M̂U‖F = ‖(A∗A)−1A∗(Z)‖F .

In the special case when we have i.i.d. Gaussian noise with variance σ2
Z , the

expectation E[‖M − M̂U‖2
F ] = σ2

ZTr((A∗A)−1). Under the hypotheses of Theorem

2.6.2, all the rn eigenvalues of A∗A concentrate around |E|/n2. This fact is proved
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later in this section. Therefore, Tr((A∗A)−1) ' rn3/|E|. Then,

E[‖M − M̂U‖2
F ] ' σ2

Z

n3r

|E|
,

where ' indicates that the left-hand side concentrates around the right-hand side.

Now consider another oracle estimator with information on TU,V = {UY T +

XV T |X ∈ Rn×r, Y ∈ Rn×r}, which is a 2nr − r2 dimensional subspace in Rn×n.

Here, V ∈ Rn×r is the orthonormal basis for the space spanned by the rows of

M . Again with this precious information, the oracle estimator finds an estimation

M̂oracle = (Ã∗Ã)−1Ã∗(NE), where

Ã : Rn×n → TE ,

X 7→ PEPU,V (X) ,

and PU,V (A) = UUTA+ AV V T − UUTAV V T is the projection onto TU,V .

Under the hypotheses of Theorem 2.6.2, Ã∗Ã = PU,VPEPU,V is invertible, and

2nr − r2 eigenvalues of Ã∗Ã concentrates around |E|/n2, whence Tr((Ã∗Ã)−1) '
(2nr−r2)n2/|E| [20, Theorem 4.1]. Notice that, by definition, λmax(A∗A) ≤ λmax(Ã∗Ã)

and λmin(A∗A) ≥ λmin(Ã∗Ã). This confirms the previous claim that the eigenvalues

of A∗A also concentrate around |E|/n2.

In the special case when we have i.i.d. Gaussian noise with variance σ2
Z , following

the similar analysis, we have

E[‖M − M̂oracle‖F ]2 ' σ2
Z

2n3r

|E|
, (3.8)

for r � n where ' indicates that the left-hand side concentrates around the right-

hand side. Notice that M̂oracle is highly likely to have rank 2r, and the information

on r, if available, is not being used.

A lower bound on the estimation error with i.i.d. Gaussian noise is proved using
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minimax argument in [74]. Consider a family of matrices

M(r, C) =
{
M ∈ Rn×n ∣∣ rank(M) = r, incoherent with µ = C

√
log n

}
,

corresponding to rank-r matrices with logarithmic incoherence. Using an information

theoretic argument, it is proved that there exists universal constants C,C ′ > 0 such

that

infcM sup
M∈M(r,C)

E[‖M − M̂‖2
F ] ≥ C ′σ2

Z

n3r

|E|
, (3.9)

where the infimum is taken over all estimators M̂ that are measureable functions

of the |E| samples. For better readability, we presented the result with a slightly

modified version of M(r, C) from the original version in [74]. However, the same

lower bound holds in this case, since the modified set includes the original one.

The error achieved by the nuclear norm minimization in the noisy case was an-

alyzed by Candès and Plan in [19]. Note that the hard constraint in (3.4) must be

relaxed when dealing with noisy samples, which gives

minimize ‖X‖∗ (3.10)

subject to ‖PE(X −N)‖F ≤ δ ,

where δ is the estimated noise power and ‖X‖∗ denotes the nuclear norm of X, i.e the

sum of its singular values.. They show that when |E| ≥ Cnµ r (log n)2, the solution

of the nuclear norm minimization above achieves

1√
mn
‖M − M̂SDP‖F ≤ 7

√
n

|E|
‖ZE‖F +

2

n
√
α
‖ZE‖F . (3.11)

In [19], the constant in front of the first term is slightly smaller than 7, but in any

case larger than 4
√

2.

Theorem 2.6.2 improves over this result in several respects: (i) We do not have

the second term on the right-hand side of (3.11), that actually increases with the

number of observed entries; (ii) Our error decreases as n/|E| rather than (n/|E|)1/2;
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(iii) The noise enters Theorem 2.6.2 through the operator norm ‖ZE‖2 instead of its

Frobenius norm ‖ZE‖F ≥ ‖ZE‖2. For E uniformly random, one expects ‖ZE‖F to

be roughly of order ‖ZE‖2

√
n. For instance, within the independent entries model

with bounded variance σZ , ‖ZE‖F = Θ(σZ
√
|E|) while ‖ZE‖2 is of order σZ

√
|E|/n

(up to logarithmic terms).

For the sake of comparison, suppose we have i.i.d. Gaussian noise with variance

σ2
Z , and recall that M is a rank-r matrix of dimension m× n. In this case the oracle

estimator yields (for r = o(n))

1√
mn
‖M − M̂oracle‖F ' σZ

√
(m+ n)r

|E|
.

The bound (3.11) on the semidefinite programming approach yields

1√
mn
‖M − M̂SDP‖F ≤ σZ

(
7
√
n+ 2

√
|E|
mn

)
.

More recently, Negahban and Wainwright in [74] analyzed (3.10) with a ‘spikiness’

condition, instead of the incoherence condition, and showed that, with high proba-

bility, the solution to (3.10) achieves

1√
mn
‖M − M̂SDP‖F ≤ σZ µ̃

√
Crn log n

|E|
,

where the spikiness µ̃ ≡
√
mnMmax/‖M‖F and assuming σ2

z ≥ 1/(mn). The spikiness

µ̃ is not too large for incoherent matrices since, due to the incoherence condition A1,

we have µ̃ ≤ µ.

Finally, using Theorems 2.6.2 and 2.6.3 we deduce that OptSpace achieves

1√
mn
‖M − M̂OptSpace‖F ≤ σZ

√
C nr

|E|
,

where the constant C depends on α = m/n and κ = σ1(M)/σr(M). When α and

κ are bounded and we have i.i.d. Gaussian noise with small enough σZ , we have
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matching lower and upper bound up to a constant and OptSpace provably achieves

order-optimal performance.

3.3 Sampling-based low-rank approximation

Low-rank approximation of matrices plays an important role in numerical analysis,

data mining, control and a number of other areas. Singular Value Decomposition

(SVD) is widely used to compute the optimal low-rank approximation minimizing

the mean squared error. However, the computational complexity of computing SVD

of a dense matrix with dimensions n× n is O(n3) which, in large-scale applications,

becomes infeasible. Particular applications of interest include spectral clustering

[75, 41] applied to image segmentation, manifold learning [95, 105], and low-rank

approximation of kernel matrices [114, 118]. To segment an image with 1000× 1000

pixels requires computing SVD of a dense 106 × 106 affinity matrix. Learning a

high-dimensional manifold with 41368 samples (e.g., the CMU PIE face dataset [96])

requires computing SVD of a dense 41368 × 41368 matrix. In these large-scale ap-

plications with dense matrices, SVD is computationally infeasible. Even storing the

matrix is not possible, since, for instance, the affinity matrix of a 1000× 1000 image

requires storing a 8 TB matrix. But, these applications, and many more interesting

ones, require only a few, say r, top singular values and the corresponding singu-

lar vectors. Iterative methods, such as power iteration, still suffer from superlinear

complexity requiring O(n2r) operations.

A popular strategy is to compute, instead of the optimal low-rank approxima-

tion, a near-optimal approximation. To this end, sampling based methods provide

powerful alternatives. Computation is performed on a small number of entries, hence

reducing the number of operations. Further, it is not necessary to store the full ma-

trix, requiring less storage. In this section, we review the recent developments on

sampling-based algorithms, and show that our main result in Theorem 2.6.1, along

with the novel trimming step introduced in Section 2.3, improves over the state-of-

the-art algorithms.
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Sparsification based approaches are efficient ways to compute near optimal low-

rank approximations. Given an input matrix M , we can first sparsify it to get a

sparse matrix S, then use orthogonal iteration to compute Sr, the best rank-r ap-

proximation of S. If (M−S) has weak spectral features, then Sr will be a good rank-r

approximation of M . Sparsifying M speeds up the matrix vector multiplication in

orthogonal iterations, while reducing the memory required to store the input data.

The operator norm ‖M − S‖2 bounds how much we lose from sparsification. For

simplicity, assume M to be an n×n rank-r matrix, although all the arguments can be

easily generalized to a full-rank matrix M . Then, the approximation error, in terms

the Frobenius norm, is bounded by ‖M − Sr‖F ≤ 2
√

2r‖M − S‖2 [4, Lemma 1.1].

The main challenge is to find a matrix S that is sparse and has small operator norm

of the difference matrix ‖M − S‖2. Perhaps surprisingly, a simple uniform sampling

generates a good sparsification of M . Further, adaptive non-uniform sampling can

reduce the approximation error.

Under the uniform sampling

Sij =

{
1
p
Mij with probability p ,

0 with probability 1− p .

A direct application of a recent result in random matrix theory [110], an improvement

over the ideas of Ahlswede and Winter [5], gives the following bound on ‖M − S‖2.

An analogous bound was proved in [20, Theorem 6.3], which is only weaker by a

constant factor. We refer to the end of this section for the proof.

Remark 3.3.1. Assuming p ≥ (log n)/n, with probability larger than 1− 1/n3,

‖M − S‖2 ≤ 5Mmax

√
n log n

p
,

where Mmax ≡ maxi,j |Mij|.

Achlioptas and McSherry in [4] proved a tighter bound by eliminating the loga-

rithmic factor but holding only for p ≥ (8 log n)4/n. Namely, they show that, with
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probability larger than 1− exp
{
− 19(log n)4

}
,

‖M − S‖2 ≤ 4Mmax

√
n

p
. (3.12)

Our trimming-plus-SVD approach improves over both of these results by eliminat-

ing the logarithmic factor in the error bound as well as conditions on p. As explained

in detail in Section 2.4, ‘trimming’ is crucial especially when p is small. Let S̃ be

the sparsification obtained from a random sampling followed by trimming. Theo-

rem 2.6.1, and in particular Lemma 2.7.1, implies that, with probability larger than

1− 1/n3, there exists a constant C such that

‖M − S̃‖2 ≤ CMmax

√
n

p
.

We get the same bound as (3.12) up to a constant without the extra condition on p.

Sparsification need not be bound to uniform sampling. We can get sparser matri-

ces (hence reducing the number of operations) without increasing the error bound, if

we allow non-uniform sampling. This is proved in [4] with adaptive sampling, sam-

pling entries with probability depending on the magnitude of the entries. Let pn2 be,

in a similar way, the average number of samples under the adaptive sampling with

Sij =

{
1
pi,j
Mij with probability pi,j ,

0 with probability 1− pi,j ,
(3.13)

where pi,j = max { c(Mij/Mmax)2 ,
√
c(Mij/Mmax)2(8 log n)4/n }. Then, it is proved

in [4] that with probability larger than 1− exp{−19(log n)4},

‖M − S‖2 ≤ 4
√

2‖M‖F
√

1

pn
. (3.14)

The constant in the right-hand side is in fact slightly smaller than 4
√

2 in [4], but in

any case larger than 4. For comparison with (3.12), notice that 1 ≤ (‖M‖F/Mmax) ≤
n, and, intuitively, ‖M‖F/Mmax is larger for an incoherent matrix M than for a
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coherent M (We refer to Section 2.2 for the definition of incoherence). Therefore, the

gain in the performance guarantees with adaptive sampling is at best constant when

M is incoherent, but significant when M is coherent.

While searching for a fast algorithm for semidefinite programming, Arora et al.

[6] developed a modified adaptive sampling scheme with a comparable error bound.

Again, let pn2 be the average number of samples under the adaptive sampling defined

in (3.13) with pi,j = min{1 , c
√
n|Mij|}. Using the discretization technique from [40]

and the Chernoff-Hoeffding bound, it is proved in [6] that there exists constants C

and C ′ such that, with probability larger than 1− exp{−C ′n},

‖M − S‖2 ≤
C
∑

i,j |Mij|
pn3/2

.

Compared to (3.14) this gives a tighter error bound when
∑

i,j |Mij| .
√
n‖M‖F .

In conclusion, finding the best sparsification is a very difficult problem. We need

to solve

minimize ‖M − S‖2

subject to ‖S‖`0 ≤ pn ,

where the `0 norm ‖·‖`0 of a matrix denotes the number of non-zero entries. As we saw

in this section, sampling based algorithms can be thought of as efficient heuristics for

solving this problem, but several questions remain open. It is an interesting research

direction to understand the fundamental limit on how good an approximation we can

get with sparsification and to devise efficient heuristics.

In an alternative approach, there is a copious line of work on sampling rows and

columns of M , instead of sampling entries, for fast low-rank approximation. Popular

column-sampling algorithms include fast Monte Carlo algorithms, known as Con-

stantTimeSVD or LinearTimeSVD [31, 43, 34], Nyström-based method [114],

and CUR decomposition method [33]. The relationship between these algorithms are

presented in [35] in detail.
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Proof of Remark 3.3.1. The remark follows from a direct application of the gener-

alization of Bernstein’s inequality to sum of independent random matrices. Let

Xi,j ≡ (Sij − Mij)eie
∗
j be a random matrix with a single non-zero entry in posi-

tion (i, j), such that S − M =
∑

i,j Xi,j. Note that for all (i, j), E[Xi,j] = 0 and

‖Xi,j‖2 ≤ Mmax/p. Since E[X2
i,j] = ((1− p)/p)M2

max, the total variance is bounded

by ‖
∑

i,j E[X2
i,j]‖2 ≤ nM2

max/p. Theorem 2.10 in [110] can be easily extended to

non-symmetric random matrices Xi,j to give

P

(∥∥∥∑
i,j

Xi,j

∥∥∥
2
≥ aMmax

)
≤ 2n exp

{
−a2

2n
p

+ 2a
3p

}
.

Assuming p ≥ log n/n, set a = 5
√
n log n/p to prove the desired claim. �

3.4 Efficient algorithms

One challenge in solving nuclear norm minimization (3.4) using SDP is that the

computational complexity, although polynomial in n, is still quite large: of the order

O(n4). This must be compared with the most complex component of OptSpace

which is the SVD in step 2 with complexity O(|E|r log n). More recently, a number

of innovative and efficient algorithms were introduced to solve variations of the nuclear

norm minimization.

3.4.1 Compressed sensing based algorithms

We review recent developments in efficient algorithms for matrix completion, mostly

based on compressed sensing approaches. Numerical simulation results from a few of

these algorithms are compared in Section 3.5.

Cai, Candès and Shen [17] proposed an efficient first-order procedure called Singu-

lar Value Thresholding (SVT) to solve the nuclear norm minimization in (3.4) directly.

Trimming-plus-SVD in OptSpace is akin to a single step of this procedure, with the

important novelty of the trimming step that improves its performance significantly.
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One problem with (3.4) is that it does not generalize to the case when we have

noise in the samples. The hard constraint in (3.4) can be relaxed, resulting in the

problem

minimize λ‖X‖∗ +
1

2
‖PE(X −N)‖2

F . (3.15)

Here, PE(N) is the sampled matrix with noise. A number of efficient first-order

procedures for solving (3.15) were recently developed. Fixed Point Continuation with

Approximate SVD (FPCA) [64] is based on the Bregman iterative regularization

algorithm [117]. Accelerated Proximal Gradient (APG) algorithm [108] is based on

the fast iterative shrinkage-thresholding algorithm [8]. Soft-Impute and Hard-

Impute iteratively replaces the missing entries with those obtained from thresholded

SVD [66].

When we have a good estimate of the rank r, the matrix completion problem can

be recast into the following rank-r approximation problem.

minimize ‖PE(X −N)‖F (3.16)

subject to rank(X) ≤ r ,

To find an approximate solution to (3.16), Lee and Bresler introduced Atomic Decom-

position for Minimum Rank Approximation (ADMiRA) [62] inspired by CoSaMP

[73]. Singular Value Projection (SVP) [67], is a different approach to solving (3.16)

based on the Iterative Hard Thresholding (IHT) algorithm [13].

Another popular approach is to minimize (3.17) over X and Y alternatively. This

procedure is known as the alternate minimization method or the nonlinear (block)

Gauss-Seidel (GS) scheme or the block coordinate descent method.

minimize
1

2
‖PE(XY T −N)‖2

F , (3.17)

where X ∈ Rm×r and Y ∈ Rn×r and r is an estimated target rank. Alternate

minimization methods for the matrix completion problem have been studied in [10,

59, 49, 116]. Subspace Evolution and Transfer (SET) [28] is a manifold optimization
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approach to (3.17) with an extra condition that X lies on the Grassmann manifold.

This is similar to the last step of OptSpace, but with a novel transfer step which

seeks to overcome getting blocked by ‘barriers’ in the objective function.

In [113], a slightly modified problem is solved with the Low-rank Matrix Fitting

algorithm (LMaFit).

minimize
1

2
‖XY T − Z‖2

F , (3.18)

subject to PE(Z) = PE(N) ,

where X ∈ Rm×r, Y ∈ Rn×r and Z ∈ Rm×n are the variables we minimize over. The

hope here is that it is much faster to solve (3.18) compared to (3.4). However, the

non-convexity in the model may prevent one from getting a global solution. Wen et

al. [113] provide convincing evidence showing that LMaFit is empirically as reliable

as other nuclear norm minimization approaches.

3.4.2 Collaborative filtering algorithms

Local optimization techniques such as gradient descent methods or coordinate descent

methods have been intensively used in collaborative filtering applications to solve

(3.17) and its variants. Weighted Low Rank Approximation (WLRA), introduced

in an early work by Srebro and Jaakkola [101], uses gradient descent methods to

minimize a slightly modified objective function F (X) = minY ‖PE(XY T )−PE(N)‖2
F .

The use of such an objective function was justified in [84] using a probabilistic

model. Let Nij represent the rating of user i for movie j. Also, let X ∈ Rm×r and

Y ∈ Rn×r be user and movie features with the column vectors Xi and Yj representing

the features of the user i and movie j. Assume that the observed ratings are scalar

product of the feature vectors corrupted by additive i.i.d. Gaussian noise such that

Nij = XT
i Yj + Zij, where Zij’s are i.i.d. Gaussian noise distributed as N (0, σ2

Z).

The user and movie features are also assumed to have i.i.d. zero-mean Gaussian

priors, namely Xij ∼ N (0, σ2) and Yij ∼ N (0, σ2). Under this model, the (negative)
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log-posterior naturally leads to the use of quadratic regularization in the factors.

minimize
1

2
‖PE(XY T −N)‖2

F + λ‖X‖2
F + λ‖Y ‖2

F . (3.19)

Again, gradient descent in the factors was used to perform the optimization. Also,

[84] introduced a logistic mapping between the low-rank matrix and the recorded

ratings. Recently, this line of work was pushed further by Salakhutdinov and Srebro

in [86] using a non-uniform quadratic regularization in the factors. Based on the ob-

servation that in real datasets the samples are often drawn according to non-uniform

distributions, they suggest weighting the nuclear norm by the frequency of rows and

columns. Then, the objective function is

minimize
1

2
‖PE(XY T −N)‖2

F +
m∑
i=1

λpi‖Xi‖2 +
n∑
j=1

λqj‖Yj‖2 ,

where pi is the number of samples in row i and qj is the number of samples in column

j. A version of stochastic gradient descent is used to optimize this objective function.

The relationship between the non-convex objective function (3.19) and convex

relaxation in (3.15) was further investigated in [102, 82, 81]. The basic relation is

provided by the identity

‖A‖∗ =
1

2
min

A=XY T

{
‖X‖2

F + ‖Y ‖2
F

}
, (3.20)

where ‖A‖∗ denotes the nuclear norm of the matrix A. In other words, adding a regu-

larization term that is quadratic in the factors (which is used in much of the literature

reviewed in this section) is equivalent to adding a nuclear norm regularization of A.

In view of the identity (3.20) it might be possible to use the results in Section 2.6 to

prove stronger guarantees on the nuclear norm minimization approach. Unfortunately

this implication is not immediate. Indeed in OptSpace we assume that the correct

rank r is known, while on the other hand we do not use a quadratic regularization

in the factors. In Section 3.6.1 we present a procedure that estimates the rank from

the data and is provably successful under the hypotheses of Theorem 2.6.2 assuming
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noiseless samples. Trying to establish such an implication, and clarifying the relation

between the two approaches is nevertheless a promising research direction.

In collaborative filtering applications, matrix completion was also studied from

a graphical models perspective in [85], which introduced an approach to prediction

based on Restricted Boltzmann Machines (RBM). Exact learning of the model pa-

rameters is intractable for such models. The authors studied the performance of

contrastive divergence, which uses an approximate gradient of the likelihood function

for local optimization. Based on empirical evidence, it was argued that RBM’s have

several advantages over spectral methods for collaborative filtering. More recently, [7]

used a graphical model to characterize the probability distribution underlying the col-

laborative filtering dataset. A message passing algorithm, dubbed IMP, is introduced

to infer the underlying distribution from the observed entries.

3.5 Numerical comparisons

In this section, we apply OptSpace to both synthetic and real data to compare its

performance to that of the other competing algorithms. First, we present numerical

comparisons using randomly generated matrices. Then, we present results on real

data from publicly available collaborative filtering datasets [3, 2, 1].

We implemented OptSpace in C and MATLAB, and the code is publicly avail-

able1. The comparisons were performed using a 3.4 GHz Desktop computer with 4 GB

RAM with the C implementation. For efficient singular value decomposition of sparse

matrices, we used a modification of SVDLIBC2, which is based on SVDPACKC.

3.5.1 Synthetic datasets

First, we consider the noiseless scenario and compare the rate of exact reconstructions.

Random matrices are generated as M = UV T . Here, U and V are n × r matrices

where each entry is i.i.d. with standard Gaussian distributionN (0, 1), unless specified

otherwise. Then, each entry is revealed independently with probability p = ε/n, so

1available at http://www.stanford.edu/∼raghuram/optspace
2available at http://tedlab.mit.edu/∼dr/SVDLIBC/
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Figure 3.2: Reconstruction rates of rank-4 matrices using OptSpace. The solid
curve is the fundamental limit proved in [98]. In the inset, the same data are plotted
vs. |E|/(n(log n)2)

that on average εn entries are revealed. Numerical results, and also the analysis, show

that there is no notable difference if we choose the revealed set of entries E uniformly

at random given |E| = nε.

Exact matrix completion

We first study the reconstruction rate, the fraction of instances for which the ma-

trix is reconstructed correctly. We declare a matrix to be reconstructed if ‖M −
M̂‖F/‖M‖F ≤ 10−4. Figure 3.2 shows the reconstruction rate of OptSpace as a

function of ε = |E|/n for fixed r = 4. As predicted by Theorem 2.6.2, the reconstruc-

tion rate is close to one when |E| ≥ Cµn log n. Note that the incoherence parameter

µ scales like log n in this example. Figure 3.3 illustrates how the reconstruction rate

of OptSpace compares with those of the competing algorithms: SVT3, FPCA4, and

ADMiRA described in Section 3.4 [17, 64, 62]. Different algorithms have different

thresholds, the value of ε where the reconstruction rate has a sharp transition. For

3available at http://svt.caltech.edu
4available at http://www.columbia.edu/∼sm2756/FPCA.htm
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Figure 3.3: Reconstruction rates of rank-10 matrices of dimension 1000× 1000. The
leftmost solid curve is the fundamental limit proved in [98].

r = 10 and n = 1000, the figure shows that OptSpace has a lower threshold com-

pared to the other competing algorithms, and this is consistent for various values of

n and r as illustrated in the table below. Furthermore, the threshold of OptSpace

is very close to the bound proved in [98], below which no algorithm can correctly

recover M .

In the following Tables 3.1 and 3.2, we further compare the resulting relative root

mean squared error ‖M − M̂‖F/‖M‖F of different algorithms. Table 3.1 presents

results for smaller values of ε and hence for hard problems, whereas Table 3.2 is for

larger values of ε = |E|/n which are relatively easy. Note that the values of ε used

in Table 3.1 all correspond to |E| ≤ 2.6(2nr − r2), which is slightly larger than the

degrees of freedom. We ran into Out of Memory problems for the FPCA algorithm

for n ≥ 20000 and hence the results are omitted. On the easy problems, all the

algorithms achieves similar performances, whereas on the hard problems, OptSpace

outperforms other algorithms on most of instances.

Matrix completion from noisy entries

In the noisy scenario, M is generated as above and samples are corrupted by added

noise so that Nij = Mij + Zij. Again, each entry is revealed independently with
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a probability ε/n. As a performance measure, we use the root mean squared error

defined as

RMSE =
1

n

(∑
i,j

(Mij − M̂ij)
2

)1/2

.

First, in the standard scenario, Zij’s are distributed as i.i.d. Gaussian random vari-

ables. In the following series of examples, we illustrate how the performances change

under different noise models. Since ADMiRA and OptSpace require a target rank,

we estimate the rank using the algorithm described in Section 3.6.1. For FPCA we

set µ =
√

2εσ, where σ2 is the variance of the noise. A convincing argument for this

choice of µ is given in [19].

Standard noise scenario

We refer to the example used in [19] as the standard noise scenario. In this example,

M = UV T where U and V are 500 × r matrices with each entry being sampled

independently from a standard Gaussian distribution N (0, 1). Further, the noise

Zij’s are i.i.d. standard Gaussian N (0, 1) unless specified otherwise. We also refer

to Section 3.2 for more details on the nuclear norm minimization and the oracle

estimator.

Figure 3.4 compares the average RMSE as a function of ε, and Figure 3.5 compares

the average RMSE as a function of the rank. After a few iterations, Optspace has a

smaller root mean square error than the nuclear norm minimization approach (FPCA)

for most instances, and in about 10 iterations it becomes indistinguishable from the

oracle estimation error in (3.8), which is
√

(2nr − r2)/|E|.
Figure 3.6 compares the average RMSE as a function of the noise power. The

results are presented in terms of the noise ratio defined as in [17].

NR ≡
( E[‖PE(Z)‖2

F ]

E[‖PE(M)‖2
F ]

)1/2

, (3.21)

The RMSE achieved using FPCA does not increase with the noise ratio in the large
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Figure 3.4: RMSE under additive Gaussian noise as a function of ε for fixed n = 500
and r = 4.
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Figure 3.6: RMSE under additive Gaussian noise as a function of the noise ratio NR
for fixed n = 500, ε = 40 and r = 4.

noise regime. The reason is not that the estimates are good, but rather the estimation

becomes effectively a zero matrix and the resulting RMSE is close to
√

E[‖M‖2
F/n

2],

which is 2, regardless of the noise power. Table 3.3 illustrate how the relative error

‖M − M̂‖F/‖M‖F changes with respect to the noise power for fixed n = 1000.

In the standard scenario, we made the following three assumptions on the noise

matrix Z: (i) Z is independent of M ; (ii) Zij’s are mutually independent; (iii) Zij’s

follow the Gaussian distribution. The matrix completion algorithms described in

Section 3.4 are designed to be especially effective under this standard scenario for

the following two reasons. First, the algorithms minimize the squared error, which

is well suited for the Gaussian noise. Second, the independence of Zij’s ensure that

the spectral norm of the noise matrix, which is the key parameter determining the

quality of the approximation in Theorem 2.6.2, is not large. In the following, we fix

n = 500 and r = 4, and study how the performance changes when we change the

noise model.
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Figure 3.7: RMSE under the multiplicative noise model.

Multiplicative Gaussian noise

In sensor network localization [112], where the entries of M correspond to the squared

pairwise distances between sensors, the observation noise is oftentimes modelled as

multiplicative Gaussian noise. In formulae, Zij = ξijMij, where ξij’s are i.i.d. Gaus-

sian random variables with zero mean. In this example, the variance of ξij’s is chosen

to be 1/r with r denoting the rank of M , so that the resulting noise ratio is NR = 1/2

for consistency with the standard scenario.

Figure 3.7 shows the RMSE with respect to ε under multiplicative Gaussian noise.

The RMSE of the trimming-plus-SVD for ε = 40 is larger than 1.5 and is omitted

in the figure. The bottommost line corresponds to the oracle performance under the

standard scenario, and is displayed here, and all of the following figures, to serve as

a reference for comparison. The error is larger compared to the standard scenario in

Figure 3.4. It is more difficult to separate the noise from the original matrix, since

the noise is now correlated with M .
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Figure 3.8: RMSE for fixed noise ratio NR = 1/2 (top) and for fixed ε = 40 (bottom)
with outliers as in (3.22).
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Outliers

In structure from motion applications [24], each entry ofM corresponds to the position

of a point of interest in the 2-dimensional images captured by cameras in different

angles and locations. However, due to failures in the feature extraction algorithm,

some of the observed positions are corrupted by large noise whereas most of the

observations are noise free. To account for such outliers, we use the following model.

Zij =


a with probability 1/200 ,

−a w.p. 1/200 ,

0 w.p. 99/100 .

(3.22)

The value of a is chosen according to the target noise ratio NR = a/20. The noise is

i.i.d. but the distribution is non-Gaussian.

Figure 3.8 shows the performance of the algorithms with respect to ε and the noise

ratio NR with outliers. The performance degrades for non-Gaussian noise when the

number of samples is small. This problem of separating sparse noise from low-rank

matrices, also known as robust principal component analysis, is an interesting research

topic and is investigated in a number of recent papers [23, 115, 18, 121].

Quantization noise

Quantization is ubiquitous in practical applications. To model regular quantization,

we choose a parameter a and quantize the matrix entries to the nearest value in

{. . ., −a/2, a/2, 3a/2, 5a/2, . . .}. The parameter a is chosen such that the resulting

noise ratio is 1/2. Quantization noise is deterministic and completely depends on

the matrix entries Mij, whereas in the multiplicative noise model the noise was still

random. Hence, the error is expected to be larger with quantization. Figure 3.9

shows the performance against ε under the quantization. Compared to Figure 3.7,

for the same value of NR = 1/2, quantization is much more detrimental than the

multiplicative noise as expected.
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Figure 3.9: RMSE with quantization.

3.5.2 Real datasets

In this section, we compare the error on collaborative filtering datasets: the Jester

joke dataset [1] and the Movielens dataset [2].

The Jester joke dataset contains 4.1× 106 ratings for 100 jokes from 73,421 users
5. Since the number of users is large compared to the number of jokes, we select

nu ∈ {100, 1000, 2000, 4000} users at random for comparison purposes. We follow the

examples used in [64]. We randomly choose two ratings for each user as a test set

T , and we compare the Normalized Mean Absolute Error (NMAE) in this test set.

The NMAE is commonly used in collaborative filtering as an performance metric,

and in this section we provide the estimation NMAE so that it is easy to compare

with results using other approaches. The Mean Absolute Error (MAE) is defined as

in [64, 45].

MAE =
1

|T |
∑

(u,i)∈T

|Mui − M̂ui| ,

5The dataset is available at http://eigentaste.berkeley.edu/dataset/
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where Mui is the original rating and M̂ui is the predicted rating for user u and item

i. The Normalized Mean Absolute Error (NMAE) is defined as

NMAE =
MAE

Mmax −Mmin

,

where Mmax and Mmin are upper and lower bounds for the ratings. Jester joke ratings

are in [−10, 10] so that Mmax −Mmin = 20.

In this section, we use an extension of OptSpace which we call Incremental

Optspace. Incremental Optspace iteratively performs OptSpace, using the pre-

vious estimation as a initial guess for the next iteration and incrementing the target

rank by one in each iteration. While this requires more computations, it gives a bet-

ter estimation when the original matrix to be reconstructed is ill-conditioned. The

description of the algorithm and more numerical simulation results are presented in

Section 3.6.2.

The numerical results for the Jester joke dataset are presented in the first four

rows of Table 3.4. In the table, rank indicates the rank used for estimation. To

get an idea of how good the predictions are, consider the case where each missing

entry is predicted with a random number drawn uniformly at random in [−10, 10]

and the actual rating is also a random number with same distribution. After a simple

computation, we can see that the resulting NMAE of the random prediction is 0.333.

If we estimate each missing entry with zero, the resulting NMAE is 0.25. As another

comparison, for the same dataset with nu = 18000, a nearest neighbor algorithm and

Eigentaste both yield NMAE of 0.187 [45].

The NMAE of Incremental Optspace is lower than these algorithms even for nu =

100 and tends to decrease with nu. Numerical simulation results on the Movielens

dataset are shown in the last row. The dataset contains 100, 000 ratings for 1, 682

movies from 943 users.6 We use 80, 000 randomly chosen ratings to estimate the

20, 000 ratings in the test set, which is called u1.base and u1.test, respectively, in the

movielens dataset.

Next, to get some insight on the structure of the real data, we compute the

6The dataset is available at http://www.grouplens.org/node/73
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Figure 3.10: The singular values of the complete sub matrix in the Jester joke dataset
in the decreasing order.

spectrum of a complete sub matrix where all the entries are known. With the Jester

joke dataset, we delete all users containing missing entries, and generate a complete

matrix M with 14, 116 users and 100 jokes. The empirical distribution of the singular

values of M is shown in Figure 3.10. The first two singular values are dominant,

but the distribution has a heavy tail. Computing
∑n

i=1(σi(M)/σ1(M)), which can be

thought of as a soft rank, gives 15.5. This heavy tail in the singular value distribution

is one of the difficulties in dealing with collaborative filtering datasets. The other

aspect is that the samples are not drawn uniformly at random as commonly assumed

in matrix completion. A typical user tends to watch and rate the movie she prefers.

Finally, we test the incoherence assumption for the Netflix dataset [3] in Figure

3.11. For the definition of the incoherence property we refer to Section 2.2. To check

if the first condition A0 holds with small µ for the Netflix movie ratings matrix, we

run OptSpace on the Netflix dataset and plot the cumulative sum of the sorted row

norms of the left and right factors defined as follows. Let the output of OptSpace be

M̂ = XSY T , where X ∈ Rm×r and Y ∈ Rn×r are orthonormal. The number of users

m is equal to 480, 189 and the number of movies n is 17, 770. For the target rank we
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use r = 5. Let xi = (m/r)‖X(i)‖2 and yi = (n/r)‖Y (i)‖2 denote the rescaled norm

of the ith rows of X and Y respectively. Define a permutation πl : [m]→ [m] which

sorts xi’s in a non-decreasing order such that xπl(1) ≤ xπl(2) ≤ . . . ≤ xπl(m). We use

the standard combinatorics notation [k] = {1, 2, . . . , k} for an integer k. Similarly,

we can define πr : [n]→ [n] for yi’s.

In Figure 3.11, we plot
∑k

i=1 xπl(i) and
∑k

i=1 yπr(i) against k. For comparison, we

also plot the corresponding results for a randomly generated matrix XG. Generate

U ∈ Rm×r by sampling its entries Uij independently and distributed as N (0, 1) and

let XG be the orthonormal basis spanning the column space of U . For a given matrix,

if A0 holds with a small µ close to one then the corresponding curve would be close to

a straight line. The curvature in the plots is indicative of the disparity among the row

weights of the factors. In this example, the randomly generated matrix is incoherent

with µ = 7.2, whereas the Netflix dataset is incoherent with µ = 25.8. We can say

that a randomly generated matrix is more incoherent than the Netflix dataset.

3.6 Extensions

There are two potential drawbacks in using OptSpace in practice. OptSpace re-

quires a priori knowledge of the target rank, and in practice given rank r it is sensitive

to the condition number, i.e., σ1(M)/σr(M). We provide algorithmic solutions, which

make OptSpace more robust for practical use.

3.6.1 Rank estimation

Although in many applications such as positioning [97] or structure-from-motion [24]

the target rank is known in advance, in other applications like collaborative filtering

[44, 100], we need a good estimate of the rank. We propose a very simple scheme to

estimate the target rank r from observation ME with provable performance guaran-

tees.

Let σi be the ith largest singular value of the trimmed matrix M̃E and define

ε ≡ |E|/
√
mn. ‘Trimming’ is explained in Section 2.3. Then, the following cost
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function is defined in terms of the singular values.

R(i) =
σi+1 + σ1

√
i/ε

σi
.

Based on the above definition, Rank Estimation consists of two steps:

Rank Estimation

Input: trimmed observation matrix M̃E

Output: estimated rank r̂

1: Compute singular values {σi} of M̃E;

2: Find the index i that minimizes R(i), and let r̂ be the minimizer.

The idea is that, if enough entries of M are revealed then there is a clear separation

between the first r singular values, which reveal the structure of the matrix M to be

reconstructed, and the spurious ones. This follows from Lemma 2.7.1 and is illustrated

in Figure 2.1. The following remark shows that this simple procedure is guaranteed

to reconstruct the correct rank r, with high probability, when |E| is large enough. In

particular, in the noiseless setting, we are guaranteed to recover the correct rank when

the hypotheses in Theorem 2.6.2 are satisfied. Hence, we combine this algorithm with

OptSpace to get the same guarantees without any prior knowledge of the rank r.

In practice, we do not need to compute all min{m,n} singular values of M̃E, since

we often have a bound on the maximum target rank we would like to use.

Remark 3.6.1. Assume M to be a rank-r m × n matrix and κ = O(1) for κ =

σ1(M)/σr(M), and E is uniformly random given its size |E|. Then there exists a

constant C(κ, α) such that, if |E| > C(κ, α)nr, then Rank Estimation correctly

estimates the rank r from M̃E, with high probability.

Proof. Let Σi be the ith largest singular value of the matrix M . From Section 2.7.2

we know that there exists a numerical constant C > 0 such that, with high probability∣∣∣∣σqε − Σq√
mn

∣∣∣∣ ≤ CMmax

(α
ε

)1/2

,

where it is understood that Σq = 0 for q > r, and Mmax = maxi,j{|Mij|}.
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Applying this result to the cost function R(i), we get the following bounds.

R(r) ≤
CMmax

√
αε+

(
Σ1√
mn

+ CMmax

√
α
ε

)√
rε

εΣr√
mn
− CMmax

√
αε

,

R(i) ≥
εΣi+1√
mn
− CMmax

√
αε

εΣi√
mn

+ CMmax

√
αε

, ∀ i < r ,

R(i) ≥

(
Σ1√
mn
− CMmax

√
α
ε

)√
rε

CMmax

√
αε

, ∀ i > r .

Let, κ = Σ1/Σr and ξ = (Mmax

√
α)/(Σ1

√
r). After some calculus, we get that for

ε > C r max
{
ξ2 , ξ4κ2 , κ4

}
,

we have the desired inequality: R(r) < R(i) for all i 6= r. This proves the remark. �

3.6.2 Incremental OptSpace

In this section, we introduce a modification to the OptSpace algorithm, which has

substantially better performance in the case when the matrix M to be reconstructed

is ill-conditioned. The condition number of a rank-r matrix M is defined as κ ≡
σ1(M)/σr(M), where σi(M) is the ith singular value. When M has high condition

number, then the simple trimming-plus-SVD step is unable to track the relatively

smaller singular values. As a result, the greedy gradient descent iterations get stuck

in a local minima which only captures the structure corresponding to the largest

singular value.

One heuristic to compensate for this lost signal is to iteratively infer the structure

corresponding to the largest singular values and subtract their effect from the obser-

vations. This allows for those weaker features to stand out. We start by first finding

the first singular value and the corresponding singular vectors, and incrementally

search for the next ones.
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Incremental OptSpace

Input: observation matrix ME, observed set E, ρmax

Output: estimation M̂

1: Trim ME, and let M̃E be the output;

2: Set M̂ (0) = 0;

3: For ρ = 1, . . . , ρmax do:

4: Compute the largest singular vectors (u, v) of M̃E − M̂ (ρ−1);

5: Set X
(ρ)
0 and Y

(ρ)
0 to be the orthonormal basis

spanning [X(ρ−1); v; ] and [Y (ρ−1); u; ];

6: Minimize F̃ (X, Y ) through Manifold Optimization

with initial condition (X
(ρ)
0 , Y

(ρ)
0 );

7: Set M̂ (ρ) = X(ρ)S(ρ)Y (ρ)T ;

8: End for

9: Return M̂ (ρ).

Figure 3.12 illustrates how the RMSE defined as (1/n)‖M − M̂‖F degrades when

the matrix M is ill-conditioned. We generate as M =
√

4/166U diag([1, 4, 7, 10])V T ,

where U and V have i.i.d. Gaussian N (0, 1) entries. The resulting matrix has

Σ1/Σ4 ' 10, and the normalization constant
√

4/166 is chosen such that E[‖M‖2
F ]

is the same as in other examples in Section 3.5. Incremental OptSpace achieves a

smaller error for most values of ε compared to other competing algorithms including

OptSpace. In Table 3.5, we also compare the relative error ‖M − M̂‖F/‖M‖F for

different values of the condition number κ in the noiseless scenario. Table 3.5 shows

that Incremental OptSpace improves significantly over OptSpace and achieves per-

formance comparable to those of the other algorithms.

3.7 Discussions and open questions

Let us consider the noiseless setting for the sake of simplicity, since the same argu-

ments hold in the noisy case as well. There are two important ingredients in proving

our main result in Theorem 2.6.2: (i) Simple trimming-plus-SVD step can produce a
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Figure 3.12: RMSE with ill-conditioned matrices and i.i.d. Gaussian noise.

good initial estimate; (ii) The objective function F (·) defined in (2.1) that we want to

minimize is well-behaved in a neighborhood close to the global minimizer M . Thus,

once we have a good initial estimate, greedy minimization converges to the correct

solution M .

The objective function F (·) is a non-convex function with many local minima.

Hence, a greedy minimization scheme gets stuck in a local minimum of F (·) and the

performance varies depending on where we start the greedy minimization. Therefore

analyzing such a non-convex optimization problem is a priori a difficult task. How-

ever, once we are guaranteed an initial estimate close to the global minimizer M ,

greedy minimization converges to the correct solution M , and we can prove strong

performance guarantees. This idea of combining a simple initial estimation step and

a following greedy optimization step could be applied to other problems with non-

convex objective functions beyond matrix completion. And the techniques used in our

work for analyzing such a two-step algorithm could also be applied to other problems

of interest.

In the following, we discuss open problems in matrix completion which could be

interesting future research directions.
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Characterizing computation-accuracy tradeoff

Finding a low-rank approximation of a large data matrix is a common computational

task in many important applications including spectral clustering [75, 41], manifold

learning [95, 105], and low-rank approximation of kernel matrices [114, 118]. It is

known that the SVD of a data matrix provides the best low-rank approximation. Let

the SVD of the data matrix be M =
∑

i σiuiv
T
i , where σi’s are the singular values and

ui’s and vi’s are the left and right singular vectors. The singular values are ordered

in a decreasing order, i.e., σ1 ≥ σ2 ≥ · · · > 0. Then, the low-rank approximation

based on SVD is L =
∑r

i=1 σiuiv
T
i , and L has the minimum approximation error∑

i,j(Mij − Lij)2 among all matrices of rank r.

Traditional schemes to compute the leading singular values and the singular vec-

tors involve applying the data matrix multiple times, which can be time consuming

when the data matrix is large and dense. In Section 3.3, we discussed the possibility

of using matrix completion schemes as efficient alternatives for finding low-rank ap-

proximations. Matrix completion schemes deal with a sparsified version of the data

matrix, thus reducing the number of operations significantly, at the cost of increased

approximation error. The trade-off between the number of samples |E| and the ap-

proximation error
∑

i,j(Mij − M̂ij)
2 achieved using OptSpace is characterized in

Theorem 2.6.2. However, we do not have a bound on the total number of computa-

tions necessary to produce an estimate achieving the performance guaranteed in the

theorem. Namely, we don’t have a bound on how many iterations in the gradient

descent step we need.

Let M̂ (t) be the low-rank estimation we get after t iterations of the gradient descent

step. If we can characterize the approximation error
∑

i,j(Mij−M̂ (t)
ij )2 in terms of the

sample size |E| and the number of iterations t, then we can customize OptSpace for

fast low-rank approximation. For instance, consider an example where we are given

a target accuracy and we want to produce an estimate within that target accuracy

with small number of computations. If we can characterize the computation-accuracy

tradeoff of OptSpace, we can use it to choose the number of samples to use and the

number of gradient descent iterations to perform.
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Figure 3.13: Histogram of number of ratings per movie (left) and per user (right) in
the Netflix prize dataset [3]. Average number of samples per movie is about 5, 575
and per user is about 206. Maximum number of samples per movie is 227, 715 and
per user is 17, 651.

General sampling model

The model we study assumes the set of sampled entries E to be uniformly random.

Under this model, we expect to see binomial distribution of the number of samples per

row/column. However, in practical applications like collaborative filtering, we observe

heavy-tailed distributions indicating that the sample set E is far from uniformly

random. This is apparent in the Netflix prize dataset [3] (Figure 3.13). Under the

uniform sampling model, the probability of seeing a movie with 227, 715 ratings is

close to zero. Recently, Salakhutdinov and Srebro in [86] introduced a generalization

of nuclear norm regularization to deal with collaborative filtering datasets with non-

uniform sampling. The idea is to use weighted nuclear norm regularization with

weights determined by the number of samples in each row/column. It is a practically

important challenge to extend OptSpace, perhaps using a similar idea as in [86],

when dealing with datasets under non-uniform sampling.

General low-dimensional model

The low-rank model is used in many applications to capture the important informa-

tion about data in matrix form. However, in practical applications like collaborative
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filtering, the data matrix might not be well approximated by a low-rank matrix. This

is illustrated in Figure 3.10 that shows the distribution of singular values of Jester

joke dataset [1].

Although a low-rank matrix might not be a good model for such datasets, the

data might still be determined by low-dimensional features. Let ui ∈ Rr be a low-

dimensional vector representing customer i and vj ∈ Rr be a low-dimensional vector

representing movie j. Then, there might be a function h : Rr × Rr → R that

explains the ratings, namely h(ui, vj) = Mij. It is an interesting problem to find such

a function h(·) for datasets of interest and develop schemes to estimate the feature

vectors from a small number of entries {Mij}(i,j)∈E.



Chapter 4

Positioning

This chapter treats the problem of positioning wireless devices from pairwise dis-

tance measurements. We first show that such a positioning problem can be viewed

as a matrix completion problem (Section 4.1). However, direct application of ma-

trix completion algorithms fails in common positioning settings. We first discuss

the challenges in applying matrix completion approaches to positioning problems.

Then, as a first step to overcome these challenges, we focus on understanding how

existing positioning algorithms work. To this end, the main result of this chapter

provides performance guarantees of two popular positioning algorithms. In Section

4.2, we analyze a centralized positioning algorithm known as MDS-MAP introduced

in [93]. In a more practical setting, we might not have a central infrastructure and

only local communication might be available. In section 4.3, therefore, we assume a

decentralized setting, and analyze a decentralized algorithm called Hop-TERRAIN

introduced in [87]. This chapter is based on joint work with Karbasi and Montanari

[78, 54].

4.1 Introduction

The problem of determining the physical locations of wireless devices has recently

gained much interest, mainly due to the increasing number of applications from wire-

less ad-hoc sensor networks to location based services for mobile devices. Localization

93
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plays an important role in many applications, when a large number of wireless devices,

which we call here nodes, are randomly and densely placed in a region. The geographic

information can be used in communication protocols for routing in wireless ad-hoc

networks [60]. There are abundant applications for location-based services such as

personal navigation [91], provided that real-time and low-cost indoor positioning is

possible using accessible mobile devices like smart phones.

Although Global Positioning System (GPS) has been widely used for position-

ing, it adds considerable cost to the system. Further, it does not work in indoor

environments. As an alternative, we want to use basic local information such as

connectivity (which nodes are within communication range of each other) or local

distances (pairwise distances between neighboring nodes).

Two common techniques for obtaining the local distance and/or connectivity infor-

mation are Received Signal Strength Indicator (RSSI) and Time Difference of Arrival

(TDoA). RSSI is a measurement of the ratio of the power present in a received radio

signal and a reference power. Signal power at the receiving end is inversely propor-

tional to the square of the distance between the receiver and the transmitter. Hence,

RSSI could potentially be used to estimate the distance and it is common to assume

the use of RSSI in distance measurements. However, experimental results indicate

that the accuracy of RSSI is limited [37]. TDoA technique uses the time difference

between the receipt of two different signals with different velocities, for instance ul-

trasound and radio frequency signals [79, 89]. The time difference is proportional

to the distance between the receiver and the transmitter, and given the velocity of

the signals the distance can be estimated from the time difference. These techniques

can be used, independently or together, for distance estimation. In an alternative

approach, Angle of Arrival (AoA) can also be used to infer the positions of sensors

[76]. Once a node has angle of arrival information to three other nodes with known

positions, we can perform triangulation to locate the wireless node. To measure the

angle of arrival, an antenna array is required at each wireless node.

In the following section, we first discuss centralized positioning algorithms which

use the connectivity information or the local distance measurements. Then, we discuss

positioning algorithms which can be used in the decentralized setting.
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4.1.1 Centralized positioning

In the centralized setting, we assume that there is a central processor with access

to all the distance measurements. A centralized algorithm is used to estimate the

positions of the nodes from the pairwise distance measurements. Note that we can

only determine the positions up to a rigid transformation (rotation and translation),

since pairwise distances are invariant under a rigid transformation. Further, due

to signal attenuation, we assume that only distance measurements between nodes

within some radio range R are available. The corresponding network is modeled as

a fixed radius random geometric graph. In some cases, when we have special nodes

with known positions in some global coordinate system, we can hope to uniquely

determine the node positions. These special nodes are called anchors, landmarks [76]

or seeds [83].

In Section 4.2, we are interested in the theoretical guarantees associated with the

performance of centralized positioning algorithms. Such analytical bounds on the

performance of localization algorithms can provide answers to practical questions:

for example, how large should the radio range be in order to get the error within a

threshold? With this motivation in mind, we provide a bound on the performance of

the popular MDS-MAP [93] algorithm when applied to centralized positioning using

only the connectivity information.

In the case when all pairwise distances are known, the positions can be exactly

determined, up to a rigid motion, using a classical method known as multidimensional

scaling (MDS) [16, 26]. We refer to Section 4.2.2 for further details. However, when

most pairwise distances are missing, the problem is much more challenging. One

approach is to first estimate the missing distance measurements and then apply MDS

to the estimated distance measurements [106, 107, 93, 94]. MDS-MAP [93] uses

the shortest paths between all pairs of nodes to approximate the missing distance

measurements. In Section 4.2, we describe the MDS-MAP algorithm in detail, and

provide a performance guarantee for this algorithm.

Various approaches have been proposed to solve the problem of positioning from

partial distance measurements with noise. One line of work deals with solving a

convex relaxation to find the node positions using semidefinite programming (SDP)
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[12, 112]. When the distances are measured exactly without any noise, then SDP

guarantees exact reconstruction of the node positions if the underlying graph is uni-

versally rigid [99]. However, when the graph is only globally rigid or when there is

a small noise in the measurements, there is no performance guarantee. Another line

of work deals with ‘stitching’ together local structures, including Locally Rigid Em-

bedding (LRE) [97], eigenvector synchronization of locally rigid subgraphs [27], and

As-rigid-As-Possible algorithm [119]. The performances of these practical algorithms

are measured through simulations and there is little work on the theoretical analysis

to support the results.

Dineas et al. used a matrix completion technique to reconstruct the distance

matrix and prove an upper bound on the resulting estimation error [32]. However,

the analysis is based on a number of strong assumptions. First, it is assumed that

even far away sensors have non-zero probability of detecting their distances. Second,

the algorithm explicitly requires the knowledge of detection probabilities between all

pairs. Third, it is assumed that the average degree of the network (i.e., the average

number of nodes detected by each node) grows linearly with the number of nodes

in the network. In the following section, we further discuss how positioning can be

viewed as a matrix completion problem and what the main challenges are.

4.1.2 Positioning as matrix completion

As will be explained in Section 4.2.2, if we have the complete and exact matrix

of squared distances D ∈ Rn×n, we can use Multidimensional Scaling (MDS) to

determine the exact positions of the nodes, up to a rigid motion. We define Di,j ≡
‖xi−xj‖2, where xi ∈ Rd is the d-dimensional position of node i ∈ [n]. It is, therefore,

enough to determine D in order to solve the positioning problem. Further, matrix D

has low rank. By definition,

D = a1Tn + 1na
T − 2XXT ,

where a ∈ Rn is a vector with ai = ‖xi‖2, 1n ∈ Rn is an all-ones vector, and X ∈ Rn×d

is the position matrix with i-th row equal to xi. D is a sum of two rank-1 matrices
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and a rank-d matrix. Hence, the rank of D is at most d + 2, which is much smaller

than n.

We can view positioning as a matrix completion problem, where we want to find

a low-rank matrix D from a small number of sampled entries corrupted by noise.

However, matrix completion algorithms cannot be directly applied to the problem

of positioning, because the assumptions made in the matrix completion setting are

not always satisfied. We made two main assumptions: (i) The low-rank matrix has

small incoherence parameter µ; (ii) The entries are sampled uniformly at random

given the sample size |E|. The following remark shows that the first assumption on

the incoherence of D is still satisfied in a common positioning setting. We refer to

Section 2.2 for the definition of incoherence.

Remark 4.1.1. Assume n nodes are positioned independently and uniformly at ran-

dom in a d-dimensional hypercube [−1, 1]d. Then the matrix D of squared distances

is incoherent with parameter µ = 4d, with high probability.

Note that a typical value of d is two or three, so µ is quite small compared to

n, and therefore assumptioin (i) is satisfied. However, assumption (ii), which is on

sampling, is violated. It is very common and more practical to assume that the

distances between close-by sensors are more likely to be measured. This introduces

bias in the samples, since we are sampling entries of D which have smaller values.

Hence, none of the analysis for matrix completion applies in the positioning setting.

In Section 4.2, we describe and analyze a simple positioning algorithm based on the

low-rank structure of D, and discuss how we can combine the idea of this algorithm

and OptSpace to apply matrix completion to solve positioning problems.

Proof of Remark 4.1.1. We start with the condition A0. Let D = X̃SX̃T , where X̃ ∈
Rn×(d+2) is the matrix whose i-th row is the column vector X̃i ≡ (1, xi,1, . . . , xi,d, ‖xi‖2)T
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and

S ≡



0 0 1

0 −2 Id 0

1 0 0


. (4.1)

With probability one, the columns of X̃ are linearly independent and therefore there

exists a matrix A ∈ R(d+2)×(d+2) such that X̃ = V AT with V TV = I(d+2). The SVD

of M then reads M = UΣUT with Σ = QTATSAQ and U = V Q for some orthogonal

matrix Q ∈ R(d+2)×(d+2). It is enough to show that

sup
1≤i≤n

‖Vi‖2 ≤ µ(d+ 2)

n
,

where Vi = A−1X̃i is the i-th row of V . Since ‖Vi‖2 ≤ σmin(A)−2‖X̃i‖2 and ‖X̃i‖2 =

1 + ‖xi‖2 + ‖xi‖4 ≤ d (d+ 2), it is sufficient to bound from below σmin(A)2. Since V

is orthonormal,

AAT = X̃T X̃ =
n∑
i=1

X̃iX̃
T
i .

It is easy to compute the expectation of this matrix over the distribution of node

positions {xi},

E{AAT} = n



1 0 d/3

0 (1/3)Id 0

d/3 0 (d/3)2 + 4 d/45


. (4.2)

Therefore λmin(E{AAT}) = n/3. Using the fact that λmin( · ) is a Lipschitz continuous

function of its argument, together with the Chernoff bound for large deviation of sums
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of i.i.d. random variables, we get that λmin(AAT ) ≤ n/4 with high probability. This

implies that sup1≤i≤n ‖Vi‖2 ≤ (4d(d+ 2))/n as claimed.

Next, consider the condition A1. We need to show that supi,j∈[n] |Dij| ≤ Σ1µ
√
d+ 2/n.

Since xi, xj ∈ [−1, 1]d, we have |Dij| = ‖xi−xj‖2 ≤ 4d. Further, the above argument

implies that Σ1 = ‖ATSA‖2 ≥ λmax(AAT )σmin(S) = λmax(AAT ).

Using (4.2), we get λmax(E{AAT}) ≥ n(1+d2/9). Again using the standard Cher-

noff bound for i.i.d. random variables, we get λmax(AAT ) ≥ n with high probability.

We get therefore Σ1 ≥ n with the same probability, and supi,j∈[n] |Dij|/Σ1 ≤ 4d/n,

which proves our claim. �

4.1.3 Decentralized positioning

One consequence of the ad-hoc nature of the underlying networks is the lack of a

central infrastructure. In the centralized setting, we assumed that a central processor

has access to all the pairwise distance measurements. However, centralized algorithms

typically have low energy efficiency and low scalability due to dependency on a central

processor and excessive communication overload. In Section 4.3, we analyze the per-

formance of a distributed positioning algorithm. We show that the Hop-TERRAIN

algorithm introduced in [87] achieves a bounded error when only local connectivity

information is given.

Table 4.1: Distributed localization algorithm classification [61]

Phase Robust positioning [87] Ad-hoc positioning [77] N -hop multilat. [90]
1. Distance DV-hop Euclidean Sum-dist
2. Position Lateration Lateration Min-max
3. Refinement Yes No Yes

Recently, a number of decentralized localization algorithms have been proposed

[87, 90, 77, 72, 83]. Langendoen and Reijers [61] identified a common three-phase

structure of three popular distributed positioning algorithms, namely robust posi-

tioning [87], ad-hoc positioning [77] and N-hop multilateration [90] algorithms. Table
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4.1 illustrates the structure of these algorithms. In the first phase, nodes share in-

formation to collectively determine the distances from each of the nodes to a number

of anchors. Anchors are special nodes with a priori knowledge of their own position

in some global coordinate system. In the second phase, nodes determine their posi-

tion based on the estimated distances provided by the first phase. In the last phase,

the initial estimated positions are iteratively refined. It is empirically demonstrated

that these simple three-phase distributed sensor localization algorithms are robust

and energy-efficient [61]. However, depending on which method is used in each phase

there are different tradeoffs between localization accuracy, computation complexity

and power requirements. In [72], a distributed algorithm based on the gradient desent

method was proposed, which is similar to ad-hoc positioning [77] but uses a different

method for estimating the average distance per hop.

Another distributed approach introduced in [52] is to pose the localization problem

as an inference problem on a graphical model and solve it using nonparametric belief

propagation. It is a naturally distributed procedure and produces both an estimate

of node positions and a representation of the location uncertainties. The estimated

uncertainty may subsequently be used to determine the reliability of each node’s

location estimate.

4.2 Centralized algorithm

In a centralized setting, we assume that a central processor has access to all the prox-

imity measurements available. Then we can apply a centralized algorithm to find the

positions of the nodes that best matches the proximity measurements. In this sec-

tion, we provide a performance bound for a popular centralized positioning algorithm

known as MDS-MAP [93], when only the connectivity information is available as in

the connectivity-based model described in the next section. Further, the algorithm

can be readily applied to the range-based model without any modification.
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R

Figure 4.1: An example of random nodes with radio range R. A node is connected
to its neighbors within distance R.

4.2.1 Model

We assume that the nodes are placed uniformly at random in a bounded convex

domain in Rd. To be definite, we consider the random geometric graph G(n, r) =

(V,E, P ), where V is a set of n nodes that are distributed uniformly at random in

a d-dimensional hypercube [0, 1]d. E ⊆ V × V is a set of undirected edges that

connect pairs of nodes that are within a fixed radio range R, and P : E → R+

is a non-negative real-valued weight of the edges. The weight Pi,j, which we call

the proximity measurement, corresponds to the measured distance between nodes i

and j possibly corrupted by noise and quantization. Although we assume the space

to be [0, 1]d hypercube for the sake of simplicity, our analysis easily generalizes to

any bounded convex set, in which case the nodes are distributed according to the

homogeneous Poisson process model with density ρ = n. This is characterized by the

probability that there are exactly k nodes appearing in any region with volume A :

P(kA = k) = (ρA)k

k!
e−ρA.

Let xi denote the position of node i in the d-dimensional space and R be the radius

of detection or the radio range. We assume that if two nodes i and j are within a
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given radio range R, then a proximity measurement Pi,j between those two nodes is

available. Figure 4.1 shows an example of the random nodes in a unit square with

radio range R. This corresponds to the disc model, a common random geometric

graph model, where

(i, j) ∈ E, if and only if di,j ≤ R ,

where di,j = ‖xi − xj‖. To each edge (i, j) ∈ E, we associate the proximity measure-

ment Pi,j between sensors i and j, which is a function of the distance di,j and random

noise. In an ideal case where our measurements are exact, we have Pi,j = di,j.

Localization algorithms are typically categorized into two categories depending on

the available proximity information. In the first one, approximate measurements of

the distances between neighboring sensors are available, perhaps with limited accu-

racy. This is referred to as range-based localization or range-aware model. Common

technologies to obtain the distance measurements include Time of arrival (ToA), Time

Difference of Arrival (TDoA), Angle of Arrival (AoA), and Received Signal Strength

Indicator (RSSI). Under the range-based model, it is assumed that the distance mea-

surements are available but may be corrupted by noise or have limited accuracy. In

formulae,

Pi,j =

{
[di,j + zi,j]+ if (i, j) ∈ E,
∗ otherwise,

where zi,j models the measurement noise, possibly a function of the distance di,j, and

[a]+ ≡ max{0, a}. Here a ∗ denotes that we do not have any proximity measurement

but we know that di,j > R. Common examples are the additive Gaussian noise

model, where the zi,j’s are i.i.d. Gaussian random variables, and the multiplicative

noise model, where Pi,j = [(1+Ni,j)di,j]+, for independent Gaussian random variables

Ni,j’s.

Depending on the applications in which the location information is going to be

used, the tolerance for error in the estimation may vary. Acknowledging the fact that

the cost of hardware required to measure the distance in the range-based model may

be inappropriate, we assume a simpler range-free localization or connectivity based

model. Throughout this chapter, we assume that only connectivity information is
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available at the nodes. Formally,

Pi,j =

{
R if (i, j) ∈ E,
∗ otherwise,

(4.3)

where a ∗ denotes that the proximity measurement is missing due to di,j > R. Hence,

a node can only detect which other nodes are within radio range R, and no other

information is available. This can be considered as an extreme case quantization,

where we only get one bit of information for each pair of nodes.

In the following, let D denote the n×n matrix of squared pairwise distances where

Dij = d2
i,j. We use X to denote the n× d matrix of node positions where the ith row

corresponds to xi. Given the graph G(n, r) = (V,E, P ), the goal of positioning is to

find a d-dimensional embedding of the nodes that best fits the measured proximity

between all the pairs in E. The notion of embedding, or configuration, will be made

clear in the following sections.

4.2.2 Multidimensional scaling

Multidimensional scaling (MDS) refers to a set of statistical techniques used in find-

ing the configuration of objects in a low dimensional space such that the measured

pairwise distances are preserved [26, 16]. It is often used for visual representation

of the proximities between a set of items. For example, given a matrix of perceived

similarities or dissimilarities between n items, MDS geometrically places each of those

items in a low dimensional space such that the items that are similar are placed close

to each other. Formally, MDS finds a lower dimensional embedding x̂i’s that minimize

the stress defined as

stress ≡

√√√√∑i 6=j
(
f(di,j)− d̂i,j

)2∑
i 6=j d̂

2
i,j

,

where di,j is the input similarity or dissimilarity, d̂i,j = ‖x̂i − x̂j‖ is the Euclidean

distance in the lower dimensional embedding, and f(·) is some function on the input
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data. When MDS perfectly embeds the input data, f(di,j) = d̂i,j and the stress is

zero.

In this chapter we use what is called the classical metric MDS (We refer to [26, 16]

for the definition of other types of MDS algorithms, for instance nonmetric MDS,

replicated MDS, and weighted MDS). In classical metric MDS, f(·) is the identity

function and the input dissimilarities correspond to the Euclidean distances such

that di,j = ‖xi − xj‖ for some lower dimensional embedding {xi}. Further, when all

the dissimilarities (or pairwise distances) are measured without error, the following

spectral method correctly recovers the lower dimensional embedding up to a rigid

motion.

Spectral method for classical metric MDS

Input: dimension d, input matrix A

Output: estimated positions MDSd(A)

1: Compute B = (−1/2)LAL, where L = In − (1/n)1n1
T
n ;

2: Compute the the singular value decomposition of B, B = UΣUT ;

3: Compute the best rank-d approximation UdΣdU
T
d by taking

the d largest singular values and corresponding singular vectors;

4: Return MDSd(A) ≡ UdΣ
1/2
d .

This algorithm has been commonly used in positioning applications [32, 93] and

in the future whenever we say MDS we refer to the above algorithm. Let L be the

n×n symmetric matrix L = In−(1/n)1n1
T
n , where 1n ∈ Rn is the all ones vector and

In is the n × n identity matrix. L projects n-dimensional vectors onto the (n − 1)-

dimensional subspace orthogonal to 1n. Let MDSd(D) denote the n × d matrix

returned by MDS when applied to the matrix D of exact squared distances. Let

(−1/2)LDL = UΣUT be the singular value decomposition (SVD) of the symmetric

matrix (−1/2)LDL. It is proved below that this is a positive semidefinite matrix.

Then, we can define

MDSd(D) ≡ UdΣ
1/2
d ,
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where Ud denotes the n×d left singular matrix corresponding to the d largest singular

values and Σd denotes the d × d diagonal matrix with d largest singular values in

the diagonal. Note that since the columns of (−1/2)LDL are orthogonal to 1n by

construction, it follow that L ·MDSd(D) = MDSd(D).

It can be easily shown that when MDS is applied to the matrix D of squared

distances without noise, the configuration of sensors are exactly recovered [26, 32].

This follows from rewriting the distance matrix as D = 1aT + a1T − 2XXT , which

implies that

−1

2
LDL = LXXTL , (4.4)

where ai = ‖xi‖2 and i-th row of X ∈ Rn×d is the position of the node i. Since

LXXTL has rank at most d, MDSd(D) = LXQ for some orthogonal matrix Q ∈ Rd×d

satisfying QTQ = QQT = Id. Note that we only get the configuration and not

the absolute positions, in the sense that MDSd(D) is one version of infinitely many

solutions that matches the distance measurements D.

Intuitively, it is clear that the pairwise distances are invariant to a rigid trans-

formation (a combination of a rotation and a translation) of the matrix X of node

positions. There are, therefore, multiple ways to position the nodes which result in

the same pairwise distances. For future use, we introduce a formal definition of rigid

transformation and related terms.

Denote by O(d) the orthogonal group of d × d matrices. A set of node positions

Y ∈ Rn×d is a rigid transformation of X ∈ Rn×d, if there exists a d-dimensional shift

vector s ∈ Rd and an orthogonal matrix Q ∈ O(d) such that

Y = XQ+ 1ns
T .

Y should be interpreted as a result of first rotating the node positions by Q and then

shifting all the node positions by s. Similarly, when we say two position matrices X

and Y are equal up to a rigid transformation, we mean that there exists a rotation Q

and a shift s such that Y = XQ+1ns
T . Also, we say a function f(·) is invariant under

rigid transformations if for all X and Y that are equal up to a rigid transformation
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we have f(X) = f(Y ). Under these definitions, it is clear that D is invariant under

rigid transformations.

In many applications of interest, for instance geographic routing, it is enough to

find the node positions up to a rigid motion. The task of finding a relative map is to

find one configuration of sensors that have the same pairwise distances as the original

configuration. The task of finding an absolute map is to determine the absolute

geographic coordinates of all sensors. This typically requires special nodes, called

anchors, with known positions in a given coordinate system. In this section, we are

interested in finding a configuration that best fits the proximity measurements and

providing an analytical bound on the resulting error. The problem of finding an

absolute map will be discussed in Section 4.3.

4.2.3 Algorithm

While MDS works perfectly when D is available, in practice not all proximity mea-

surements are available because of the limited radio range R and the measurements

are further corrupted by noise. In this section, we describe the MDS-MAP algo-

rithm introduced in [93], where we apply the shortest paths algorithm on the graph

G = (V,E, P ) to get an estimate of the unknown proximity measurements. Note that

the idea of combining shortest paths with multidimensional scaling has also been used

extensively in the context of low-dimensional embedding in [106, 107].

Based on MDS, MDS-MAP consists of two steps :

MDS-MAP [93]

Input: dimension d, graph G = (V,E, P )

Output: estimation X̂

1: Compute the shortest paths, and let D̂ be the matrix of

squared distances along the shortest paths;

2: Apply MDS to D̂, and let X̂ be the output.

The original MDS-MAP algorithm introduced in [93] has an additional post-processing
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step to fit the given configuration to an absolute map using a small number (typi-

cally d + 1) of anchors. However, the focus of this paper is to give a bound on the

error between the relative map found by the algorithm and the correct configuration.

Hence, the last step, which does not change the configuration, is omitted here.

Shortest paths. The shortest path between nodes i and j in a graph G =

(V,E, P ) is defined as a path between two nodes such that the sum of the proximity

measures of its constituent edges is minimized. Let d̂i,j be the computed shortest

path between nodes i and j. Since we assume that only the connectivity information

is available as in (4.3), the shortest path is equivalent to the minimum number of hops

scaled by R. Then, we define D̂ ∈ Rn×n as the squared distance along the shortest

paths.

D̂ij =

{
0 if i = j ,

d̂2
i,j otherwise .

Note that D̂ is well defined only if the graph G is connected. If G is not connected,

there are multiple configurations resulting in the same observed proximity measures

and global localization is not possible. In the unit square, assuming sensor positions

are drawn uniformly at random as defined in the previous section, the graph is con-

nected, with high probability if πR2 > (log n + cn)/n for cn → ∞ [48]. A similar

condition can be derived for generic d-dimensions as CdR
d > (log n + cn)/n, where

Cd ≤ π is a constant that depends on d. Hence, in the following, we are especially

interested in the regime where R = (α log n/n)1/d for some positive constant α.

As will be shown in Lemma 4.2.3, the key observation in this shortest paths step is

that the estimation d̂i,j is guaranteed to be arbitrarily close to the correct distance di,j

for an appropriate radio rangeR and a large enough n. Moreover, the all-pairs shortest

paths problem has an efficient algorithm whose complexity is O(n2 log n+n|E|) [53].

For R = (α log n/n)1/d with constant α, the graph is sparse with |E| = O(n log n),

whence the complexity is O(n2 log n).

Multidimensional scaling. In step 2, we apply the MDS algorithm to D̂ to get

a good estimate of X. As explained in Section 4.2.2, we compute X̂ = MDSd(D̂).
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The idea is that if the shortest paths algorithm gives a good estimate, then the

resulting error between X and X̂ is small. The main step in MDS is singular value

decomposition of a dense matrix D̂, which has a complexity of O(n3).

4.2.4 Main result

The main result of this section establishes that MDS-MAP achieves an arbitrarily

small error with a radio range R = (α log n/n)1/d with a large enough constant α,

when we have only the connectivity information under the range-free model.

Let X̂ ∈ Rn×d denote an estimation of X. To compare X̂ and X, we first need to

introduce a distance metric which is invariant under a rigid transformation. Define

L ≡ In − (1/n)1n1
T
n as in the MDS algorithm. L is a projection operator which

eliminates the contribution of the translation, in the sense that LX = L(X+1sT ) for

all s ∈ Rd. Note that L has the following nice properties : (i) LXXTL is invariant

under rigid transformation; (ii) LXXTL = LX̂X̂TL implies that X and X̂ are equal

up to a rigid transformation. This naturally leads to the following distance metric:

dpos(X, X̂) =
1

n

∥∥LXXTL− LX̂X̂TL
∥∥
F
, (4.5)

where ‖ · ‖F denotes the Frobenius norm. Notice that the factor (1/n) corresponds

to the usual normalization by the number of entries in the summation. Indeed this

distance is invariant to rigid transformations of X and X̂. Furthermore, dpos(X, X̂) =

0 implies that X and X̂ are equal up to a rigid transformation. With this metric, our

main result establishes an upper bound on the resulting error. Define

R0 ≡
8 d2

√
10

(
log n

n

)1/d

. (4.6)

Theorem 4.2.1. Assume n nodes are distributed uniformly at random in the [0, 1]d

hypercube, for a bounded dimension d = O(1). For a given radio range R, we are given

the connectivity information of the nodes according to the range-free model. Then,

with high probability, the distance between the estimate X̂ produced by MDS-MAP
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and the correct position matrix X is bounded by

dpos(X, X̂) ≤ R0

R
+O(R) ,

for R > R0, where dpos(·) is defined in (4.5) and R0 in (4.6).

A proof is provided in Section 4.2.5. As described in the previous section, we

are interested in the regime where R = (α log n/n)1/d for some constant α. Given

any small positive constant δ, this implies that MDS-MAP is guaranteed to produce

estimated positions that satisfy dpos(X, X̂) ≤ δ with a large enough constant α and

a large enough n.

Using the above theorem, we can further show that there is a linear transformation

S ∈ Rd×d, such that when applied to the estimations, we get a similar bound in the

Frobenius norm of the error in the positions. The proof of this corollary is presented

in Section 4.2.5.

Corollary 4.2.2. Under the hypotheses of Theorem 4.2.1 , with high probability,

min
S∈Rd×d

1√
n
‖LX − LX̂S‖F ≤

√
6
R0

R
+O(R) .

Now that we have a bound on the estimation error using MDS-MAP algorithm,

we can apply the two-step idea of OptSpace to positioning. Namely, in the first

step, we apply MDS-MAP to get an initial estimate of the sensor positions X̂. Then,

we can apply greedy algorithm to minimize the residual errors. Figure 4.2 compares

the average error of this OptSpace inspired algorithm with that of MDS-MAP.

In this example, we revealed the exact distances as in the range-based model. For

OptSpace, we saw that we can prove strong performance guarantees, provided that

we get an arbitrarily close initial estimate using a simple spectral method. The same

idea applies here in the positioning setting, since we proved that we get an arbitrarily

close initial estimate using a simple MDS-MAP algorithm. However, analyzing the

greedy minimization in the positioning setting is more challenging, and it is an inter-

esting research direction to analyze the performance of this modified OptSpace for

positioning.
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Figure 4.2: Average error with MDS-MAP and the OptSpace inspired positioning
algorithm under the range-based model without noise.

4.2.5 Proof

Proof of Theorem 4.2.1

We start by bounding the distance dpos(X, X̂), as defined in (4.5), in terms of D and

D̂. Since L(XXT − X̂X̂T )L has rank at most 2d, it follows that

‖L(XXT − X̂X̂T )L‖F ≤
√

2d‖L(XXT − X̂X̂T )L‖2 ,

where we used the fact that, for any rank 2d matrix A, we have ‖A‖F ≤
√

2d‖A‖2.

It is enough to bound the operator norm of L(XXT − X̂X̂T )L. To this end we

use

∥∥− 1

2
LD̂L− X̂X̂T

∥∥
2
≤
∥∥− 1

2
LD̂L− A

∥∥
2
, (4.7)

for any rank-d matrix A. From the definition of X̂ = MDSd(D̂) in Section 4.2.2,

we know that X̂X̂T is the best rank-d approximation to −(1/2)LD̂L. Hence, X̂X̂T
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minimizes ‖ − (1/2)LD̂L− A‖2 for any rank-d matrix A. It follows that

‖L(XXT − X̂X̂T )L‖2

(a)

≤
∥∥∥L(XXT +

1

2
D̂)L

∥∥∥
2

+
∥∥∥− 1

2
LD̂L− X̂X̂T

∥∥∥
2

(b)

≤ 1

2
‖L(−D + D̂)L‖2 +

1

2
‖L(−D̂ +D)L‖2

(c)

≤ ‖D̂ −D‖2 , (4.8)

where (a) follows from the triangular inequality and the fact that X̂ = LX̂ as shown

in Section 4.2.2. In (b) we used (4.4) and (4.7). Since the rank of −(1/2)LDL is d,

the second term in (b) follows by setting A = −(1/2)LDL. The inequality (c) follows

trivially from the observation that ‖L‖2 = 1.

Now it is sufficient to bound ‖D̂−D‖2, using the following key result on the short-

est paths. The main idea is that, for nodes with uniformly random positions, shortest

paths provide arbitrarily close estimates of the correct distances for an appropriate

radio range R. Define

R̃(β) ≡ 8
√
d

(
(1 + β) log n

n

) 1
d

. (4.9)

For simplicity we denote R̃(0) by R̃0.

Lemma 4.2.3 (Bound on the length of the shortest path). Under the hypotheses

of Theorem 4.2.1, w.h.p., the shortest paths between all pairs of nodes in the graph

G(V,E, P ) are uniformly bounded:

d̂2
i,j ≤

(
1 +

R̃0

R

)
d2
i,j +O(R) ,

for R > R0, where R̃0 is defined as in (4.9) and R0 as in (4.6).

The proof of this lemma is given later in this section. Define an error matrix

Z = D̂−D. Then by Lemma 4.2.3, Z is element-wise bounded by 0 ≤ Z ≤ (R̃0/R)D+

O(R). Let u and v be the left and right singular vectors of Z respectively. Then by
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Perron-Frobenius theorem, the entries of u and v are non-negative. It follow that

‖D̂ −D‖2 = uTZv

≤ R̃0

R
uTDv +O(Rn)

≤ R̃0

R
‖D‖2 +O(Rn) . (4.10)

The first inequality follows from the element-wise bound on Z and the non-negativity

of u and v. It is simple to show that ‖D‖2 = Θ(n). Typically, we are interested in

the region where R = o(1), which implies that the first term in (4.10) dominates the

error.

Now we are left with the task of bounding ‖D‖2. Using the element-wise bound

on D, 0 ≤ Di,j ≤ d, we can prove a slightly loose bound : ‖D‖2 ≤ dn . We can also

prove a simple lower bound for ‖D‖2 ≥ dn/6, with high probability. This follows

from ‖D‖2 ≥ (1/n)1TD1 and the fact that right hand side concentrates around

dn/6. Hence, the upper and lower bounds only differ in the constant. We can use

concentration of measure inequalities to show a slightly tighter upper bound with a

smaller constant in the following lemma which is proved in [78].

Lemma 4.2.4. With high probability,

‖D‖2 ≤
d√
20
n+ o(n) .

Applying Lemma 4.2.4 to (4.10) and substituting ‖D̂ −D‖2 in (4.8), we get the

desired bound :

dpos(X, X̂) ≤ d3/2 R̃0√
10R

+O(R) ,

and this finishes the proof of Theorem 4.2.1.

�
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Proof of the bound on the length of the shortest path

Proof. (Proof of Lemma 4.2.3) We prove a slightly more general version of Lemma

4.2.3. We will show that under the hypotheses of Theorem 4.2.1, for any β ≥ 0 and

all sensors i 6= j, there exists a constant C such that, with probability larger than

1− Cn−β

(1+β) logn
, the shortest paths between all the pairs of nodes are uniformly bounded

by

d̂2
i,j ≤

(
1 +

R̃(β)

R

)
d2
i,j +O(R) , (4.11)

for R > R0, where R̃(β) is defined as in (4.9) and R0 as in (4.6). Especially, Lemma

4.2.3 follows if we set β = 0.

We start by applying the bin-covering technique to the random geometric points

in [0, 1]d in a similar way as in [71]. We cover the space [0, 1]d with a set of non-

overlapping hypercubes whose edge lengths are δ. Thus there are total d1/δed bins,

each of volume δd. In formula, bin (i1, . . . , id) is the hypercube [(i1− 1)δ, i1δ)× · · · ×
[(id−1)δ, idδ), for ik ∈ {1, . . . , d1/δe} and k ∈ {1, . . . , d}. When n nodes are deployed

in [0, 1]d uniformly at random, we say a bin is empty if there is no node inside the

bin. We want to ensure that, with high probability, there are no empty bins.

For a given δ, define a parameter

β ≡ (δd n/ log n)− 1 .

Since a bin is empty with probability (1 − δd)n, we apply union bound over all the

d1/δed bins to get,

P(no bins are empty) ≥ 1−
⌈1

δ

⌉d
(1− δd)n

≥ 1− C n

(1 + β) log n

(
1− (1 + β) log n

n

)n
(4.12)

≥ 1− C n−β

(1 + β) log n
, (4.13)

where in (4.12) we used the fact that there exists a constant C such that d1/δed ≤
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C/δd, and in (4.13) we used (1− 1/n)n ≤ e−1, which is true for any positive n.

Assuming that no bins are empty with high probability, we first show that the

length of the shortest path is bounded by a function F (di,j) that only depends on the

distance between the two nodes. Let d̂i,j denote the shortest path between nodes i

and j and di,j denote the Euclidean distance. Define a function F : R+ → R+ as

F (y) =

{
R if y ≤ R ,

(k + 1)R if y ∈ Lk for k ∈ {1, 2, . . .} ,

where Lk denotes the interval (R + (k − 1)(R− 2
√
dδ)δ, R + k(R− 2

√
dδ)].

We will show, by induction, that for all pairs (i, j),

d̂i,j ≤ F (di,j) . (4.14)

First, in the case when di,j ≤ R, by definition of range-free model, nodes i and j are

connected by an edge in the graph G, whence d̂i,j = R.

Next, assume that the bound in (4.14) is true for all pairs (l,m) with dl,m ≤
R+ (k−1)(r−2

√
d)δ. We consider two nodes i and j at distance di,j ∈ Lk. Consider

a line segment li,j in a d-dimensional space with one end at xi and the other at xj,

where xi and xj denote the positions of nodes i and j respectively. Let p be the point

in the line li,j which is at distance r −
√
dδ from xi. Then, we focus on the bin that

contains p. By the assumption that no bin is empty, we know that we can always find

at least one node in the bin. Let k denote any one of those nodes in the bin. Then

we use following inequality which is true for all nodes (i, k, j).

d̂i,j ≤ d̂i,k + d̂k,j .

Each of these two terms can be bounded using the triangular inequality. To bound

the first term, note that two nodes in the same bin are at most distance
√
dδ apart.

Since p and xk are in the same bin and p is at distance R −
√
dδ from node xi

by construction, we know that di,k ≤ ‖xi − p‖ + ‖p − xk‖ ≤ R, whence d̂i,k = R.

Analogously for the second term, dk,j ≤ ‖xj−p‖+‖p−xk‖ ≤ R+(k−1)(R−2
√
d)δ,
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Figure 4.3: Comparison of upper and lower bounds of shortest paths {d̂i,j} with
respect to the correct distance {di,j} computed for n = 6000 sensors in 2-dimensional
square [0, 1]2 under connectivity based model.

which implies that d̂k,j ≤ F (dk,j) = kR. Hence, we proved that if (4.14) is true for

pairs (i, j) such that di,j ≤ R+ (k−1)(R−2
√
d)δ, then d̂i,j ≤ (k+ 1)R for pairs (i, j)

such that di,j ∈ Lk. By induction, this proves that the bound in (4.14) is true for all

pairs (i, j), provided that the graph is connected.

Let µ = (R/2
√
d)
(
n/((1 + β) log n)

)1/d

. Then, the function F (y) can be easily

upper bounded by an affine function Fa(y) = (1 + 1/(µ − 1))y + R. Hence we have

the following bound on the length of the shortest path between two nodes i and j.

d̂i,j ≤

1 +
1

R
2
√
d

(
n

(1+β) logn

)1/d

− 1

 di,j +R . (4.15)

Figure 4.3 illustrates the comparison of the upper bounds F (di,j) and Fa(di,j), and

the trivial lower bound d̂i,j ≥ di,j in a simulation with parameters d = 2, n = 6000

and R =
√

64 log n/n. The simulation data shows the distribution of shortest paths

between all pairs of nodes with respect to the actual pairwise distances, which confirms

that shortest paths lie between the analytical upper and lower bounds. While the

gap between the upper and lower bound is seemingly large, in the regime where
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R = α
√

log n/n with a constant α, the vertical gap R vanishes as n goes to infinity

and the slope of the affine upper bound can be made arbitrarily small by increasing

the radio range R or equivalently taking a large enough α. The bound on the squared

shortest paths d̂2
i,j can be derived from the bound on the shortest paths in (4.15) after

some calculus.

d̂2
i,j ≤

{ µ

µ− 1
di,j +R

}2

(4.16)

=
µ2

(µ− 1)2
d2
i,j +R2 + 2

µ

µ− 1
di,j R (4.17)

=
(

1 +
2µ− 1

(µ− 1)2

)
d2
i,j +O(R) (4.18)

≤
(

1 +
4

µ

)
d2
i,j +O(R) . (4.19)

where in (4.18) we used the fact that (µ/(µ− 1))di,j = O(1), which follows from

the assumptions (R/4
√
d)d > (1 + β) log n/n and d = O(1). In (4.19), we used the

inequality (2µ− 1)/(µ− 1)2 ≤ 4/µ, which is true for µ ≥ 2 +
√

3. Substituting µ in

the formula, this finishes the proof of the desired bound in (4.11). �

Proof of Corollary 4.2.2

Proof. Let the SVD of LX be LX = UΣV T , where UTU = Id, V V
T = V TV = Id

and Id denotes the d×d identity matrix. Let 〈X, Y 〉 = Tr(XTY ) denote the standard

scalar product. Then, for S = X̂TLUΣ−1V T ,

‖LX − LX̂S‖F = sup
B∈Rn×d,‖B‖F≤1

〈B , LX − LX̂S〉

= sup
B∈Rn×d,‖B‖F≤1

〈B , (LXV ΣUT − LX̂X̂TL)UΣ−1V T 〉

= sup
B∈Rn×d,‖B‖F≤1

〈BV Σ−1UT , LXXTL− LX̂X̂TL〉

≤ sup
B∈Rn×d,‖B‖F≤1

‖BV Σ−1UT‖F‖LXXTL− LX̂X̂TL‖F .
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On the other hand, ‖BV Σ−1UT‖2
F = Tr(BV Σ−2V TB) ≤ Σ−2

min‖B‖2
F , where Σmin is

the smallest singular value of LX.

To show that Σmin ≥
√
n/6, we use concentration of measure on the singular

values of LXXTL for uniformly placed nodes. Note that E[LXXTL] = (n/12)Id,

and singular values are Lipschitz functions of the entries. Using concentration of

measure result for Lipschitz functions on bounded independent random variables, it

follows that with high probability the smallest singular value of LX is larger than√
n/6. This finishes the proof of the corollary. �

4.3 Decentralized algorithm

In a decentralized approach to positioning, we assume that only local information

and local communication is available. Each node is aware of only who its neighbors

are within its radio range. Further, each node is allowed to communicate only with

its neighbors. Then, each node shares messages with its neighbors to estimate its

position. In this section, we provide a performance bound for a popular decentralized

positioning algorithm known as Hop-TERRAIN [87].

4.3.1 Model

The model we assume in this decentralized setting is identical to the centralized

setting, except for the addition of anchor nodes. As before, we assume that we have

no fine control over the placement of the nodes which we call here the unknown

nodes (e.g., the nodes are dropped from an airplane). Formally, n unknown nodes are

distributed uniformly at random in the d-dimensional hypercube [0, 1]d. Additionally,

we assume that there are m special nodes, which we call anchors, which are equipped

with the capability to find their own positions in some global coordinate (e.g., the

anchors are equipped with a global positioning device). The anchors are assumed to

be distributed uniformly at random in [0, 1]d as well. If we have some control over

the positions of the anchors, we show that we get similar error bound with smaller

number of anchors (m = d+ 1) compared to when the anchors are randomly placed.
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R

Figure 4.4: Example of a random geometric graph with radio range R. Anchors are
denoted by solid circles (red). A node is connected to all other nodes that are within
distance R.

Let Va = {1, . . . ,m} denote the set of m vertices corresponding to the anchors

and Vu = {m + 1, . . . ,m + n} the set of n vertices corresponding to the unknown

nodes. We consider the random geometric graph model G(m + n, r) = (V,E, P )

where V = Vu ∪ Va, E ⊆ V × V is a set of undirected edges that connect pairs of

nodes which are close to each other, and P : E → R+ is a non-negative real-valued

function. The weight function P corresponds to the proximity measurements. Let

xa ∈ Rd denote the position of anchor a for a ∈ {1, · · · ,m} and xi ∈ Rd denote the

position of unknown node i for i ∈ {m + 1, · · · ,m + n}. We assume that only the

anchors have a priori information about their own positions. Again, we assume the

disk model where nodes i and j are connected if they are within a radio range R.

More formally,

(i, j) ∈ E, if and only if di,j ≤ R .

Figure 4.4 shows an example of the random nodes and anchors with radio range R.

We assume the range-free model where we only have the connectivity information.

The proximity measurements tell us which nodes are within the radio range R, but
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we have no information on how close they are. Formally,

Pi,j =

{
R if (i, j) ∈ E,
∗ otherwise,

where a ∗ denotes that di,j > R. We refer to Section 4.2.1 for the definitions and

comparison of the range-free model and the range-based model.

4.3.2 Algorithm

Based on the robust positioning algorithm introduced in [87], the decentralized sensor

localization algorithm we consider in this section consists of two steps :

Hop-TERRAIN [87]

1: Each unknown node i computes the shortest paths

{d̂i,a : a ∈ Va} between itself and the anchors;

2: Each unknown node i derives an estimated position x̂i using multilateration.

According to the three phase classification presented in Table 4.1, this is closely

related to the first two phases of the robust positioning algorithm. The robust posi-

tioning algorithm uses a slightly different method for computing the shortest paths,

which is compared in detail later in this section. Throughout this section, we refer to

the above algorithm as Hop-TERRAIN, which is the first two steps of the robust

positioning algorithm in [87].

Decentralized shortest paths. The goal of the first step is for each of the

unknown nodes to estimate the distances between itself and the anchors. These

approximate distances will be used in the next multilateration step to derive estimated

positions. The shortest path between an unknown node i and an anchor a in the graph

G provides an estimate for the Euclidean distance di,a = ‖xi−xa‖, and for a carefully

chosen radio range R this shortest path estimation is close to the actual distance as

shown in Lemma 4.2.3.
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Formally, the shortest path between an unknown node i and an anchor a in the

graph G = (V,E, P ) is defined as a path between two nodes such that the sum of

the proximity measures of its constituent edges is minimized. We denote by d̂i,a the

computed shortest path and this provides the initial estimate for the distance between

the node i and the anchor a. When only the connectivity information is available and

the corresponding graph G = (V,E, P ) is defined as in the range-free model, the

shortest path d̂i,a is equivalent to the minimum number of hops between a node i and

an anchor a multiplied by the radio range R.

In order to find the minimum number of hops from an unknown node i ∈ Vu to an

anchor a ∈ Va in a distributed way, we use a method similar to DV-hop[77]. Each

unknown node maintains a table {xa, ha} which is initially empty, where xa ∈ Rd

refers to the position of the anchor a and ha to the number of hops from the unknown

node to the anchor a. First, each of the anchors initiate a broadcast containing its

known location and a hop count of 1. All of the one-hop neighbors surrounding the

anchor, on receiving this broadcast, record the anchor’s position and a hop count

of 1, and then broadcast the anchor’s known position and a hop count of 2. From

then on, whenever a node receives a broadcast, it does one of the two things. If

the broadcast refers to an anchor that is already in the record and the hop count

is larger than or equal to what is recorded, then the node does nothing. Otherwise,

if the broadcast refers to an anchor that is new or has a hop count that is smaller,

the node updates its table with this new information on its memory and broadcast

the new information after incrementing the hop count by one. When every node has

computed the hop count to all the anchors, the number of hops is multiplied by the

radio range R to estimate the distances between the node and the anchors. Note that

to start multilateration, not all the hop counts to all the anchors are necessary. A

node can start triangulation as soon as it has estimated distances to d + 1 anchors.

There is an obvious trade-off between number of communications and performance.

The above step of computing the minimum number of hops is the same decen-

tralized algorithm as described in DV-hop. However, the main difference is that

instead of multiplying the number of hops by a fixed radio range R, in DV-hop, the

number of hops is multiplied by an average hop distance. The average hop distance



4.3. DECENTRALIZED ALGORITHM 121

Figure 4.5: Multilateration with exact distance measurements (left) and with approx-
imate distance measurements (right). Three solid circles denote the anchors (red) and
the white circle denotes the unknown node we want to locate. The intersection of the
lines (blue) corresponds to the solution of multilateration.

is computed from the known pairwise distances between anchors and the number of

hops between the anchors. While numerical simulations show that the average hop

distance provides a better estimate, the difference between the computed average hop

distance and the radio range R becomes negligible as n grows large.

As explained in Section 4.2.3 the graph is connected with high probability if

CdR
d > (log n + cn)/n where Cd ≤ π is a constant that depends on d. Hence,

we focus in the regime where the average number of connected neighbors is slowly

increasing with n, namely, R = α(log n/n)1/d for some large enough constant α. As

shown in Lemma 4.2.3, the key observation of the shortest paths step is that the

estimation is guaranteed to be arbitrarily close to the correct distance for a properly

chosen radio range R = α(log n/n)1/d and large enough n.

Multilateration. In the second step, each unknown node i ∈ Vu uses a set of

estimated distances {d̂i,a : a ∈ Va} together with the known positions of the anchors

to estimate its position. The resulting estimation is denoted by x̂i. For each node,

this step consists of solving a single instance of a least squares problem (Ax = b) and

this process is known as Multilateration [88, 61].
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Let us consider a single unknown node i. The position vector xi and the anchor

positions {xa : a ∈ [m]} satisfy the following series of equations:

‖x1 − xi‖2 = d2
i,1 ,

...

‖xm − xi‖2 = d2
i,m .

If the exact distances are known, we can simply find the intersection of m circles

centered at the anchors with radius di,a. This is illustrated in Figure 4.5. There is a

simpler way to find the intersection by linearizing the equations. This set of quadratic

equations can be linearized by subtracting each line from the next line.

‖x2‖2 − ‖x1‖2 + 2(x1 − x2)Txi = d2
i,2 − d2

i,1 ,

...

‖xm‖2 − ‖xm−1‖2 + 2(xm−1 − xm)Txi = d2
i,m − d2

i,m−1 .

By reordering the terms, we get a series of linear equations for node i in the form

Axi = b
(i)
0 , for A ∈ R(m−1)×d and b

(i)
0 ∈ Rm−1 defined as

A ≡


2(x1 − x2)T

...

2(xm−1 − xm)T

 ,

b
(i)
0 ≡


‖x1‖2 − ‖x2‖2 + d2

i,2 − d2
i,1

...

‖xm−1‖2 − ‖xm‖2 + d2
i,m − d2

i,m−1

 .

Again, if we have all the exact distance measurements and assuming A is full rank, we

can solve the above system of linear equations using the least squares method to find

the correct position of the unknown node i. Figure 4.5 illustrates that the intersection



4.3. DECENTRALIZED ALGORITHM 123

of the lines, which correspond to each of the linear equations, is equivalent to finding

the intersection of the circles.

Note that the matrix A does not depend on the particular unknown node i and all

the entries are known exactly to all the nodes after the decentralized shortest paths

step. However, the vector b
(i)
0 is not available at node i, since di,a’s are not known.

Hence we use an estimation b(i), which is defined from b
(i)
0 by replacing di,a by d̂i,a

everywhere. Then, we can find find the optimal estimation x̂i that minimizes the

mean squared error by using a standard least squares method.

x̂i = (ATA)−1AT b(i) . (4.20)

Note that the inverse is well defined when A has full-rank, which happens with high

probability if m ≥ d+1 anchors are placed uniformly at random. Figure 4.5 illustrates

how the estimation changes when we have inaccurate distance measurements.

For bounded d = O(1), a single least squares has complexity O(m), and applying

it n times results in the overall complexity of O(nm). No communication between

the nodes is necessary for this step.

4.3.3 Main result

The main result of this section establishes an error bound for the Hop-TERRAIN

algorithm described in the previous section. In particular, we show that although

we only have the connectivity information, as in the range-free model, an arbitrarily

small error can be achieved for a radio range R = α(log n/n)1/d with a large enough

constant α. Define

R1 ≡ 16 d3/2

(
log n

n

) 1
d

, (4.21)

Theorem 4.3.1. Assume n sensors and m anchors are distributed uniformly at ran-

dom in the [0, 1]d hypercube for a bounded dimension d = O(1). For a given radio

range R > R1 and the number of anchors m = Ω(log n), the following is true with

high probability. For all unknown nodes i ∈ Vu, the Euclidean distance between the
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estimate x̂i given by Hop-TERRAIN and the correct position xi is bounded by

‖xi − x̂i‖ ≤
R1

R
+O(R) ,

where R1 is defined in (4.21).

A proof is provided in Section 4.3.4. In the regime where R = o(1), the error

is dominated by the first term, which is inversely proportional to the radio range

R. As described in the previous section, we are interested in the regime where R =

α(log n/n)1/d for some constant α. Given a small positive constant δ, the above

theorem implies that Hop-TERRAIN is guaranteed to give estimations with error

less than δ for all the nodes, given a large enough constant α and large enough n.

When the positions of the anchors are chosen randomly, it is possible that, in

the multilateration step, we get an ill-conditioned matrix ATA, resulting in an large

estimation error. This happens, for instance, if any three anchors fall close to a

line. To prevent this we require Ω(log n) anchors in Theorem 4.3.1. However, it

is reasonable to assume that the system designer has some control over where the

anchors are placed. The next result shows that when the positions of anchors are

properly chosen, only d + 1 anchors suffice to get a similar error bound. Note that

this is the minimum number of anchors necessary for global positioning. For the sake

of simplicity, we assume that one anchor is placed at the origin and d anchors are

placed at positions corresponding to d-dimensional standard basis vectors. Namely,

the position of the d+1 anchors are {[0, . . . , 0], [1, 0, . . . , 0], [0, 1, 0, . . . , 0], [0, . . . , 0, 1]

}. An example in two dimensions is shown in Figure 4.6.

Theorem 4.3.2. Assume that n sensors are distributed uniformly at random in the

[0, 1]d hypercube for a bounded dimension d = O(1). Also, assume that there are

d + 1 anchors, one of which is placed at the origin and the d remaining anchors are

placed at the standard basis in d dimensions. For a given radio range R > R1, the

following is true with high probability. For all unknown nodes i ∈ Vu, the Euclidean

distance between the estimate x̂i given by Hop-TERRAIN and the correct position
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R

Figure 4.6: Three anchors (solid circles) in fixed positions in a standard unit square.

xi is bounded by

‖xi − x̂i‖ ≤
d3/2

4

R1

R
+O(R) ,

where R1 is defined in (4.21).

The proof of this theorem closely follows that of Theorem 4.3.1, and is provided in

Section 4.3.4. However, there is nothing particular about the positions of the anchors

in the standard basis. Any d+ 1 anchors in general positions will give a similar error

bound. Only the constant factor in the bound depends on the anchor positions.

When R = α(log n/n)1/d for some positive parameter α, the error bound gives

‖xi − x̂i‖ ≤ C1/α + C2α
√

log n/n for some numerical constants C1 and C2. The

first term is inversely proportional to α and is independent of n, where as the second

term is linearly dependent on α and vanishes as n grows large. This is illustrated

in Figure 4.7, which shows results of numerical simulations with n sensors randomly

distributed in the 2-dimensional unit square. Each point in the figure shows the root

mean squared error, {(1/n)
∑n

i=1 ‖xi− x̂i‖2}1/2, averaged over 100 random instances.

In the first figure, where we have only the connectivity information, we can see the
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Figure 4.7: Average error between the correct position {xi} and estimation {x̂i} using
Hop-TERRAIN is plotted as a function of α, for R = α

√
log n/n. n sensors are

randomly placed in the unit square under range-free model (left) and range-based
model (right).

two contributions: the linear term which depends on n and the 1/α term which is less

sensitive to n. In the second figure, where we have the exact distance measurements

without noise, we can see that the linear term almost vanishes even for n = 5000,

and the overall error is much smaller.

A network of n = 200 nodes randomly placed in the unit square is shown in

Figure 4.8. Three anchors in fixed positions are displayed by solid circles (blue).

In this experiment the distance measurements are from the range-based model with

multiplicative noise, where Pi,j = [(1 + Ni,j)di,j]+ for i.i.d. Gaussian Ni,j with zero

mean and variance 0.1. The noisy distance measurement is revealed only between the

nodes within radio range R =
√

0.8 log n/n. On the right, the estimated positions

using Hop-TERRAIN is shown. The circles represent the correct positions and the

solid lines represent the differences between the estimates and the correct positions.

The average error in this example is 0.075.
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Figure 4.8: 200 nodes randomly placed in the unit square and three anchors (solid
circles) in fixed positions. The radio range is R =

√
0.8 · log n/n. The estimation

using Hop-TERRAIN is shown on the right. Each line segment shows how the
estimtion differs from the original position (white circles).

4.3.4 Proof

Proof of Theorems 4.3.1 and 4.3.2

For an unknown node i, the estimate x̂i is given in (4.20).

‖xi − x̂i‖ = ‖(ATA)−1AT b
(i)
0 − (ATA)−1AT b(i)‖

≤ ‖(ATA)−1AT‖2‖b(i)
0 − b(i)‖ ,

First, to bound ‖b(i)
0 − b(i)‖, we use the following key result on the shortest paths. By

Lemma 4.2.3, for all i and j, with high probability,

d̂2
i,j ≤

(
1 +

R̃0

R

)
d2
i,j +O(R) .
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where R̃0 is defined in (4.9). Since d2
i,j ≤ d for all i and j, we have

‖b(i)
0 − b(i)‖ =

(m−1∑
k=1

(
d2
k,2 − d2

k,1 − d̂2
k,2 + d̂2

k,1

)2
)1/2

≤
√
m− 1

R̃0

R
d+O(

√
mR) ,

Next, to bound ‖(ATA)−1AT‖2, we use the following lemma, and this finishes the

proofs of Theorems 4.3.1 and 4.3.2.

Lemma 4.3.3. Under the hypotheses of Theorem 4.3.1, with high probability,

‖(ATA)−1AT‖2 ≤
2√
m− 1

.

Under the hypotheses of Theorem 4.3.2,

‖(ATA)−1AT‖2 ≤
d

2
.

Proof of Lemma 4.3.3

Proof. By using the singular value decomposition of a full-rank and tall (m− 1)× d
matrix A, we know that it can be written as A = UΣV T where U is an orthogonal

matrix, V is a unitary matrix and Σ is a diagonal matrix. Then,

(ATA)−1A = UΣ−1V T .

Hence,

||(ATA)−1A||2 =
1

σmin(A)
, (4.22)

where σmin(A) is the smallest singular value of A. This means that in order to upper

bound ||(ATA)−1A||2 we need to lower bound the smallest singular value of A.
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Deterministic Model. By putting the sensors in the mentioned positions, the

d× d matrix A will be Toeplitz and have the following form.

A = 2



1 −1 0 · · · 0

0 1 −1 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 −1

0 · · · 0 0 1


.

We can easily find the inverse of matrix A.

A−1 =
1

2



1 1 1 · · · 1

0 1 1 · · · 1
...

. . . . . . . . .
...

0 · · · 0 1 1

0 · · · 0 0 1


.

Since σmin(A) = σmax(A−1)−1, we need to calculate the largest singular value of

A−1
(
A−1

)T
=

1

4



d d− 1 d− 2 · · · 1

d− 1 d− 1 d− 2 · · · 1
...

...
. . . . . .

...

2 · · · 2 2 1

1 · · · 1 1 1


.

By the Gershgorin circle theorem [51], we know that σmax

(
A−1 (A−1)

T
)
≤ d2/4. It

follows that

‖(ATA)−1A‖2 ≤
d

2
.

Random Model. Let B ≡ ATA. The diagonal entries of B are

bi,i = 4
m−1∑
k=1

(xk,i − xk+1,i)
2, (4.23)
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for 1 ≤ i ≤ d and the off-diagonal entries are denoted by

bi,j = 4
m−1∑
k=1

(xk,i − xk+1,i)(xk,j − xk+1,j), (4.24)

for 1 ≤ i 6= j ≤ d where xk,i is the i-th element of vector xk. Using the Gershgorin

circle theorem [51] we can find a lower bound on the minimum eigenvalue of B.

λmin(B) ≥ min
i

(bi,i −Ri),

where Ri =
∑

j 6=i |bi,j|. We can show that, with high probability, bi,i ≥ (2/3)(m −
1)− 4m1/2+ε and |bi,j| ≤ 16m1/2+ε for any positive constant ε. We refer to [54] for the

proof of this claim. Then for large enough m, we have λmin(B) ≥ (1/4)(m− 1). This

implies that ‖(ATA)−1A‖2 ≤ 2/
√
m− 1

�
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