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Lecture 17: Cheeger’s Inequality and the Sparsest Cut Problem
Lecturer: Shayan Oveis Gharan June 1st

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

In the rest of this course we use the proof of Marcus, Spielman and Srivastava to prove an upper bound
of polyloglog(n) on the integrality gap of the Held-Karp relaxation for ATSP. The materials will be based
on the work of Oveis Gharan and Anari [AO14]. We start by introducing the sparsest cut problem and
Cheeger’s inequalities. The ideas that we develop here will be crucially used later. In particular, we will see
that the ideas involved in the semidefinite programming relaxation of the sparsest cut can be used to design
an algorithm for finding thin trees.

For a graph G = (V,E), the conductance of a set S is the ratio of the fraction of edges in the cut (S, S) to
the volume of S,

φ(S) :=
|E(S, S)|

vol(S)
,

where vol(S) =
∑

v∈S d(v) is the sum of the degree of vertices in S. Observe that for any set S ⊆ V ,
0 ≤ φ(S) ≤ 1. If φ(S) ≈ 0, S may represent a cluster in G. Conductance is a very well studied measure
for graph clustering in the literature (see e.g. [SM00; KVV04; TM06]). The conductance of G, φ(G) is the
smallest conductance among all sets with at most half of the total volume,

φ(G) = min
S:vol(S)≤vol(V )/2

φ(S).

For example, the conductance of a complete graph Kn is φ(Kn) ≈ 1/2, and the worst set is any set with half
of the vertices. The conductance of a cycle (of length n), Cn is about 2/n, φ(Cn) ≈ 2/n and the worst set
is a path of length n/2. We say a graph G is an expander if φ(G) ≥ Ω(1). In this lecture we will see several
properties of expander graphs.

Throughout this lecture we assume that G is a d-regular unweighted graph but the statements naturally
extend to weighted nonregular graphs.

17.1 Cheeger’s inequality

Cheeger’s inequality is perhaps one of the most fundamental inequalities in Discrete optimization, spectral
graph theory and the analysis of Markov Chains. It relates the eigenvalue of the normalized Laplacian
matrix to φ(G). It has many applications in graph clustering [ST96; KVV04], explicit construction of
expander graphs [JM85; HLW06; Lee12], analysis of Markov chains [SJ89; JSV04], and image segmentation
[SM00].

The normalized Laplacian matrix of G, LG is defined as follows

LG = D−1/2LD−1/2 = I −D−1/2AD−1/2.

In the special case where G is a d-regular graph, we have LG = I − A/d. The matrix P = A/d is also
known as the transition probability matrix of the simple random walk on G. In Assignment 1 we saw that
the eigenvalues of the Laplacian matrix of a d regular graph are between [0, 2d]. Therefore, the eigenvalues
of the normalized Laplacian matrix (of a d regular graph) are between [0, 2]. It is not hard to see that this
also holds for any nonregular graph.
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If G is regular, then an eigenvalue λ of LG corresponds to an eigenvalue 1 − λ of P = A/d. In part (a) of
problem 4 of Assignment 4 we see that the same relation holds even if G is nonregular.

Recall that the first eigenvalue of LG is λ1 = 0. By variational principle the second eigenvalues λ2 can be
characterized as follows:

λ2 = min
x⊥1

xᵀLGx

xᵀx
= min

x⊥1

∑
u∼v(x(u)− x(v))2

d ·
∑

v x(v)2
.

The RHS ratio is also known as the Rayleigh quotient of x,

R(x) :=

∑
u∼v(x(u)− x(v))2

d ·
∑

v x(v)2
.

The Rayleigh quotient is closely related to sparsity of cuts. For a set S ⊆ V ,

R(1S) =
|E(S, S)|
d · |S|

= φ(S).

In other words, the Rayleigh can be seen as a continuous relaxation of conductance. Note that 1S 6⊥ 1. But,
if we instead work with x = 1S

|S| −
1S

|S| , we get R(x) ≥ φ(S)/2. Therefore,

φ(G) = min
S:|S|≤|V |/2

φ(S) ≥ 1

2
min
x⊥1
R(x) = λ2/2.

The Cheeger’s inequality shows that the converse of the above also holds with a quadratic loss.

Theorem 17.1 (Discrete Cheeger’s inequality). For any graph G,

λ2/2 ≤ φ(G) ≤
√

2λ2.

In other words, φ(G) is close to zero and G has a natural 2-clustering if and only if λ2 is close to zero. The
left side of the above inequality, that we just proved, is usually referred to as the easy direction and the right
side is known as the hard direction which we prove in the following section.

Both sides of the above inequality are tight. The left side is tight for the hypercube {0, 1}k, where λ2 ≈
φ(G) ≈ k and the right side is tight for a cycle, where λ2 ≈ 1/n2 while φ(G) ≈ 1/n. Note that it is very
easy to see that in Cn, λ2 ≤ O(1/n2). it is sufficient to plugin the vector

x(i) =

{
−n/4 + i ifi ≤ n/2
3n/4− i ifi ≥ n/2.

Although the right side is tight it is possible to strengthen it using higher eigenvalues of the normalized
Laplacian. It is proved in [Kwo+13] that for any graph G,

φ(G) ≤ O(k)λ2/
√
λk,

i.e., if λk is large for a small k the square loss is not necessary in the Cheeger’s inequality.

The proof of the hard direction is algorithmic, i.e., it gives a set S of conductance O(
√
φ(G)). This gives

an O(
√
φ(G)) approximation algorithm for the sparsest cut problem. The algorithm is quite simple and is

known as the spectral partitioning algorithm.
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Algorithm 1 Spectral Partitioning Algorithm

Find a vector x such that R(x) ≤ O(λ2). One can use power iteration algorithm to find x in linear time
but we do not discuss the details.
Sort the vertices of V according to x, x(v1) ≤ x(v2) ≤ · · · ≤ x(vn).
Return the threshold cut ({v1, . . . , vi}, {vi+1, . . . , vn}) with the smallest conductance.

17.1.1 Proof of the Hard Direction

Given a vector x, we construct two nonnegative vectors y, z with disjoint support such that R(y),R(z) ≤
O(R(x)). Say the size of the support of y is smaller than z, we use Lemma 17.3 below to show that there is
a set S in the support of y of conductance φ(S) ≤

√
2R(y) ≤ O(

√
R(x)). Since the size of the support of y

is at most n/2, |S| ≤ n/2 and this completes the proof.

It remains to construct y, z.

Lemma 17.2. For any vector x : V → R, there are disjointly supported nonnegative vectors y, z such that

R(y),R(z) ≤ 4R(x).

Proof. Let x ⊥ 1 and ‖x‖ = 1. Ideally we would like to let y = max{0, x} and z = min{0, x}. Then,∑
u∼v

(y(u)− y(v))2 + (z(u)− z(v))2 ≤
∑
u∼v

(x(u)− x(v))2.

In addition, ‖y‖2 + ‖x‖2 = ‖x‖2 = 1. If ‖y‖2 , ‖z‖2 ≥ Ω(1), then we are done. So, suppose ‖y‖2 < 1/4 (and

‖z‖2 ≥ 3/4.

Then, all we need to do is to shift x a little bit. Let x′ = x + 1/2
√
n, and let as before y′ = max{0, x′}

and z′ = min{0, x′}. All we need to show is that ‖y′‖2 , ‖z′‖2 ≥ Ω(1). First of all, since x ⊥ 1, ‖x′‖2 =

‖x‖2 + 1/4 = 5/4. Also, since ‖z′‖2 ≤ ‖x‖2 ≤ 1 and ‖z′‖2 + ‖y′‖2 = 5/4, we have ‖y′‖2 ≥ 1/4. Finally,

3/4 ≤ ‖z‖2 =
∑
v

z(v)2 ≤
∑
v

(
z′(v)− 1

2
√
n

)2

≤
∑
v

2z′(v)2 +
1

2
= 2 ‖z′‖2 + 1/2,

so ‖z′‖2 ≥ 1/8.

From now on, we only need to round a nonnegative vector to a set of small conductance.

Lemma 17.3. For any nonnegative function x : V → R, there is a set S in the support of x such that

φ(S) ≤
√

2R(x).

Before proving the above lemma, we prove an easier statement, we show that if we drop all squares in the
Rayleigh quotient we get an exact characterization of the conductance.

Lemma 17.4. For every non-negative x : V → R, there is a set S in the support of x such that

φ(S) ≤
∑

u∼v |x(v)− x(u)|
d ·
∑

v x(v)
. (17.1)
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Proof. Since the right hand side is homogeneous in x, we may assume that maxv∈V x(v) ≤ 1. Let t ∼ [0, 1]
be chosen uniformly at random, and let St := {v : x(v) > t}. Then, by linearity of expectation,

E [|St|] =
∑
v

P [v ∈ St] =
∑
v

x(v).

Also, for any edge (u, v) the probability that this edge is cut is exactly |x(u)− x(v)|. Therefore,

E
[
|E(St, St)|

]
=
∑
u∼v

P [(u, v) is cut] =
∑
u∼v
|x(u)− x(v)|.

Therefore,
E
[
|E(St, St)|

]
d · E [|St|]

=

∑
u∼v |x(u)− x(v)|
d ·
∑

v x(v)
.

Note that in general if EA
EB ≤ c it may be that A/B > c with probability 1. For example, if A = B = −1

with probability 1/2 and A = 1, B = 2 with probability 1/2. Then, EA = EA
EB = 0, but A/B ≥ 1/2 with

probability 1. But, if A,B are nonnegative (with probability 1), then EA
EB ≤ c implies that A/B ≤ c with a

positive probability. This follows from the following simple inequality. For any set of nonnegative numbers
a1, a2, . . . , am, b1, b2 . . . , bm ≥ 0, we have

min
1≤i≤m

ai
bi
≤ a1 + . . .+ am
b1 + . . .+ bm

≤ max
1≤i≤m

ai
bi
. (17.2)

Therefore, there is a set St that satisfies the conclusion of the lemma.

By the above lemma, to prove Lemma 17.3 all we need to do is to construct a vector y such that
∑

u∼v |y(u)−y(v)|∑
v y(v) ≤

O(
√
R(x)), it is easy to see that y = x2 satisfies this claim.

Proof of Lemma 17.3. Let y(v) := y(v)2 for all v ∈ V . We use Lemma 17.4. So, all we need to show is that∑
u∼v |y(u)− y(v)|
d ·
∑

v y(v)
≤
√

2R(x).

The proof simply follows from one application of Cauchy-Schwarz inequality.∑
u∼v |y(u)− y(v)|
d ·
∑

v y(v)
=

∑
u∼v

∣∣x(u)2 − x(v)2
∣∣

d ·
∑

v x(v)2

=

∑
u∼v |x(u)− x(v)| · |x(u) + x(v)|

d ·
∑

v x(v)2

≤
√∑

u∼v |x(u)− x(v)|2 ·
√∑

u∼v |x(u) + x(v)|2
d ·
∑

v x(v)2

=
√
R(f) ·

√∑
u∼v |x(u) + x(v)|2
d ·
∑

v x(v)2

It remains to upper bound
∑

u∼v |x(u)+x(v)|2. We use the simple inequality (a+ b)2 ≤ 2a2 +2b2 that holds
for any a, b ∈ R. Therefore,∑

u∼v
|x(u) + x(v)|2 ≤

∑
u∼v

2x(u)2 + 2x(v)2 =
∑
v

2d · x(v)2.
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17.2 Expander Mixing Lemma

Recall that a graph G is an expander if φ(G) ≥ Ω(1). By Theorem 17.1, G is an expander if and only if
λ2 ≥ Ω(1). In addition, 1 is a simple linear time algorithm to test if a given graph is an expander. Expander
graphs have many nice properties, for example, their diameter is O(log n), a simple lazy random walk on
them mixes in time O(log n), and that they are approximately the same as a complete graph. The latter
statement is known as the expander mixing lemma that we want to prove in this section.

Let λ̃1 ≥ λ̃2 ≥ . . . λ̃n be the eigenvalues of the adjacency matrix of G. It is easy to see that λ̃i = d(1− λi).
Therefore, G is an expander if λ̃2 ≤ c · d for some c < 1. Also, we write

λ̃ = max{λ̃2, |λ̃n|}.

We say G is a stronger expander if λ̃ = o(d).

Definition 17.5. A d regular graph is a Ramanujan graph if λ̃ ≤ 2
√
d− 1.

It turns out that Ramanujan graphs are the strongest form of expanders. This is due to a theorem of Alon
and Boppana,

Theorem 17.6 (Alon-Boppana). For any d regular graph

λ̃ ≥ 2
√
d− 1− ε

where ε→ 0 as n→∞.

On the other hand, a random d-regular graph is almost Ramanujan

Theorem 17.7 ([Fri04]). In a random d-regular, with high probability, λ̃ ≤ 2
√
d− 1 + ε.

For a long time it was an open problem to give explicit construction of Ramanujan graphs. Lubotzky, Philips
and Sarnak [LPP88] and independently Margulis [] gave explicit construction Ramanujan graphs when d is
a prime number. It remains an open problem to construct (or prove the existence of) Ramanujan graphs
of arbitrary degree. Marcus, Spielman and Srivastava used the method of interlacing polynomials to prove
the existence of bipartite Ramanujan graphs of arbitrary degree [MSS13]. Note that, the bipartiteness is
because of a limitation of the method of interlacing polynomials, that is one can only bound one eigenvalue.

The Alon’s expander mixing lemma shows that (strong) expanders are very similar to random d-regular
graphs.

Theorem 17.8 (Expander Mixing Lemma). For any d regular graph G, and disjoint subsets of vertices S, T∣∣∣∣|E(S, T )| − d

n
· |S| · |T |

∣∣∣∣ ≤ λ̃ ·√|S| · |T |.
Note that d

n |S| · |T | is the expected number of edges between S, T in a random d-regular graph. For example,
if G is a Ramanujan graph and |S|, |T | ≥ Ω(n), then |E(S, T )| is the same as the expected number of edges
between S, T in a random graph up to a O(

√
d · n) additive error. Next, we prove the above theorem, the

proof is based on the lecture notes of Trevisan.

Proof. Let J be the all ones matrix. We can write

|E(S, T )| = 1ᵀ
SA1T

d

n
· |S| · |T | =

d

n
1ᵀ
SJ1T ,
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where as usual A is the adjacency matrix. Therefore,∣∣∣∣|E(S, T )| − d

n
· |S| · |T |

∣∣∣∣ =

∣∣∣∣1ᵀ
S(A− d

n
J)1T

∣∣∣∣
≤ ‖1S‖

∥∥∥∥A− d

n
J

∥∥∥∥ ‖1T ‖

where for any matrix B, ‖B‖ = maxx
‖Bx‖
‖x‖ , of ‖B‖ is the largest eigenvalue of B. In particular, in the

last inequality we use that ‖(A− dJ/n)1T ‖ ≤ ‖A− dJ/n‖ · ‖1T ‖ , and that for any two vectors x, y, xᵀy ≤
‖x‖ · ‖y‖.

Now, we have ‖1S‖ =
√
|S|, ‖1T ‖ =

√
|T |, and the largest eigenvalue of A − d

nJ is λ̃ which proves the
claim.

17.3 The Sparsest Cut Problem

In the above we showed that minx⊥1R(x) is a relaxation of the sparsest problem (up to a factor of 2). We
can eliminate the pesky condition x ⊥ 1 by looking at

∑
u,v(x(u)− x(v))2 in the denominator.

min
x⊥1
R(x) = min

x

∑
u∼v(x(u)− x(v))2

d
n

∑
u,v(x(u)− x(v))2

To see the identity note that
∑

u,v(x(u)−x(v))2 = n
∑

v x(v)2−(
∑

v x(v))2. So, to maximize the denominator
of the RHS we need x to be orthogonal to 1. Since the numerator is invariant under shifting x, in the optimum
we have x ⊥ 1.

We can generalize the above relaxation by looking at the minimum over any set of vectors of Rm assigned
to the vertices.

min
x

∑
u∼v(x(u)− x(v))2

d
n

∑
u,v(x(u)− x(v))2

= min
F :V→Rm

∑
u∼v ‖F (u)− F (v)‖2

d
n

∑
u,v ‖F (u)− F (v)‖2

It is easy to see that the optimum vector F is one dimensional and equal to the second eigenvector of LG.

The vector formulation allows us to write a SDP relaxation for the sparsest cut problem. Let X be the
matrix of inner products, i.e., let X(u, v) = 〈F (u), F (v)〉 for all u, v ∈ V . Then, X � 0. In addition for any
pair of vertices u, v,

X • Lu,v = X(u, u) +X(v, v)−X(u, v)−X(v, u) = ‖F (u)− F (v)‖2 .

Therefore, X • LG =
∑

u∼v ‖F (u)− F (v)‖2. So, we can write the following relaxation for the sparsest cut
problem.

min X • LG

subject to
d

n
X • LK = 1,

X � 0.

(17.3)

Note that Lk is the Laplacian matrix of a complete graph on n vertices. Similar to the Cheeger’s inequality
the value of the above relaxation can be as small as φ(G)2.

It is instructive to understand the dual of the above relaxation. It is

max γ,

subject to γ · d
n
LK � LG.

(17.4)
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The optimum is simply the second smallest eigenvalue of LG.

Next, we use the metric property of the optimum to strengthen (17.3). First, observe that the optimum is a
0/1 vector. Therefore, if x is the indicator vector of the optimum set, x(u)− x(v) is either zero or one. So,
for any triple of vertices u, v, w,

(x(u)− x(v))2 ≤ (x(u)− x(w))2 + (x(w)− x(v))2.

Leighton and Rao wrote an LP relaxation using the metric property and showed that its integrality gap is
O(log n).

This is also known as the squared triangle inequality. Since the optimum satisfies this we can strengthen
(17.3) by enforcing that the distance function must be a metric.

min X • LG

subject to
d

n
X • Lk = 1,

X • Lu,v ≤ X • Lu,w +X • Lw,v, ∀u, v, w,
X � 0.

(17.5)

The above relaxation is also known as the Goemans, Linial’s relaxation, or the Arora, Rao and Vazirani’s
relaxation.

Next, we want to write the dual of the above relaxation. First, note that we can rewrite the triangle inequality
constraint as follows. For any pair of vertices u, v and any path P in G from u to v,

X • Lu,v ≤ X • LP ,

where as usual LP =
∑

e∈P Le. In the dual, we will have one variable yp for each path from u, v.

max γ,

subject to γ · d
n
Lk � LG +

∑
u,v

∑
P∈Pu,v

yP (Lu,v − LP ),

yP ≥ 0 ∀P.

(17.6)

where Pu,v is the set of all paths from u to v in G.

First, observe that if yP = 0 for all P we get the same SDP relaxation (17.3). Roughly speaking, yP shortcuts
the long paths of G to increase the second eigenvalue of (normalized Laplacian of) G and to improve the
performance of Cheeger’s inequality. Let us give a clarifying example. Consider the cycle Cn. Recall that
λ2 ≈ 1/n2 and φ(G) ≈ 1/n. Suppose we add the following edges (1,

√
n), (
√
n, 2
√
n), . . . , (n −

√
n, n) all

with weight 1/2 and we decrease the weight of every original edge to 1/2 (see Figure 17.1) and let H be the
new graph. It is easy to see that the size of every cut in H is at most what it was in Cn, so φ(H) ≤ φ(Cn).
On the other hand, it is not hard to see that the second smallest eigenvalue of LH is Ω(1/n). Therefore, by
Cheeger’s inequality

φ(Cn) ≥ φ(H) ≥ λ2(LH)/2 ≥ Ω(1/n).

This shows that SDP (17.3), the optimum value of (17.6) is Ω(1/n) for Cn.

In general, the matrix

LG +
∑
u,v

∑
P∈Pu,v

yp(Lu,v − LP )

is less than LG across all cuts. We write A �C B if for any set S ⊂ V ,

1ᵀ
SA1S ≤ 1ᵀ

SB1S .
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1 2 3 √
n 2

√
n

n

Figure 17.1: The weight of every (black and red) edge in the above graph is 1/2. The size of every cut is at
most the size of the corresponding cut of Cn. So, φ(G) ≤ φ(Cn) is smaller. But the second eigenvalue of the
LG is Ω(1/n).

We can write,

LG +
∑
u,v

∑
P∈Pu,v

yP (Lu,v − LP ) �C LG.

This is because for any path P from u to v,

(Lu,v − LP ) �C 0,

or equivalently,
Lu,v �C LP .

In words, in (17.6) we would like to route a multi-commodity flow along the paths P such that the second
eigenvalue of LG plus the Laplacian of the demand graph of the flow and minus of the Laplacian of the actual
flow is as large as possible. Since this routing does not increase the value of cuts, the second eigenvalue of
LG +

∑
u,v

∑
P∈Pu,v

(Lu,v − LP ) lower bounds φ(G).

Arora, Rao and Vazirani called this flow an expander flow. This is because the performance of Cheeger’s
inequality is the best in an expander. So, ideally, if the demand graph of the flow is an expander, the ARV
relaxation gives a constant factor approximation for sparsest cut. Arora, Rao and Vazirani showed that the
integrality gap of (17.5) is O(

√
log n) for any graph G [ARV09]. Note that loosing a factor 2 we can simply

SDP (17.6) as follows.
max γ,

subject to γ · d
n
Lk �

∑
u,v

∑
P∈Pu,v

LP ,∑
u,v

∑
P∈Pu,v

LP � LG, yP ≥ 0 ∀P.

(17.7)

In fact the analysis of Arora, Rao, Vazirani also bounds the integrality gap of a simpler variant of the above
SDP. In particular, instead of requiring the multi-commodity flow to be smaller than LG in the PSD sense,
we can simply ask that the congestion of every edge to be at most 1 in the multicommodity flow.

max γ,

subject to γ · d
n
Lk �

∑
u,v

∑
P∈Pu,v

LP ,∑
P :e∈P

LP ≤ 1 ∀e,

yP ≥ 0 ∀P.

(17.8)

The above characterization of the semidefinite programming relaxation of the sparsest cut has been used in
designing fast primal dual approximation algorithms for this problem [AHK10; She09]
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In the next lecture we will see this idea can be extended to reduce the effective resistance of the edges of a
graph which makes the graph ready for Marcus, Spielman, Srivastava’s theorem.
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