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Abstract. This paper revisits the multi-user (mu) security of symmetric
encryption, from the perspective of delivering an analysis of the AES-
GCM-SIV AEAD scheme. Our end result shows that its mu security is
comparable to that achieved in the single-user setting, in a strong sense.
In particular, even when instantiated with short keys (e.g., 128 bits), the
security of AES-GCM-SIV is not impacted by the collisions of two user
keys, as long as each individual nonce is not re-used by too many users.
This is the first example of a scheme shown to have this property in the
mu setting. Our bounds also substantially improve upon existing analyses
(Gueron and Lindell, CCS ’17; Iwata and Seurin, ePrint ’17) even in the
single-user setting, in particular when messages of variable lengths are
encrypted. We also validate security when adopting an optimization of
the key-derivation function of AES-GCM-SIV that halves its complexity
(over the latest proposal).
On the way, we provide a number of results of independent interest. In
particular, we advocate analyzing mu security in a setting where the
data processed by every user is bounded, and where user keys are gener-
ated according to arbitrary, possibly correlated distributions. This model
refines works on mu security by providing a more meaningful parame-
ter regime, but also allows to unify this with a treatment of re-keying.
In this model, we analyze the security of counter-mode encryption and
Wegman-Carter MACs. We then lift these analyses to GCM-SIV and
AES-GCM-SIV.

Keywords: Multi-user security, AES-GCM-SIV, authenticated encryp-
tion, concrete security

1 Introduction

This work continues the study of the multi-user (mu) security of symmetric
cryptography, the setting where the adversary distributes its resources to attack
multiple instances of a cryptosystem, with the end goal of compromising at least
one of them. This attack model was recently the object of extensive scrutiny [2,
9, 17, 18, 23, 26, 32], and its relevance stems from the en masse deployment of
symmetric cryptographic schemes, e.g., within billions of daily TLS connections.
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The main goal is to study the degradation in security as the number of users
increases.

Our contributions. This paper will extend this line of work in different ways.
The most tangible contribution is a complete analysis in the mu setting of the
AES-GCM-SIV [14] scheme by Gueron, Langley, and Lindell, a scheme for au-
thenticated encryption with associated data (AEAD) which is undergoing eval-
uation to become the object of an RFC. Our main result will show that the
scheme’s security does not degrade in the mu setting, in a sense much stronger
than what was claimed in previous mu analyses. Also, we abstract the require-
ment needed for AES-GCM-SIV’s key-derivation step, and show that a very
simple KDF is sufficient for high security. Beyond this, our analysis also delivers
conceptual and technical insights of wider interest.

Concretely, our result will highlight the benefit of ensuring limited nonce
re-use across different users (e.g., by choosing nonces randomly). We show that
in this setting AES-GCM-SIV does not suffer any impact from key-collisions,
in particular allowing security to go beyond the Birthday barrier (wrt the key
length) even in the multi-user setting. The resulting analysis is particularly in-
volved, and calls for a precise understanding of the power of verification queries
(for which nonce re-use cannot be restricted). Previous analyses of AE schemes
(specifically, those of [9]) do not ensure security when two users have the same
key, thus forcing either an increase of key length or a worse security guarantee.

On the way, we advocate a refined model of mu security where the amount
of data processed by each user is bounded. This is consistent with the fact that
either users would re-key after a certain amount of data has been processed,
or, even without explicit re-keying, the lifespan of a key is generically short.
The model also naturally lends itself to a modular treatment of nonce-based re-
keying in AES-GCM-SIV. This will, in particular, rely on analyses in this regime
of (randomized) counter-mode encryption, as well as of the universal-hash based
PRF underlying AES-GCM-SIV.

We now continue with a more detailed overview of our results.

Multi-user security. The notion of multi-user (mu) security was introduced
by Bellare, Boldyreva and Micali [3] for public-key encryption, although in the
symmetric setting the notion already appeared implicitly earlier [4].

For example, in the mu definition of encryption security under chosen plain-
text attacks, each user 𝑖 is assigned a (secret) key 𝐾𝑖, and the attacker can make
encryption queries Enc(𝑖, 𝑀), which result in either an encryption of 𝑀 under
𝐾𝑖 (in the real world), or an equally long random ciphertext (in the ideal world).
The goal is to distinguish what is the case.

Assessing security in this model is interesting and non-trivial. Take for ex-
ample randomized counter-mode encryption (CTR), based on a block cipher
with key length 𝑘 and block length 𝑛, which we model as an ideal cipher. For
any single-user adversary encrypting, in total, 𝐿 blocks of data and making 𝑝

queries to the ideal cipher, the advantage is bounded by 𝜖𝑠𝑢(𝐿, 𝑝) ≤ 𝐿2

2𝑛 + 𝑝
2𝑘 (a

proof was given e.g. in [5]). If the attacker now adaptively distributes its queries
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across up to 𝑢 users, a simple hybrid argument shows that there can be at most
a multiplicative-factor loss 𝑢 in the bound, or more precisely, the bound is now
𝜖𝑚𝑢(𝐿, 𝑝, 𝑢) ≤ 𝑢 · 𝜖𝑠𝑢(𝐿, 𝑝+𝐿) ≤ 2𝑢𝐿2

2𝑛 + 𝑢(𝑝+𝐿)
2𝑘 . Usually, we do not want to force

any particular 𝑢, and would like the adversary to encrypt its budget of 𝐿 blocks
adaptively across as many users as it sees fit. And a-priori, we cannot prevent
the adversary to pick one of the following worst-case choices: (1) Querying one
message only with length 𝐿, or (2) Querying 𝐿 messages with length 1. Thus, in
the worst case, the bound becomes 𝜖𝑚𝑢(𝐿, 𝑝) ≤ 2𝐿3

2𝑛 + 𝐿𝑝+𝐿2

2𝑘 . A number of recent
works [2,17,18,26,32] have shown (mostly, in the context of PRF security) that
this is an overly pessimistic point of view: the security loss can be much smaller,
and often 𝜖𝑚𝑢(𝐿, 𝑝) ≈ 𝜖𝑠𝑢(𝐿, 𝑝) holds.

A fresh look at mu security. Paradoxically, this ideal-outcome scenario
could still be somewhat pessimistic. Indeed, it is well possible that for CTR (or
any other scheme) in the mu setting, even if 𝜖𝑚𝑢(𝐿, 𝑝) ≈ 𝜖𝑠𝑢(𝐿, 𝑝), the matching
attack is a single-user attack, requiring a single honest user to encrypt 𝐿 ≈ 2𝑛/2

blocks under the same key. For 𝑘 = 𝑛 = 128, this boils down to multiple exabytes
of data to be encrypted with the same key. This is not likely, regardless of
the computational power of the adversary, because users may re-key, or simply
because a user could not be brought to encrypt that much. If we assume instead
an upper bound 𝐵 on the number of blocks encrypted by each user, an 𝐿-block
adversary for 𝐿 > 𝐵 would be forced to spread its effort across at least 𝐿/𝐵
users. As one of our first results, we show that for CTR, the advantage of such
an attacker is upper bounded by

𝐿𝐵

2𝑛
+ 𝐿2

2𝑛+𝑘
+ 𝑎𝑝

2𝑘
.

for some constant 𝑎. This bound already shows some themes we will lift to
AES-GCM-SIV later such as: (1) Beyond-birthday security is possible, e.g., for
𝑘 = 𝑛 = 128 and 𝐵 = 232, the bound is of the order 𝐿/296 + 𝑝/2128; (2)
The role of local computation – captured here by the number of ideal-cipher
queries 𝑝 – is independent of 𝐿, and the number of users, and very similar
to the single-user case, and (3) The bound is independent of the number of
users. Previous results on mu security target deterministic security games, such
as PRFs/PRPs [2, 17, 18, 26, 32] or deterministic AE [9, 23], and security falls
apart when more than 2𝑘/2 users are present, and their keys collide. Here, key-
collisions are irrelevant, and security well beyond 2𝑘/2 users is possible. This
viewpoint generalizes that of Abdalla and Bellare [1], who were first to observe,
in a simpler model, that re-keying after encrypting 𝐵 blocks increases security.
In a way, what we argue here is that analyses of schemes under re-keying, and
under multi-user attacks, are essentially addressing two interpretations of the
same technical problem once the right modeling is adopted.

In this model, we will also derive a bound for the PRF security of GMAC+,
the PRF underlying AES-GCM-SIV. Eventually, we will use these analyses for
our final result on AES-GCM-SIV.
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AES-GCM-SIV: Prior work and new mu bounds. AES-GCM-SIV pushes
the re-keying philosophy a bit further, making it nonce based – i.e., to encrypt
a message 𝑀 with a nonce 𝑁 , we first derive nonce-key 𝐾𝑁 from the master
key and 𝑁 , using a key-derivation function KD, and then encrypt the message
𝑀 with nonce 𝑁 under key 𝐾𝑁 using a base AE scheme AE. The intuition is
that here nonces play the roles of users, and a security bound in the mu setting
for AE should become a bound on the end scheme in the single-user setting,
where now 𝐵 is a bound on the amount of data encrypted per nonce, rather
than per user. In particular, existing analyses [16, 20] exploit this, and for the
single-user security as a nonce-misuse resistant scheme (so-called mrae security)
of AES-GCM-SIV with key length 128 bits, they show an advantage bound of
order

𝑄

296 + 𝑄𝐵2

2128 + ℓmax𝑄𝑅

2128 + 𝑝

2128 ,

for any adversary that makes at most 𝑝 ideal-cipher queries, encrypts at most
𝐵 blocks per nonce, uses at most 𝑄 < 264 nonces in encryption/verification
queries, where 𝑅 is the maximum number of repetition of a nonce, and ℓmax is
the maximal length of a verification query.

Here, for suitable instantiations of the key-derivation function (which includes
in particular simpler ones than those currently under consideration) we will show
that the upper bound for the multi-user mrae security of AES-GCM-SIV is of
order

𝐿𝐵

2128 + 𝑑(𝑝 + 𝐿)
2128 ,

where 𝐿 is an upper bound on the overall number of encrypted/verified blocks,
𝐵 is a bound on the number of blocks encrypted per user-nonce pair, and 𝑑 is
a bound on the the number of users across which any nonce is re-used. This
shows a number of surprising things: First off, our bound is an improvement
even in the single-user case, as 𝑑 = 1 vacuously holds, and even if we use the
KDF considered in previous works. The term 𝐿𝐵

2128 can be much smaller than
𝑄𝐵2

2128 , as in many settings 𝑄 and 𝐿 can be quite close (e.g., if most messages are
very short). In fact, the point is slightly more subtle, and to our advantage, and
we elaborate on it at the end of the introduction. Second, if 𝑑 is constant (which
we can safely assume if nonces are randomly chosen), security does not degrade
as the number of users increases. In particular, the security is unaffected by key
collisions. If 𝑑 cannot be bounded, we necessarily need to increase the key to
256 bits, and in this case the second term becomes 𝑑(𝑝+𝐿)

2256 . Finally, we have no
assumption on the data amount of verification queries per user-nonce pair (other
than the overall bound 𝐿), whereas the bounds in prior works can become weak
if there is a very long verification query, and the adversary uses only a single
nonce among verification queries.3

3 Since the penalty of verification queries can be very high, [16] has to assume that the
term ℓmax𝑄𝑅/2𝑛 is smaller than 𝑄𝐵2/2𝑛; this assumption might hold in settings
where servers adopt DDOS countermeasures to terminate connections of too many
invalid verification queries.
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This shows that AES-GCM-SIV enjoys great quantitative security in the
mu setting, and in fact presents a number of unique features. The rest of the
introduction will explain how we get to our result.

Review of AES-GCM-SIV. Let us first however review AES-GCM-SIV [14]
a little more in detail. The scheme is based on GCM-SIV+, a slight modification
of GCM-SIV, proposed in [15]. This relies in turn on SIV (“synthetic IV”) [31],
an AEAD scheme which combines a PRF F and an encryption scheme SE (only
meant to be CPA secure) to achieve nonce-misuse resistance. For message 𝑀 ,
nonce 𝑁 , and associated data 𝐴, the encryption of SIV results into a ciphertext
𝐶 obtained as

IV← F(𝐾F, (𝑀, 𝑁, 𝐴)) , 𝐶 ← SE.E(𝐾E, 𝑀 ; IV) ,

where 𝐾F and 𝐾E are the two components of the secret key, and SE.E(𝐾E, 𝑀 ; IV)
is the deterministic encryption function of SE run with IV IV.

In GCM-SIV+, SE is counter mode, and F is what we call GMAC+, a Wegman-
Carter MAC [34] similar to, but different from, the one used in GCM [25]. It
composes an xor-universal hash function with 𝑛-bit key, with a block cipher
with block length 𝑛 and key length 𝑘. GMAC+’s total key length is hence 𝑘 + 𝑛
bits. (As we target AES, 𝑛 = 128 and 𝑘 ∈ {128, 256}.) A difference from the
original SIV scheme is that the same block cipher key is used across GMAC+

and counter-mode, but appropriate domain separation is used.
Finally, AES-GCM-SIV enhances GCM-SIV+ via nonce-based key derivation.

That is, now we have a single key 𝐾, and to encrypt with a nonce 𝑁 , we first
derive a (𝑛 + 𝑘)-bit key 𝐾𝑁 ← KD(𝐾, 𝑁) using a key-derivation function KD,
and then encrypt using GCM-SIV+ with the key 𝐾𝑁 .

Mu-security and nonce-based key derivation. We will be able to combine
our analyses for CTR and GMAC+ into an analysis for GCM-SIV+ in the bounded
mu model. This is less obvious than it would initially seem, because due to the
key re-use, the technique for generic composition used in the original SIV scheme
fails. The leading terms here are of order similar to the above bound for CTR.

The question is now whether nonce-based key derivation achieves its purpose
in the mu setting, where 𝐵 is now a bound on the number of blocks encrypted
per nonce-user pair. Indeed, say the master secret key 𝐾 has length 𝑘 = 128.
Then, should the number of users exceed 2𝑘/2 = 264, with high probability two
users will end up with identical keys. If we treat KD as a PRF, like [16, 20] do,
all security will vanish at this point. Indeed, the existing mu analysis of GCM
succumbs to this problem [9], and the problem seem unavoidable here too, since
we are considering a deterministic security game.

Bounded nonce re-use. The way out from this problem leverages the setting
where nonces are not re-used too often, which is what we are concerned with,
and in particular we assume a nonce is re-used by at most 𝑑 users. Consider the
canonical attack to break privacy of the scheme: Fix a sufficiently long message
𝑀 and nonce 𝑁 , and encrypt them over and over for different users, and if
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the same ciphertext appears twice after roughly 2𝑘/2 queries, we know we are
likely to be in the real world, as this is not likely to happen in the ideal world,
where ciphertexts are random. This however requires us to re-use the same nonce
roughly 2𝑘/2 times for different users. A first interesting point we observe is that
KD need not become insecure after 2𝑘/2 queries as a PRF if the number of re-
uses of a nonce is sufficiently small. We will confirm this to be true for a large
class of KDF constructions we consider (see below).

Unfortunately, this is not enough. The catch is that the above argument only
applies to privacy. We need to guarantee authenticity, too, and even though we
are bounding the number of re-uses of a nonce in encryption queries, it is not
meaningful to do the same for verification queries. It seems that key collisions
are back to haunt us. However, we will show that this is not necessarily the case.

To get some intuition, consider the security of KD as a MAC, i.e., the adver-
sary issues, in a first stage, queries (𝑖, 𝑁), getting KD(𝐾𝑖, 𝑁), but respecting the
constraint that no nonce is used more than 𝑑 times across different 𝑖’s where 𝑑 is
relatively small. Then, in a second stage, the adversary gets to ask unrestricted
verification queries with input (𝑖, 𝑁, 𝑇 ), except for the obvious requirement that
(𝑖, 𝑁) must be previously un-queried. The adversary wins if KD(𝐾𝑖, 𝑁) = 𝑇 for
one of these verification queries. At first glance, a collision 𝐾𝑖 = 𝐾𝑗 could help if
we have queried (𝑖, 𝑁) in the first stage, learnt 𝑇 , and now can submit (𝑗, 𝑁, 𝑇 )
in the second. Unfortunately, however, we need to be able to have detected such
collisions. This is hard to do during the first stage, even with many queries,
due to the constraint of reusing 𝑁 only 𝑑 times. Thus, the only obvious way
to exploit this would be to try, for each of the 𝑞 first-stage queries (𝑖, 𝑁) with
corresponding output 𝑇 , to query (𝑗, 𝑁, 𝑇 ) for many 𝑗 ̸= 𝑖. This would however
require roughly 2𝑘 trials to succeed. Finally, note that while it may be that we
ask two verification queries (𝑖, 𝑁, 𝑇 ) and (𝑗′, 𝑁 ′, 𝑇 ′) where 𝐾𝑖 = 𝐾𝑗 , this does
not seem to give any help in succeeding, because a verification query does not
reveal the actual output of KD on that input.

Confirming this intuition is not simple. We will however do so for a specific
class of natural KD constructions outlined below, and point out that the setting
of AE is even harder than studying the security of KD itself as a MAC. Indeed,
our KD is used to derive keys for GMAC+ and CTR at the same time, and we
need to prove unpredictability of the overall encryption scheme on a new pair
(𝑁, 𝑖) which was previously unqueried. This is the most technically involved part
of the paper.

A simpler KDF. Finally, let us address how we instantiate KD. The construc-
tion of KD from [14] is truncation based, and makes 4 (for 𝑘 = 128), respectively
6 (for 𝑘 = 256) calls to a block cipher to derive a key. A recent proposal [20]
suggests using the so-called XOR construction to achieve higher security, as mul-
tiple analyses [7, 11, 22, 28, 30] confirm better bounds than for truncation [12].
Still, the resulting KD would need 4 resp. 6 calls. They also consider a faster
construction, based on CENC [19], which would require 3 resp. 4 calls.

Rather than following the route of analyzing these concrete constructions,
we apply our result to a general class of KDFs which includes in particular
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all of these proposals, but also simpler ones. For instance, our bounds apply
to the following simple KDF, a variant of which was in the initial AES-GCM-
SIV proposal, but was discarded due to security concerns.4 Namely, given the
underlying block cipher 𝐸, the KDF outputs

KD(𝐾, 𝑁) = 𝐸(𝐾, pad(𝑁, 0)) ‖ 𝐸(𝐾, pad(𝑁, 1)) (1)

for 𝑘 = 𝑛 and 𝑁 an nl-bit string, with nl ≤ 𝑛− 2, and, analogously, for 𝑘 = 2𝑛,
one can extend this by additionally concatenating 𝐸(𝐾, pad(𝑁, 2)). Here, pad
is a mapping with the property that the sets {pad(𝑁, 0), pad(𝑁, 1), pad(𝑁, 2)}
defined by each 𝑁 are disjoint. This approach seems to contradict common sense
which was adopted in the new KDF variants for AES-GCM-SIV, because the
derived keys are not truly random. The point is that existing proofs (implicitly or
explicitly) leverage the multi-user security of 𝐸, in a setting with independent
random secret keys. However, we observe (validating this in the ideal-cipher
model) that mu security bounds are robust to deviation of the key distribution,
and in particular additional constraints of sub-keys and part of them being
distinct generally only make matters better, rather than worse.5

We note that a crucial point of our analyses is that we do not prove PRF
security of these KDFs. Rather, we study the distributions on keys they induce,
and then (implicitly) rely on the security of the underlying components using
keys obtained from (slightly) non-uniform distributions.

In platforms that support AES hardware acceleration, the difference in per-
formance between the KDF in Equation (1) and the current one in AES-GCM-
SIV is not important, as demonstrated via the experiments in [14]. Still, we
believe it is important for schemes to be minimal, and thus to understand the
security of simplest possible instantiations of the KDF.

Sub-optimality of POLYVAL. We also observe that the universal hash
POLYVAL of AES-GCM-SIV suffers from a suboptimal design issue. That is,
if both the message and the associated data are the empty string, then their
hash image under POLYVAL is always 0128, regardless of the hash key. This
does not create any issue in the single-user setting, and thus has not received
any attention so far. However, in the multi-user setting, it substantially weakens
the security of GCM-SIV+ and GMAC+ to 𝐿𝐵

2128 + 𝑑(𝑝+𝐿)
2128 , despite their use of

256-bit keys. Had the padding in POLYVAL been done properly so that the hash
image of empty strings under a random key has a uniform distribution, the secu-
rity of GCM-SIV+ and GMAC+ could be improved to 𝐿𝐵

2128 + 𝐿𝑝
2256 , meaning this

bound is independent of the number 𝑑 of users that reuse any particular nonce.
While this issue does not affect the concrete security bound of AES-GCM-SIV,
4 Thus, our analysis shows that this proposal would have been a good and more

efficient choice.
5 A similar key-derivation scheme has been used to derive sub-keys from tweaks in

the setting of FPE within the DFF construction [33]. This was then formalized and
studied in [6], though we stress that their analysis is quite different from ours, and
considers a much less demanding setting.
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this change is recommended especially if GCM-SIV+ or GMAC+ are used as
standalone schemes.

Relation to existing works. As mentioned above, two recent papers [16,20]
have analyzed AES-GCM-SIV in the su setting, and we want to elaborate further
on our improvement in this special case. As we argue above, their bound contains
a term of the order 𝑄𝐵2/2𝑛, which we improve to 𝐿𝐵/2𝑛. The fact that the
latter is better is not quite obvious. Indeed, it is not hard to improve the term
𝑄𝐵2/2𝑛 in [16,20] to

∑︀𝑄
𝑖=1 𝐵2

𝑖 /2𝑛, where 𝐵𝑖 is a bound on the number of blocks
encrypted with the 𝑖-th nonce. This seems to address the point that different
amounts of data can be encrypted for different nonces.

The crucial point is that we capture a far more general class of attacks by
only limiting the adversary in terms of 𝐿, 𝑝, and 𝑑. For instance, for a parameter
𝐿, consider the following single-user adversary using 𝑄 = 𝐿/2 nonces. It will
select a random subset of the 𝑄 nonces, of size 𝐿/(2𝐵), for which it encrypts
𝐵 blocks of data, and for the remaining 𝐿/2− 𝐿/(2𝐵) nonces, it only encrypts
one block of data. In our bound, we still get a term 𝐿𝐵/2𝑛. In contrast, with
the parametrization adopted by [16, 20], we can only set 𝑄 = 𝐿/2 and 𝐵𝑖 = 𝐵
for all 𝑖 ∈ [𝑄], because any of the nonces can, a priori, be used to encrypt 𝐵
blocks. This ends up giving a term of magnitude 𝐿𝐵2/2𝑛, however, which is
much larger. For 𝐵 = 232, the difference between 𝐿/264 and 𝐿/296 is enormous.

Switching to the type of bounds we consider is not just aesthetics: The adver-
sary can of course make even more convoluted, adaptive choices in its attack pat-
tern. The analysis needs to handle these, and this is non-trivial. This type of ques-
tion was the object of several recent works in the mu regime [2,17,18,23,26,32].

Standard vs ideal-model. We also note that the bound of [20] is expressed in
the standard model, and contains a term 𝑄𝜖, where 𝜖 is the advantage of a PRF
adversary 𝒜′ against the cipher 𝐸, making 𝐵 queries. The catch is that 𝜖 is very
sensitive to the time complexity of 𝒜′, which we approximate with the number
of ideal-cipher queries 𝑝. Thus, 𝑄𝜖 is of order 𝑄(𝐵2/2𝑛 + 𝑝/2𝑘). While [20]
argues that 𝑄𝐵2/2𝑛 is the largest term, the ideal model makes it evident that
the hidden term 𝑄𝑝/2𝑘 is likely to be far more problematic in the case 𝑛 = 𝑘.
Indeed, 𝑝 ≥ 𝑄 and 𝐵2 ≤ 𝑄 are both plausible (the attacker can more easily
invest local computation than obtain honest encryptions under equal nonces),
and this becomes 𝑄2

2𝑘 . This shows security is bounded by 2𝑘/2. The work of [23]
on classical GCM also seemingly focuses on the standard model and thus seems
to fail to capture such hidden terms. In contrast, [16] handles this properly.

We stress that we share the sentiment that ideal-model analysis may oversim-
plify some security issues. However, we find them a necessary evil when trying
to capture the influence of local computation in multi-user attacks, which is a
fundamental part of the analysis.

Outline of this paper. We introduce basic notions and security definitions
in the multi-user setting in Section 3. Then, in Section 4, we study the security
of our basic building blocks, CTR and GMAC+, in the multi-user setting. In
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Section 5, we analyze SIV composition when keys are re-used across encryption
and PRF, and observe this to work in particular for the setting of GCM-SIV.
Finally, Section 6 studies our variant of AES-GCM-SIV with more general key
derivation.

2 Preliminaries

Notation. Let 𝜀 denote the empty string. For a finite set 𝑆, we let 𝑥←$ 𝑆
denote the uniform sampling from 𝑆 and assigning the value to 𝑥. Let |𝑥| denote
the length of the string 𝑥, and for 1 ≤ 𝑖 < 𝑗 ≤ |𝑥|, let 𝑥[𝑖, 𝑗] (and also 𝑥[𝑖 : 𝑗])
denote the substring from the 𝑖th bit to the 𝑗th bit (inclusive) of 𝑥. If 𝐴 is
an algorithm, we let 𝑦 ← 𝐴(𝑥1, . . . ; 𝑟) denote running 𝐴 with randomness 𝑟
on inputs 𝑥1, . . . and assigning the output to 𝑦. We let 𝑦←$ 𝐴(𝑥1, . . .) be the
resulting of picking 𝑟 at random and letting 𝑦 ← 𝐴(𝑥1, . . . ; 𝑟). In the context
that we use a blockcipher 𝐸 : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛, the block length of a
string 𝑥, denoted |𝑥|𝑛, is max

{︀
1,

⌈︀
|𝑥|/𝑛

⌉︀}︀
.

Systems and Transcripts. Following the notation from [17] (which was in
turn inspired by Maurer’s framework [24]), it is convenient to consider interac-
tions of a distinguisher 𝐴 with an abstract system S which answers 𝐴’s queries.
The resulting interaction then generates a transcript 𝜏 = ((𝑋1, 𝑌1), . . . , (𝑋𝑞, 𝑌𝑞))
of query-answer pairs. It is well known that S is entirely described by the prob-
abilities pS(𝜏) that if we make queries in 𝜏 to system S, we will receive the
answers as indicated in 𝜏 .

We will generally describe systems informally, or more formally in terms a set
of oracles they provide, and only use the fact that they define a corresponding
probabilities pS(𝜏) without explicitly giving these probabilities.

The H-coefficient technique. We now describe the H-coefficient technique
of Patarin [10, 29]. Generically, it considers a deterministic distinguisher 𝒜, in-
teracting with system S0 or with system S1. Let 𝒳0 and 𝒳1 be random variables
for the transcripts defined by these interactions with S0 and S1, and a bound on
the distinguishing advantage of 𝒜 is given by the statistical distance SD(𝒳0,𝒳1).

Lemma 1. [10, 29] Supposed we can partition transcripts into good and bad
transcripts. Further, suppose that there exists 𝜖 ≥ 0 such that 1− pS0 (𝜏)

pS1 (𝜏) ≤ 𝜖 for
every good transcript 𝜏 such that pS1(𝜏) > 0. Then,

SD(𝒳1,𝒳0) ≤ 𝜖 + Pr[𝒳1 is bad] .

3 Multi-user Security of Symmetric Primitives

We revisit security definitions for basic symmetric primitives in the multi-user
setting. We will in particular extend existing security definitions to impose overall
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bounds on the volume of data processed by each user, however we will relegate
this matter to theorem statements restricting the considered adversaries, rather
than hard-coding these bounds in the definitions.

3.1 Symmetric and Authenticated Encryption

We define AE syntax here, as well as natural multi-user generalizations of clas-
sical security notions for confidentiality and integrity. Since this paper will deal
both with probabilistic and deterministic schemes, we define both, following the
treatment of Namprempre, Rogaway, and Shrimpton [27]. Our notational con-
ventions are similar to those from [9].

IV-based encryption. An IV-based symmetric encryption scheme SE consists
of two algorithms, the randomized encryption algorithm SE.E and the deter-
ministic decryption algorithm SE.D, and is associated with a corresponding key
length SE.kl ∈ N and initialization-vector (IV) length SE.vl ∈ N. Here, SE.E
takes as input a secret key 𝐾 ∈ {0, 1}SE.kl and a plaintext 𝑀 ∈ {0, 1}*. It then
samples IV←$ {0, 1}SE.vl, deterministically computes a ciphertext core 𝐶 ′ from
𝐾, 𝑀 and IV, and returns 𝐶 ← IV ‖ 𝐶 ′. We often write 𝐶←$ SE.E𝐾(𝑀) or
𝐶←$ SE.E(𝐾, 𝑀). If we want to force the encryption scheme to run on a spe-
cific initialization vector IV, then we write SE.E(𝐾, 𝑀 ; IV). The corresponding
decryption algorithm SE.D takes as input a key 𝐾 ∈ {0, 1}SE.kl and a ciphertext
𝐶 ∈ {0, 1}*, returns either a plaintext 𝑀 ∈ {0, 1}*, or an error symbol ⊥. For
correctness, we require that if 𝐶 is output by SE.E𝐾(𝑀), then SE.D𝐾(𝐶) returns
𝑀 . We allow all algorithms to make queries to an ideal primitive 𝛱, in which
case this will be made explicit when not clear from the context, e.g., by writing
SE[𝛱] in lieu of SE.

Chosen-plaintext security for IV-based encryption. We re-define the
traditional security notion of ind-security for the multi-user setting. Our defini-
tion will however incorporate a general, stateful key-generation algorithm KeyGen
which is invoked every time a new user is spawned via a call to the New or-
acle. KeyGen is a parameter of the game, and it takes additionally some input
string aux which is supplied by the adversary. The traditional mu security setting
would have KeyGen simply output a random string, and ignore aux, but we will
consider a more general setting to lift mu bounds to the key-derivation setting.
The game is further generalized to handle an arbitrary ideal primitive (an ideal
cipher, a random oracle, or a combination thereof) via an oracle Prim.6 Also
note that the oracle Prim can simply trivially provide no functionality, in which
case we revert to the standard-model definition. We note that the key-generation
algorithm KeyGen does not have access to the oracle Prim.

6 If Prim is meant to handle multiple primitives, we assume they can be accessed
through the same interface by pre-pending to the query a prefix indicating which
primitive is meant to be queried.



11

Game Gmu-ind
SE,KeyGen,𝛱(𝒜)

st0 ← 𝜀; 𝑣 ← 0; 𝑏←$ {0, 1}
𝑏′←$𝒜New,Enc,Prim

Return (𝑏′ = 𝑏)

New(aux)
𝑣 ← 𝑣 + 1
(𝐾𝑣, st𝑣)←$ KeyGen(st𝑣−1, aux)

Enc(𝑖, 𝑀)
If 𝑖 /∈ {1, . . . , 𝑣} then return ⊥
𝐶1←$ SE.EPrim(𝐾𝑖, 𝑀)
𝐶0←$ {0, 1}|𝐶1|

Return 𝐶𝑏

Game Gmu-mrae
AE,KeyGen,𝛱(𝒜)

st0 ← 𝜀; 𝑣 ← 0; 𝑏←$ {0, 1}
𝑏′←$𝒜New,Enc,Vf,Prim

Return (𝑏′ = 𝑏)

Vf(𝑖, 𝑁, 𝐶, 𝐴)
If 𝑖 /∈ {1, . . . , 𝑣} then return ⊥
If (𝑖, 𝑁, 𝐶, 𝐴) ∈ 𝑉 [𝑖] then return true
If 𝑏 = 0 then return false
𝑀 ← AE.DPrim(𝐾𝑖, 𝑁, 𝐶, 𝐴)
Return (𝑀 ̸= ⊥)

New(aux)
𝑣 ← 𝑣 + 1
(𝐾𝑣, st𝑣)←$ KeyGen(st𝑣−1, aux)

Enc(𝑖, 𝑁, 𝑀, 𝐴)
If 𝑖 /∈ {1, . . . , 𝑣} then return ⊥
If (𝑖, 𝑁, 𝑀, 𝐴) ∈ 𝑈 [𝑖] then return ⊥
𝐶1 ← AE.EPrim(𝐾𝑖, 𝑁, 𝑀, 𝐴)
𝐶0←$ {0, 1}|𝐶1|

𝑈 [𝑖]← 𝑈 [𝑖] ∪ {(𝑖, 𝑁, 𝑀, 𝐴)}
𝑉 [𝑖]← 𝑉 [𝑖] ∪ {(𝑖, 𝑁, 𝐶𝑏, 𝐴)}
Return 𝐶𝑏

Fig. 1: Security definitions for chosen-plaintext security of IV-based encryp-
tion (top), as well as nonce-misuse resistance for authenticated encryption
(bottom). We assume (without making this explicit) that Prim implements the ideal-
primitive 𝛱.

Given an adversary 𝒜, the resulting game is Gmu-ind
SE,KeyGen,𝛱(𝒜), and is depicted

on the left of Figure 1. The associated advantage is

Advmu-ind
SE,KeyGen,𝛱(𝒜) = 2 · Pr

[︀
Gmu-ind

SE,KeyGen,𝛱(𝒜)
]︀
− 1 .

Whenever we use the canonical KeyGen which outputs a random string regardless
of its input, we will often omit it, and just write Advmu-ind

SE,𝛱 (𝒜) instead.

Authenticated encryption scheme. An authenticated encryption scheme
AE with associated data (also referred to as an AEAD scheme), the algorithms
AE.E and AE.D are both deterministic. In particular, AE.E takes as input a
secret key 𝐾 ∈ {0, 1}AE.kl, a nonce 𝑁 ∈ {0, 1}AE.nl, a plaintext 𝑀 ∈ {0, 1}*, and
the associated data 𝐴, and returns the ciphertext 𝐶 ← AE.E(𝐾, 𝑁, 𝑀, 𝐴). The
corresponding decryption algorithm AE.D takes as input a key 𝐾 ∈ {0, 1}AE.kl,
the nonce 𝑁 , the ciphertext 𝐶 ∈ {0, 1}*, and the associated data 𝐴, and returns
either a plaintext 𝑀 ∈ {0, 1}*, or an error symbol ⊥. We require that if 𝐶 is
output by AE.E𝐾(𝑀, 𝑁, 𝐴), then AE.D𝐾(𝐶, 𝑁, 𝐴) returns 𝑀 .

Our security notion for AE is nonce-misuse-resistant: Ciphertexts produced
by encryptions with the same nonce are pseudorandom as long as the encryptions
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are on different messages or associated data, even if they are for the same nonce.
Our formalization of AE multi-user security in terms of Gmu-mrae

AE,KeyGen,𝛱(𝒜) is that
of Bellare and Tackmann [9], with the addition of a KeyGen algorithm to handle
arbitrary correlated key distributions. It is depicted in Figure 1, at the bottom.

Given an adversary 𝒜 and a key-generation algorithm KeyGen, we are then
going to define

Advmu-mrae
AE,KeyGen,𝛱(𝒜) = 2 · Pr

[︀
Gmu-mrae

AE,KeyGen,𝛱(𝒜)
]︀
− 1 .

As above, KeyGen is omitted if it is the canonical one.
We say that an adversary is 𝑑-repeating if among the encryption queries, an

adversary only uses each nonce for at most 𝑑 users. We stress that we make no
assumption on how the adversary picks nonces for the verification queries, and
for each individual user, the adversary can repeat nonces in encryption queries
as often as it wishes. If nonces are chosen arbitrarily then 𝑑 can be as big as the
number of encryption queries. If nonces are picked at random then 𝑑 is a small
constant.

A key-collision attack. We now show that for any AE scheme AE that uses
the canonical KeyGen, if an adversary can choose nonces arbitrarily then there
is an attack, using 𝑞 encryption queries and no verification query, that achieves
advantage 𝑞(𝑞 − 1)/2AE.kl+3.

Suppose that under AE, a ciphertext is always at least as long as the cor-
responding plaintext. Fix an arbitrary message 𝑀 such that |𝑀 | ≥ AE.kl + 2.
Fix a nonce 𝑁 and associated data 𝐴. The adversary 𝒜 attacks 𝑞 users, and
for each user 𝑖, it queries Enc(𝑖, 𝑁, 𝑀, 𝐴) to get answer 𝐶𝑖. If there are distinct
𝑖 and 𝑗 such that 𝐶𝑖 = 𝐶𝑗 then it outputs 1, hoping that users 𝑖 and 𝑗 have
the same key. For analysis, we need the following well-known result; see, for
example, [13, Chapter 5.8] for a proof.

Lemma 2 (Lower bound for birthday attack). Let 𝑞, 𝑁 ≥ 1 be integers
such that 𝑞 ≤

√
2𝑁 . Suppose that we throw 𝑞 balls at random into 𝑁 bins. Then

the chance that there is a bin of at least two balls is at least 𝑞(𝑞−1)
4𝑁 .

From Lemma 2 above, in the real world, the adversary will output 1 if two users
have the same key, which happens with probability at least 𝑞(𝑞 − 1)/2AE.kl+2.
In contrast, since the ciphertexts are at least |𝑀 |-bit long, in the ideal world, it
outputs 1 with probability at most 𝑞(𝑞 − 1)/2|𝑀 |+1 ≤ 𝑞(𝑞 − 1)/2AE.kl+3. Hence

Advmu-mrae
AE,𝛱 (𝒜) ≥ 𝑞(𝑞 − 1)

2AE.kl+2 −
𝑞(𝑞 − 1)
2AE.kl+3 = 𝑞(𝑞 − 1)

2AE.kl+3 .

3.2 Multi-user PRF Security

We consider keyed functions F : {0, 1}F.kl×{0, 1}F.il → {0, 1}F.ol, possibly making
queries to an ideal primitive 𝛱. Here, note that we allow F.il = *, indicating a
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Game Gmu-prf
F,KeyGen,𝛱(𝒜)

𝑣 ← 0; st0 ← ∅
𝑏←$ {0, 1}
𝑏′←$𝒜New,Eval,Prim

Return (𝑏′ = 𝑏)

New(aux)
𝑣 ← 𝑣 + 1
(𝐾𝑣, st𝑣)←$ KeyGen(st𝑣−1, aux)
𝜌𝑣 ←$ Func(F.il, F.ol)
𝐾𝑣 ←$ {0, 1}F.kl

Eval(𝑖, 𝑀)
If 𝑖 /∈ {1, . . . , 𝑣} return ⊥
𝑌1 ← FPrim(𝐾𝑖, 𝑀)
𝑌0←$ 𝜌𝑖(𝑀)
Return 𝑌𝑏

Fig. 2: Definitions of multi-user PRF security. Again, Prim implements the ideal prim-
itive 𝛱.

variable-input-length function. We define a variant of the standard multi-user
version of PRF security from [4] using (as in the previous section) a general
algorithm KeyGen to sample possibly correlated keys.

Concretely, let Func(il, ol) be the set of all functions {0, 1}il → {0, 1}ol, where,
once again, il = * is allowed. We give the multi-user PRF security game in
Figure 2, on the left. There, F’s access to 𝛱 is modeled by having oracle access
to Prim, here. For any adversary 𝒜, and key generation algorithm KeyGen, we
define

Advmu-prf
F,KeyGen,𝛱(𝒜) = 2 · Pr

[︁
Gmu-prf

F,KeyGen,𝛱(𝒜)
]︁
− 1 .

As usual, we will omit KeyGen when it is the canonical key generator outputting
independent random keys.

3.3 Decomposing AE Security

While the notion mu-mrae is very strong, it might be difficult to prove that
an AE scheme, say AES-GCM-SIV meets this notion, if one aims for beyond-
birthday bounds. We therefore decompose this notion into separate privacy and
authenticity notions, as defined below.

Privacy. Consider the game Gmu-priv
AE,KeyGen,𝛱(𝒜) in Fig. 3 that defines the (misuse-

resistant) privacy of an AE scheme AE, with respect to a key-generation algo-
rithm KeyGen, and an ideal primitive 𝛱. Define

Advmu-priv
AE,KeyGen,𝛱(𝒜) = 2 Pr[Gmu-priv

AE,KeyGen,𝛱(𝒜)]− 1 .

Under this notion, the adversary is given access to an encryption oracle that
either implements the true encryption or returns a random string of appropri-
ate length, but there is no decryption oracle. If the adversary repeats a prior
encryption query then this query will be ignored.

Authenticity. Consider the game Gmu-auth
AE,KeyGen,𝛱(𝒜) in Fig. 3 that defines the

(misuse-resistant) authenticity of an AE scheme AE, with respect to a key-
generation algorithm KeyGen, and an ideal primitive 𝛱. Define

Advmu-auth
AE,KeyGen,𝛱(𝒜) = 2 Pr[Gmu-auth

AE,KeyGen,𝛱(𝒜)]− 1 .

Under this notion, initially a bit 𝑏 is set to 0 and the adversary is given an
encryption oracle that always implements the true encryption, and a verification
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Game Gmu-priv
AE,KeyGen,𝛱(𝒜)

𝑣 ← 0; st0 ← 𝜀; 𝑏←$ {0, 1}
𝑏′←$𝒜New,Enc,Prim

Return (𝑏′ = 𝑏)

New(aux)
𝑣 ← 𝑣 + 1
(𝐾𝑣, st𝑣)←$ KeyGen(st𝑣−1, aux)

Enc(𝑖, 𝑁, 𝑀, 𝐴)
If 𝑖 /∈ {1, . . . , 𝑣} then return ⊥
If (𝑖, 𝑁, 𝑀, 𝐴) ∈ 𝑈 [𝑖] then return ⊥
𝐶1 ← AE.EPrim(𝐾𝑖, 𝑁, 𝑀, 𝐴)
𝐶0←$ {0, 1}|𝐶1|

𝑈 [𝑖]← 𝑈 [𝑖] ∪ {(𝑖, 𝑁, 𝑀, 𝐴)}
Return 𝐶𝑏

Game Gmu-auth
AE,KeyGen,𝛱(𝒜)

𝑣 ← 0; st0 ← 𝜀; 𝑏← 0
𝒜New,Enc,Vf,Prim

Return (𝑏 = 1)

New(aux)
𝑣 ← 𝑣 + 1
(𝐾𝑣, st𝑣)←$ KeyGen(st𝑣−1, aux)

Enc(𝑖, 𝑁, 𝑀, 𝐴)
If 𝑖 /∈ {1, . . . , 𝑣} then return ⊥
𝐶 ← AE.EPrim(𝐾𝑖, 𝑁, 𝑀, 𝐴)
𝑉 [𝑖]← 𝑉 [𝑖] ∪ {(𝑖, 𝑁, 𝐶, 𝐴)}
Return 𝐶

Vf(𝑖, 𝑁, 𝐶, 𝐴)
If 𝑖 ̸∈ {1, . . . , 𝑣} then return ⊥
If (𝑖, 𝑁, 𝐶, 𝐴) ̸∈ 𝑉 [𝑖] then

𝑀 ← AE.DPrim(𝐾𝑖, 𝑁, 𝐶, 𝐴)
If (𝑀 ̸= ⊥) then 𝑏← 1

Fig. 3: Games to define privacy(left), and authenticity (right) of an AE
scheme AE with respect to a key-generation algorithm KeyGen : 𝒦 × 𝒩 →
{0, 1}AE.kl. The oracle Prim implements the ideal primitive 𝛱. In the authenticity
notion, queries to Vf must be performed after all queries to Enc.

oracle. We require that verification queries be made after all evaluation queries.
On a verification (𝑖, 𝑁, 𝐶, 𝐴), if there is a prior encryption query (𝑖, 𝑁, 𝑀, 𝐴) for
an answer 𝐶, then the oracle ignores this query. Otherwise, the oracle sets 𝑏← 1
if AE.DPrim(𝐾𝑖, 𝑁, 𝐶, 𝐴) returns a non-⊥ answer. The goal of the adversary is
to set 𝑏 = 1.

Relations. Note that in the mrae notion, the adversary can perform encryption
and verification queries in an arbitrary order. In contrast, in the authenticity
notion, the adversary can only call the verification oracle after it finishes querying
the encryption oracle. Still, in Proposition 1 below, we show that authenticity
and privacy tightly implies mrae security. See Appendix C.

Proposition 1. Let AE be an AE scheme associated with a key-generation al-
gorithm KeyGen and an ideal primitive 𝛱. Suppose that a ciphertext in AE is
always at least 𝑛-bit longer than the corresponding plaintext. For any adversary
𝒜0 that makes 𝑞𝑣 verification queries, we can construct adversaries 𝒜1 and 𝒜2
such that

Advmu-mrae
AE,KeyGen,𝛱(𝒜0) ≤ Advmu-priv

AE,KeyGen,𝛱(𝒜1) + Advmu-auth
AE,KeyGen,𝛱(𝒜2) + 2𝑞𝑣

2𝑛
.
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Any query of 𝒜1 or 𝒜2 is produced directly from 𝒜0. If 𝒜0 is 𝑑-repeating then
so are 𝒜1 and 𝒜2.

4 Multi-User Security of Basic Symmetric Schemes

4.1 Security of Counter-Mode Encryption

We study the mu-security of counter mode encryption, or CTR for short. While
this is interesting on its own right (we are not aware of any analysis achieving a
comparable bound in the literature), we will also use Theorem 1 below to obtain
security results for AES-GCM-SIV. For this reason, we introduce some extra
notions to handle the degree of generality needed for our proof. Also, our result
is general enough to suggest an efficient solution to the re-keying problem first
studied by Abdalla and Bellare [1].

General IVs. We will consider a general IV-increasing procedure add, which is
associated with some maximal message length of 𝐿max blocks, and a block length
𝑛. In particular, add takes an 𝑛-bit string IV and an offset 𝑖 ∈ {0, . . . , 𝐿max − 1}
as inputs, and is such that add(IV, 𝑖) returns an 𝑛-bit string, and for all IV, the
strings add(IV, 0), . . . , add(IV, 𝐿max − 1) are distinct. We also say that add has
min-entropy ℎ if for a random 𝑛-bit IV, and every 𝑖 ∈ Z𝐿max , add(IV, 𝑖) takes any
value with probability at most 2−ℎ, i.e., its min-entropy is at least ℎ.

For example, the canonical IV addition is such that add(IV, 𝑖) = IV + 𝑖
(mod 2𝑛), where we identify 𝑛-bit strings with integers in Z2𝑛 . Here, 𝐿max = 2𝑛.
In contrast, the AES-GCM-SIV will use CTR with 𝐿max = 232, 𝑛 = 128, and
add(IV, 𝑖) = 1 ‖ IV[2, 96] ‖ (IV[97, 128] + 𝑖 (mod 232)). Clearly, here, the min-
entropy is 127 bits, due to the first bit being set to one.

CTR encryption. Let 𝐸 : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛 be a block cipher,
i.e., 𝐸(𝐾, ·) is a permutation for all 𝑘-bit 𝐾. We denote 𝐸(𝐾, ·) = 𝐸𝐾(·), and
𝐸−1

𝐾 is the inverse of 𝐸𝐾 . Further, let add be a general IV-increasing procedure
with maximal block length 𝐿max. We define the IV-based encryption scheme
CTR = CTR[𝐸, add] with CTR.kl = 𝑘, and where encryption operates as follows
(where we use 𝑛← to denote some function which pads a message 𝑀 into 𝑛-bit
blocks).

CTR.E(𝐾, 𝑀):
𝐶[0]← IV←$ {0, 1}𝑛, 𝑀 [1], . . . , 𝑀 [ℓ] 𝑛←𝑀
If ℓ > 𝐿max then return ⊥
For 𝑖 = 1 to ℓ do 𝐶[𝑖]← 𝐸𝐾(add(IV, 𝑖− 1))⊕𝑀 [𝑖]
Return 𝐶[0] ‖ 𝐶[1] ‖ · · · ‖ 𝐶[ℓ]

Decryption CTR.D re-computes the masks 𝐸𝐾(add(IV, 𝑖 − 1)) using 𝐶[0] = IV,
and then retrieves the message blocks by xoring the masks to the ciphertext.
Here, we assume without loss of generality messages are padded (e.g., PKCS#7),
so that they are split uniquely into full-length 𝑛-bit blocks. Our result extends
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easily to the more common padding-free variant where the last block is allowed
to be shorter than 𝑛 bits, and the output of 𝐸𝐾(add(IV, ℓ− 1)) is truncated ac-
cordingly, since an adversary can simulate the padding-free version by removing
the appropriate number of bits from the received ciphertexts.

Security of CTR. We establish the (CPA) security of randomized CTR in
the ideal-cipher model for an arbitrary key-generation algorithm KeyGen which
produces keys that collide with small probability. In particular, we say that
KeyGen is 𝛼-smooth if for a sequence of keys (𝐾1, . . . , 𝐾𝑢) output by an arbitrary
interaction with New, we have Pr[𝐾𝑖 = 𝐾] ≤ 𝛼 for all 𝑖 and 𝐾 ∈ {0, 1}𝑘, and
Pr[𝐾𝑖 = 𝐾𝑗 ] ≤ 𝛼 for all 𝑖 ̸= 𝑗. The canonical KeyGen is 𝛼-smooth for 𝛼 = 2−𝑘.
See Appendix D for the proof.

Theorem 1. Let 𝐸 be modeled as an ideal cipher, add have min-entropy ℎ, and
KeyGen be 𝛼-smooth. Further, let 𝐿, 𝐵 ≥ 1 such that 𝐿 ≤ 2(1−𝜖)ℎ−1, for some
𝜖 ∈ (0, 1], and let 𝒜 be an adversary that queries Enc for at most 𝐿 𝑛-bit blocks,
and at most 𝐵 blocks for each user, and makes 𝑝 Prim queries. Then,

Advmu-ind
CTR[𝐸,add],KeyGen,𝐸(𝒜) ≤ 2−𝑛/2 +

(︀
𝐿𝐵 + 𝐿2𝛼

)︀
·
(︂

1
2𝑛

+ 1
2ℎ

)︂
+ 𝑎𝑝𝛼 ,

where 𝑎 :=
⌈︀ 1.5𝑛

𝜖ℎ

⌉︀
− 1.

The bound highlights the benefits when each user only encrypts 𝐵 blocks.
In particular, assume ℎ = 𝑛, 𝛼 = 1/2𝑘. If 𝐵 = 2𝑏, then the number 𝐿 of blocks
encrypted overall by the scheme can be as high as 2𝑛−𝑏. (The second term has
𝐿2 in the numerator, but the denominator is much larger, i.e., 2𝑛+𝑘.) Another
interesting feature is that the contribution of Prim queries to the bound is
independent of the number of users and 𝐿.

More on the bound. Previous works [16,20] implicitly give mu security bounds
for CTR, but adopt a different model, where the adversary is a-priori constrained
in (1) the number of queries 𝑞, (2) a bound 𝐵𝑖 on the number of blocks encrypted
per user 𝑖 ∈ [𝑢]. The resulting bounds contain a leading term

∑︀𝑢
𝑖=1 𝐵2

𝑖 /2𝑛,
assuming no primitive queries are made (adding primitive queries 𝑝 only degrades
the bound). This is essentially what one can obtain by applying a naïve hybrid
argument to the single-user analysis. We discussed the disadvantage of such a
bound in the introduction already.

Re-keying, revisited. Also, in contrast to previous works, the above result
holds for an arbitrary KeyGen, and only requires very weak randomness from it.
This suggests a new and efficient solutions for the re-keying problem of [1]. Let
𝐻 : {0, 1}𝑘 × {0, 1}* → {0, 1}𝑘 be a hash function, and let KeyGen, on input
aux ∈ {0, 1}*, simply output 𝐻(𝐾, aux) for some master secret key 𝐾, and this
KeyGen is 𝛼-smooth if 𝐻 is for example POLYVAL from AES-GCM-SIV, where
𝛼 = ℓ/2𝑘, and ℓ is an upper bound on the length of aux. We can assume ℓ to be
fixed to something short, even 1. Indeed, aux could be a counter, or some other
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short string. The resulting bound (when ℎ = 𝑛) would be 2−𝑛/2 + 2𝐿𝐵
2𝑛 + 2𝐿2

2𝑛+𝑘 +
𝑎𝑝/2𝑘. Note that this solution heavily exploits the ideal-cipher model – clearly,
we are indirectly assuming some form of related-key security on 𝐸 implicitly,
and one should carefully assess the security of 𝐸 in this setting.

The results in the model of Abdalla and Bellare [1] are weaker in that they
only study more involved key-derivation methods (but with the benefit of a
standard-model security reduction), in a more constrained model, where the
adversary sequentially queries 𝐵 blocks on a key, before moving to the next
key. Our model, however, is adaptive, as the adversary can distribute queries
as it pleases across users. But difference is not only qualitative, as quantitative
bounds in [1] are obtained via naïve hybrid arguments.

4.2 Security of GMAC+

This section deals with an abstraction of GMAC+, the PRF used within the AES-
GCM-SIV mode of operation. We show good mu bounds for this construction.
The ideas extend similarly to various Wegman-Carter type MACs [34], but we
focus here on GMAC+.

The GMAC+ construction. The construction relies on a hash function 𝐻 :
{0, 1}𝑛 × {0, 1}* × {0, 1}* → {0, 1}𝑛, which is meant to satisfy the following
properties. (We employ the shorthand 𝐻𝐾(𝑀, 𝐴) = 𝐻(𝐾, 𝑀, 𝐴).)

Definition 1. Let 𝐻 : {0, 1}𝑛 × {0, 1}* × {0, 1}* → {0, 1}𝑛. We say that 𝐻 is
𝑐-almost XOR universal if for all (𝑀, 𝐴) ̸= (𝑀 ′, 𝐴′), and all 𝛥 ∈ {0, 1}𝑛, and
𝐾←$ {0, 1}𝑛,

Pr[𝐻𝐾(𝑀, 𝐴)⊕𝐻𝐾(𝑀 ′, 𝐴′) = 𝛥] ≤ 𝑐 ·max{|𝑀 |𝑛 + |𝐴|𝑛, |𝑀 ′|𝑛 + |𝐴′|𝑛}
2𝑛

,

where |𝑋|𝑛 = max{1, ⌈|𝑋| /𝑛⌉} is the block length of string 𝑋, as defined in
Section 2. Further, we say it is 𝑐-regular if for all 𝑌 ∈ {0, 1}𝑛, 𝑀, 𝐴 ∈ {0, 1}*,
and 𝐾←$ {0, 1}𝑛,

Pr[𝐻𝐾(𝑀, 𝐴) = 𝑌 ] ≤
𝑐 · (|𝑀 |𝑛 + |𝐴|𝑛)

2𝑛
.

We say it is weakly 𝑐-regular if this is only true for (𝑀, 𝐴) ̸= (𝜀, 𝜀), and
𝐻𝐾(𝜀, 𝜀) = 0𝑛 for all 𝐾.

Remark 1. Note that for POLYVAL as used in AES-GCM-SIV, we can set 𝑐 =
1.5 provided that we exclude the empty string as input. This is because the
empty string results in POLYVAL outputting 0𝑛 regardless of the key, and thus
POLYVAL is only weakly 𝑐-regular. It is easy to fix POLYVAL so that this does
not happen (as the input is padded with its length, it is sufficient to ensure that
the length padding of the empty string contains at least one bit with value 1).
See Appendix B for more details.
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We also consider a generic function xor : {0, 1}𝑛 × {0, 1}nl → {0, 1}𝑛, for
nl < 𝑛, which is meant to add a nonce to a string. In particular, we require:
(1) 𝜆-regularity: For every 𝑁 ∈ {0, 1}nl and 𝑍 ∈ {0, 1}𝑛, there are at most
𝜆 strings 𝑌 ∈ {0, 1}𝑛 such that xor(𝑌, 𝑁) = 𝑍, (2) injectivity: For every 𝑌 ,
xor(𝑌, ·) is injective, and (3) linearity: For every 𝑌, 𝑌 ′, 𝑁, 𝑁 ′, we have xor(𝑌, 𝑁)⊕
xor(𝑌 ′, 𝑁 ′) = xor(𝑌 ⊕ 𝑌 ′, 𝑁 ⊕𝑁 ′).

Example 1. In GCM-SIV and AES-GCM-SIV, one uses

xor(𝑌, 𝑁) = 0 ‖ (𝑌 ⊕ 0𝑛−nl𝑁)[2 : 𝑛] .

This is clearly 2-regular, injective, and linear. Note that here it is important to
prepend 0’s to the nonce 𝑁 ; if one instead appends 0’s to 𝑁 then injectivity of
xor will be destroyed.

Given 𝐻 and xor, as well as a block cipher 𝐸 : {0, 1}𝑘×{0, 1}𝑛 → {0, 1}𝑛, we
define GMAC+ = GMAC+[𝐻, 𝐸, xor] : {0, 1}𝑘+𝑛× ({0, 1}*×{0, 1}*×{0, 1}nl)→
{0, 1}𝑛 such that

GMAC+(𝐾in ‖𝐾out, (𝑀, 𝐴, 𝑁)) = 𝐸𝐾out(xor(𝐻𝐾in(𝑀, 𝐴), 𝑁)) . (2)

Mu-prf security of GMAC+. We upper bound the mu prf advantage for
GMAC+; see Appendix E for the proof. We stress here that the adversary’s
Eval queries have form (𝑖, 𝑀, 𝐴, 𝑁), and the length of such queries is implicitly
defined as |𝑀 |𝑛 + |𝐴|𝑛.

We also consider an arbitrary KeyGen algorithm, which outputs pairs of keys
(𝐾𝑖

in, 𝐾𝑖
out) ∈ {0, 1}𝑛 × {0, 1}𝑘. We will only require these keys to be pairwise-

close to uniform, i.e., we say that KeyGen is 𝛽-pairwise almost uniform (AU)
if for every 𝑖 ̸= 𝑗, the distribution of (𝐾𝑖

in, 𝐾𝑖
out), (𝐾𝑗

in, 𝐾𝑗
out) is such that very

pair of (𝑛+𝑘)-bit strings appears with probability at most 𝛽 1
22(𝑛+𝑘) . Clearly, the

canonical KeyGen satisfies this with 𝛽 = 1, but we will be for instance interested
later on in cases where 𝛽 = 1 + 𝜖 for some small constant 𝜖 > 0.

Theorem 2 (Security of GMAC+). Let 𝐻 : {0, 1}𝑛 × {0, 1}* × {0, 1}* →
{0, 1}𝑛 be 𝑐-almost xor universal and 𝑐-regular, KeyGen be 𝛽-pairwise AU, xor be
injective, linear, and 𝜆-regular, and let 𝐸 : {0, 1}𝑘×{0, 1}𝑛 → {0, 1}𝑛 be a block
cipher, which we model as an ideal cipher. Then, for any adversary 𝒜 making 𝑞
Eval queries of at most 𝐿 𝑛-bit blocks (with at most 𝐵 blocks queries per user),
as well as 𝑝 ideal-cipher queries,

Advmu-prf
GMAC+[𝐻,𝐸,xor],𝐵,𝐸(𝒜) ≤ (1 + 𝐶)𝑞𝐵

2𝑛
+ 𝐶𝐿(𝑝 + 𝑞) + 𝛽𝑞2

2𝑛+𝑘
, (3)

where 𝐶 := 𝑐 · 𝜆 · 𝛽.

Here, parameters are even better than in the case of counter-mode, but this
is in part due to the longer key. In particular, this being PRF security, it is
unavoidable that security is compromised when more than 2(𝑘+𝑛)/2 users are
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involved. The interesting fact is that partial key collisions (i.e., a collision in the
hash keys or in the cipher keys) alone do not help.

For example, take 𝑘 = 𝑛 = 128, 𝐶 = 𝛽 = 1, 𝐵 = 232, 𝐿 = 𝑞𝐵, 𝑞 ≤ 295, then
the bound becomes roughly 𝑞/295 +𝑝/2128, and note that this is when processing
up to 2128 blocks of data.

Weak regularity. We also provide a version of Theorem 2 for the case where
𝐻 is only weakly 𝑐-regular. We stress that the security loss is substantial here
(and thus if using GMAC+ alone, one should rather make sure 𝐻 is 𝑐-regular),
but nonetheless the security is preserved in the case where a nonce 𝑁 is reused
across a sufficiently small number 𝑑 of users. A proof sketch is in Appendix E.1.

Theorem 3 (Security of GMAC+, weak regularity). Let 𝐻 : {0, 1}𝑛 ×
{0, 1}*×{0, 1}* → {0, 1}𝑛 be 𝑐-almost xor universal and weakly 𝑐-regular, KeyGen
be 𝛽-pairwise AU, xor be injective, linear, and 𝜆-regular, and let 𝐸 : {0, 1}𝑘 ×
{0, 1}𝑛 → {0, 1}𝑛 be a block cipher, which we model as an ideal cipher. Then,
for any adversary 𝒜 making 𝑞 Eval queries of at most 𝐿 𝑛-bit blocks (with at
most 𝐵 blocks queries per user), as well as 𝑝 ideal-cipher queries,

Advmu-prf
GMAC+[𝐻,𝐸,xor],𝐵,𝐸(𝒜) ≤ (1 + 𝐶)𝑞𝐵

2𝑛
+ 𝐶𝐿(𝑝 + 2𝑞) + 𝛽𝑞2

2𝑛+𝑘
+ 𝑑(𝑝 + 𝑞)

2𝑘
, (4)

where 𝐶 := 𝑐 · 𝜆 · 𝛽, and 𝑑 is a bound on the number of users re-using any given
nonce.

5 SIV Composition with Key Reuse

SIV with key reuse. Let 𝐸 : {0, 1}𝑘×{0, 1}𝑛 → {0, 1}𝑛 be a blockcipher that
we will model as an ideal cipher. Let F : {0, 1}F.kl×𝒩×{0, 1}*×{0, 1}* → {0, 1}*
be a keyed function, with F.kl ≥ 𝑘. Let SE : {0, 1}𝑘 × {0, 1}* → {0, 1}* be an
IV-based encryption scheme of IV length 𝑛. Both F and SE are built on top of 𝐸.
In a generic SIV composition, the key 𝐾in ‖𝐾out of F and the key 𝐽 of SE will
be chosen independently. However, for efficiency, it would be convenient if one
can reuse 𝐾out = 𝐽 , which GCM-SIV does. Formally, let AE = SIV[F, SE] be the
AE scheme as defined in Fig. 4.

Results. We consider security of the SIV construction for F = GMAC+ and SE =
CTR. We assume that GMAC+ and CTR use functions xor and add, respectively,
such that (1) xor is 2-regular, injective, and linear, and xor(𝑋, 𝑁) ∈ 0{0, 1}𝑛−1

for every string 𝑋 ∈ {0, 1}𝑛 and every nonce 𝑁 ∈ {0, 1}nl, and (2) add has min-
entropy 𝑛−1, and add(IV, ℓ) ∈ 1{0, 1}𝑛−1 for every IV ∈ {0, 1}𝑛 and every ℓ ∈ N.
(Those notions for add and xor can be found in Section 4.1 and Section 4.2 respec-
tively.) This assumption holds for the design choice of AES-GCM-SIV. We thus
only write CTR[𝐸] or GMAC+[𝐻, 𝐸] instead of CTR[𝐸, add] or GMAC+[𝐻, 𝐸, xor].
Below, we show the mu-mrae security of SIV[GMAC+[𝐻, 𝐸], CTR[𝐸]], with re-
spect to a pairwise AU KeyGen, and a 𝑐-regular, 𝑐-AXU hash function 𝐻; the
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AE.E(𝐾in ‖𝐾out, 𝑁, 𝑀, 𝐴)
IV← F(𝐾in ‖𝐾out, 𝑁, 𝑀, 𝐴)
𝐶 ← SE.E𝐸(𝐾out, 𝑀 ; IV)
Return 𝐶

AE.D(𝐾in ‖𝐾out, 𝑁, 𝐶, 𝐴)
IV ‖ 𝐶′ ← 𝐶; 𝑀 ← SE.D𝐸(𝐾out, 𝐶)
𝑇 ← F𝐸(𝐾in ‖𝐾out, 𝑁, 𝑀, 𝐴)
If 𝑇 ̸= IV then return ⊥ else return 𝑀

Fig. 4: The SIV construction (with key reuse) AE = SIV[F, SE] that is built on
top of an ideal cipher 𝐸.

notion of pairwise AU for key-generation algorithms can be found in Section 4.2.
See Appendix F for the proof.

Theorem 4 (Security of SIV). Let 𝐸 : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛 be a
blockcipher that we will model as an ideal cipher. Fix 0 < 𝜖 < 1. Let 𝐻 :
{0, 1}𝑛 × {0, 1}* × {0, 1}* → {0, 1}* be a 𝑐-regular, 𝑐-AXU hash. Let AE ←
SIV[GMAC+[𝐻, 𝐸], CTR[𝐸]]. Then for any 𝛽-pairwise AU KeyGen and for any
adversary 𝒜 that makes at most 𝑞 encryption/verification queries whose total
block length is at most 𝐿 ≤ 2(1−𝜖)𝑛−4, and encryption queries of at most 𝐵
blocks per user, and 𝑝 ≤ 2(1−𝜖)𝑛−4 ideal-cipher queries,

Advmu-mrae
AE,KeyGen,𝐸(𝒜) ≤ 1

2𝑛/2 + 𝛽𝑎𝑝

2𝑘
+ (3𝛽𝑐 + 7𝛽)𝐿2 + 4𝛽𝑐𝐿𝑝

2𝑛+𝑘

+(4𝑐𝛽 + 0.5𝛽 + 6.5)𝐿𝐵

2𝑛
,

where 𝑎 = ⌈1.5𝑛/(𝑛− 1)𝜖⌉ − 1.

Remarks. The proof of Theorem 4 only needs to know that the mu-ind proof
of CTR and the mu-prf proof of GMAC+ follow some high-level structure that
we will describe below. We do not need to know any other specific details about
those two proofs. This saves us the burden of repeating the entire prior proofs
in Section 4.1 and Section 4.2. The mu-ind proof of CTR uses the 𝐻-coefficient
technique and follows this canonical structure:

(i) When the adversary finishes querying, we grant it all the keys. Note that in
the ideal world, the keys are still created but not used.

(ii) For each ideal-cipher query 𝐸𝐾(𝑋) for answer 𝑌 , the transcript correspond-
ingly stores an entry (prim, 𝐾, 𝑋, 𝑌, +). Likewise, for each query 𝐸−1(𝐾, 𝑌 )
for answer 𝑋, the transcript stores an entry (prim, 𝐾, 𝑋, 𝑌,−). For each
query Enc(𝑖, 𝑀) with answer 𝐶, we store an entry (enc, 𝑖, 𝑀, 𝐶).

(iii) When the adversary finishes querying, for each entry (enc, 𝑖, 𝑀, 𝐶), in the
real world, we grant it a table that stores all triples (𝐾𝑖, 𝑋, 𝐸(𝐾𝑖, 𝑋)) for
all queries 𝐸(𝐾𝑖, 𝑋) that CTR.E[𝐸](𝐾𝑖, 𝑀 ; 𝑇 ) makes, where 𝐾𝑖 is the key
of user 𝑖 and 𝑇 is the IV of 𝐶. In the ideal world, the proof generates
a corresponding fake table as follows. If we consider the version of CTR
in which messages are padded (e.g., PKCS#7), then one can first parse



21

IV‖𝐶1‖ · · · ‖𝐶𝑚
𝑛← 𝐶 and 𝑀1‖ · · · ‖𝑀𝑚

𝑛←𝑀 and then return (𝐾𝑖, 𝑋1, 𝐶1⊕
𝑀1), . . . , (𝐾𝑖, 𝑋𝑚, 𝐶𝑚 ⊕𝑀𝑚), where 𝑋𝑖 = add(IV, 𝑖 − 1) and we use 𝑛← to
denote some function that pads a message into 𝑛-bit blocks. If one uses the
well-known padding-free version of CTR where the last block of the message
is allowed to be shorter than 𝑛-bit, then one first pads 𝐶 with random bits
so that the last fragmentary block becomes 𝑛-bit long, and likewise pads 𝑀
with 0’s so that the last fragmentary block becomes 𝑛-bit long, and then
proceeds as above. (This step can be optionally omitted for the padding
version since the adversary can generate the table by itself.)

(iv) Consider a transcript 𝜏 . If there are two tables 𝒯1 and 𝒯2 in 𝜏 that contain
triples (𝐾, 𝑋, 𝑌 ) and (𝐾, 𝑋 ′, 𝑌 ′) respectively, and either 𝑋 = 𝑋 ′, or 𝑌 = 𝑌 ′,
then 𝜏 must be considered bad. If there is a table 𝒯 that contains triples
(𝐾, 𝑋, 𝑌 ) and (𝐾, 𝑋 ′, 𝑌 ′) such that either 𝑋 = 𝑋 ′, or 𝑌 = 𝑌 ′, then 𝜏 is
also considered bad. In addition, if there is a table 𝒯 that contains a triple
(𝐾, 𝑋, 𝑌 ), and there is an entry (prim, 𝐾, 𝑋 ′, 𝑌 ′, ·), and either 𝑋 = 𝑋 ′ or
𝑌 = 𝑌 ′, then 𝜏 is considered bad. The proof may define some other criteria
for badness of transcripts.

We say that a CTR transcript is CTR-bad if it is bad according to the criteria
defined by the proof of Theorem 1. (Note that although not all of those criteria
are specified in the structure above, it is enough for our purpose, as our proof of
Theorem 4 does not need to know those specific details.) The proof of GMAC+

also follows a similar high-level structure. We say that a GMAC+ transcript
is GMAC+-bad if it is bad according to the criteria defined by the proof of
Theorem 2.

Weak regularity. We also provide a version of Theorem 4 for the case where
𝐻 is only weakly 𝑐-regular. Again, the security loss is substantial here, but
security is preserved if each nonce is reused across a sufficiently small number 𝑑
of users. A proof sketch is given in Appendix F.1.

Theorem 5 (Security of SIV, weak regularity). Let 𝐸 : {0, 1}𝑘×{0, 1}𝑛 →
{0, 1}𝑛 be a blockcipher that we will model as an ideal cipher. Fix 0 < 𝜖 < 1.
Let 𝐻 : {0, 1}𝑛 × {0, 1}* × {0, 1}* → {0, 1}* be a weakly 𝑐-regular, 𝑐-AXU hash.
Let AE← SIV[GMAC+[𝐻, 𝐸], CTR[𝐸]]. Then for any 𝛽-pairwise AU KeyGen and
for any adversary 𝒜 that makes at most 𝑞 encryption/verification queries whose
total block length is at most 𝐿 ≤ 2(1−𝜖)𝑛−4, and encryption queries of at most 𝐵
blocks per user, and 𝑝 ≤ 2(1−𝜖)𝑛−4 ideal-cipher queries,

Advmu-mrae
AE,KeyGen,𝐸(𝒜) ≤ 1

2𝑛/2 + 𝛽𝑎𝑝

2𝑘
+ (3𝛽𝑐 + 7𝛽)𝐿2 + 4𝛽𝑐𝐿𝑝

2𝑛+𝑘

+(4𝑐𝛽 + 0.5𝛽 + 6.5)𝐿𝐵

2𝑛
+ 𝑑𝑝 + (2𝑑 + 𝑎)𝐿

2𝑘
,

where 𝑎 = ⌈1.5𝑛/(𝑛− 1)𝜖⌉− 1, and 𝑑 is a bound on the number of users re-using
any given nonce.
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6 AES-GCM-SIV with A Generic Key-Derivation

In this section we consider the mu-mrae security of AES-GCM-SIV with respect
to a quite generic class of key-derivation functions. This class includes the current
KDF KD0 of AES-GCM-SIV, but it contains another KDF KD1 that is not only
simpler but also twice faster. This KD1 was the original KDF in AES-GCM-SIV,
but then subsequently replaced by KD0. Our multi-user bound is even better than
the single-user bound of Gueron and Lindell [16]. In this section, we assume
that GMAC+ and CTR use functions xor and add, respectively, such that (1) xor
is 2-regular, injective, and linear, and xor(𝑋, 𝑁) ∈ 0{0, 1}𝑛−1 for every string
𝑋 ∈ {0, 1}𝑛 and every nonce 𝑁 ∈ 𝒩 = {0, 1}nl, and (2) add has min-entropy
𝑛−1, and add(IV, ℓ) ∈ 1{0, 1}𝑛−1 for every IV ∈ {0, 1}𝑛 and every ℓ ∈ N. (Those
notions for add and xor can be found in Section 4.1 and Section 4.2 respectively.)
This assumption holds for the design choice of AES-GCM-SIV. We thus only
write CTR[𝐸] or GMAC+[𝐻, 𝐸] instead of CTR[𝐸, add] or GMAC+[𝐻, 𝐸, xor].

Below, we will formalize the Key-then-Encrypt transform that captures the way
AES-GCM-SIV generates session keys for every encryption/decryption. We then
describe our class of KDFs.

The KtE transform. Let AE be an AE scheme of nonce space 𝒩 and let KD :
𝒦 × 𝒩 → {0, 1}AE.kl be a key-derivation function. Given KD and AE, the Key-
then-Encrypt (KtE) transform constructs another AE scheme AE = KtE[KD, AE]
as shown in Fig. 5.

AE.E(𝐾, 𝑁, 𝑀, 𝐴)
𝐽 ← KD(𝐾, 𝑁); 𝐶 ← AE.E(𝐽, 𝑁, 𝑀, 𝐴)
Return 𝐶

AE.D(𝐾, 𝑁, 𝐶, 𝐴)
𝐽 ← KD(𝐾, 𝑁); 𝑀 ← AE.D(𝐽, 𝑁, 𝐶, 𝐴)
Return 𝑀

Fig. 5: The AE scheme AE = KtE[KD, AE] constructed from an AE scheme AE
and a key-derivation function KD, under the KtE transform.

Natural KDFs. Let 𝑛 ≥ 1 be an integer and let 𝑘 ∈ {𝑛, 2𝑛}. Let 𝐸 :
{0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛 be a blockcipher that we will model as an ideal
cipher. Let pad : 𝒩 × {0, . . . , 5} → {0, 1}𝑛 be a padding mechanism such
that pad(𝑁0, 𝑠0) ̸= pad(𝑁1, 𝑠1) for every distinct pairs (𝑁0, 𝑠0), (𝑁1, 𝑠1) ∈ 𝒩 ×
{0, . . . , 5}. Let KD[𝐸] : {0, 1}𝑘×𝒩 → {0, 1}𝑛+𝑘 be a KDF that is associated with
a deterministic algorithm KD.Map : ({0, 1}𝑛)6 → {0, 1}𝑛+𝑘. We say that KD[𝐸]
is natural if on input (𝐾, 𝑁), KD[𝐸] first calls 𝑅0 ← 𝐸(𝐾, pad(𝑁, 0)), . . . , 𝑅5 ←
𝐸(𝐾, pad(𝑁, 5)), and then returns KD.Map(𝑅0, . . . , 𝑅5).

It might seem arbitrary to limit the number of blockcipher calls of a natural
KDF to six. However, note that since 𝑘 ≤ 2𝑛, the block length of each (𝑘 + 𝑛)-
bit derived key is at most three. All known good constructions, which we list
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KD0[𝐸](𝐾, 𝑁)
For 𝑠 = 0 to 5 do 𝑅𝑠 ← 𝐸𝐾(pad(𝑁, 𝑠))
For 𝑖 = 0 to 2 do

𝑉𝑖 ← 𝑅2𝑖[1 : 𝑛/2] ‖ 𝑅2𝑖+1[1 : 𝑛/2]
Return (𝑉0 ‖ 𝑉1 ‖ 𝑉2)[1 : 𝑛 + 𝑘]

KD1[𝐸](𝐾, 𝑁)
For 𝑠 = 0 to 5 do 𝑅𝑖 ← 𝐸𝐾(pad(𝑁, 𝑠))
Return (𝑅0 ‖𝑅1 ‖𝑅2)[1 : 𝑛 + 𝑘]

Fig. 6: Key-derivation functions KD0 (left) and KD1 (right).

below, use at most six blockcipher calls. Using more would simply make the
performance and even the bounds worse. We therefore define a natural KDF to
use at most six blockcipher calls.

The current KDF KD0[𝐸] of AES-GCM-SIV, as shown in the left panel of
Fig. 6, is natural; it is defined for even 𝑛 only. For 𝑘 = 𝑛, it can be implemented
using four blockcipher calls, but for 𝑘 = 2𝑛 it needs six blockcipher calls. Con-
sider the KDF KD1[𝐸] on the right panel of Fig. 6. For 𝑘 = 𝑛 it can be imple-
mented using two blockcipher calls, and 𝑘 = 2𝑛 it needs three blockcipher calls.
This KDF is also simpler to implement than KD0. Iwata and Seurin [21] propose
to use either the XOR construction [8,11] or the CENC construction [19]. Both
XOR and CENC constructions are natural; the former uses four blockcipher calls
for 𝑘 = 𝑛 and six blockcipher calls for 𝑘 = 2𝑛, and the latter uses three and four
blockcipher calls respectively.

For a natural key-derivation function KD[𝐸], we say that it is 𝛾-unpredictable
if for any subset 𝑆 ⊆ {0, 1}𝑛 of size at least 15

16 · 2
𝑛 and any 𝑠 ∈ {0, 1}𝑛+𝑘, if

the random variables 𝑅0, . . . , 𝑅5 are sampled uniformly without replacement
from 𝑆 then Pr[KD.Map(𝑅0, . . . , 𝑅5) = 𝑠] ≤ 𝛾/2𝑛+𝑘. Lemma 3 below shows
that both KD0[𝐸] and KD1[𝐸] are 2-unpredictable; see Appendix G for the
proof. One might also show that both the XOR and CENC constructions are
2-unpredictable. Therefore, in the remainder of this section, we only consider
natural, 2-unpredictable KDFs.

Lemma 3. Let 𝑛 ≥ 128 be an even integer and let 𝑘 ∈ {𝑛, 2𝑛}. Let 𝐸 : {0, 1}𝑘×
{0, 1}𝑛 → {0, 1}𝑛 be a blockcipher that we will model as an ideal cipher. Then
both KD0[𝐸] and KD1[𝐸] are 2-unpredictable.

Ideal counterpart of natural KDF. For a natural KDF KD[𝐸], consider
its following ideal version KD[𝑘]. The key space of KD[𝑘] is the entire set Perm(𝑛).
It takes as input a permutation 𝜋 ∈ Perm(𝑛) and a string 𝑁 ∈ 𝒩 , computes
𝑅𝑠 ← 𝜋(pad(𝑁, 𝑠)) for all 𝑠 ∈ {0, . . . , 5}, and returns KD.Map(𝑅0, . . . , 𝑅5). Of
course KD[𝑘] is impractical since its key length is huge, but it will be useful in
studying the security of the KtE transform. The following bounds the privacy
and authenticity of KtE[KD[𝑘], AE] via the mu-mrae security of the AE scheme
AE; the proof is in Appendix H. In light of that, in the subsequent subsections,
we will analyze the difference between security of KtE[KD[𝐸], AE] and that of
KtE[KD[𝑘], AE].
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KeyGen(st, aux)
(𝑁, 𝑖)← aux; (𝜋1, 𝑆1, . . . , 𝜋𝑚, 𝑆𝑚)← st
If (𝑖 ∈ {1, . . . , 𝑚} and 𝑁 ∈ 𝑆𝑖) or (𝑖 ̸∈ {1, . . . , 𝑚 + 1}) then

//Unexpected input, return a random key anyway
𝐾←$ {0, 1}𝑘+𝑛; return (𝐾, st)

If 𝑖 ∈ {1, . . . , 𝑚} then 𝑆𝑖 ← 𝑆𝑖 ∪ {𝑁}; st← (𝜋1, 𝑆1, . . . , 𝜋𝑚, 𝑆𝑚)
If 𝑖 = 𝑚+1 then 𝜋𝑚+1←$ Perm(𝑛); 𝑆𝑚+1 ← {𝑁}; st← (𝜋1, 𝑆1, . . . , 𝜋𝑚+1, 𝑆𝑚+1)
Return (KD[𝑘](𝜋𝑖, 𝑁), st)

Fig. 7: Key-generation algorithm KeyGen corresponding to KD[𝑘].

Proposition 2. Let 𝑛 ≥ 8 be an integer and let 𝑘 ∈ {𝑛, 2𝑛}. Let 𝐸 : {0, 1}𝑘 ×
{0, 1}𝑛 → {0, 1}𝑛 be a blockcipher that we will model as an ideal cipher. Let
KD[𝐸] be a natural KDF. Let AE be an AE scheme of key length 𝑘 + 𝑛. Let
AE = KtE[KD[𝑘], AE]. Then for any adversaries 𝒜1 and 𝒜2, we can construct
a key-generation algorithm KD.KeyGen as shown in Fig. 7, and an adversary 𝒜
such that

Advmu-priv
AE,𝐸

(𝒜1) + Advmu-auth
AE,𝐸

(𝒜2) ≤ 3 Advmu-mrae
AE,KeyGen,𝐸(𝒜) .

For any type of queries, the number of 𝒜’s queries is at most the maximum of
that of 𝒜1 and 𝒜2, and the similar claim holds for the total block length of the
encryption/verification queries. Moreover, the maximum of total block length of
encryption queries per user of 𝒜 is at most the maximum of that per (user,
nonce) pair of 𝒜1 and 𝒜2.

The following lemma says that if KD[𝐸] is 2-unpredictable then the con-
structed KeyGen in the theorem statement of Proposition 2 is 4-pairwise AU;
the notion of pairwise AU for key-generation algorithms can be found in Sec-
tion 4.2. The proof is in Appendix I.

Lemma 4. Let 𝑛 ≥ 8 be an integer and let 𝑘 ∈ {𝑛, 2𝑛}. Let 𝐸 : {0, 1}𝑘 ×
{0, 1}𝑛 → {0, 1}𝑛 be a blockcipher that we will model as an ideal cipher. Let
KD[𝐸] be a natural, 2-unpredictable KDF. Then the corresponding key-generation
algorithm KeyGen in Fig. 7 is 4-pairwise AU.

Indistinguishability of KD[𝐸]. For an adversary 𝒜, define

Advdist
KD[𝐸](𝒜) = 2 Pr[Gdist

KD[𝐸](𝒜)]− 1

as the advantage of 𝒜 in distinguishing a natural KDF KD[𝐸] and its ideal
counterpart KD[𝑘] in the multi-user setting, where game Gdist

KD[𝐸](𝒜) is defined
in Fig. 8. Under this notion, the adversary is given access to both 𝐸 and 𝐸−1,
an oracle New() to initialize a new user 𝑣 with a truly random master key 𝐾𝑣

and a secret ideal permutation 𝜋𝑣, and an evaluation oracle Eval that either
implements KD[𝐸] or KD[𝑘]. We say that an adversary 𝒜 is 𝑑-repeating if among
its evaluation queries, a nonce is used for at most 𝑑 users.
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Game Gdist
KD[𝐸](𝒜)

𝑣 ← 0; 𝑏←$ {0, 1}; 𝑏′←$𝒜New,Eval,𝐸,𝐸−1

Return (𝑏′ = 𝑏)

Procedure New()
𝑣 ← 𝑣 + 1; 𝐾𝑣 ←$ {0, 1}𝑘; 𝜋𝑣 ←$ Perm(𝑛)

Eval(𝑖, 𝑁)
If 𝑖 > 𝑣 then return ⊥
If 𝑏 = 1 then return KD[𝐸](𝐾𝑖, 𝑁)
Else return KD[𝑘](𝜋𝑖, 𝑁)

Fig. 8: Game to distinguish KD[𝐸] and its ideal counterpart KD[𝑘].

Lemma 5 below bounds the indistinguishability advantage between KD[𝐸] and
KD[𝑘]. The proof is in Appendix J; it uses some technical balls-into-bins results
in Appendix A.

Lemma 5. Fix 0 < 𝜖 < 1. Let 𝑛 ≥ 16 be an integer and let 𝑘 ∈ {𝑛, 2𝑛}. Let
𝐸 : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛 be a blockcipher that we will model as an ideal
cipher. Let KD[𝐸] be a natural KDF. For any 𝑑-repeating adversary 𝒜 that makes
at most 𝑝 ≤ 2𝑛−4 ideal-cipher queries, and 𝑞 ≤ 2(1−𝜖)𝑛−4 evaluation queries,

Advdist
KD[𝐸](𝒜) ≤ 1

2𝑛/2 + 24𝑝𝑞 + 18𝑞2

2𝑘+𝑛
+ 𝑎𝑝 + 𝑑(𝑝 + 3𝑞)

2𝑘

where 𝑎 = ⌈1.5/𝜖⌉−1. The theorem statement still holds if we grant the adversary
the master keys when it finishes querying.

6.1 Privacy Analysis

Lemma 6 below reduces the privacy security of KtE[KD[𝐸], AE] for a generic AE
scheme AE, to that of KtE[KD[𝑘], AE]; the proof relies crucially on Lemma 5.

Lemma 6. Fix 0 < 𝜖 < 1. Let 𝑛 ≥ 16 be an integer and let 𝑘 ∈ {𝑛, 2𝑛}. Let
𝐸 : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛 be a blockcipher that we will model as an ideal
cipher. Let KD[𝐸] be a natural KDF. Let AE be an AE scheme of key length 𝑘+𝑛,
and let AE = KtE[KD[𝐸], AE]. Consider a 𝑑-repeating adversary 𝒜 that makes
𝑝 ≤ 2𝑛−5 ideal-cipher queries and 𝑞 ≤ 2(1−𝜖)𝑛−4 encryption queries. Suppose
that using AE to encrypt 𝒜’s encryption queries would need to make 𝐿 ≤ 2𝑛−5

ideal-cipher queries. Then

Advmu-priv
AE,𝐸

(𝒜) ≤ Advmu-priv
KtE[KD[𝑘],AE],𝐸(𝒜) + 2

2𝑛/2 + 48(𝐿 + 𝑝)𝑞 + 36𝑞2

2𝑘+𝑛

+2𝑎(𝐿 + 𝑝) + 2𝑑(𝐿 + 𝑝 + 3𝑞)
2𝑘

,

where 𝑎 = ⌈1.5/𝜖⌉ − 1.

Proof. We first construct an adversary 𝒜 that tries to distinguish KD[𝐸] and
KD[𝑘]. Adversary 𝒜 simulates game Gmu-priv

AE,𝐸
(𝒜), but each time it needs to gen-

erate a session key, it uses its Eval oracle instead of KD[𝐸]. However, if 𝒜
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previously queried Eval(𝑖, 𝑁) for an answer 𝐾, next time it simply uses 𝐾
without querying. Finally, adversary 𝒜 outputs 1 only if the simulated game
returns true. Let 𝑏 be the challenge bit in game Gdist

KD[𝐸](𝒜). Then

Pr[Gdist
KD[𝐸](𝒜)⇒ true | 𝑏 = 1] = Pr[Gmu-priv

AE,𝐸
(𝒜)], and

Pr[Gdist
KD[𝐸](𝒜)⇒ false | 𝑏 = 0] = Pr[Gmu-priv

KtE[KD[𝑘],AE],𝐸(𝒜)] .

Subtracting, we get

Advdist
KD[𝐸](𝒜) = 1

2
(︀
Advmu-priv

AE,𝐸
(𝒜1)− Advmu-priv

KtE[KD[𝑘],AE],𝐸(𝒜1)
)︀

.

Note that 𝒜 makes at most 𝑝 + 𝐿 ≤ 2𝑛−4 ideal-cipher queries, and 𝑞 Eval
queries. Moreover, 𝒜 is also 𝑑-repeating. Hence using Lemma 5,

Advdist
KD[𝐸],KD[𝑘](𝒜) ≤ 1

2𝑛/2 + 24(𝐿 + 𝑝)𝑞 + 18𝑞2

2𝑘+𝑛
+ 𝑎(𝐿 + 𝑝) + 𝑑(𝐿 + 𝑝 + 3𝑞)

2𝑘
.

Putting this all together,

Advmu-priv
AE,𝐸

(𝒜) ≤ Advmu-priv
KtE[KD[𝑘],AE],𝐸(𝒜) + 2

2𝑛/2 + 48(𝐿 + 𝑝)𝑞 + 36𝑞2

2𝑘+𝑛

+2𝑎(𝐿 + 𝑝) + 2𝑑(𝐿 + 𝑝 + 3𝑞)
2𝑘

.

This concludes the proof. ⊓⊔

6.2 Authenticity Analysis

In Section 6.1, we bound the privacy advantage by constructing a 𝑑-repeating ad-
versary distinguishing KD[𝐸] and KD[𝑘], and then using Lemma 5. This method
does not work for authenticity: the constructed adversary might be 𝑞-repeating,
because there is no restriction of the nonces in verification queries, and one
would end up with an inferior term 𝑞(𝐿 + 𝑝 + 𝑞)/2𝑘. We instead give a dedicated
analysis.

Restricting to simple adversaries. We say that an adversary is simple if for
any nonce 𝑁 and user 𝑖, if the adversary uses 𝑁 for an encryption query of user 𝑖,
then it will never use nonce 𝑁 on verification queries for user 𝑖. Lemma 7 below
reduces the authenticity advantage of a general adversary against KtE[KD[𝐸], AE]
to that of a simple adversary; the proof is in Appendix K, and is based on the
idea of splitting the cases of where the adversary forges on a fresh (𝑁, 𝑖) pair
and where it does not, and the latter can be handled using Lemma 5 above.
Handling the former is the harder part, which we deal with below. We discuss
the bound however below, and give an overview of the proof.
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Lemma 7. Let 𝑛 ≥ 16 be an integer and let 𝑘 ∈ {𝑛, 2𝑛}. Let 𝐸 : {0, 1}𝑘 ×
{0, 1}𝑛 → {0, 1}𝑛 be a blockcipher that we will model as an ideal cipher. Let
KD[𝐸] be a natural KDF. Let AE be an AE scheme of key length 𝑛 + 𝑘, and
let AE = KtE[KD[𝐸], AE]. Let 𝒜0 be a 𝑑-repeating adversary that makes at most
𝑞 ≤ 2(1−𝜖)𝑛−4 encryption/verification queries and 𝑝 ≤ 2𝑛−5 ideal-cipher queries.
Suppose that using AE to encrypt 𝒜0’s encryption queries and decrypt its verifi-
cation queries would need to make 𝐿 ≤ 2𝑛−5 ideal-cipher queries. Then, we can
construct an adversary 𝒜1 and a simple adversary 𝒜2, both 𝑑-repeating, such
that

Advmu-auth
AE,𝐸

(𝒜0) ≤ Advmu-auth
KtE[KD[𝑘],AE],𝐸(𝒜1) + Advmu-auth

AE,𝐸
(𝒜2)

+ 2
2𝑛/2 + 48(𝐿 + 𝑝)𝑞 + 36𝑞2

2𝑛+𝑘
+ 2(𝑎 + 𝑑)𝐿 + 2(𝑎 + 𝑑)𝑝 + 6𝑑𝑞

2𝑘
,

where 𝑎 = ⌈1.5/𝜖⌉ − 1. Any query of 𝒜1 or 𝒜2 is also a query of 𝒜0.

Handling simple adversaries. Lemma 8 below shows that the AE scheme
KtE

[︀
KD[𝐸], SIV[GMAC+[𝐻, 𝐸], CTR[𝐸]]

]︀
has good authenticity against simple

adversaries, for any 2-unpredictable, natural KDF KD[𝐸]. The proof is in Ap-
pendix L; it also uses some technical balls-into-bins results in Appendix A. Note
that here we can handle both regular and weakly regular hash functions. (If we
instead consider just regular hash functions, we can slightly improve the bound,
but the difference is inconsequential.)

Lemma 8. Fix 0 < 𝜖 < 1 and let 𝑎 = ⌈1.5/𝜖⌉ − 1. Let 𝑛 ≥ 128 be an integer,
and let 𝑘 ∈ {𝑛, 2𝑛}. Let 𝐸 : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛 be a blockcipher that
we will model as an ideal cipher. Let 𝐻 : {0, 1}𝑛 × {0, 1}* × {0, 1}* → {0, 1}𝑛

be a hash function that is either 𝑐-regular or weakly 𝑐-regular. Let KD[𝐸] be a
natural, 2-unpredictable KDF. Let AE = SIV[GMAC+[𝐻, 𝐸], CTR[𝐸]] and AE =
KtE[KD[𝐸], AE]. Let 𝒜 be a 𝑑-repeating, simple adversary that makes at most
𝑝 ≤ 2(1−𝜖)𝑛−8 ideal-cipher queries, and 𝑞 ≤ 2(1−𝜖)𝑛−8 encryption/verification
queries whose total block length is at most 𝐿 ≤ 2(1−𝜖)𝑛−8. Then

Advmu-auth
AE,𝐸

(𝒜) ≤ 3
2𝑛/2 + 11𝑞

2𝑛
+ 288(𝐿 + 𝑝)𝑞 + 36𝑞2 + 48𝑐(𝐿 + 𝑝 + 𝑞)𝐿

2𝑛+𝑘

+(8𝑎 + 7𝑎2 + 3𝑑)𝑞
2𝑘

+ (𝑛𝑎 + 6𝑎 + 6𝑑)𝐿 + 6(𝑎 + 𝑑)𝑝
2𝑘

.

Discussion. The bound in Lemma 8 consists of three important terms 𝑞
2𝑛 , 𝑝𝑑

2𝑘 ,
and 𝑛𝑎𝐿

2𝑘 , each corresponding to an actual attack. Let us revisit these, as this will
be helpful in explaining the proof below. First, since the IV length is only 𝑛-bit
long, even if an adversary simply outputs 𝑞 verification queries in a random fash-
ion, it would get an advantage about 𝑞

2𝑛 . Next, for the term 𝑝𝑑
2𝑘 , consider an ad-

versary that picks a long enough message 𝑀 and then makes encryption queries
(1, 𝑁, 𝑀, 𝐴), . . . , (𝑑, 𝑁, 𝑀, 𝐴) of the same nonce 𝑁 and associated data, for an-
swers 𝐶1, . . . , 𝐶𝑑 respectively. (Recall that the adversary is 𝑑-repeating, so it
cannot use the nonce 𝑁 in encryption queries for more than 𝑑 users.) By picking



28 Bose, Hoang and Tessaro

𝑝 candidate master keys 𝐾1, . . . , 𝐾𝑝 and comparing 𝐶𝑖 with AE.E(𝐾𝑗 , 𝑁, 𝑀, 𝐴)
for all 𝑖 ≤ 𝑑 and 𝑗 ≤ 𝑝, the adversary can recover one master key with probability
about 𝑝𝑑

2𝑘 .
Finally, for the term 𝑛𝑎𝐿

2𝑘 , consider the following attack. The adversary first
picks a nonce 𝑁 and 𝑝 candidate keys 𝐾1, . . . , 𝐾𝑝, and then queries 𝑅0,𝑗 ←
𝐸𝐾(𝐾𝑗 , pad(𝑁, 0)), . . . , 𝑅5,𝑗 ← 𝐸(𝐾𝑗 , pad(𝑁, 5)) for every 𝑗 ≤ 𝑝. Let 𝐾𝑗

in‖𝐾
𝑗
out ←

KD.Map(𝑅0,𝑗 , . . . , 𝑅5,𝑗). Now, if some 𝐾𝑗 is the master key of some user 𝑖 then
𝐾𝑗

in ‖𝐾𝑗
out will be the session key of that user 𝑖 for nonce 𝑁 . The adversary then

picks an arbitrary ciphertext 𝐶, and then computes 𝑀𝑗 ← CTR[𝐸].D(𝐾𝑗 , 𝐶) and
𝑉𝑗 ← 𝐸−1(𝐾𝑗

out, 𝑇 ) for each 𝑗 ≤ 𝑝, where 𝑇 is the IV of 𝐶. The goal of the adver-
sary is to make a sequence of 𝑞 verification queries (1, 𝑁, 𝐶, 𝐴), . . . , (𝑞, 𝑁, 𝐶, 𝐴),
for an ℓ-block associated data 𝐴 that it will determine later. (Recall that in
verification queries, the adversary can reuse a nonce across as many users as
it likes.) To maximize its chance of winning, the adversary will iterate through
every possible string 𝐴* of block length ℓ, and let count(𝐴*) denote the number
of 𝑗’s that xor(𝐻(𝐾𝑗

in, 𝑀𝑗 , 𝐴*), 𝑁) = 𝑉𝑗 . Then it picks 𝐴 as the string to max-
imize count(𝐴). The proof of Lemma 8 essentially shows that with very high
probability, we have count(𝐴) ≤ 𝑛𝑎(ℓ + |𝐶|𝑛) ≤ 𝑛𝑎𝐿

𝑞 , and thus the advantage of
this attack is bounded by 𝑛𝑎𝐿

2𝑘 .

Proof ideas. We now sketch some ideas in the proof of Lemma 8. First consider
an adversary that does not use the encryption oracle. Assume that the adver-
sary does not repeat a prior ideal-cipher query, or make redundant ideal-cipher
queries. For each query 𝐸𝐾(𝑌 ) of answer 𝑌 , create an entry (prim, 𝐾, 𝑋, 𝑌, +).
Likewise, for each query 𝐸−1

𝐾 (𝑌 ) of answer 𝑋, create an entry (prim, 𝐾, 𝑋, 𝑌,−).
Consider a verification query (𝑖, 𝑁, 𝐶, 𝐴). Let 𝐾𝑖 be the secret master key of
user 𝑖, and let 𝐾in ‖ 𝐾out be the session key of user 𝑖 for nonce 𝑁 . Let 𝑇
be the IV of 𝐶. The proof examines several cases, but here we only discuss
a few selective ones. If there is no entry (prim, 𝐾𝑖, 𝑋, 𝑌, ·) such that 𝑋 ∈
{pad(𝑁, 0), . . . , pad(𝑁, 5)} then given the view of the adversary, the session
key 𝐾in ‖ 𝐾out still has at least 𝑘 + 𝑛 − 1 bits of (conditional) min-entropy.
In this case, the chance that AE.D(𝐾in ‖𝐾out, 𝑁, 𝐶, 𝑀) returns a non-⊥ answer
is roughly 1/2𝑛. Next, suppose that there is an entry (prim, 𝐾, 𝑋, 𝑌,−) such
that 𝐾 = 𝐾𝑖 and 𝑋 ∈ {pad(𝑁, 0), . . . , pad(𝑁, 5)}. By using some balls-into-
bins analysis,7 we can argue that it is very likely that there are at most 6𝑎
entries (prim, 𝐾*, 𝑋*, 𝑌 *,−) such that 𝑋* ∈ {pad(𝑁, 0), . . . , pad(𝑁, 5)}. Hence
the chance this case happens is at most 6𝑎/2𝑘.

Now consider the case that there are entries (prim, 𝐾𝑖, pad(𝑁, 0), 𝑅0, +), . . . ,
(prim, 𝐾𝑖, pad(𝑁, 5), 𝑅5, +), and (prim, 𝐾out, 𝑉, 𝑇,−), with 𝑉 ∈ 0{0, 1}𝑛−1 and
𝐾in‖𝐾out ← KD.Map(𝑅0, . . . , 𝑅5). This corresponds to the last attack in the dis-
cussion above. We need to bound Pr[Bad], where Bad is the the event (i) this case
happens, and (ii) 𝑉 = xor(𝐻(𝐾in, 𝑀, 𝐴), 𝑁), where 𝑀 ← CTR[𝐸].D(𝐾out, 𝐶).
7 We note that this is not the classic balls-into-bins setting, because the balls are

thrown in an inter-dependent way. In Appendix A we analyze this biased balls-into-
bins setting.
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This is highly non-trivial because somehow the adversary already sees the keys
𝐾𝑖 and 𝐾in ‖𝐾out, and can adaptively pick (𝐶, 𝐴), as shown in the third attack
above.

To deal with this, we consider a fixed (𝑖*, 𝑁*, 𝐶*, 𝐴*). There are at most 𝑝
septets 𝒯 of entries (prim, 𝐾, pad(𝑁*, 0), 𝑅*0, +), . . . , (prim, 𝐾, pad(𝑁*, 5), 𝑅*5, +)
and (prim, 𝐽, 𝑈, 𝑇 *,−), with 𝑈 ∈ 0{0, 1}𝑛−1 and 𝐽 ′ ‖ 𝐽 ← KD.Map(𝑅*0, . . . , 𝑅*5).
We then show that the chance that there are 𝑛ℓ𝑎 such septets 𝒯 such that
xor(𝐻(𝐽 ′(𝒯 ), 𝑀*(𝒯 ), 𝐴*), 𝑁*) = 𝑈(𝒯 ) is at most 21−(3ℓ𝑛+2𝑛), where ℓ = |𝐶*|𝑛+
|𝐴*|𝑛 ≥ 2 and 𝑀*(𝒯 )← CTR[𝐸].D(𝐽(𝒯 ), 𝐶*). Hence, regardless of how the ad-
versary picks (𝑖, 𝑁, 𝐶, 𝐴) from all possible choices of (𝑖*, 𝑁*, 𝐶*, 𝐴*), the chance
that there are 𝑛𝑎(|𝐶|𝑛 + |𝐴|𝑛) septets 𝒯 such that xor(𝐻(𝐽 ′(𝒯 ), 𝑀(𝒯 ), 𝐴), 𝑁) =
𝑈(𝒯 ), where 𝑀(𝒯 )← CTR[𝐸].D(𝐽(𝒯 ), 𝐶), is at most

∞∑︁
ℓ=2

∑︁
(𝑖*,𝑁*,𝐶*,𝐴*)
|𝐶*|𝑛+|𝐴*|𝑛=ℓ

21−(3𝑛ℓ+2𝑛) ≤
∞∑︁

ℓ=2
22𝑛ℓ+2𝑛 · 21−(3𝑛ℓ+2𝑛) =

∞∑︁
ℓ=2

2
2𝑛ℓ
≤ 1

2𝑛
.

Thus Pr[Bad] ≤ 1
2𝑛 + 𝑛𝑎·E[|𝐴|𝑛+|𝐶|𝑛]

2𝑘 .

Now we consider the general case where the adversary 𝒜 might use the en-
cryption oracle. Clearly if for each encryption query (𝑖, 𝑁, 𝑀, 𝐴), we grant the
adversary the session key KD[𝐸](𝐾𝑖, 𝑁), where 𝐾𝑖 is the master key of user 𝑖,
then it only helps the adversary. Recall that here the adversary is simple, so
it cannot query Enc(𝑖, 𝑁, 𝑀, 𝐴) and later query Vf(𝑖, 𝑁, 𝐶 ′, 𝐴′). We also let
the adversary compute up to 𝐿 + 𝑝 ideal-cipher queries, so that the encryption
oracle does not have to give the ciphertexts to the adversary. Effectively, we can
view that 𝒜 is in the following game 𝐺0. It is given access to 𝐸/𝐸−1 and an
oracle Eval(𝑖, 𝑁) that generates KD[𝐸](𝑖, 𝑁). Then it has to generate a list of
verification queries. The game then tries to decrypt those, and returns true only
if some gives a non-⊥ answer.

To remove the use of the Eval oracle, it is tempting to consider the vari-
ant 𝐺1 of game 𝐺0 where Eval instead implements KD[𝑘], and then bound
the gap between 𝐺0 and 𝐺1 by constructing a 𝑑-repeating adversary 𝒜 distin-
guishing KD[𝐸] and KD[𝑘]. However, this approach does not work because it is
impossible for 𝒜 to correctly simulate the processing of the verification queries.
Instead, we define game 𝐺1 as follows. Its Eval again implements KD[𝑘], but
after the adversary produces its verification queries, the game tries to program
𝐸 so that the outputs of Eval are consistent with KD[𝐸] on random master
keys 𝐾1, 𝐾2, · · · ←$ {0, 1}𝑛+𝑘. (But 𝐸 still has to remain consistent with its
past ideal-cipher queries.) Of course it is not always possible, because the fake
Eval might have generated some inconsistency. In this case, the game returns
false, meaning that the adversary loses. If there is no inconsistency, then after
the programming, the game processes the verification queries as in 𝐺0.

To bound the gap between 𝐺0 and 𝐺1, we will construct a 𝑑-repeating adver-
sary 𝒜 distinguishing KD[𝐸] and KD[𝑘], but additionally, it wants to be granted
the master keys after it finishes querying. Note that Lemma 5 applies to this
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key-revealing setting. Now, after the adversary 𝒜 finishes querying, it is granted
the master keys and checks for inconsistency between the outputs of Eval and
the ideal-cipher queries. If there is inconsistency then 𝒜 outputs 0, indicating
that it has been dealing with KD[𝑘]. Otherwise, it has to simulate the process-
ing of the verification queries. However, although it knows the keys now, it can
no longer queries 𝐸. Instead, 𝒜 tries to sample an independent blockcipher �̃�,
subject to (1) �̃� and 𝐸 agree on the outputs of the past ideal-cipher queries,
and the outputs of Eval are consistent with KD[�̃�] on master keys 𝐾1, 𝐾2, . . ..
It then processes the verification queries using this blockcipher �̃� instead of 𝐸.

Although the game 𝐺1 above does not completely remove the use of the
Eval oracle, it still creates some sort of independence between the sampling of
the master keys, and the outputs that the adversary 𝒜 receives, allowing us to
repeat several proof ideas above.

Handling general adversaries. Combining Lemmas 7 and 8, we immedi-
ately obtain the following result.

Lemma 9. Fix 0 < 𝜖 < 1 and let 𝑎 = ⌈1.5/𝜖⌉ − 1. Let 𝑛 ≥ 128 be an integer,
and let 𝑘 ∈ {𝑛, 2𝑛}. Let 𝐸 : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛 be a blockcipher that
we will model as an ideal cipher. Let 𝐻 : {0, 1}𝑛 × {0, 1}* × {0, 1}* → {0, 1}𝑛

be a hash function that is either 𝑐-regular hash or weakly 𝑐-regular. Let KD[𝐸]
be a natural, 2-unpredictable KDF. Let AE = SIV[GMAC+[𝐻, 𝐸], CTR[𝐸]] and
AE = KtE[KD[𝐸], AE]. Let 𝒜 be a 𝑑-repeating adversary that makes at most
𝑝 ≤ 2(1−𝜖)𝑛−8 ideal-cipher queries, and 𝑞 ≤ 2(1−𝜖)𝑛−8 encryption/verification
queries whose total block length is at most 𝐿 ≤ 2(1−𝜖)𝑛−8. Then we can construct
a 𝑑-repeating adversary 𝒜 such that

Advmu-auth
AE,𝐸

(𝒜) ≤ Advmu-auth
KtE[KD[𝑘],AE],𝐸(𝒜) + 5

2𝑛/2 + 11𝑞

2𝑛
+ 336(𝐿 + 𝑝)𝑞 + 72𝑞2

2𝑛+𝑘

+ 48𝑐(𝐿 + 𝑝 + 𝑞)𝐿
2𝑛+𝑘

+ (8𝑎 + 7𝑎2 + 9𝑑)𝑞 + (𝑛𝑎 + 8𝑎 + 8𝑑)𝐿 + 8(𝑎 + 𝑑)𝑝
2𝑘

.

Moreover, any query of 𝒜 is also a query of 𝒜.

6.3 Unwinding Mu-Mrae Security

The following Theorem 6 concludes the mu-mrae security of AE scheme AE =
KtE[KD[𝐸], SIV[GMAC+[𝐻, 𝐸], CTR[𝐸]]]; the proof is in Appendix M. Note that
here we can handle both regular and weakly regular hash functions. (If we instead
consider just regular hash functions, we can slightly improve the bound, but the
difference is inconsequential.)

Theorem 6 (Security of AES-GCM-SIV). Let 𝑛 ≥ 128 be an integer, and
let 𝑘 ∈ {𝑛, 2𝑛}. Fix 0 < 𝜖 < 1 and let 𝑎 = ⌈1.5𝑛/(𝑛 − 1)𝜖⌉ − 1. Let 𝐸 :
{0, 1}𝑘×{0, 1}𝑛 → {0, 1}𝑛 be a blockcipher that we will model as an ideal cipher.
Let 𝐻 : {0, 1}𝑛×{0, 1}*×{0, 1}* → {0, 1}𝑛 be a 𝑐-AXU hash function. Moreover,
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either 𝐻 is 𝑐-regular, or weakly 𝑐-regular. Let KD[𝐸] be a natural, 2-unpredictable
KDF. Let AE = SIV[GMAC+[𝐻, 𝐸], CTR[𝐸]] and AE = KtE[KD[𝐸], AE]. Let 𝒜 be
a 𝑑-repeating adversary that makes at most 𝑝 ≤ 2(1−𝜖)𝑛−8 ideal-cipher queries,
and 𝑞 ≤ 2(1−𝜖)𝑛−8 encryption/verification queries whose total block length is at
most 𝐿 ≤ 2(1−𝜖)𝑛−8 and encryption queries of at most 𝐵 blocks per (user, nonce)
pair. Then,

Advmu-mrae
AE,𝐸

(𝒜) ≤ 10
2𝑛/2 + (17𝑎 + 4𝑎2 + 24𝑑 + 𝑛𝑎)𝐿 + (22𝑎 + 13𝑑)𝑝

2𝑘

+ (48𝑐 + 30)𝐿𝐵

2𝑛
+ (303 + 108𝑐)𝐿2 + (192 + 96𝑐)𝐿𝑝

2𝑛+𝑘
.

We note that one way that 𝑑 can be kept small is by choosing nonces ran-
domly, or at least with sufficient entropy. Then, by a classical balls-into-bins
analysis, if 𝑞 is quite smaller than 2nl, where nl is the nonce length, which holds
in practice for nl = 96, then the value 𝑑 is bounded by a constant with high
probability. We also point out that if 𝑑 cannot be bounded, then our security
bound still gives very meaningful security guarantees if 𝑘 = 2𝑛 (i.e., this would
have us use AES-256). As there is a matching attack in the unbounded 𝑑 case,
which just exploits key collisions, this suggests the need to increase keys to 256
in the multi-user case. However, many uses in practice will have 𝑑 bounded, and
for these 128-bit keys will suffice.
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A Biased Balls-Into-Bins

Consider the following game in which we throw 𝑞 balls into 2𝑚 bins. The throws
can be inter-dependent, but for each 𝑖-th throw, conditioning on the result of
the prior throws, the conditional probability that the 𝑖-th ball falls into any
particular bin is at most 21−𝑚. Let Balls(𝑞, 𝑚) denote the random variable for
the number of balls in the heaviest bin in this game. The following result gives
a strong concentration bound on Balls(𝑞, 𝑚) when 𝑞 is quite smaller than 2𝑚.
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Lemma 10. Fix 0 < 𝜖 < 1. Let 𝑚, 𝑞 ∈ N such that 𝑞 ≤ 2(1−𝜖)𝑚−1. Then

Pr
[︁
Balls(𝑞, 𝑚) ≥ ⌈1.5/𝜖⌉

]︁
≤ 2−𝑚/2 .

Proof. Let 𝑠 = 𝑚 − 1 and 𝑟 = ⌈1.5/𝜖⌉. Since the adversary throws at most 𝑞
balls, there are (︂

𝑞

𝑟

)︂
≤ 𝑞𝑟

𝑟! ≤
𝑞𝑟

2

sets of 𝑟 balls. For each set, the chance that all balls in the set land in the same
bin is at most 2−(𝑟−1)𝑠. Hence the chance that there are 𝑟 balls landing in the
same bin is at most

𝑞𝑟

2 · 2(𝑟−1)𝑠
≤ 2𝑟(1−𝜖)𝑠

2 · 2(𝑟−1)𝑠
= 2−1−(𝜖𝑟−1)𝑠 ≤ 2−(𝑠/2+1) ≤ 2−𝑚/2 .

This concludes the proof. ⊓⊔

Next, we give a concentration bound on Balls(𝑞, 𝑚) when 𝑞 might be quite bigger
than 2𝑚.

Lemma 11. Fix 0 < 𝜖 < 1 and 𝑚 ∈ N such that 𝑚 ≥ 128. Let 𝑚, ℓ, 𝑐, 𝑞 ∈ N
such that ℓ ≥ 2 and 𝑞 ≤ 𝑐 · 2𝑚. Then

Pr
[︁
Balls(𝑞, 𝑚) ≥ ⌈𝑐ℓ𝑚/2⌉

]︁
≤ 2−(3ℓ+2)𝑚 .

Proof. Let 𝑠 = 𝑚 − 1 and 𝑟 = ⌈𝑐ℓ𝑚/2⌉ ≥ 128𝑐. Since the adversary throws at
most 𝑞 balls, there are (︂

𝑞

𝑟

)︂
≤ 𝑞𝑟

𝑟!

sets of 𝑟 balls. For each set, the chance that all balls in the set land in the same
bin is at most 2−(𝑟−1)𝑠. Hence the chance that there are 𝑟 balls landing in the
same bin is at most

𝑞𝑟

𝑟! · 2(𝑟−1)𝑠
≤ (2𝑐)𝑟2𝑟𝑠

𝑟! · 2(𝑟−1)𝑠
= (2𝑐)𝑟2𝑠

𝑟! ≤ (2𝑐)𝑟2𝑚

(𝑟/𝑒)𝑟
= 2𝑚

(𝑟/2𝑒𝑐)𝑟

≤ 2𝑚

(64/𝑒)ℓ𝑚
≤ 2𝑚

(8/𝑒)2𝑚 · 8ℓ𝑚
≤ 2−(3ℓ+2)𝑚 ,

where the second inequality is due to the fact that 𝑛! ≥ (𝑛/𝑒)𝑛 for every integer
𝑛 ≥ 1, and the second last inequality is due to the hypothesis that ℓ ≥ 2. This
concludes the proof. ⊓⊔
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PolyVal[F](𝐾, 𝑀, 𝐴)
𝑋 ← 𝐴0* ‖𝑀0* ‖ [|𝐴|]𝑛/2 ‖ [|𝑀 |]𝑛/2
𝑋1 · · ·𝑋𝑚 ← 𝑋 // Each |𝑋𝑖| = 𝑛

// Interpret 𝐾 and 𝑋1, . . . , 𝑋𝑚 as elements in F
𝑌 ← 𝑋1 ∙𝐾𝑚 ⊕𝑋2 ∙𝐾𝑚−1 ⊕ · · · ⊕𝑋𝑚 ∙𝐾

Return 𝑌

Fig. 9: The POLYVAL hash function. For a string 𝑍, we write 𝑍0* to denote the
string obtained by padding 0’s to 𝑍 until the next 𝑛-bit boundary. In particular, if |𝑍|
is divisible by 𝑛 then 𝑍0* = 𝑍 ‖ 0𝑛. For a number 𝑡 ∈ {0, . . . , 2𝑛/2 − 1}, we write [𝑡]𝑟
to denote an 𝑟-bit representation of 𝑡.

B The POLYVAL Hash Function

Let 𝑛 ≥ 2 be an even integer. Let F be a finite field of 2𝑛 elements, meaning
that we can interpret a string in {0, 1}𝑛 as an element in F, and vice versa.
Assume that the string 0𝑛 is interpreted as the zero element of F, and the
addition operator in F is equivalent to xor in {0, 1}𝑛. Let ∙ denote the mul-
tiplication operator of F. The POLYVAL hash function PolyVal[F] : {0, 1}𝑛 ×
{0, 1}* × {0, 1}* → {0, 1}𝑛 is defined as in Fig. 9. Note that if 𝑀 = 𝐴 = 𝜀 then
PolyVal[F](𝐾, 𝑀, 𝐴) = 0𝑛 for any key 𝐾.

Weak regularity of POLYVAL. We first show that PolyVal is weakly 1.5-
regular. Consider arbitrary (𝑀, 𝐴) ∈ ({0, 1}*)2∖(𝜀, 𝜀) and 𝑍 ∈ {0, 1}𝑛. Let
𝑋 ← 𝐴0* ‖ 𝑀0* ‖ [|𝐴|]𝑛/2 ‖ [|𝑀 |]𝑛/2, where 𝑍0* denotes the string obtained
by padding 0’s to 𝑍 until the next 𝑛-bit boundary, and [𝑡]𝑛/2 denotes an 𝑛/2-bit
representation of the number 𝑡. Note that

𝑚 = |𝑋|𝑛 = |𝐴|𝑛 + |𝑀 |𝑛 + 1 ≤ 1.5(|𝐴|𝑛 + |𝑀 |𝑛),

since |𝐴|𝑛, |𝑀 |𝑛 ≥ 1. Let 𝑋1 · · ·𝑋𝑚 ← 𝑋, where each |𝑋𝑖| = 𝑛. Let

𝑓(𝑥) = 𝑋1 ∙ 𝑥𝑚 ⊕𝑋2 ∙ 𝑥𝑚−1 ⊕ · · · ⊕𝑋𝑚 ∙ 𝑥⊕ 𝑍 .

Note that 𝑓 is a polynomial of degree at most 𝑚, and since (𝑀, 𝐴) ̸= (𝜀, 𝜀), 𝑓
is non-zero. Hence 𝑓 has at most 𝑚 roots. If we pick 𝐾←$ {0, 1}𝑛, the chance
that 𝐾 is one of those 𝑚 roots is at most 𝑚/2𝑛 ≤ 1.5(|𝑀 |𝑛 + |𝐴|𝑛)/2𝑛. Hence
Hence

Pr
𝐾←$ {0,1}𝑛

[PolyVal[F](𝐾, 𝑀, 𝐴) = 𝑍] = Pr
𝐾←$ {0,1}𝑛

[𝑓(𝐾) = 0𝑛]

≤ 1.5(|𝑀 |𝑛 + |𝐴|𝑛)
2𝑛

and thus PolyVal is weakly 1.5-regular.

XOR universality of POLYVAL. Next, we show that PolyVal is 1.5-AXU.
Consider distinct (𝑀, 𝐴) and (𝑀 ′, 𝐴′) in ({0, 1}*)2, and fix 𝑍 ∈ {0, 1}𝑛. Let
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𝑋 ← 𝐴0* ‖𝑀0* ‖ [|𝐴|]𝑛/2 ‖ [|𝑀 |]𝑛/2, and 𝑋 ′ ← 𝐴′0* ‖𝑀 ′0* ‖ [|𝐴′|]𝑛/2 ‖ [|𝑀 ′|]𝑛/2.
Without loss of generality, assume that 𝑚 = |𝑋|𝑛 ≥ |𝑋 ′|𝑛 = ℓ. Note that

𝑚 = |𝑋|𝑛 = |𝐴|𝑛 + |𝑀 |𝑛 + 1 ≤ 1.5(|𝐴|𝑛 + |𝑀 |𝑛),

since |𝐴|𝑛, |𝑀 |𝑛 ≥ 1. Let 𝑋1 · · ·𝑋𝑚 ← 𝑋 and 𝑋 ′1 · · ·𝑋 ′ℓ ← 𝑋 ′, where |𝑋𝑖| =
|𝑋 ′𝑗 | = 𝑛. Let

𝑔(𝑥) = (𝑋1 ∙ 𝑥𝑚 ⊕ · · · ⊕𝑋𝑚 ∙ 𝑥)⊕ (𝑋 ′1 ∙ 𝑥ℓ ⊕ · · · ⊕𝑋 ′ℓ ∙ 𝑥)⊕ 𝑍 .

Note that 𝑔(𝑥) is a polynomial of degree at most 𝑚, and since (𝑀, 𝐴) ̸= (𝑀 ′, 𝐴′),
𝑔 is non-zero. Hence 𝑔 has at most 𝑚 roots. If we pick 𝐾←$ {0, 1}𝑛, the chance
that 𝐾 is one of those 𝑚 roots is at most 𝑚/2𝑛 ≤ 1.5(|𝑀 |𝑛 + |𝐴|𝑛)/2𝑛. Hence

Pr
𝐾←$ {0,1}𝑛

[︀
PolyVal[F](𝐾, 𝑀, 𝐴)⊕ PolyVal[F](𝐾, 𝑀 ′, 𝐴′) = 𝑍

]︀
= Pr

𝐾←$ {0,1}𝑛
[𝑔(𝐾) = 0𝑛] ≤ 1.5(|𝑀 |𝑛 + |𝐴|𝑛)

2𝑛

and thus PolyVal is 1.5-AXU.

Fixing the weak regularity of POLYVAL. As shown above, PolyVal is
just weakly regular. There are several ways to make PolyVal regular. For example,
instead of padding 𝑀 and 𝐴 with 0’s, one can pad them with 1’s. The resulting
construction would be 1.5-regular and 1.5-AXU.

C Proof of Proposition 1

Without loss of generality, assume that if a verification query returns true then
the adversary 𝒜0 will simply terminate and return 1. This can only increase its
advantage. Assume that 𝒜0 never repeats an encryption query, and if it queries
(𝑖, 𝑁, 𝑀, 𝐴) to Enc for a ciphertext 𝐶, then subsequently, it will not query
(𝑖, 𝑁, 𝐶, 𝐴) to Vf.

We now construct an adversary 𝒜 attacking the mrae security of AE, but it
only calls Vf after finishing querying Enc. Adversary 𝒜 runs 𝒜0, and uses its
Enc and New oracles to respond to the latter’s queries accordingly. For each
verification query of 𝒜0, adversary 𝒜 simply returns false, but stores the query
in a set 𝑆. When 𝒜0 terminates and outputs a bit 𝑏′, adversary 𝒜 will iterate
over queries in its set 𝑆. For each query (𝑖, 𝑁, 𝐶, 𝐴) in 𝑆, if there is an encryption
query (𝑖, 𝑁, 𝑀, 𝐴) with answer 𝐶 (that is made after 𝒜0 queries Vf(𝑖, 𝑁, 𝐶, 𝐴)),
then 𝒜 will terminate and output 1. Otherwise, it will query Vf(𝑖, 𝑁, 𝐶, 𝐴), and
if the answer is true, it will again terminate and output 1. If all verification
queries return false then 𝒜 outputs 𝑏′. Let 𝑎 and 𝑏 be the challenge bits of game
Gmu-mrae

AE,KeyGen,𝛱(𝒜) and Gmu-mrae
AE,KeyGen,𝛱(𝒜0) respectively. Then

Pr[Gmu-mrae
AE,KeyGen,𝛱(𝒜) | 𝑎 = 1] = Pr[Gmu-mrae

AE,KeyGen,𝛱(𝒜0) | 𝑏 = 1] .
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Indeed, in the real world, if some verification query (𝑖, 𝑁, 𝐶, 𝐴) of 𝒜0 can re-
turn true then 𝒜0 will output 1, and so does 𝒜: either 𝒜 will eventually query
(𝑖, 𝑁, 𝐶, 𝐴) to get answer true, or later there is an encryption query (𝑖, 𝑁, 𝑀, 𝐴)
of answer 𝐶 that makes 𝒜 outputs 1. If no verification query of 𝒜0 can return
true then 𝒜 correctly simulates the verification oracle for 𝒜0, and both will give
the same answer 𝑏′. On the other hand,

Pr[Gmu-mrae
AE,KeyGen,𝛱(𝒜) | 𝑎 = 0] ≥ Pr[Gmu-mrae

AE,KeyGen,𝛱(𝒜0) | 𝑏 = 0]− 2𝑞𝑣

2𝑛
.

Indeed, in the ideal world, adversary 𝒜 correctly simulates the verification or-
acle for 𝒜0. The answer of the two adversaries will be different only if there is
a verification query (𝑖, 𝑁, 𝐶, 𝐴) and a subsequent encryption query (𝑖, 𝑁, 𝑀, 𝐴)
with the same answer 𝐶. For each verification query (𝑖, 𝑁, 𝐶, 𝐴), it can be “tar-
geted” by at most 2𝑠+1 encryption queries, where 𝑠 = |𝐶| − 𝑛, but the chance
that some such encryption query can result in the same ciphertext 𝐶 is at most
2𝑠+1/2|𝐶| = 2/2𝑛. Summing this over 𝑞𝑣 verification queries gives us the bound
2𝑞𝑣/2𝑛. Hence

Advmu-mrae
AE,KeyGen,𝛱(𝒜) ≥ Advmu-mrae

AE,KeyGen,𝛱(𝒜0)− 2𝑞𝑣

2𝑛
.

Recall that 𝒜 always makes verification queries after all encryption queries.
We now construct adversaries 𝒜1 and 𝒜2. Adversary 𝒜1 runs 𝒜, and uses its
Enc and New oracles to respond to the latter’s queries accordingly. For the
verification queries of 𝒜, adversary 𝒜1 simply answers false. When 𝒜 outputs a
bit 𝑎′, 𝒜1 also output 𝑎′. Adversary 𝒜2 runs 𝒜 and uses its oracles New and
Enc to respond to the latter’s queries accordingly. For each verification query
of 𝒜, adversary 𝒜2 queries it to its Vf oracle, but always returns false to 𝒜. Let
game 𝐺1 correspond to game Gmu-mrae

AE,KeyGen,𝛱(𝒜) with challenge bit 𝑎 = 1. Let 𝐺2
be identical to game 𝐺1, except that the verification oracle will always return
false. Let 𝐺3 be identical to game 𝐺2, except that now the encryption oracle will
always return a fresh random answer of appropriate length. Then

Advmu-auth
AE,KeyGen,𝛱(𝒜2) ≥ Pr[𝐺1]− Pr[𝐺2]

because it is impossible for 𝒜 to distinguish 𝐺1 and 𝐺2, unless it manages to
trigger the verification oracle to return a true answer in game 𝐺1. On the other
hand,

Advmu-priv
AE,KeyGen,𝛱(𝒜1) = Pr[𝐺2]− Pr[𝐺3] .

Summing up,

Advmu-priv
AE,KeyGen,𝛱(𝒜1) + Advmu-auth

AE,KeyGen,𝛱(𝒜2) ≥ Pr[𝐺1]− Pr[𝐺3]
= Advmu-mrae

AE,KeyGen,𝛱(𝒜)

≥ Advmu-mrae
AE,KeyGen,𝛱(𝒜0)− 2𝑞𝑣

2𝑛
.

This concludes the proof.
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D Proof of Theorem 1

Our proof uses the H-coefficient method. We let S0 and S1 be two systems
which models the oracles accessed by 𝒜 in the game Gmu-ind

AE,𝐵 (𝒜) in the cases
where ciphertexts are real (𝑏 = 1) or random (𝑏 = 0), respectively. Here, 𝒜 is
deterministic without loss of generality, and transcripts only contain two types
of queries:

1. Encryption queries have form (enc, 𝑖, 𝑀, (IV, 𝐶)), where 𝑖 indicates the
user for which the query has been made, 𝑀 ∈ {0, 1}* is the plaintext, IV ∈
{0, 1}𝑛 is the first block of the ciphertext, whereas 𝐶 are the remaining
blocks. We will normally think of 𝐶 as made of 𝑛-bit blocks 𝐶[1], . . . , 𝐶[ℓ]
and 𝑀 of blocks 𝑀 [1], . . . , 𝑀 [ℓ].

2. Ideal-cipher queries have form (prim, 𝐾, 𝑢, 𝑣), and correspond to the ad-
versary making a query to the ideal cipher, either (𝐾, 𝑢) (in the forward
direction) or (𝐾, 𝑣) in the backward direction, returning 𝑢 and 𝑣, respec-
tively.8

We do not record𝒜’s New queries explicitly, but add the resulting keys 𝐾1, . . . , 𝐾𝑢

to the transcript (note that such keys are generated even in the ideal case, just
never used). We also assume without loss of generality that if an encryption
query for user 𝑖 appears, then 𝑣 has been previously increased beyond 𝑖 using
New queries.

Further, let us fix a transcript 𝜏 be a transcript with 𝑢 keys 𝐾1, . . . , 𝐾𝑢, and
let 𝒦 = 𝒦(𝜏) = {𝐾1, . . . , 𝐾𝑢}.9 Also, let q = (enc, 𝑖, 𝑀, (IV, 𝐶)) ∈ 𝜏 such that
𝑀 and 𝐶 are made of the 𝑛-bit blocks 𝑀 [1], . . . , 𝑀 [ℓ] and 𝐶[1], . . . , 𝐶[ℓ]. Then,
we define the following multi-sets (i.e., elements are allowed to be repeated)

𝑈(q) = {IV + 1, . . . , IV + ℓ} ,

𝑉 (q) = {𝐶[1]⊕𝑀 [1], . . . , 𝐶[ℓ]⊕𝑀 [ℓ]} ,

as well as 𝐾(q) = 𝐾𝑖. Then, for any 𝐾 ∈ 𝒦, we let

𝑉 (𝐾) =
⋃︁

q:𝐾(q)=𝐾

𝑉 (q) , 𝑈(𝐾) =
⋃︁

q:𝐾(q)=𝐾

𝑈(q) .

Here, union is on multisets. Finally, for each 𝐾 ∈ {0, 1}𝑘, we also define 𝑃 (𝐾)
as the set of inputs 𝑈 such that there exists 𝑉 with (prim, 𝐾, 𝑈, 𝑉 ) ∈ 𝜏 .

Good transcripts, and ratio analysis. With this notation, we can give a
definition of good/bad transcripts.

Definition 2 (Good and bad transcripts). We say that 𝜏 is good if the
following conditions are satisfied, for all 𝐾 ∈ 𝒦:
8 It will not be necessary for the transcript to record the direction of ideal-cipher

queries, i.e., whether the query is in the forward or backward direction.
9 Note that as keys may be repeated, we can only ensure |𝒦| ≤ 𝑢.
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(a) Each element in 𝑈(𝐾) appears once, i.e., there are no repetitions.
(b) Each element in 𝑉 (𝐾) appears once, i.e., there are no repetitions.
(c) 𝑃 (𝐾) ∩ 𝑈(𝐾) = ∅.

If 𝜏 is not good, then it is bad.

In the following, we prove that for all good transcript 𝜏 , we have pS0(𝜏) ≥ pS1(𝜏).
First off, define by pKeyGen(𝐾1, . . . , 𝐾𝑢) the probability that New query asked
indeed generate these keys. Now, with 𝑁 = 2𝑛, and 𝑞 the number of encryption
queries,

pS0(𝜏) = 1
𝑁𝑞
· pKeyGen(𝐾1, . . . , 𝐾𝑢) ·

⎡⎣ ∏︁
𝐾∈{0,1}𝑘

|𝑃 (𝐾)|+|𝑈(𝐾)|−1∏︁
𝑖=0

1
𝑁 − 𝑖

⎤⎦ .

where the first term takes into account the random choice of the IVs, the sec-
ond the choice of the keys, the third the ideal-cipher evaluations within the
encryption and direct primitive queries. Note that

∑︀
𝐾∈{0,1}𝑘 |𝑃 (𝐾)| = 𝑝 and∑︀

𝐾∈𝒦 |𝑈(𝐾)| = 𝐿. On the other hand, in the ideal world,

pS1(𝜏) = 1
𝑁𝑞
· pKeyGen(𝐾1, . . . , 𝐾𝑢) · 1

𝑁𝐿
·

⎡⎣ ∏︁
𝐾∈{0,1}𝑘

|𝑃 (𝐾)|−1∏︁
𝑖=0

1
𝑁 − 𝑖

⎤⎦ ,

since ciphertexts are random. Therefore, pS0(𝜏)/pS1(𝜏) ≥ 1, and we can use
the H-coefficient technique with 𝜖 = 0, and only need the probability that a
transcript generated in an ideal execution is bad.

Probability of a bad transcript. We now turn to computing the proba-
bility of a transcript being bad in S1. In particular, denote by 𝒳1 the transcript
generated by 𝒜’s interaction, and let ℬ𝑎,ℬ𝑏 and ℬ𝑐 be the sets of transcripts
which violate (a), (b), or (c) in Definition 2. Then, by the union bound,

Pr[𝒳1 ∈ ℬ] ≤ Pr[𝒳1 ∈ ℬ𝑎] + Pr[𝒳1 ∈ ℬ𝑏] + Pr[𝒳1 ∈ ℬ𝑐] .

We now upper bound the three probabilities separately. Note that because we are
in the ideal world, and New queries do not return any output and the generated
keys are not used, we can think of KeyGen without loss of generality being run
at the end of the execution, and generating the resulting keys.

Case a). We let 𝐿1, 𝐿2, 𝐿3, . . . be the individual lengths of each query performed
by the attacker, which can be chosen adaptively. Also let ℬ𝑎,𝑖 for 𝑖 ∈ [𝑞] the set
of transcripts where the 𝑖-th query, of length 𝐿𝑖, generates an input to the ideal
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cipher which is used in one of the previous queries using the same key. Then,

Pr[𝒳1 ∈ ℬ𝑎] ≤
𝑞∑︁

𝑖=1
Pr[𝒳1 ∈ ℬ𝑎,𝑖]

≤
𝑞∑︁

𝑖=1

∑︁
ℓ𝑖≥1

Pr[𝐿𝑖 = ℓ𝑖] · ℓ𝑖 ·
[︂

𝐵

2ℎ
+ 𝐿

2ℎ
𝛼

]︂

=
[︂

𝐵

2𝑛
+ 𝐿

2ℎ
𝛼

]︂ 𝑞∑︁
𝑖=1

E[𝐿𝑖]

=
[︂

𝐵

2ℎ
+ 𝐿

2ℎ
𝛼

]︂
E

[︃
𝑞∑︁

𝑖=1
𝐿𝑖

]︃
≤ 𝐿𝐵

2ℎ
+ 𝐿2

2ℎ
𝛼 ,

because upon generating a new IV for a query encrypting ℓ𝑖 blocks, there is
probability at most ℓ𝑖𝐵/2ℎ that one of the ℓ𝑖 offsets add(IV, 0), . . . , add(IV, ℓ𝑖−1)
will collide with one of the offsets to encrypt a previous message for the same
user, and probability ℓ𝑖 ·𝐿/2ℎ that there is a collision with one of the offsets used
by some other user. In the latter case, however, such a collision only contributes
to the bad event if the keys associated with the two users also collide, thus
incurring an additional 𝛼 multiplicative factor.

Case b). The argument is very similar to the one for Case a). Instead of looking
at the offsets add(IV, 𝑖) generated during an encryption, and checking collisions
with previously used offsets, we look at the actual ciphertext blocks which are
output (independently and randomly), and make sure they do not provoke the
transcript to be in ℬ𝑏. This gives us a bound of

Pr[𝒳1 ∈ ℬ𝑏] ≤ 𝐿𝐵

2𝑛
+ 𝐿2

2𝑛
𝛼 . (5)

Case c). Recall that when sampling 𝒳1, the keys 𝐾1, . . . , 𝐾𝑢 are sampled at the
end of the execution, independently of it. For a transcript 𝜏 , we define by 𝑍(𝜏, 𝑈)
to be the maximal number of encryption queries q ∈ 𝜏 such that 𝑈 ∈ 𝑈(q). Also,
let 𝑍 = max𝑥 𝑍(𝒳1, 𝑥). Then,

Pr[𝒳1 ∈ ℬ𝑐] ≤
∑︁
𝑧≤𝑎

Pr[𝑍 = 𝑧] · 𝑧𝑝𝛼 + Pr [𝑍 > 𝑎]

≤ 𝑎𝑝𝛼 + Pr [𝑍 > 𝑎]

because for every query (prim, 𝐾, 𝑈, 𝑉 ), out of 𝑝 potential ones, there are at
most 𝑍(𝒳1, 𝑈) ≤ 𝑍 queries q = (enc, 𝑖, 𝑀, (IV, 𝐶)) such that 𝑈 ∈ 𝑈(q). Thus,
the probability (over the choice of 𝐾1, . . . , 𝐾𝑢) that 𝐾 = 𝐾𝑖 is 𝛼. We have then
decided to cut the sum at 𝑧 = 𝑎 =

⌈︀ 1.5𝑛
𝜖ℎ

⌉︀
− 1, as we are going to justify next

that the probability that 𝑍 exceeds this is negligible.
This follows from the following lemma, whose proof is found below, and

which follows a classical balls-into-bins approach, with some extra care needed
to handle the adaptivity of the adversary.
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Lemma 12. Let 𝐿 ≤ 2(1−𝜖)ℎ−1. Then,

Pr
[︂
𝑍 ≥

⌈︂
1.5𝑛

𝜖ℎ

⌉︂]︂
< 2−𝑛/2 .

This concludes the proof.

Proof (Of Lemma 12). One can without loss of generality consider the following
adaptive balls-into-bins game. There are 𝑁 = 2𝑛 bins, corresponding to the
block-cipher inputs. At each query, the attacker chooses adaptively a length ℓ,
then a random IV←$ {0, 1}𝑛 is chosen, and a ball is placed into the bins add(IV, 𝑖)
for 𝑖 = 0, . . . , ℓ− 1. We assume without loss of generality the attacker’s lengths
always sum up to 𝐿, as this only increases 𝑍. Then, we let 𝑍𝑖 be the load of bin
𝑖, and 𝑍 = max𝑖 𝑍𝑖.

Fix some bin 𝑖 ∈ [𝑁 ]. We will now upper bound 𝑍𝑖, for an arbitrary strategy.
Note that with respect to the goal of maximizing 𝑍𝑖, without loss of generality,
the adversary needs only to know whether a ball was thrown into bin 𝑖 or not
after each move. (It can simulate the rest consistently.) Note that when the
adversary chooses a random IV and some length ℓ, we have

Pr[𝑖 ∈ {add(IV, 0), . . . , add(IV, ℓ− 1)}] ≤ ℓ

2ℎ
,

because each individual item has min-entropy ℎ, and is equal 𝑖 with probability
at most 1/2ℎ. Imagine we modify the game so that when the adversary selects
ℓ, we make 2× ℓ independent attempts to throw a ball into bin 𝑖, each of them
succeeding with probability 1/2ℎ, and if any of this lands into bin 𝑖, the adversary
learns this (for now, we will not reveal how many balls land in bin 𝑖, only none,
or at least one). Then, the probability that one ball lands in 𝑖 is

1−
(︂

1− 1
2ℎ

)︂2ℓ

≥ 1− 𝑒−
2ℓ

2ℎ ≥ 1
2 ·

2ℓ

2ℎ
= ℓ

2ℎ

where we have used the fact that 𝑒−𝑥 ≤ 1 − 𝑥
2 whenever 𝑥 ≤ 1, and ℓ

2ℎ ≤ 1.
Therefore, let 𝑍 ′𝑖 be load of 𝑖 in the modified game, we clearly have Pr[𝑍𝑖 ≥
𝑚] ≤ Pr[𝑍 ′𝑖 ≥ 𝑚] for every 𝑚.

But note that because all balls are thrown independently, the latter probabil-
ity does not become smaller if we consider the setting where 2𝐿 balls are thrown
independently, each hitting 𝑖 with probability 1/2ℎ. Call the resulting value 𝑍 ′′𝑖
denoting the load of 𝑖, we thus have Pr[𝑍𝑖 ≥ 𝑚] ≤ Pr[𝑍 ′′𝑖 ≥ 𝑚]. By repeatedly
applying the union bound, we have

Pr[𝑍 ≥ 𝑚] ≤
𝑁∑︁

𝑖=1
Pr[𝑍 ′′𝑖 ≥ 𝑚] ≤ 𝑁

(︂
2𝐿

𝑚

)︂ (︂
1
2ℎ

)︂𝑚

< 𝑁

(︂
2𝐿

2ℎ

)︂𝑚

≤ 2𝑛−𝜖ℎ𝑚 ,

where we have used the fact that
(︀

𝑎
𝑏

)︀
< 𝑎𝑏 and 𝐿 ≤ 2(1−𝜖)ℎ−1. Now, set 𝑚 =

⌈ 1.5𝑛
𝜖ℎ ⌉. Then, the above is upper bounded by 2−𝑛/2. ⊓⊔
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E Proof of Theorem 2

We shall use H-coefficient technique to prove the claimed bound. We define two
systems S0 and S1 that represents the real game (𝑏 = 1) and ideal (𝑏 = 0) game
of Gmu-prf

GMAC+[𝐻,𝐸],𝐵,𝐸(𝒜). Also, without loss of generality we assume that our
adversary 𝒜 is deterministic and it does not repeat queries. After the adversary
finishes querying, we grant the adversary the key pairs {𝐾𝑖

in, 𝐾𝑖
out}𝑖=1,...,𝑢 for all

𝑢 users spawned by calls to New. (Note that in the ideal world, these keys do
not influence the behavior of the system and can be thought as being generated
at the end, consistent with the earlier inputs to the New queries.) In addition
to the key pairs granted to the adversary, a mu-prf transcript 𝜏 contains the
following two types of queries:

– Evaluation queries are the entries of type (eval, 𝑖, 𝑀, 𝐴, 𝑁, 𝑇 ), where 𝑖
indicates the user that this query targets, 𝑀 is message, 𝐴 the associated
data, 𝑁 is the nonce, and 𝑇 is corresponding tag.

– Primitive queries are of type (prim, 𝐾, 𝑈, 𝑉 ), which result from a forward
ideal-cipher query (𝐾, 𝑈) returning 𝑉 , or a backward ideal-cipher query
(𝐾, 𝑉 ) returning 𝑈 .

Again, for a query q, we write q ∈ 𝜏 to denote its appearance in the transcript.
Also, for each 𝐾 ∈ {0, 1}𝑘 we define the following numbers:

𝑞(𝐾) =
⃒⃒
{(eval, 𝑖, 𝑀, 𝐴, 𝑁, 𝑇 ) ∈ 𝜏 | 𝐾𝑖

out = 𝐾}
⃒⃒

𝑝(𝐾) = |{(prim, 𝐾 ′, 𝑈, 𝑉 ) ∈ 𝜏 | 𝐾 ′ = 𝐾}|

Defining bad transcripts. We say a transcript 𝜏 is bad if it satisfies one of
the following constraints (it is called good otherwise).

1. There exist two entries (eval, 𝑖, 𝑀1, 𝐴1, 𝑁1, 𝑇1) and (eval, 𝑗, 𝑀2, 𝐴2, 𝑁2, 𝑇2)
such that (𝑖, 𝑀1, 𝐴1, 𝑁1) ̸= (𝑗, 𝑀2, 𝐴2, 𝑁2) , 𝐾𝑖

out = 𝐾𝑗
out and

xor(𝐻𝐾𝑖
in
(𝑀1, 𝐴1), 𝑁1) = xor(𝐻𝐾𝑗

in
(𝑀2, 𝐴2), 𝑁2) . (6)

2. There exist two entries (eval, 𝑖, 𝑀1, 𝐴1, 𝑁1, 𝑇1) and (eval, 𝑗, 𝑀2, 𝐴2, 𝑁2, 𝑇2)
such that 𝑇1 = 𝑇2 and 𝐾𝑖

out = 𝐾𝑗
out.

3. There exist entries (prim, 𝐾, 𝑈, 𝑉 ) and (eval, 𝑖, 𝑀, 𝐴, 𝑁, 𝑇 ) such that 𝐾𝑖
out =

𝐾 and xor(𝐻𝐾𝑖
in
(𝑀, 𝐴), 𝑁) = 𝑈 .

Transcript ratio. We now need to compare pS1(𝜏) and pS0(𝜏) for a good tran-
script 𝜏 . First off, note that in the ideal world, all queries are replied randomly
and independently, and moreover, keys are also chosen independently of the rest
of the transcript, with a certain probability 𝑝* = pKeyGen({𝐾𝑖

in, 𝐾𝑖
out}𝑖=1,...,𝑢).

Further, ideal-cipher queries are also answered independently of evaluation queries.
Therefore,

pS1(𝜏) = 𝑝* · 2−𝑛𝑞 ·
∏︁

𝐾∈{0,1}𝑘

𝑝(𝐾)−1∏︁
𝑖=0

1
2𝑛 − 𝑖

.
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In the real world, note that because the transcript 𝜏 is good, no two queries
to the ideal cipher within Eval queries with the same outer key 𝐾 are on the
same input, and moreover, such inputs do not appear as inputs of direct Prim
queries (even though the outer key itself might). The keys are also generated
with probability 𝑝*. For this reason,

pS0(𝜏) = 𝑝* ·
∏︁

𝐾∈{0,1}𝑘

𝑝(𝐾)+𝑞(𝐾)−1∏︁
𝑖=0

1
2𝑛 − 𝑖

,

and thus in particular, because
∑︀

𝐾 𝑞(𝐾) = 𝑞, we see that pS0(𝜏) replaces the
𝑞 factors 2−𝑛 in the product in pS1(𝜏) with other factors of form 1

2𝑛−𝑖 ≥
1

2𝑛 for
some 𝑖 ≥ 0, and therefore, pS0(𝜏) ≥ pS1(𝜏). Thus, we can use the H-coefficient
technique with 𝜖 = 0, and only need to upper bound the probability that an
ideal transcript is bad, which we do next.

Probability of bad transcripts. Let 𝒳1 be the random variable for the
transcript in the ideal system. Let ℬ1, ℬ2, ℬ3 be the sets of transcripts that
satisfies (1), (2) and (3) according to the definition of bad transcripts. Then by
the union bound,

Pr[𝒳1 ∈ ℬ] ≤ Pr[𝒳1 ∈ ℬ1] + Pr[𝒳1 ∈ ℬ2] + Pr[𝒳1 ∈ ℬ3]

We now upper bound the three probabilities on the RHS separately.

For (1) and (3), we can assume wlog that the execution has terminated, and
the transcript so far is fixed, and the keys 𝐾1

in, 𝐾1
out, 𝐾2

in, 𝐾2
out, . . . are generated,

independently of the execution, and are the only random variables. Assume in
particular the execution has involved 𝑢 users and there are 𝑞𝑖 evaluation queries
for user 𝑖, and thus

∑︀𝑢
𝑖=1 𝑞𝑖 ≤ 𝑞. Also, assume that the 𝑞𝑖 queries intended for

user 𝑖 have each lengths ℓ𝑖,1, ℓ𝑖,2, . . . , ℓ𝑖,𝑞𝑖 blocks where we intentionally arrange
them to be sorted as ℓ𝑖,1 ≤ ℓ𝑖,2 ≤ ... ≤ ℓ𝑖,𝑞𝑖

. Clearly, for all 𝑖,
∑︀𝑞𝑖

𝑗=1 ℓ𝑖,𝑗 ≤ 𝐵.

We define two subsets ℬ11 and ℬ12 of ℬ1. The first consists of transcripts in
which there are two entries (eval, 𝑖, 𝑀1, 𝑁1, 𝐴1, 𝑇1) and (eval, 𝑖, 𝑀2, 𝑁2, 𝐴2, 𝑇2)
with (𝑀1, 𝐴1, 𝑁1) ̸= (𝑀2, 𝐴2, 𝑁2), and

xor(𝐻𝐾𝑖
in
(𝑀1, 𝐴1), 𝑁1) = xor(𝐻𝐾𝑖

in
(𝑀2, 𝐴2), 𝑁2) .

The second set consists of the transcripts with two entries (eval, 𝑖1, 𝑀1, 𝐴1, 𝑁1, 𝑇1)
and (eval, 𝑖2, 𝑀2, 𝐴2, 𝑁2, 𝑇2) with 𝑖1 ̸= 𝑖2, 𝐾𝑖1

out = 𝐾𝑖2
out, and

xor(𝐻
𝐾

𝑖1
in

(𝑀1, 𝐴1), 𝑁1) = xor(𝐻
𝐾

𝑖2
in

(𝑀2, 𝐴2), 𝑁2) .
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Note that here (𝑀1, 𝐴1, 𝑁1) = (𝑀2, 𝐴2, 𝑁2) is allowed.

We start with ℬ11. Then, for any two (𝑀1, 𝐴1, 𝑁1) ̸= (𝑀2, 𝐴2, 𝑁2) with (𝑀1, 𝐴1) ̸=
(𝑀2, 𝐴2),

Pr[xor(𝐻𝐾𝑖
in
(𝑀1, 𝐴1), 𝑁1) = xor(𝐻𝐾𝑖

in
(𝑀2, 𝐴2), 𝑁2)]

= Pr[xor(𝐻𝐾𝑖
in
(𝑀1, 𝐴1)⊕𝐻𝐾𝑖

in
(𝑀2, 𝐴2), 𝑁1 ⊕𝑁2) = 0𝑛]

≤ 𝑐 · 𝜆 · 𝛽 ·max{|𝑀1|𝑛 + |𝐴1|𝑛, |𝑀2|𝑛 + |𝐴2|𝑛}
2𝑛

,

for the following reasons. The first equality follows by linearity of xor. Then, by
𝜆-regularity of xor, there are at most 𝜆 strings 𝛥 such that xor(𝛥, 𝑁1⊕𝑁2) = 0𝑛.
By 𝑐-xor-universality, for any such 𝛥, the number of keys 𝑘 in {0, 1}𝑛 that make
the xor of the hashes equal 𝛥 is at most 𝑐·max{|𝑀1|𝑛 +|𝐴1|𝑛, |𝑀2|𝑛 +|𝐴2|𝑛}. By
𝛽-AU, the probability of each such key is at most 𝛽/2𝑛. Clearly, if (𝑀1, 𝐴1) =
(𝑀2, 𝐴2), but 𝑁1 ̸= 𝑁2, then the upper bound also holds vacuously by injectivity
of xor.

Therefore, by taking the union bound, and exploiting our ordering of queries
according to their lengths (recall 𝐶 := 𝛽𝑐𝜆),

Pr[𝒳1 ∈ ℬ11] ≤
𝑢∑︁

𝑖=1

∑︁
1≤𝑗′<𝑗≤𝑞𝑖

𝐶 · ℓ𝑖,𝑗

2𝑛
= 𝐶

𝑢∑︁
𝑖=1

𝑞𝑖∑︁
𝑗=1

(𝑗 − 1) · ℓ𝑖,𝑗

2𝑛

≤ 𝐶

𝑢∑︁
𝑖=1

𝑞𝑖

𝑞𝑖∑︁
𝑗=1

ℓ𝑖,𝑗

2𝑛
≤ 𝐶

𝑢∑︁
𝑖=1

𝑞𝑖𝐵

2𝑛
≤ 𝐶𝑞𝐵

2𝑛
.

We move on to ℬ12. Note that for any two relevant entries, we have that

Pr[xor(𝐻
𝐾

𝑖1
in

(𝑀1, 𝐴1), 𝑁1) = xor(𝐻
𝐾

𝑖2
in

(𝑀2, 𝐴2), 𝑁2) ∧𝐾𝑖1
out = 𝐾𝑖2

out] ≤

≤ 𝐶 ·min{|𝑀1|𝑛 + |𝐴1|𝑛, |𝑀2|𝑛 + |𝐴2|𝑛}
2𝑛+𝑘

,

because of the following reasons: Assume wlog |𝑀1|𝑛 + |𝐴1|𝑛 ≥ |𝑀2|𝑛 + |𝐴2|𝑛
(otherwise the argument is symmetric). Then, for every for every 𝐾𝑖1

in , there are
at most 𝜆 values 𝑌 such that xor(𝐻

𝐾
𝑖1
in

(𝑀1, 𝐴1), 𝑁1) = xor(𝑌, 𝑁2) by 𝜆-regularity
of xor, and for each such 𝑌 , by 𝑐-regularity of 𝐻, at most 𝑐·(|𝑀2|𝑛+|𝐴2|𝑛) values
of 𝐾𝑖2

in are such that 𝐻
𝐾

𝑖2
in

(𝑀2, 𝐴2) = 𝑌 . Thus there are at most 𝐶 · (|𝑀2|𝑛 +
|𝐴2|𝑛) · 2𝑛+𝑘 tuples (𝐾𝑖1

in , 𝐾𝑖1
out, 𝐾𝑖2

in , 𝐾𝑖2
out) of keys that provoke the event, and

each one of them appears with probability at most 𝛽/22(𝑛+𝑘) by 𝛽-AU. Thus,
overall

Pr[𝒳1 ∈ ℬ12] ≤ 𝐶

𝑢∑︁
𝑖=1

𝑞𝑖∑︁
𝑗=1

𝑞 · ℓ𝑖,𝑗

2𝑛+𝑘
≤ 𝐶𝑞𝐿

2𝑛+𝑘
.

Hence, we conclude that

Pr[𝒳1 ∈ ℬ1] ≤ 𝐶𝑞𝐵

2𝑛
+ 𝐶𝑞𝐿

2𝑛+𝑘
(7)
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Now, for ℬ3, we use a similar argument. For any one of the 𝑝 Prim queries
(prim, 𝐾, 𝑈, 𝑉 ) and any of the 𝑞 Eval queries (eval, 𝑖, 𝑀, 𝐴, 𝑁, 𝑇 ), we have

Pr[𝐾𝑖
out = 𝐾 ∧ xor(𝐻𝐾𝑖

in
(𝑀, 𝐴), 𝑁) = 𝑈 ] ≤

𝐶(|𝑀 |𝑛 + |𝐴|𝑛)
2𝑛+𝑘

.

Taking a union bound over all 𝑝 and 𝑞 queries, yields

Pr[𝒳1 ∈ ℬ3] ≤ 𝐶 · 𝑝 ·
𝑢∑︁

𝑖=1

𝑞𝑖∑︁
𝑗=1

ℓ𝑖,𝑗

2𝑛+𝑘
≤ 𝐶𝑝𝐿

2𝑛+𝑘
.

Finally, we turn to ℬ2. We partition the set of transcripts into two subsets ℬ21
and ℬ22. The first subset ℬ21 consists of the transcripts which contain two entries
(eval, 𝑖, 𝑀1, 𝐴1, 𝑁1, 𝑇1) and (eval, 𝑖, 𝑀2, 𝐴2, 𝑁2, 𝑇2) such that 𝑇1 = 𝑇2. The sec-
ond subset ℬ22 consists of transcripts with two entries (eval, 𝑖1, 𝑀1, 𝐴1, 𝑁1, 𝑇1)
and (eval, 𝑖2, 𝑀2, 𝐴2, 𝑁2, 𝑇2) such that 𝑇1 = 𝑇2, 𝑖1 ̸= 𝑖2, and 𝐾𝑖1

out = 𝐾𝑖2
out. Then,

for each new query, the probability that the output collides with one of the pre-
viously issued queries for the same user is at most 𝐵/2𝑛. Therefore, by the union
bound,

Pr[𝒳1 ∈ ℬ21] ≤ 𝑞𝐵

2𝑛
; .

In contrast, to enter the second set, note that for each new query, there is proba-
bility at most 𝑞/2𝑛 that the output collides with one of the previous queries, and
the probability that additionally the outer keys collide is at most 𝛽/2𝑘. Thus,

Pr[𝒳1 ∈ ℬ22] ≤ 𝛽𝑞2

2𝑛+𝑘
.

Summing up we get,

Pr[𝒳1 ∈ ℬ2] ≤ 𝑞𝐵

2𝑛
+ 𝛽𝑞2

2𝑛+𝑘

This concludes the proof.

E.1 Proof of Theorem 3

We merely discuss how to adapt the proof of Theorem 2 to accommodate the case
that 𝐻𝐾in(𝜀, 𝜀) = 0𝑛 for all keys 𝐾in, where 𝜀 denotes the empty string. Further,
this yields a proof for Theorem 3. The bad transcripts are exactly the same as in
Theorem 2, the changes are the probabilities that these bad transcripts occur,
specifically for the events ℬ12 and ℬ3. Note that we assume an upper bound 𝑑
on the number of users re-using a particular nonce 𝑁 , and this is going to be
used below.
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Analysis of ℬ12. Recall that we are looking at the probability that there are
two transcript entries (eval, 𝑖1, 𝑀1, 𝐴1, 𝑁1, 𝑇1) and (eval, 𝑖2, 𝑀2, 𝐴2, 𝑁2, 𝑇2) with
𝑖1 ̸= 𝑖2, 𝐾𝑖1

out = 𝐾𝑖2
out, and

xor(𝐻
𝐾

𝑖1
in

(𝑀1, 𝐴1), 𝑁1) = xor(𝐻
𝐾

𝑖2
in

(𝑀2, 𝐴2), 𝑁2) .

Note that here (𝑀1, 𝐴1, 𝑁1) = (𝑀2, 𝐴2, 𝑁2) is allowed. There are three sub-cases
resulting in three different probability terms:

– If (𝑀1, 𝐴1) ̸= (𝜀, 𝜀), (𝑀2, 𝐴2) ̸= (𝜀, 𝜀), then we are in the same situation as
in Theorem 2 above, and get an upper bound 𝐶𝑞𝐿

2𝑛+𝑘
.

– If (𝑀1, 𝐴1) = (𝜀, 𝜀) and (𝑀2, 𝐴2) ̸= (𝜀, 𝜀), then

Pr[xor(𝐻
𝐾

𝑖1
in

(𝑀1, 𝐴1), 𝑁1) = xor(𝐻
𝐾

𝑖2
in

(𝑀2, 𝐴2), 𝑁2) ∧𝐾𝑖1
out = 𝐾𝑖2

out] ≤

≤ 𝐶 · (|𝑀2|𝑛 + |𝐴2|𝑛)
2𝑛+𝑘

,

where we have used the regularity of the function output on (𝑀2, 𝐴2). Taking
a union bound over all such pairs, this results in a term 𝐶𝑞𝐿

2𝑛+𝑘
.

– Finally, we consider the case of (𝑀1, 𝐴1) = (𝑀2, 𝐴2) = (𝜀, 𝜀). Here, the prob-
ability Pr[xor(𝐻

𝐾
𝑖1
in

(𝑀1, 𝐴1), 𝑁1) = xor(𝐻
𝐾

𝑖2
in

(𝑀2, 𝐴2), 𝑁2)∧𝐾𝑖1
out = 𝐾𝑖2

out] is
either zero if 𝑁1 ̸= 𝑁2, or 2−𝑘 if 𝑁1 = 𝑁2. (This follows from the injective
property of xor.) Let now 𝑞𝑁 be the number of queries (𝜀, 𝜀) with nonce 𝑁 ,
and thus in particular

∑︀
𝑁 𝑞𝑁 ≤ 𝑞, and further 𝑞𝑁 ≤ 𝑑. Then, the overall

probability that ℬ12 occurs due to such a pair is at most∑︁
𝑁

𝑞2
𝑁 /2𝑘 ≤ 𝑑 ·

∑︁
𝑁

𝑞𝑁 /2𝑘 ≤ 𝑑𝑞

2𝑘
.

Analysis of ℬ3. As in Theorem 2, the probability that for one of the 𝑝 Prim
queries (prim, 𝐾, 𝑈, 𝑉 ) and one of the 𝑞 Eval queries (eval, 𝑖, 𝑀, 𝐴, 𝑁, 𝑇 ) with
(𝑀, 𝐴) ̸= (𝜀, 𝜀) we have 𝐾𝑖

out = 𝐾 and xor(𝐻𝐾𝑖
in
(𝑀, 𝐴), 𝑁) = 𝑈 is at most 𝐶𝑝𝐿

2𝑛+𝑘 .
In contrast, for a nonce 𝑁 , let 𝑁 ′ = xor(0𝑛, 𝑁). Then, for every Prim query

(prim, 𝐾, 𝑁 ′, 𝑉 ), there are at most 𝑑 Eval queries (eval, 𝑖, 𝜀, 𝜀, 𝑁, 𝑇 ), and the
probability that 𝐾𝑖

in = 𝐾 for any of these is 2−𝑘. Therefore, the overall proba-
bility that the transcript is in ℬ3 because of such a pair is at most 𝑝𝑑

2𝑘 .

F Proof of Theorem 4

We will use the H-coefficient technique. The real system S0 and ideal system
S1 implement game Advmu-mrae

AE,KeyGen,𝐸(𝒜) with challenge bit 1 and 0 respectively.
Assume that 𝒜 does not repeat a prior query (except for New ones), and it does
not make redundant ideal-cipher queries. Assume that if the adversary makes
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an encryption query (𝑖, 𝑁, 𝑀, 𝐴) for an answer 𝐶 then later it will not make
a verification query (𝑖, 𝑁, 𝐶, 𝐴). Since we consider computationally unbounded
adversaries, without loss of generality, assume that the adversary is deterministic.
When the adversary finishes querying, we grant it all the keys 𝐾1, 𝐾2, · · · . This
should only help the adversary. Beside the revealed keys and the information of
the New queries, the transcript stores the following information:

– Ideal-cipher queries: for each query 𝐸(𝐾, 𝑋) with answer 𝑌 , create an
entry (prim, 𝐾, 𝑋, 𝑌, +). Likewise, for each query 𝐸−1(𝐾, 𝑌 ) with answer
𝑋, create an entry (prim, 𝐾, 𝑋, 𝑌,−).

– Encryption queries: for each encryption query (𝑖, 𝑁, 𝑀, 𝐴) with answer
𝐶, store an entry (enc, 𝑖, 𝑁, 𝑀, 𝐴, 𝐶). Additionally, in the real world, grant
the adversary the table of triples (𝐾, 𝑋, 𝐸𝐾(𝑋)) for any query 𝐸(𝐾, 𝑋) that
CTR[𝐸].E(𝐽𝑖, 𝑀 ; 𝑇 ) makes, where 𝐽𝑖 is the 𝑘-bit suffix of the key 𝐾𝑖 of user 𝑖,
and 𝑇 is the IV of 𝐶. In the ideal world, generate the corresponding fake
table as described in Section 5. The extra information in the table will only
help the adversary.

– Verification queries: for each verification query (𝑖, 𝑁, 𝐶, 𝐴) with answer 𝑏,
store an entry (vf, 𝑖, 𝑁, 𝐶, 𝐴, 𝑏).

Now, from such a transcript 𝜏 , we can extract a transcript R1(𝜏) for GMAC+,
and another transcript R2(𝜏) for CTR as follows. The transcript R1(𝜏) con-
sists of the revealed keys, information of the New queries, and all prim entries
of 𝜏 , and for each entry (enc, 𝑖, 𝑁, 𝑀, 𝐴, 𝐶) of 𝜏 , we accordingly store an entry
(eval, 𝑖, 𝑁, 𝑀, 𝐴, 𝑇 ) in R1(𝜏), where 𝑇 is the IV of 𝐶. The transcript R2(𝜏) con-
sists of the 𝑘-bit suffixes of the revealed keys, information of the New queries,
and all prim entries of 𝜏 , and for each entry (enc, 𝑖, 𝑁, 𝑀, 𝐴, 𝐶) of 𝜏 , we accord-
ingly store an entry (enc, 𝑖, 𝑀, 𝐶) in R2(𝜏). If (1) R1(𝜏) is GMAC+-good and
R2(𝜏) is CTR-good, and (2) 𝜏 contains no verification query of answer true, then
we additionally grant the adversary the following information:

– In the real world, for each entry (vf, 𝑖, 𝑁, 𝐶, 𝐴, false), we run CTR[𝐸].D(𝐽𝑖, 𝐶),
where 𝐽𝑖 is the 𝑘-bit suffix of 𝐾𝑖, and grant the adversary the decrypted mes-
sage 𝑀 . For each query 𝐸(𝐾, 𝑋) of answer 𝑌 that CTR[𝐸].D makes, if there
is no entry (prim, 𝐾, 𝑋, 𝑌, ·) or no triple (𝐾, 𝑋, 𝑌 ) in all tables then we grant
the adversary an entry (dec, 𝐾, 𝑋, 𝑌 ).

– In the ideal world, create a blockcipher �̃� : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛

as follows. For each 𝐾 ∈ {0, 1}𝑘, sample �̃�(𝐾, ·) uniformly random from
Perm(𝑛), subject to the constraint that (i) for any entry (prim, 𝐾, 𝑋, 𝑌, ·)
in R2(𝜏), we must have �̃�(𝐾, 𝑋) = 𝑌 , and (ii) for any triple (𝐾, 𝑋 ′, 𝑌 ′) in
the tables of R2(𝜏), we must have �̃�(𝐾, 𝑋 ′) = 𝑌 ′. This blockcipher can be
generated, because R2(𝜏) is CTR-good. For each entry (vf, 𝑖, 𝑁, 𝐶, 𝐴, false),
we run CTR[�̃�].D(𝐽𝑖, 𝐶), where 𝐽𝑖 is the 𝑘-bit suffix of 𝐾𝑖 and grant the
adversary the decrypted message 𝑀 , and the entries (dec, 𝐾, 𝑋, 𝑌 ) as above.

Defining bad transcripts. A transcript 𝜏 is bad if one of the following hap-
pens:
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1. The GMAC+-transcript R1(𝜏) of 𝜏 is GMAC+-bad.
2. The CTR-transcript R2(𝜏) of 𝜏 is CTR-bad.
3. There is a table in R2(𝜏) that contains a triple (𝐾, 𝑋, 𝑌 ), and there is an

entry (eval, 𝑖, 𝑁, 𝑀, 𝐴, 𝑇 ) in R1(𝜏) such that 𝐾 = 𝐾out and 𝑌 = 𝑇 , where
𝐾in ‖𝐾out is the key 𝐾𝑖 of user 𝑖.

4. There is an entry (dec, 𝐾, 𝑋, 𝑌 ) in 𝜏 and an entry (eval, 𝑖, 𝑁, 𝑀, 𝐴, 𝑇 ) in
R1(𝜏) such that 𝐾 = 𝐾out and 𝑌 = 𝑇 , where 𝐾in ‖ 𝐾out is the key 𝐾𝑖 of
user 𝑖.

5. There is an entry (vf, 𝑖, 𝑁, 𝐶, 𝐴, false) in 𝜏 and an entry (eval, 𝑗, 𝑁 ′, 𝑀 ′, 𝐴′, 𝑇 )
in R1(𝜏) such that 𝑇 is the IV of 𝐶, 𝐾out = 𝐾 ′out, and xor(𝐻(𝐾in, 𝑀, 𝐴), 𝑁) =
xor(𝐻(𝐾 ′in, 𝑀 ′, 𝐴′), 𝑁 ′), where 𝐾in ‖𝐾out and 𝐾 ′in ‖𝐾 ′out are the keys 𝐾𝑖 and
𝐾𝑗 of users 𝑖 and 𝑗 respectively, and 𝑀 is the decrypted message associated
with the vf entry above.

6. There are entries (prim, 𝐾, 𝑋, 𝑌 ) and (vf, 𝑖, 𝑁, 𝐶, 𝐴, false) in 𝜏 such that
𝐾 = 𝐾out, 𝑌 = 𝑇 , and xor(𝐻(𝐾in, 𝑀, 𝐴), 𝑁) = 𝑋, where 𝐾in ‖ 𝐾out is the
key 𝐾𝑖 of user 𝑖, and 𝑇 is the IV of 𝐶, and 𝑀 is the decrypted message
associated with the vf entry above.

If a transcript is not bad then we say that it is good. Below, let 𝜖1 be the number
that the GMAC+ proof uses to upper bound the probability of bad transcripts,
for any adversary 𝒜 that makes at most 𝑞 evaluation queries whose total block
length is at most 𝐿, at most 𝐵-block queries per user, and 𝑝 ideal-cipher queries,
and for any 𝛽-pairwise AU key-generation algorithm. Applying Theorem 2 with
𝜆 = 2, and note that 𝑞 ≤ 𝐿,

𝜖1 ≤
(1 + 2𝛽𝑐)𝐿𝐵

2𝑛
+ 2𝛽𝑐𝐿𝑝 + (2𝛽𝑐 + 𝛽)𝐿2

2𝑛+𝑘
(8)

Define 𝜖2 for CTR similarly, for a 𝛽
2𝑘 -smooth key-generation algorithm, where

the notion of smoothness can be found in Section 4.1. Applying Theorem 1 with
𝛼 = 𝛽/2𝑘 and ℎ = 𝑛− 1, and note that 𝑞 ≤ 𝐿,

𝜖2 ≤
1

2𝑛/2 + 3𝐿𝐵

2𝑛
+ 3𝛽𝐿2

2𝑛+𝑘
+ 𝛽𝑎𝑝

2𝑘
(9)

Probability of bad transcripts. Let 𝒳1 be the random variable for the
transcript in the ideal system. Let ℬ𝑗 denote the set of transcripts that vio-
lates the 𝑗th constraint in badness. For the first constraint of badness, consider
the following adversary 𝒜 attacking the mu-prf security of GMAC+[𝐻, 𝐸], with
respect to the key-generation algorithm KeyGen. It runs 𝒜 and uses its New
oracle to respond to the latter’s queries of the same type. For each encryption
query (𝑖, 𝑁, 𝑀, 𝐴) of 𝒜, adversary 𝒜 queries Eval(𝑖, 𝑁, 𝑀, 𝐴) to get an answer
𝑇 , generates a ciphertext core 𝐶 ′ of appropriate length, and then returns 𝑇 ‖𝐶 ′

to 𝒜. For each verification query of 𝒜, adversary 𝒜 simply returns false. When
𝒜 finishes querying and asks for the keys, 𝒜 also finishes querying and gives
𝒜 what it receives. Then the transcript of 𝒜 in the ideal world has the same
distribution as R1(𝒳1). Since adversary 𝒜 uses at most 𝑞 evaluation queries
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whose total block length is at most 𝐿, at most 𝐵-block queries per user, and 𝑝
ideal-cipher queries,

Pr[𝒳1 ∈ ℬ1] ≤ 𝜖1 .

Next, for the second constraint of badness, let KeyGen[𝑘] be the key-generation
algorithm such that, on input (st, aux), runs (𝐾, st′) ← KeyGen(st, aux), and
then outputs (𝐽, st′), where 𝐽 is the 𝑘-bit suffix of 𝐾. Then KeyGen[𝑘] is 𝛽

2𝑘 -
smooth. Consider the following adversary 𝒜* attacking the mu-ind security of
SE, with respect to the key-generation algorithm KeyGen[𝑘]. It runs 𝒜 and uses
its oracle New and Enc to respond to the latter’s queries of the same type. For
each verification query of 𝒜, adversary 𝒜* simply returns false. When 𝒜 finishes
querying and asks for the keys, then 𝒜* also finishes querying and gives 𝒜 the
keys that it receives. Then the transcript of 𝒜* in the ideal world has the same
distribution as R2(𝒳1). Since adversary 𝒜* uses at most 𝑞 encryption queries
whose total block length is at most 𝐿, at most 𝐵-block queries per user, and 𝑝
ideal-cipher queries,

Pr[𝒳1 ∈ ℬ2] ≤ 𝜖2 .

For the third constraint of badness, consider a sequence of encryption queries
(𝑖1, 𝑀1, 𝑁1, 𝐴1), . . . , (𝑖𝑞, 𝑀𝑞, 𝑁𝑞, 𝐴𝑞) with answers 𝐶1, . . . , 𝐶𝑞 respectively. Fix
1 ≤ 𝑟, 𝑠 ≤ 𝑞. Let 𝐾in ‖ 𝐾out and 𝐾 ′in ‖ 𝐾 ′out be the keys of users 𝑖𝑟 and 𝑖𝑠

respectively. Consider the table generated by the 𝑟-th encryption query, and
the eval entry generated by the 𝑠-th encryption query. Recall that this table is
generated by (1) padding 𝐶𝑟 with random bits to have full block length, and
padding 𝑀𝑟 to have full block length, (2) parsing IV ‖ 𝐶𝑟,1 ‖ · · · ‖ 𝐶𝑟,𝑚 ← 𝐶𝑟,
and 𝑀𝑟,1 ‖ · · · ‖ 𝑀𝑟,𝑚 ← 𝑀𝑟, with |𝐶𝑟,ℓ| = |𝑀𝑟,ℓ| = 𝑛, and (3) producing
(𝐾out, 𝑋1, 𝐶𝑟,1 ⊕𝑀𝑟,1), . . . , (𝐾out, 𝑋𝑚, 𝐶𝑟,𝑚 ⊕𝑀𝑟,𝑚), with 𝑋ℓ ← add(IV, ℓ− 1).
We now compute the probability that 𝐾out = 𝐾 ′out and 𝐶𝑟,ℓ⊕𝑀𝑟,ℓ = 𝑇 . Consider
the following cases.
Case 1: 𝑟 ≥ 𝑠. Hence 𝐶𝑟,ℓ is picked at random, independent of 𝑀𝑟,ℓ and 𝑇 . Since
KeyGen is 𝛽-pairwise AU, the chance that 𝐾out = 𝐾 ′out and 𝐶𝑟,ℓ ⊕𝑀𝑟,ℓ = 𝑇 is
at most 𝛽/2𝑘+𝑛 if 𝑖𝑟 ̸= 𝑖𝑠, and at most 2−𝑛 if 𝑖𝑟 = 𝑖𝑠.
Case 2: 𝑟 < 𝑠. Then 𝑇 is picked at random, independent of 𝑀𝑟,ℓ and 𝐶𝑟,ℓ. Since
KeyGen is 𝛽-pairwise AU, the chance that 𝐾out = 𝐾 ′out and 𝐶𝑟,ℓ ⊕𝑀𝑟,ℓ = 𝑇 is
at most 𝛽/2𝑘+𝑛 if 𝑖𝑟 ̸= 𝑖𝑠, and at most 2−𝑛 if 𝑖𝑟 = 𝑖𝑠.
Thus in any case, the chance that 𝐾out = 𝐾 ′out and 𝐶𝑟,ℓ ⊕𝑀𝑟,ℓ = 𝑇 is at most
𝛽/2𝑘+𝑛 if 𝑖𝑟 ̸= 𝑖𝑠, and at most 2−𝑛 if 𝑖𝑟 = 𝑖𝑠. Since the total number of triples in
all tables is at most 𝐿, and there are at most 𝐵 eval entries created due to encryp-
tion queries for user 𝑖𝑠, and note that 𝑞 ≤ 𝐿/2 (as each encryption/verification
query consists of at least two blocks, one due to the associated data, and another
due to the message/ciphertext),

Pr[𝒳1 ∈ ℬ3] ≤
∑︁

1≤𝑠≤𝑞

𝛽𝐿

2𝑘+𝑛
+ 𝛽𝐵

2𝑛
= 𝛽𝐿𝑞

2𝑘+𝑛
+ 𝛽𝑞𝐵

2𝑛
≤ 𝛽𝐿2

2𝑘+𝑛
+ 0.5𝛽𝐿𝐵

2𝑛
.

For the fourth constraint of badness, fix an entry (dec, 𝐾, 𝑋, 𝑌 ) created by de-
crypting a verification query of user 𝑗. Consider an entry (eval, 𝑖, 𝑁, 𝑀, 𝐴, 𝑇 ).
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Let 𝐾out be the 𝑘-bit suffix of the key 𝐾𝑖 of user 𝑖, and note that 𝐾 is the 𝑘-bit
suffix of the key 𝐾𝑗 of user 𝑗. There are two cases:
Case 1: The verification query above is made before the the encryption query
corresponding to the eval entry. Then 𝑇 is a random string, independent of 𝑌 .
If 𝑖 = 𝑗 then 𝐾 = 𝐾out, and the chance that 𝑌 = 𝑇 is 2−𝑛. If 𝑖 ̸= 𝑗 then since
KeyGen is 𝛽-pairwise AU, the chance that 𝐾 = 𝐾out and 𝑌 = 𝑇 is at most
𝛽/2𝑘+𝑛.
Case 2: The verification query above is made after the the encryption query
corresponding to the eval entry. Since there are at most 𝐿 dec entries and at
most 𝐿 triples in the tables, given 𝑇 , there are still at least 2𝑛 − 2𝐿− 𝑝 ≥ 2𝑛−1

equally likely choices of 𝑌 . Hence if 𝑖 = 𝑗 then 𝐾 = 𝐾out, and the chance that
𝑌 = 𝑇 is at most 2/2𝑛. On the other hand, since KeyGen is 𝛽-pairwise AU, if
𝑖 ̸= 𝑗 then the chance that 𝐾 = 𝐾out and 𝑌 = 𝑇 is at most 2𝛽/2𝑘+𝑛.

Thus in both cases, the chance that 𝐾 = 𝐾out and 𝑌 = 𝑇 is at most 2𝛽/2𝑘+𝑛 if
𝑖 ̸= 𝑗, and at most 2/2𝑛 if 𝑖 = 𝑗. Summing this over at most 𝑞 eval entries and
at most 𝐿 dec entries, and note that there are at most 𝐵 eval entries per user,

Pr[𝒳1 ∈ ℬ4] ≤ 2𝐿𝐵

2𝑛
+ 2𝛽𝐿𝑞

2𝑘+𝑛
≤ 2𝐿𝐵

2𝑛
+ 2𝛽𝐿2

2𝑘+𝑛
.

For the fifth constraint of badness, consider an entry (vf, 𝑖, 𝑁, 𝐶, 𝐴, false) in 𝒳1,
and let 𝑇 be the IV of 𝐶 and 𝑀 be the associated decrypted message. Note that
if 𝒳1 ∈ ℬ5 then R1(𝒳1) is GMAC+-good and R2(𝒳1) is CTR-good. Fix 𝑗 ≤ 𝑞.
There is at most one entry (eval, 𝑗, 𝑁 ′, 𝑀 ′, 𝐴′, 𝑇 ) in R1(𝜏); otherwise R1(𝒳1)
is not good, and thus 𝒳1 ̸∈ ℬ5. Let 𝐾𝑖 = 𝐾in ‖ 𝐾out and 𝐾𝑗 = 𝐾 ′in ‖ 𝐾 ′out.
If 𝑗 ̸= 𝑖 then the probability that 𝐾 ′out = 𝐾out and xor(𝐻(𝐾in, 𝑀, 𝐴), 𝑁) =
xor(𝐻(𝐾 ′in, 𝑀 ′, 𝐴′), 𝑁 ′) is at most 2𝑐𝛽·E[|𝑀 |𝑛+|𝐴|𝑛]

2𝑛+𝑘 , because 𝐻 is 𝑐-regular, xor
is 2-regular, and KeyGen is 𝛽-pairwise AU. If 𝑖 = 𝑗 then 𝐾in ‖𝐾out = 𝐾 ′in ‖𝐾 ′out,
and we consider three following cases.
Case 1: (𝑀, 𝑁, 𝐴) = (𝑀 ′, 𝑁 ′, 𝐴′). Let 𝐶 ′ be the answer of Enc(𝑗, 𝑁 ′, 𝑀 ′, 𝐴′) as
indicated in 𝒳1. For the blockcipher �̃� above, since 𝐶 ′ = CTR[𝐸].E(𝐾out, 𝑀 ′; 𝑇 ),
we also have 𝐶 ′ = CTR[�̃�].E(𝐾out, 𝑀 ′; 𝑇 ), due to the consistency between 𝐸

and �̃�. On the other hand, recall that 𝑀 is generated by running SE.D�̃�(𝐾out, 𝐶).
Since 𝑀 = 𝑀 ′ and 𝐶 and 𝐶 ′ share the same IV, we must have 𝐶 = 𝐶 ′. This
means that the adversary queries Vf(𝑖, 𝑁, 𝐶, 𝐴) first, and then later queries
Enc(𝑖, 𝑁 ′, 𝑀 ′, 𝐴′) and accidentally gets the same answer 𝐶. This case happens
with probability at most 2−|𝐶| ≤ 2−𝑛.
Case 2: (𝑀, 𝐴) = (𝑀 ′, 𝐴′), but 𝑁 ̸= 𝑁 ′. Due to the injectivity of xor, this case
cannot happen.
Case 3: (𝑀, 𝐴) ̸= (𝑀 ′, 𝐴′). Since KeyGen is 𝛽-pairwise AU, 𝐻 is 𝑐-AXU and
xor is 2-regular and linear and injective,

Pr[xor(𝐻(𝐾in, 𝑀, 𝐴), 𝑁) = xor(𝐻(𝐾in, 𝑀 ′, 𝐴′), 𝑁 ′)]

≤
2𝑐𝛽 ·E

[︀
|𝑀 |𝑛 + |𝐴|𝑛 + |𝑀 ′|𝑛 + |𝐴′|𝑛

]︀
2𝑛

≤
2𝑐𝛽 ·

(︀
𝐵 + E

[︀
|𝑀 |𝑛 + |𝐴|𝑛

]︀)︀
2𝑛

.
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As the three cases above are mutually exclusive, if 𝑖 = 𝑗 then the chance that

xor(𝐻(𝐾in, 𝑀, 𝐴), 𝑁) = xor(𝐻(𝐾in, 𝑀 ′, 𝐴′), 𝑁 ′) is at most 2𝑐𝛽·
(︀

𝐵+E
[︀
|𝑀 |𝑛+|𝐴|𝑛

]︀)︀
2𝑛 .

Sum over all 𝑗 ≤ 𝑞, and then over all 𝑞 vf entries, and note that 𝐵 ≥ 2 and
𝑞 ≤ 𝐿/2 (as each encryption/verification query consists of at least two blocks,
one due to the associated data, and another due to the message/ciphertext),

Pr[𝒳1 ∈ ℬ5] ≤ 2𝑐𝛽𝑞𝐿

2𝑛+𝑘
+ 2𝑐𝛽(𝐿 + 𝑞𝐵)

2𝑛
≤ 𝑐𝛽𝐿2

2𝑛+𝑘
+ 2𝑐𝛽𝐿𝐵

2𝑛
.

Finally, for the last constraint, consider an entry (vf, 𝑖, 𝑁, 𝐶, 𝐴, false) and let 𝑀
be the decrypted message associated with this entry. Let 𝐾in ‖𝐾out be the key
of user 𝑖, and let 𝑇 be the IV of 𝐶. Consider one entry (prim, 𝐾, 𝑋, 𝑇, ·). Since
KeyGen is 𝛽-pairwise AU, 𝐻 is 𝑐-regular, and xor is 2-regular, the chance that
𝐾 = 𝐾out and 𝑋 = xor(𝐻(𝐾in, 𝑀, 𝐴), 𝑁) is at most 2𝛽𝑐·E[|𝑀 |𝑛+|𝐴|𝑛]

2𝑛+𝑘 . Sum that
over all vf entries and 𝑝 prim entries,

Pr[𝒳1 ∈ ℬ6] ≤ 2𝑐𝛽𝐿𝑝

2𝑛+𝑘
.

Summing up,

Pr[𝒳1 is bad] ≤
6∑︁

𝑗=1
Pr[𝒳1 ∈ ℬ𝑗 ]

≤ 𝜖1 + 𝜖2 + (2𝑐𝛽 + 0.5𝛽 + 2)𝐿𝐵

2𝑛
+ 𝛽(𝑐 + 3)𝐿2 + 2𝑐𝛽𝐿𝑝

2𝑛+𝑘

≤ 1
2𝑛/2 + 𝛽𝑎𝑝

2𝑘
+ (3𝑐𝛽 + 7𝛽)𝐿2 + 4𝛽𝑐𝐿𝑝

2𝑛+𝑘
+ (4𝑐𝛽 + 0.5𝛽 + 6)𝐿𝐵

2𝑛
.

Bounding transcript ratio. Fix a good transcript 𝜏 such that pS1(𝜏) > 0.
In particular, this means that there is no vf of answer true. Create the multisets
𝑆1, . . . , 𝑆5 as follows.

– For each entry (prim, 𝐾, 𝑋, 𝑌, ·) in 𝜏 , add a triple (𝐾, 𝑋, 𝑌 ) to 𝑆1.
– For each triple (𝐾, 𝑋, 𝑌 ) in tables of 𝜏 , add it to 𝑆2.
– For each entry (dec, 𝐾, 𝑋, 𝑌 ), if (𝐾, 𝑋, 𝑌 ) ̸∈ 𝑆3 then add (𝐾, 𝑋, 𝑌 ) to 𝑆3.
– For each entry (eval, 𝑖, 𝑁, 𝑀, 𝐴, 𝑇 ) in R1(𝜏), add (𝐾out, 𝑋, 𝑇 ) to 𝑆4, where

𝐾in ‖𝐾out is the key of user 𝑖 in 𝜏 , and 𝑋 = xor(𝐻(𝐾in, 𝑀, 𝐴), 𝑁).
– For each entry (vf, 𝑖, 𝑁, 𝐶, 𝐴, false) in 𝜏 , if (𝐾out, 𝑋, 𝑇 ) /∈ 𝑆5 then add this

triple to 𝑆5, where 𝑇 is the IV of 𝐶, 𝐾in ‖ 𝐾out is the key of user 𝑖 in 𝜏 ,
𝑀 is the decrypted message associated with this entry indicated by 𝜏 , and
𝑋 = xor(𝐻(𝐾in, 𝑀, 𝐴), 𝑁).

Due to (1) the goodness of 𝜏 , (2) the fact that add can only produce outputs
starting with 1 but xor produces output starting with 0, and (3) the way we
generate dec entries,

– For each 𝑗 ≤ 5, the multiset 𝑆𝑗 contains no item twice, meaning that it is
actually a set.
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– The sets 𝑆1, · · · , 𝑆5 are pairwise disjoint.
– There are no triples (𝐾, 𝑋, 𝑌 ) and (𝐾, 𝑋 ′, 𝑌 ′) in 𝑆1 ∪𝑆2 ∪𝑆3 ∪𝑆4 such that

𝑋 = 𝑋 ′ or 𝑌 = 𝑌 ′.

Now, the probability pS0(𝜏) is the chance that all the following events happen:

– Samp: If we query New using the queries as indicated in 𝜏 , the generated
keys will be the values indicated by 𝜏 .

– Real𝑗 , for 1 ≤ 𝑗 ≤ 4: For each (𝐾, 𝑋, 𝑌 ) ∈ 𝑆𝑗 , querying 𝐸𝐾(𝑋) returns 𝑌 .
– Real5: For each (𝐾, 𝑋, 𝑌 ) ∈ 𝑆5, querying 𝐸𝐾(𝑋) does not return 𝑌 .

On the other hand, the probability pS1(𝜏) is the chance Samp and Real1 and the
following events happen:

– Ideal1: For the padding version of CTR, let 𝐶1, . . . , 𝐶𝑞 be the ciphertexts
indicated by 𝜏 . For the padding-free version of CTR, let 𝐶1, . . . , 𝐶𝑞 be the
pre-truncated ciphertexts indicated by 𝜏 .10 Then, if we sample 𝑞 random
strings of length |𝐶1|, · · · , |𝐶𝑞| respectively, then we get 𝐶1, . . . , 𝐶𝑞 respec-
tively. Note that |𝐶1|+ · · ·+ |𝐶𝑞| = 𝑛(|𝑆2|+ |𝑆4|).

– Ideal2: Create a blockcipher �̃� : {0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛 as follows: for
every 𝐾 ∈ {0, 1}𝑘, sample �̃�(𝐾, ·)←$ Perm(𝑛), subject to the constraint
that for every (𝐾, 𝑋, 𝑌 ) ∈ 𝑆1 ∪ 𝑆2, we have �̃�(𝐾) = 𝑌 . Now, for every
(𝐾 ′, 𝑋 ′, 𝑌 ′) ∈ 𝑆3, if we query 𝐸(𝐾 ′, 𝑋 ′) then we get 𝑌 ′.

For each 2 ≤ 𝑗 ≤ 5, let 𝑃𝑗 denote Pr[Real𝑗 | Real1 ∩ · · ·Real𝑗−1]. As KeyGen does
not use 𝐸, event Samp is independent of other events, and thus

pS0(𝜏)
pS1(𝜏) = Pr[Real5 ∩ · · · ∩ Real1]

Pr[Ideal1 ∩ Ideal2 ∩ Real1] = 𝑃2 · 𝑃3 · 𝑃4 · 𝑃5

Pr[Ideal1 ∩ Ideal2 | Real1] .

In the last ratio, since Ideal1 is independent of other events, the denominator
can be factored to Pr[Ideal1] · Pr[Ideal2 | Real1]. Moreover, note that Pr[Ideal2 |
Real1] = Pr[Real3 | Real1 ∩ Real2] = 𝑃3. Hence

pS0(𝜏)
pS1(𝜏) = 𝑃2 · 𝑃4 · 𝑃5

Pr[Ideal1] .

For each 𝐾 ∈ {0, 1}𝑘, let 𝑍1(𝐾), 𝑍2(𝐾), 𝑍3(𝐾), 𝑍4(𝐾) denote the number of
triples (𝐾, 𝑋, 𝑌 ) in 𝑆1, 𝑆2, 𝑆1 ∪ 𝑆2 ∪ 𝑆3, 𝑆4 respectively. Then

𝑃2 · 𝑃4 =
∏︁

𝐾∈{0,1}𝑘

𝑍1(𝐾)+𝑍2(𝐾)−1∏︁
𝑖=𝑍1(𝐾)

1
2𝑛 − 𝑖

𝑗=𝑍3(𝐾)+𝑍4(𝐾)−1∏︁
𝑗=𝑍3(𝐾)

1
2𝑛 − 𝑗

≥
∏︁

𝐾∈{0,1}𝑘

2−𝑛·(𝑍2(𝐾)+𝑍4(𝐾)) = 2−𝑛(|𝑆2|+|𝑆4|) = Pr[Ideal1] .

10 Given a table 𝒯 and a message 𝑀 , the pre-truncated ciphertext can be obtained
as follows. Suppose that 𝒯 contains (𝐾, 𝑋1, 𝑌1), . . . , (𝐾, 𝑋𝑚, 𝑌𝑚). Then the pre-
truncated ciphertext is (𝑌1 ‖ · · · ‖ 𝑌𝑚) ⊕𝑀 ′, where 𝑀 ′ is obtained by padding 0’s
to 𝑀 to have full block length.
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Thus
pS0(𝜏)
pS1(𝜏) ≥ 𝑃5 .

We now give a lower bound for 𝑃5. Note that |𝑆1 ∪ · · · ∪ 𝑆4| ≤ 𝑝 + 𝐿 + 𝑞 ≤
2𝑛−1, because (i) there are 𝑝 ideal-cipher queries in 𝜏 , contributing 𝑝 triples in
𝑆1, (ii) each encryption query (𝑖, 𝑁, 𝑀, 𝐴) contributes one triple in 𝑆4, and at
most (|𝑀 |𝑛 + |𝐴|𝑛) triples in 𝑆2, and (iii) each verification query (𝑖, 𝑁, 𝐶, 𝐴)
contributes at most (|𝐶|𝑛 + |𝐴|𝑛) triples in 𝑆3. Now, for each (𝐾, 𝑋, 𝑌 ) ∈ 𝑆5,
there are only two cases.
Case 1: There is a triple (𝐾, 𝑋 ′, 𝑌 ′) ∈ 𝑆1 ∪ · · · ∪𝑆4 such that either (i) 𝑋 ′ = 𝑋
but 𝑌 ′ ̸= 𝑌 , or (ii) 𝑌 ′ = 𝑌 but 𝑋 ′ ̸= 𝑋. In this case, given that 𝐸 is consistent
𝑆1 ∪ · · · ∪ 𝑆4, if we query 𝐸𝐾(𝑋) then the answer will not be 𝑌 .
Case 2: There is no triple (𝐾, 𝑋 ′, 𝑌 ′) ∈ 𝑆1 ∪ · · · ∪ 𝑆4 such that either 𝑋 = 𝑋 ′

or 𝑌 = 𝑌 ′. Hence, conditioning that 𝐸 is consistent with 𝑆1 ∪ · · · ∪ 𝑆4, since
there are at least 2𝑛 − |𝑆1 ∪ · · · ∪ 𝑆4| ≥ 2𝑛−1 equally likely choices for 𝐸𝐾(𝑋),
the conditional probability that 𝐸(𝐾, 𝑋) = 𝑌 is at most 2/2𝑛.
Hence in both case, conditioning that 𝐸 is consistent with 𝑆1 ∪ · · · ∪ 𝑆4, if we
query 𝐸𝐾(𝑋) then the conditional probability that we get 𝑌 is at most 2/2𝑛.
By union bound, 𝑃5 ≥ 1− |𝑆5| · 2/2𝑛 ≥ 1− 2𝑞/2𝑛. Hence

pS0(𝜏)
pS1(𝜏) ≥ 1− 2𝑞

2𝑛
≥ 1− 0.5𝐿𝐵

2𝑛
.

F.1 Proof of Theorem 5
We now discuss how to adapt the proof of Theorem 4 to deal with a weakly
regular hash 𝐻. The definition of bad transcripts is exactly the same, and so
is the bound on the transcript ratio; the changes are the probabilities that bad
transcripts occur, specifically for events ℬ1,ℬ5, and ℬ6. Note that we assume an
upper bound 𝑑 on the number of users re-using a particular nonce 𝑁 , and this
is going to be used below. Let 𝒳1 is the random variable for the transcript in
the ideal system.

Analysis of ℬ1. Let 𝜖1 be the value that the GMAC+ proof uses to upper-bound
the probability of bad transcripts, for any adversary 𝒜 that makes at most 𝑞
evaluation queries whose total block length is at most 𝐿, at most 𝐵-block queries
per user, and 𝑝 ideal-cipher queries, and for any 𝛽-pairwise AU key-generation
algorithm, assuming that each nonce is reused across at most 𝑑 users. As in the
proof of Theorem 4,

Pr[𝒳1 ∈ ℬ1] ≤ 𝜖1 .

The only change here is that now we need to use Theorem 3 (instead of Theo-
rem 2) to obtain 𝜖1. In particular, applying Theorem 3 with 𝜆 = 2 and note that
𝑞 ≤ 𝐿/2,

𝜖1 ≤
(1 + 2𝛽𝑐)𝐿𝐵

2𝑛
+ 2𝛽𝑐𝐿𝑝 + (2𝛽𝑐 + 𝛽)𝐿2

2𝑛+𝑘
+ 𝑑(𝑝 + 𝐿)

2𝑘
.
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Analysis of ℬ5. First, consider the case that 𝒳1 falls into ℬ5 due to some en-
tries (vf, 𝑖, 𝑁, 𝐶, 𝐴, false) and (eval, 𝑗, 𝑁 ′, 𝑀 ′, 𝐴′, 𝑇 ) such that either (1) (𝑀, 𝐴) ̸=
(𝜀, 𝜀) or (2) (𝑀 ′, 𝐴′) ̸= (𝜀, 𝜀) or (3) (𝑀, 𝐴) = (𝑀 ′, 𝐴′) and 𝑖 = 𝑗, where 𝑀 is
the decrypted message of the verification entry. As in the proof of Theorem 4,
this case happens with probability at most 𝑐𝛽𝐿2

2𝑛+𝑘 + 2𝑐𝛽𝐿𝐵
2𝑛 .

Next consider an entry (vf, 𝑖, 𝑁, 𝐶, 𝐴, false) such that both decrypted message
𝑀 and associated data 𝐴 are empty. Consider an entry (eval, 𝑗, 𝑁 ′, 𝑀 ′, 𝐴′, 𝑇 )
such that (𝑀 ′, 𝐴′) = (𝜀, 𝜀), 𝑗 ̸= 𝑖, and 𝑇 is the IV of 𝐶. Let 𝐾in ‖ 𝐾out and
𝐾 ′in ‖𝐾 ′out be the keys of users 𝑖 and 𝑗 respectively. Since 𝐻 is weakly regular,
𝐻(𝐾in, 𝑀, 𝐴) = 𝐻(𝐾 ′in, 𝑀 ′, 𝐴′) = 0𝑛. For these pair of entries to cause 𝒳1 to fall
into ℬ5, we must have xor(0𝑛, 𝑁) = xor(0𝑛, 𝑁 ′), meaning that 𝑁 = 𝑁 ′, due to
the injectivity of xor. Since the nonce 𝑁 is used across at most 𝑑 users, there are
at most 𝑑 choices for the index 𝑗. On the other hand, the chance that 𝐾out = 𝐾 ′out
is at most 2−𝑘. Summing this over 𝑑 choices of 𝑗, and over 𝑞 verification queries,
we obtain a bound 𝑞𝑑/2𝑘 ≤ 𝐿𝑑/2𝑘. Hence

Pr[𝒳1 ∈ ℬ5] ≤ 𝑐𝛽𝐿2

2𝑛+𝑘
+ 2𝑐𝛽𝐿𝐵

2𝑛
+ 𝐿𝑑

2𝑘
.

Analysis of ℬ6. First consider the case that some verification entry, in which
either the decrypted message or the associated data is non-empty, causes 𝒳1 to
fall into ℬ6. As in the proof of Theorem 4, one can bound the chance that this
case happens by 2𝑐𝛽𝐿𝑝

2𝑛+𝑘 . Next, consider an entry (vf, 𝑖, 𝑁, 𝐶, 𝐴, false), in which
both the decrypted message 𝑀 and the associated data 𝐴 are the empty string.
For each entry (prim, 𝐾, 𝑋, 𝑌, +), view it as throwing a ball into bin 𝑌 . Likewise,
for each entry (prim, 𝐾, 𝑋, 𝑌,−), view it as throwing a ball into bin 𝑋. Thus
there are at most 𝑝 ≤ 2(1−𝜖)𝑛−1 throws. For each 𝑗-th throw, given the result
of the prior throws, the conditional probability that the 𝑗-th ball lands into
any particular bin is at most 21−𝑛. From Lemma 10, with probability at least
1− 2−𝑛/2, each bin contains at most 𝑎 balls.

Let 𝑇 be the IV of 𝐶 and let 𝐾in ‖ 𝐾out be the key of user 𝑖. Since 𝐻 is
weakly regular, 𝐻(𝐾in, 𝑀, 𝐴) = 0𝑛. From the balls-into-bins result above, there
are at most 𝑎 balls in bin 𝑇 , and also at most 𝑎 balls in bin xor(0𝑛, 𝑁). Thus
there are at most 2𝑎 entries (prim, 𝐾, xor(0𝑛, 𝑁), 𝑇, ·). For each such entry, the
chance that 𝐾 = 𝐾out is at most 2−𝑘. Hence the chance that the verification
entry above causes 𝒳1 to fall into ℬ6 is at most 2𝑎/2𝑘. Summing this across at
most 𝑞 verification queries, we obtain a bound 2𝑎𝑞/2𝑘 ≤ 𝑎𝐿/2𝑘. Hence

Pr[𝒳1 ∈ ℬ6] ≤ 2𝑐𝛽𝐿𝑝

2𝑛+𝑘
+ 𝑎𝐿

2𝑘
.

G Proof of Lemma 3

Let 𝑟 = 𝑘/𝑛 ∈ {1, 2}. Suppose that 𝑅0, . . . , 𝑅5 are sampled uniformly without
replacement from a set 𝑆 of size at least 15

16 · 2
𝑛. Pick an arbitrary string 𝐾 ∈
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{0, 1}𝑛+𝑘. Since KD1.Map outputs (𝑅0 ‖ 𝑅1 ‖ 𝑅2)[1 : 𝑛 + 𝑘], the chance that
KD1.Map(𝑅0, . . . , 𝑅5) = 𝐾 is at most

1
( 15

16 · 2𝑛 − 2)𝑟+1 ≤
1

( 7
8 · 2𝑛)𝑟+1 ≤

1
(7/8)3 · 2𝑛(𝑟+1) ≤

2
2𝑘+𝑛

.

On the other hand, the chance that KD0.Map(𝑅0, . . . , 𝑅5) = 𝐾 is at most

1
(⌊( 15

16 · 2𝑛 − 5)/2𝑛/2⌋)2(𝑟+1) ≤
1

( 29
32 · 2𝑛/2)2(𝑟+1) ≤

1
(29/32)6 · 2𝑛(𝑟+1) ≤

2
2𝑘+𝑛

.

This concludes the proof.

H Proof of Proposition 2

We will first construct adversaries 𝒜1 and 𝒜2 such that

Advmu-priv
AE,𝐸

(𝒜1) ≤ Advmu-mrae
AE,KeyGen,𝐸(𝒜1), and

Advmu-auth
AE,𝐸

(𝒜2) ≤ 2 Advmu-mrae
AE,KeyGen,𝐸(𝒜2) .

If we can do that, one can construct𝒜 as follows. It picks a number 𝑎←$ {0, 1, 2}.
If 𝑎 = 0 then it runs𝒜1, uses its oracles to answer the latter’s queries accordingly,
and outputs the same bit that 𝒜1 outputs. If 𝑎 ∈ {1, 2} then it runs 𝒜2, uses its
oracles to answer the the latter’s queries accordingly, and outputs the same bit
that 𝒜2 outputs. Then

Advmu-mrae
AE,KeyGen,𝐸(𝒜) = 1

3 Advmu-mrae
AE,KeyGen,𝐸(𝒜1) + 2

3 Advmu-mrae
AE,KeyGen,𝐸(𝒜2)

≥ 1
3 Advmu-priv

AE,𝐸
(𝒜1) + 1

3 Advmu-auth
AE,𝐸

(𝒜2) .

We now construct 𝒜1. Without loss of generality, assume that 𝒜1 does not re-
peat a prior query, and assumes that for each encryption query (𝑖, 𝑁, 𝑀, 𝐴),
it must call New(·) at least 𝑖 times before, so that user 𝑖 was initialized. Ad-
versary 𝒜1 initializes a counter 𝑣 ← 0 and a map 𝑉 = ⊥, and then runs 𝒜1.
For each encryption query (𝑖, 𝑁, 𝑀, 𝐴) of 𝒜1, if 𝑉 [𝑖, 𝑁 ] = ⊥ then 𝒜1 calls
New(aux) with aux = (𝑖, 𝑁), updates 𝑉 [𝑖, 𝑁 ] ← 𝑣 + 1, and increments 𝑣. It
returns Enc(𝑗, 𝑁, 𝑀, 𝐴) to 𝒜1, with 𝑗 ← 𝑉 [𝑖, 𝑁 ]. Finally, when 𝒜1 outputs a
bit then 𝒜1 outputs the same bit. Then

Advmu-priv
AE,𝐸

(𝒜1) ≤ Advmu-mrae
AE,KeyGen,𝐸(𝒜1) .

Next, we construct 𝒜2 as follows. Without loss of generality, assume that 𝒜2
does not repeat a prior query, and assumes that for each encryption/verification
query (𝑖, 𝑁, ·, 𝐴), it must call New(·) at least 𝑖 times before, so that user 𝑖
was initialized. Adversary 𝒜2 initializes a counter 𝑣 ← 0 and a map 𝑉 = ⊥,
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and then runs 𝒜2. For each encryption/verification query (𝑖, 𝑁, 𝑋, 𝐴) of 𝒜2, if
𝑉 [𝑖, 𝑁 ] = ⊥ then 𝒜2 calls New(aux) with aux = (𝑖, 𝑁), updates 𝑉 [𝑖, 𝑁 ]← 𝑣+1,
and increments 𝑣. If this is an encryption query then it returns Enc(𝑗, 𝑁, 𝑋, 𝐴)
to 𝒜2 with 𝑗 ← 𝑉 [𝑖, 𝑁 ]. Otherwise it calls Vf(𝑗, 𝑁, 𝑋, 𝐴), with 𝑗 ← 𝑉 [𝑖, 𝑁 ].
Finally, 𝒜2 will output 1 if and only if some verification query returns true. Let
𝑐 be the challenge bit of game Gmu-auth

AE,𝐸
(𝒜2). Then

Pr[Gmu-mrae
AE,KeyGen,𝐸(𝒜2) | 𝑐 = 1] = Pr[Gmu-auth

AE,𝐸
(𝒜2)] .

On the other hand, if 𝑐 = 0 then 𝒜2 always receives false for any verification
query. Thus

Pr[Gmu-mrae
AE,KeyGen,𝐸(𝒜2) | 𝑐 = 0] = 1

2 .

Summing up,
Advmu-mrae

AE,KeyGen,𝐸(𝒜2) = 1
2 Advmu-auth

AE,𝐸
(𝒜2)

as claimed.

I Proof of Lemma 4
For two outputs 𝐾 and 𝐾 ′ generated by KeyGen, by symmetry, there are only
four cases.
Case 1: 𝐾 and 𝐾 ′ are independent, random strings. For any two strings (𝐽, 𝐽 ′) ∈
({0, 1}𝑘+𝑛)2, the chance that (𝐾, 𝐾 ′) = (𝐽, 𝐽 ′) is 1/22(𝑘+𝑛).
Case 2: 𝐾 = KD[𝑘](𝜋𝑖, 𝑁) for some 𝜋𝑖←$ Perm(𝑛), and 𝐾 ′←$ {0, 1}𝑘+𝑛. For
any two strings (𝐽, 𝐽 ′) ∈ ({0, 1}𝑘+𝑛)2, since KD[𝐸] is 2-unpredictable, the chance
that (𝐾, 𝐾 ′) = (𝐽, 𝐽 ′) is at most

2
2𝑘+𝑛

· 1
2𝑘+𝑛

= 2
22(𝑘+𝑛) .

Case 3: 𝐾 = KD[𝑘](𝜋𝑖, 𝑁) for some 𝜋𝑖←$ Perm(𝑛), and 𝐾 ′←$ KD[𝑘](𝜋𝑖, 𝑁 ′),
with 𝑁 ̸= 𝑁 ′. For any two strings (𝐽, 𝐽 ′) ∈ ({0, 1}𝑘+𝑛)2, since KD[𝐸] is 2-
unpredictable, the chance that 𝐾 = 𝐽 is at most 2/2𝑛+𝑘. For 𝑠 ∈ {0, . . . , 5}, let
𝑅𝑠 ← pad(𝑁, 𝑠) and 𝑅′𝑠 ← pad(𝑁 ′, 𝑠). Given (𝑅0, 𝜋𝑖(𝑅0)), . . . , (𝑅5, 𝜋𝑖(𝑅5)), the
values of 𝜋𝑖(𝑅′0), . . . , 𝜋𝑖(𝑅′5) are sampled uniformly without replacement from a
set of at least 2𝑛−6 ≥ 15

16 ·2
𝑛. Since KD[𝐸] is 2-unpredictable, given that 𝐾 = 𝐽 ,

the conditional probability that 𝐾 ′ = 𝐽 ′ is at most 2/2𝑘+𝑛. Hence the chance
that 𝐾 = 𝐽 and 𝐾 ′ = 𝐽 ′ is at most

2
2𝑘+𝑛

· 2
2𝑘+𝑛

= 4
22(𝑘+𝑛) .

Case 4: 𝐾 = KD[𝑘](𝜋𝑖, 𝑁) and 𝐾 ′←$ KD[𝑘](𝜋𝑗 , 𝑁 ′), for 𝜋𝑖, 𝜋𝑗 ←$ Perm(𝑛). For
any two strings (𝐽, 𝐽 ′) ∈ ({0, 1}𝑘+𝑛)2, since KD[𝐸] is 2-unpredictable, the chance
that (𝐾, 𝐾 ′) = (𝐽, 𝐽 ′) is at most

2
2𝑘+𝑛

· 2
2𝑘+𝑛

= 4
22(𝑘+𝑛) .

Combining all cases, KeyGen is indeed 4-pairwise AU.
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J Proof of Lemma 5

We shall use the H-coefficient technique. Let the real system implement game
Gdist

KD[𝐸] for challenge bit 𝑏 = 1 (meaning Eval is always implemented via KD[𝐸]),
and let the ideal system implement game Gdist

KD[𝐸] for challenge bit 𝑏 = 0, (mean-
ing Eval is always implemented via KD[𝑘]). Without loss of generality, sup-
pose that 𝒜 never repeats a prior query. Since we consider computationally
unbounded adversaries, without loss of generality, assume that the adversary is
deterministic. Assume that 𝒜 makes no redundant queries, meaning that if 𝒜
queries (𝐾, 𝑥) to 𝐸 to get 𝑦, then it will not query (𝐾, 𝑦) to 𝐸−1 to get 𝑥, and
vice versa. Assume that for each evaluation query (𝑖, 𝑁), the adversary called
New() at least 𝑖 times before, so that the key 𝐾𝑖 was initialized.

When the adversary finishes querying, in the real world, we grant it the keys
𝐾1, 𝐾2, · · · . In the ideal world, we instead grant it strings 𝐾1, 𝐾2, · · · ←$ {0, 1}𝑘

independent of anything else. This can only help the adversary. Besides the
revealed keys, a transcript consists of the following information:

– Evaluation queries: For each query (𝑖, 𝑁) to Eval, we will store six entries
(eval, 𝑖, 𝑥0, 𝑦0), . . . , , (eval, 𝑖, 𝑥5, 𝑦5), where each 𝑥𝑠 = pad(𝑁, 𝑠). For each 𝑠 ∈
{0, . . . , 5}, in the real world, 𝑦𝑠 = 𝐸𝐾𝑖(𝑥𝑠), and in the ideal world, 𝑦𝑠 =
𝜋𝑖(𝑥𝑠), where 𝜋𝑖 is the secret permutation of user 𝑖. Clearly, the answer for
this query in both worlds is KD.Map(𝑦0, . . . , 𝑦5). Thus we may grant the
adversary more information that what it is supposed to receive, but this
only helps the adversary. There are 6𝑞 eval entries.

– Ideal-cipher queries: For each query (𝐾, 𝑥) to 𝐸 for answer 𝑦, we store a
corresponding entry (prim, 𝐾, 𝑥, 𝑦, +). Likewise, for a query (𝐾, 𝑦) to 𝐸−1

for answer 𝑥, we store a corresponding entry (prim, 𝐾, 𝑥, 𝑦,−).

A transcript does not explicitly record the New() queries of 𝒜, because the
adversary is deterministic, and New returns no output.

Defining bad transcripts. We say that a transcript is bad if one of the
following happens:

1. There are entries (eval, 𝑖, 𝑥′, 𝑦′) and (prim, 𝐾, 𝑥, 𝑦, +) such that 𝐾 is the key
of user 𝑖 as indicated by the transcript, and 𝑥 = 𝑥′.

2. There are entries (eval, 𝑖, 𝑥′, 𝑦′) and (prim, 𝐾, 𝑥, 𝑦,−) such that 𝐾 is the key
of user 𝑖 as indicated by the transcript, and 𝑥 = 𝑥′.

3. There are entries (eval, 𝑖, 𝑥′, 𝑦′) and (prim, 𝐾, 𝑥, 𝑦, +) such that 𝐾 is the key
of user 𝑖 as indicated by the transcript, and 𝑦 = 𝑦′.

4. There are entries (eval, 𝑖, 𝑥′, 𝑦′) and (prim, 𝐾, 𝑥, 𝑦,−) such that 𝐾 is the key
of user 𝑖 as indicated by the transcript, and 𝑦 = 𝑦′.

5. There are entries (eval, 𝑖, 𝑥, 𝑦) and (eval, 𝑗, 𝑥, 𝑦′) of the same input 𝑥, with
𝑖 ̸= 𝑗, such that according to the transcript, users 𝑖 and 𝑗 have the same key.

6. There are entries (eval, 𝑖, 𝑥, 𝑦) and (eval, 𝑗, 𝑥′, 𝑦) of the same output 𝑦, with
𝑖 ̸= 𝑗, such that according to the transcript, users 𝑖 and 𝑗 have the same key.
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If a transcript is not bad then we say that it is good.

Probability of bad transcripts. Let 𝒳1 be the random variable for the
transcript in the ideal system. We now bound the probability that 𝒳1 is bad.
Let ℬ𝑗 be the set of transcripts that violates the 𝑗th constraint of badness.
We first bound the probability that 𝒳1 meets the first constraint of badness.
Consider an entry (prim, 𝐾, 𝑥, 𝑦, +) in 𝒳1. Since the adversary is 𝑑-repeating,
there are at most 𝑑 entries (eval, 𝑖, 𝑥, 𝑦′) of the same input 𝑥, and for such an
entry, the chance that 𝐾𝑖 = 𝐾 in the ideal system, is exactly 2−𝑘. Summing this
over at most 𝑝 ideal-cipher queries, we have

Pr[𝒳1 ∈ ℬ1] ≤ 𝑑𝑝

2𝑘
.

Next, we bound the probability that 𝒳1 meets the second constraint of bad-
ness. View each entry (eval, 𝑖, 𝑥, 𝑦) as throwing a ball into bin 𝑦. Note that our
6𝑞 ≤ 2(1−𝜖)𝑛−1 throws are inter-dependent, but for each 𝑗-th throw, condition-
ing on the result of the prior throws, the chance that the 𝑗-th ball falls into any
particular bin is at most 1/(2𝑛 − 6𝑞) ≤ 21−𝑛. Suppose that each bin contains
at most 𝑎 balls, which happens with probability at least 1 − 2−𝑛/2, according
to Lemma 10. Consider an entry (prim, 𝐾, 𝑥, 𝑦,−) in 𝒳1. There are at most 𝑎
entries (eval, 𝑖, 𝑥′, 𝑦) of the same output 𝑦, and for such an entry, the chance
that 𝐾𝑖 = 𝐾 in the ideal system, is exactly 2−𝑘. Summing this over at most 𝑝
ideal-cipher queries, we have

Pr[𝒳1 ∈ ℬ2] ≤ 1
2𝑛/2 + 𝑎𝑝

2𝑘
.

Next, for the third constraint of badness, consider entries (prim, 𝐾, 𝑥, 𝑦, +) and
(eval, 𝑖, 𝑥′, 𝑦′) in 𝒳1. If the ideal-cipher query is made after the evaluation query
then given 𝑦′, the random variable 𝑦 can take at least 2𝑛−6𝑞−𝑝 ≥ 2𝑛−1 equally
likely values. If the ideal-cipher query is made before the evaluation query then
given 𝑦, the random variable 𝑦′ can take at least 2𝑛 − 6𝑞 − 𝑝 ≥ 2𝑛−1 equally
likely values. In either case, the chance that 𝑦 = 𝑦′ and 𝐾 = 𝐾𝑖 in the ideal
system is at most 2/2𝑘+𝑛. Summing this over at most 𝑝 ideal-cipher queries and
6𝑞 evaluation entries,

Pr[𝒳1 ∈ ℬ3] ≤ 12𝑝𝑞

2𝑛+𝑘
.

For the fourth constraint of badness, consider entries (prim, 𝐾, 𝑥, 𝑦,−) and
(eval, 𝑖, 𝑥′, 𝑦′) in 𝒳1. If the ideal-cipher query is made after the evaluation query
then given 𝑥′, the random variable 𝑥 can take at least 2𝑛−6𝑞−𝑝 ≥ 2𝑛−1 equally
likely values. If the ideal-cipher query is made before the evaluation query then
given 𝑥, the random variable 𝑥′ can take at least 2𝑛 − 6𝑞 − 𝑝 ≥ 2𝑛−1 equally
likely values. In either case, the chance that 𝑥 = 𝑥′ and 𝐾 = 𝐾𝑖 in the ideal
system is at most 2/2𝑘+𝑛. Summing this over at most 𝑝 ideal-cipher queries and
6𝑞 evaluation entries,

Pr[𝒳1 ∈ ℬ4] ≤ 12𝑝𝑞

2𝑛+𝑘
.
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For the fifth constraint of badness, consider a nonce 𝑁 . For each 𝑁 ∈ {0, 1}𝑟,
let 𝑄𝑁 ≤ 𝑑 be the random variable for the number of evaluation queries that
use nonce 𝑁 . For each 𝑥 ∈ {pad(𝑁, 0), . . . , pad(𝑁, 5)}, there are at most(︂

𝑄𝑁

2

)︂
≤ (𝑄𝑁 )2

2 ≤ 𝑑𝑄𝑁

2

pairs of entries (eval, 𝑖, 𝑥, 𝑦) and (eval, 𝑗, 𝑥, 𝑦′), with 𝑖 ̸= 𝑗. For each such pair,
the chance that 𝐾𝑖 = 𝐾𝑗 in the ideal system is 2−𝑘. Hence

Pr[𝒳1 ∈ ℬ5] ≤
∑︁
𝑁

6𝑑 ·E[𝑄𝑁 ]
2 · 1

2𝑘
= 3𝑑

2𝑘
·E

[︁∑︁
𝑁

𝑄𝑁

]︁
≤ 3𝑑𝑞

2𝑘
,

where the last inequality is due to the fact that
∑︀

𝑁 𝑄𝑁 is exactly the total
number of evaluation queries. For the last constraint of badness, note that for
any entries (eval, 𝑖, 𝑥, 𝑦) and (eval, 𝑗, 𝑥′, 𝑦′), if 𝑖 ̸= 𝑗 then 𝑦 and 𝑦′ are independent,
uniformly distributed over {0, 1}𝑛. For each such pair, the chance that 𝐾𝑖 = 𝐾𝑗

and 𝑦 = 𝑦′ is 2−(𝑘+𝑛). Summing over at most(︂
6𝑞

2

)︂
≤ 18𝑞2

pairs of eval entries,

Pr[𝒳1 ∈ ℬ6] ≤ 18𝑞2

2𝑘+𝑛

Summing up,

Pr[𝒳1 is bad] ≤
6∑︁

𝑗=1
Pr[𝒳1 ∈ ℬ𝑗 ] ≤ 1

2𝑛/2 + 24𝑝𝑞 + 18𝑞2

2𝑘+𝑛
+ 𝑎𝑝 + 𝑑(𝑝 + 3𝑞)

2𝑘
.

Transcript ratio. Let S0 be the real system, and S1 be the ideal system. We
now show that

pS0(𝜏) ≥ pS1(𝜏)

for any good transcript 𝜏 such that pS1(𝜏) > 0. Fix such a transcript 𝜏 . Note
that in computing pS(𝜏), for S ∈ {S0, S1}, we can ignore the sign of the ideal-
cipher entries, and treat that as a forward query. For a key 𝐾 ∈ {0, 1}𝑘, let
𝑆1(𝐾) = {(eval, 𝑖, 𝑥, 𝑦) | 𝐾𝑖 = 𝐾}, and 𝑆2(𝐾) = {(prim, 𝐾, 𝑥, 𝑦, ·)}. Since 𝜏 is
good, |𝑆1(𝐾)| is divisible by 6 for every 𝐾 ∈ {0, 1}𝑘. Suppose that 𝜏 contains
exactly 𝑢 users, 𝑞 evaluation queries, and 𝑝 ideal-cipher queries. Then

pS1(𝜏) = 2−𝑘𝑢 · 1(︁
2𝑛 · · · (2𝑛 − 5)

)︁𝑞 ·
∏︁

𝐾∈{0,1}𝑘

|𝑆2(𝐾)|−1∏︁
𝑖=0

1
2𝑛 − 𝑖

.
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In the real world, because the transcript is good, for each key 𝐾, the sets 𝑆1(𝐾)
and 𝑆2(𝐾) call 𝐸𝐾 on different inputs, and thus

pS0(𝜏) = 2−𝑘𝑢
∏︁

𝐾∈{0,1}𝑘

|𝑆1(𝐾)|+|𝑆2(𝐾)|−1∏︁
𝑖=0

1
2𝑛 − 𝑖

≥ 2−𝑘𝑢
∏︁

𝐾∈{0,1}𝑘

1(︁
2𝑛 · · · (2𝑛 − 5)

)︁|𝑆1(𝐾)|/6

|𝑆2(𝐾)|−1∏︁
𝑖=0

1
2𝑛 − 𝑖

.

Since ∑︁
𝐾∈{0,1}𝑘

|𝑆1(𝐾)| = 6𝑞,

it follows that pS0(𝜏) ≥ pS1(𝜏).

K Proof of Lemma 7

Without loss of generality, assume that if 𝒜0 queries Enc(𝑖, 𝑁, 𝑀, 𝐴) for an
answer 𝐶, then later it will not query Vf(𝑖, 𝑁, 𝐶, 𝐴). We now construct 𝒜1.
Adversary 𝒜1 runs 𝒜0, and uses its Enc and New oracles to respond to the
latter’s queries accordingly. For each verification query (𝑖, 𝑁, 𝐶, 𝐴) of 𝒜0, if there
is no prior encryption query (𝑖, 𝑁, 𝑀, 𝐴′) then 𝒜1 simply ignores it. Otherwise,
𝒜1 uses its Vf oracle to respond. Finally, when 𝒜0 outputs a bit 𝑏′, 𝒜1 outputs
the same bit. Next, we construct𝒜2. Adversary𝒜2 runs𝒜0, and uses its Enc and
New oracles to respond to the latter’s queries accordingly. For each verification
query (𝑖, 𝑁, 𝐶, 𝐴) of 𝒜0, if there is some prior encryption query (𝑖, 𝑁, 𝑀, 𝐴′)
then 𝒜2 simply ignores it. Otherwise, 𝒜2 uses its Vf oracle to respond. When
𝒜0 outputs a bit, 𝒜2 outputs the same bit. Then

Advmu-auth
AE,𝐸

(𝒜0) ≤ Advmu-auth
AE,𝐸

(𝒜1) + Advmu-auth
AE,𝐸

(𝒜2) .

We now bound Advmu-auth
AE,𝐸

(𝒜1) by building an adversary 𝒜 for distinguishing
KD[𝐸] and KD[𝑘]. Adversary 𝒜 simulates game Gmu-auth

AE,𝐸
(𝒜1), but each time it

needs to generate a session key, it uses its Eval oracle instead of KD[𝐸]. However,
if 𝒜 previously queried Eval(𝑖, 𝑁) for an answer 𝐾, next time it simply uses
𝐾 without querying. When 𝒜1 outputs a bit, adversary 𝒜 outputs the same
answer. Let 𝑐 be the challenge bit in game Gdist

KD[𝐸](𝒜). Then

Pr[Gdist
KD[𝐸](𝒜)⇒ true | 𝑐 = 1] = Pr[Gmu-auth

AE (𝒜1)], and

Pr[Gdist
KD[𝐸](𝒜)⇒ false | 𝑐 = 0] = Pr[Gmu-auth

KtE[KD[𝑘],AE],𝐸(𝒜1)] .

Subtracting, we get

Advdist
KD[𝐸](𝒜) = 1

2
(︀
Advmu-auth

AE,𝐸
(𝒜1)− Advmu-auth

KtE[KD[𝑘],AE],𝐸(𝒜1)
)︀

.



61

Note that 𝒜 makes at most 𝑝 + 𝐿 ≤ 2𝑛−4 ideal-cipher queries, and 𝑞 Eval
queries. Moreover, 𝒜 is 𝑑-repeating. Hence using Lemma 5,

Advdist
KD[𝐸](𝒜) ≤ 1

2𝑛/2 + 24(𝐿 + 𝑝)𝑞 + 18𝑞2

2𝑘+𝑛
+ 𝑎(𝐿 + 𝑝) + 𝑑(𝐿 + 𝑝 + 3𝑞)

2𝑘
.

Putting this all together,

Advmu-auth
AE,𝐸

(𝒜0) ≤ Advmu-auth
KtE[KD[𝑘],AE],𝐸(𝒜1) + Advmu-auth

AE,𝐸
(𝒜2)

+ 2
2𝑛/2 + 48(𝐿 + 𝑝)𝑞 + 36𝑞2

2𝑘+𝑛
+ 2(𝑎 + 𝑑)𝐿 + 2(𝑎 + 𝑑)𝑝 + 6𝑑𝑞

2𝑘
.

This concludes the proof.

L Proof of Lemma 8

Without loss of generality, assume that if the adversary makes an encryption
query (𝑖, 𝑁, 𝑀, 𝐴) for an answer 𝐶, then later it will not query Vf(𝑖, 𝑁, 𝐶, 𝐴).
Assume that it always calls all 𝑞 New() queries at the beginning. Assume that
the adversary does not repeat prior queries, and does not make redudant ideal-
cipher queries.

Transition to game 𝐺0. We will construct from 𝒜 another adversary 𝒜 that
plays game 𝐺0 as shown in Fig. 10. The adversary is given oracle access to 𝐸
and its inverse, and New() as usual; the latter initializes a user 𝑣 with mas-
ter key 𝐾𝑣←$ {0, 1}𝑛 upon each call. It is also given another evaluation or-
acle Eval(𝑖, 𝑁) that implements KD[𝐸](𝐾𝑖, 𝑁). The adversary has to output
a tuple (𝐼, 𝑁 , 𝐶, 𝐴) of vectors. We require that 𝐼[𝑗] ∈ {1, . . . , 𝑣} for every
𝑗, and if the adversary previously queried Eval(𝑖, 𝑁) and then (𝐼[𝑗], 𝑁 [𝑗]) ̸=
(𝑖, 𝑁) for all 𝑗 ≤ |𝐼|. The game then iterates through every verification query
(𝐼[𝑗], 𝑁 [𝑗], 𝐶[𝑗], 𝐴[𝑗]), and try to decrypt AE.D𝐸(𝐾𝐼[𝑗], 𝑁 [𝑗], 𝐶[𝑗], 𝐴[𝑗]). If some
verification query results in a non-⊥ answer then the game returns true, meaning
the adversary wins the game. Otherwise the game returns false.
We now construct the adversary 𝒜 as shown in Fig. 11. It runs 𝒜 and uses its
New oracle to respond to the latter’s queries of the same type, and maintains a
counter 𝑣 starting at 0. For each encryption query (𝑖, 𝑁, 𝑀, 𝐴) of 𝒜, adversary
𝒜 will first query Eval(𝑖, 𝑁) to get the session key 𝐾, and then computes 𝐶 ←
AE.E𝐸(𝐾, 𝑁, 𝑀, 𝐴) and returns the answer 𝐶 to 𝒜. (However, if it previously
queried Eval(𝑖, 𝑁) before then it simply reuses the prior answer as 𝐾.) For
each decryption query (𝑖, 𝑁, 𝐶, 𝐴) of 𝒜, adversary 𝒜 increments 𝑣, and updates
(𝐼[𝑣], 𝑁 [𝑣], 𝐶[𝑣], 𝐴[𝑣]) ← (𝑖, 𝑁, 𝐶, 𝐴). Finally, when 𝒜 terminates, 𝒜 outputs
(𝐼, 𝑁 , 𝐶, 𝐴) that it has maintained. Since 𝒜 is simple, 𝒜 does not violate the
requirements of game 𝐺0. Moreover, 𝒜 makes at most 𝑞 evaluation queries, 𝐿+𝑝
ideal-cipher queries (but only 𝑝 of them are backward queries), and 𝑞 verification
queries. For this constructed adversary 𝒜,

Pr[𝐺0] = Advmu-auth
AE,𝐸

(𝒜) .
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Game 𝐺0

𝑣 ← 0; 𝑆←$ ∅; (𝐼, 𝑁 , 𝐶, 𝐴)←$𝒜New,Eval,𝐸,𝐸−1

For 𝑗 = 1 to |𝐼| do
If 𝐼[𝑗] ̸∈ {1, . . . , 𝑣} then return false
If (𝐼[𝑗], 𝑁 [𝑗]) ∈ 𝑆 then return false

For 𝑗 = 1 to |𝐼| do
𝑀 ← AE𝐸

.D(𝐾𝐼[𝑗], 𝑁 [𝑗], 𝐶[𝑗], 𝐴[𝑗])
If 𝑀 ̸= ⊥ then return true

Return false

New()
𝑣 ← 𝑣 + 1; 𝐾𝑣 ←$ {0, 1}𝑘

Eval(𝑖, 𝑁)
//Implement KD[𝐸](𝐾𝑖, 𝑁)
If 𝑖 ̸∈ {1, . . . , 𝑣} then return ⊥
𝐾 ← KD[𝐸](𝐾𝑖, 𝑁)
𝑆 ← 𝑆 ∪ {(𝑖, 𝑁)}
Return 𝐾

Fig. 10: Game 𝐺0 in the proof of Lemma 8.

Adversary 𝒜New,Eval,𝐸,𝐸−1

𝑣 ← 0; 𝒜New,Enc,Vf,𝐸,𝐸−1

Return (𝐼, 𝑁 , 𝐶, 𝐴)

Vf(𝑖, 𝑁, 𝐶, 𝐴)
𝑣 ← 𝑣 + 1; 𝐼[𝑣]← 𝑖

𝑁 [𝑣]← 𝑁 ; 𝐶[𝑣]← 𝐶; 𝐴[𝑣]← 𝐴

Enc(𝑖, 𝑁, 𝑀, 𝐴)
𝐾 ← Eval(𝑖, 𝑁)
𝐶 ← AE.E𝐸(𝐾, 𝑁, 𝑀, 𝐴)
Return 𝐶

Fig. 11: Constructed adversary 𝒜 in the proof of Lemma 8.

Bounding Pr[𝐺0]. Each time 𝒜 makes a forward query 𝐸𝐾(𝑋), if (1) there is
some 𝑁 ∈ 𝒩 such that 𝑋 ∈ 𝛺 = {pad(𝑁, 0), . . . , pad(𝑁, 5)}, (2) there is no
prior backward query 𝐸−1(𝐾, 𝑌 ) for answer 𝑋 ′ ∈ 𝛺∖{𝑋}, then we immediately
grant the adversary the free queries 𝐸𝐾(𝑋*), for all 𝑋 ′ ∈ 𝛺∖{𝑋}. Thus the
adversary makes at most 6(𝐿 + 𝑝) ideal-cipher queries, but at most 𝑝 of them
are backward ones. Assume that 𝒜 does not repeat prior queries, and it does
not make redundant ideal-cipher queries: if it gets 𝐸(𝐾, 𝑋) for answer 𝑌 then it
will not later query 𝐸−1(𝑌 ) to get answer 𝑋 again, and vice versa. Recall that
this adversary makes all 𝑞 New() queries at the beginning.

Let 𝐺1 be the following variant of game 𝐺0. In 𝐺1, the evaluation oracle imple-
ments KD[𝑘]. Specifically, when New() initializes user 𝑣, it also samples a secret
permutation 𝜋𝑣←$ Perm(𝑛) along with the key 𝐾𝑣. On query Eval(𝑖, 𝑁), the
oracle lets 𝑋𝑠 ← pad(𝑁, 𝑠) for every 𝑠 ∈ {0, . . . , 5}, computes 𝑌𝑠 ← 𝜋𝑖(𝑋𝑠), cre-
ates internal entries (prim, 𝐾𝑖, 𝑋𝑠, 𝑌𝑠, +), and returns KD.Map(𝑌0, . . . , 𝑌5). For
each query 𝐸(𝐾, 𝑋) for answer 𝑌 , the game creates an entry (prim, 𝐾, 𝑋, 𝑌, +).
Likewise, for each query 𝐸−1(𝐾, 𝑌 ) for answer 𝑋, the game creates an entry
(prim, 𝐾, 𝑋, 𝑌,−). So there are at most 6𝑄 prim entries, where 𝑄 = 𝐿+𝑝+𝑞. We
say that the entries are incompatible if there are different entries (prim, 𝐾, 𝑋, 𝑌, ·)
and (prim, 𝐾, 𝑋 ′, 𝑌 ′, ·) of the same key 𝐾 such that either 𝑋 = 𝑋 ′ or 𝑌 = 𝑌 ′. If
incompatibility happens then game 𝐺1 returns false, meaning that the adversary
loses the game. Otherwise, the game programs 𝐸 to be consistent with the prim
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entries, and then processes the verification queries as in game 𝐺0. In particular,
in decrypting AE𝐸

.D(𝐾𝐼[𝑗], 𝑁 [𝑗], 𝐶[𝑗], 𝐴[𝑗]), the KDF of AE is still KD[𝐸].

To bound the gap between games 𝐺0 and 𝐺1, we construct an adversary 𝒜* that
tries to distinguish KD[𝐸] and KD[𝑘], as defined in game Gdist

KD[𝐸](𝒜*), but it will
be additionally granted the master keys 𝐾1, . . . , 𝐾𝑞 when it finishes querying.
Note that Lemma 5 still applies to this key-revealing setting. The goal of 𝒜* is to
simulate 𝐺0 if it interacts with KD[𝐸], and simulate 𝐺1 if it interacts with KD[𝑘].
To achieve that, it runs 𝒜, uses its oracles to answer the queries of the latter of
the same type, and maintains prim entries for the ideal-cipher queries. When 𝒜
finishes querying, 𝒜* asks to be granted master keys 𝐾1, . . . , 𝐾𝑞; at this point it
is not allowed to make further queries. Adversary 𝒜* now creates prim entries
corresponding to the past evaluation queries. If there are entries (prim, 𝐾, 𝑋, 𝑌, ·)
and (prim, 𝐾, 𝑋 ′, 𝑌 ′, ·) of the same key 𝐾, but either (1) 𝑋 = 𝑋 ′ but 𝑌 ̸= 𝑌 ′, or
(2) 𝑋 ̸= 𝑋 ′ but 𝑌 = 𝑌 ′, then 𝒜* terminates and outputs 0, indicating that it has
been interacting with KD[𝑘]. Otherwise, it will process the verification queries
of 𝒜 as in game 𝐺0. However, recall that at this point it cannot make further
queries to 𝐸/𝐸−1. So during the handling of the verification queries, when it is
supposed to query 𝐸(𝐾, 𝑋), if there is an entry (prim, 𝐾, 𝑋, 𝑌, ·) then it simply
uses the answer 𝑌 without querying 𝐸 at all. If there is no such entry then it
picks an answer 𝑌 ←$ {0, 1}𝑛∖𝑆, where 𝑆 is the set of all strings 𝑌 * such that
there is an entry (prim, 𝐾, 𝑋*, 𝑌 *, ·), and creates a new entry (prim, 𝐾, 𝑋, 𝑌, +).
If there is a verification query that results in a non-⊥ answer then 𝒜* outputs 1,
indicating that it has been interacting with KD[𝐸]. Otherwise it outputs 0.

We now analyze the advantage of 𝒜*. Let 𝑏 be the challenge bit in the game
Gdist

KD[𝐸](𝒜*). Then

Pr[Gdist
KD[𝐸](𝒜*)⇒ true | 𝑏 = 1] = Pr[𝐺0] .

On the other hand, we claim that

Pr[Gdist
KD[𝐸](𝒜*)⇒ false | 𝑏 = 0] ≤ Pr[𝐺1] + 𝑞(18𝑞 + 144𝐿 + 144𝑝)

2𝑘+𝑛
. (10)

Subtracting, we obtain

Advdist
KD[𝐸](𝒜*) ≥ Pr[𝐺0]− Pr[𝐺1]− 𝑞(18𝑞 + 144𝐿 + 144𝑝)

2𝑘+𝑛
.

We now justify Equation (10). Note that the difference between Pr[𝐺1] and
Pr[Gdist

KD[𝐸](𝒜*)⇒ false | 𝑏 = 0] is bounded by the chance that there are distinct
entries (prim, 𝐾, 𝑋, 𝑌, ·) and (prim, 𝐾 ′, 𝑋 ′, 𝑌 ′, ·) such that 𝐾 = 𝐾 ′, 𝑋 = 𝑋 ′,
and 𝑌 = 𝑌 ′, because in that case, game 𝐺1 will terminate prematurely due to
incompatibility, but 𝒜* still proceeds into handling the verification queries. Due
to symmetry, there are only three cases.
Case 1: The first entry is created by some Eval(𝑖, 𝑁) and the second entry
by Eval(𝑗, 𝑁), with 𝑖 ̸= 𝑗. Since 𝜋𝑖 and 𝜋𝑗 are independent, 𝑌 and 𝑌 ′ are
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independent, uniformly random strings. Since 𝐾𝑖 and 𝐾𝑗 are independent with
𝜋𝑖 and 𝜋𝑗 , the chance that 𝐾𝑖 = 𝐾𝑗 and 𝑌 = 𝑌 ′ is at most 2−(𝑘+𝑛). Summing
over at most (︂

6𝑞

2

)︂
≤ 18𝑞2

pairs of entries created by the 𝑞 evaluation queries, the chance this case happens
is at most 18𝑞2/2𝑘+𝑛.
Case 2: The first entry is created by some Eval(𝑖, 𝑁) and the second entry by
querying 𝐸(𝐾 ′, 𝑋 ′). If the evaluation query is made first then given 𝑌 , there are
still at least 2𝑛 − 6𝑄 ≥ 2𝑛−1 equally likely choices for 𝑌 ′, and thus the chance
that 𝐾𝑖 = 𝐾 ′ and 𝑌 ′ = 𝑌 is at most 2/2𝑘+𝑛. Likewise, if the ideal-cipher query
is made first then given 𝑌 ′, there are still at least 2𝑛−1 equally likely choices
for 𝑌 , and thus the chance that 𝐾𝑖 = 𝐾 ′ and 𝑌 = 𝑌 ′ is also at most 2/2𝑘+𝑛.
Summing this over 36(𝐿 + 𝑝)𝑞 possible pairs, the chance that this case happens
is at most 72(𝐿 + 𝑝)𝑞/2𝑘+𝑛.
Case 3: The first entry is created by some Eval(𝑖, 𝑁) and the second entry by
querying 𝐸−1(𝐾 ′, 𝑌 ′). Similar to case 2, the chance that this case happens is at
most 72(𝐿 + 𝑝)𝑞/2𝑘+𝑛.

Combining all cases leads us to Equation (10). On the other hand, 𝒜* is 𝑑-
repeating and makes at most 𝑞 evaluation queries, and 6(𝐿 + 𝑝) ≤ 2𝑛−4 ideal-
cipher queries. From Lemma 5,

Advdist
KD[𝐸](𝒜*) ≤

1
2𝑛/2 + 144(𝐿 + 𝑝)𝑞 + 18𝑞2

2𝑘+𝑛
+ 6𝑎(𝐿 + 𝑝) + 𝑑(6𝐿 + 6𝑝 + 3𝑞)

2𝑘
.

Hence

Pr[𝐺0]− Pr[𝐺1] ≤ 1
2𝑛/2 + 288(𝐿 + 𝑝)𝑞 + 36𝑞2

2𝑛+𝑘
+ 6𝑎(𝐿 + 𝑝) + 𝑑(6𝐿 + 6𝑝 + 3𝑞)

2𝑘
.

What remains is to bound Pr[𝐺1].

Bounding Pr[𝐺1]. Consider the following balls-into-bins game. For each entry
(prim, 𝐾, 𝑋, 𝑌, +), view this as throwing a ball to bin 𝑌 . Likewise, for each
entry (prim, 𝐾, 𝑋, 𝑌,−), view this as throwing a ball to bin 𝑋. Thus there are
at most 6𝑄 ≤ 2(1−𝜖)𝑛−1 throws. For each 𝑗-th throw, given the result of the prior
throws, the conditional probability that the 𝑗-th ball lands into any particular
bin is at most 21−𝑛. From Lemma 10, with probability at least 1− 2−𝑛/2, each
bin contains at most 𝑎 balls.

Consider the following balls-into-bins game. For each query Eval(𝑖, 𝑁) for
answer 𝑍, we view this as throwing a ball into bin 𝑍[𝑛 + 1 : 𝑛 + 𝑘]. Likewise, for
each 6-tuple (prim, 𝐾, pad(𝑁, 0), 𝑅0, +), . . . , (prim, 𝐾, pad(𝑁, 1), 𝑅5, +) created
by querying 𝐸, we view this as throwing a ball into bin 𝑍[𝑛 + 1 : 𝑛 + 𝑘], where
𝑍 ← KD.Map(𝑅0, . . . , 𝑅5). Thus there are at most 𝑄 ≤ min{2(1−𝜖)𝑘−1, 1

16 · 2
𝑛}

throws. For each 𝑗-th throw, given the result of the prior throws, since KD is
2-unpredictable, the conditional probability that the 𝑗-th ball lands into any
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particular bin is at most 21−𝑘. From Lemma 10, with probability at least 1 −
2−𝑘/2 ≥ 1− 2−𝑛/2, each bin contains at most 𝑎 balls.

We claim that for each 𝑗 ≤ 𝑞, the probability that the verification query
(𝐼[𝑗], 𝑁 [𝑗], 𝐶[𝑗], 𝐴[𝑗]) makes game 𝐺1 return true is at most

11
2𝑛

+ 8𝑎 + 7𝑎2

2𝑘
+ E

[︀
|𝐶[𝑗]|𝑛 + |𝐴[𝑗]|𝑛

]︀(︁𝑛𝑎

2𝑘
+ 48𝑐(𝐿 + 𝑝 + 𝑞)

2𝑛+𝑘

)︁
. (11)

This claim will be justified later. Summing over 𝑞 verification queries, and ac-
counting for the 2/2𝑛/2 probability due to the two balls-into-bins games,

Pr[𝐺1] ≤ 2
2𝑛/2 + 11𝑞

2𝑛
+ (8𝑎 + 7𝑎2)𝑞

2𝑘
+ 𝑛𝑎𝐿

2𝑘
+ 48𝑐(𝐿 + 𝑝 + 𝑞)𝐿

2𝑛+𝑘
.

Hence

Advmu-auth
AE,𝐸

(𝒜) ≤ 3
2𝑛/2 + 11𝑞

2𝑛
+ 288(𝐿 + 𝑝)𝑞 + 36𝑞2 + 48𝑐(𝐿 + 𝑝 + 𝑞)𝐿

2𝑛+𝑘

+(8𝑎 + 7𝑎2 + 3𝑑)𝑞 + (𝑛𝑎 + 6𝑎 + 6𝑑)𝐿 + 6(𝑎 + 𝑑)𝑝
2𝑘

.

Below, we will prove Equation (11).

Handling each verification query. Fix 𝑗* ≤ 𝑞, and let (𝑖, 𝑁, 𝐶, 𝐴) be
the 𝑗*-th verification query. Let 𝑇 be the IV in 𝐶 and let 𝑀 be the random
variable for the decrypted message CTR[𝐸].D(𝐾out, 𝑁, 𝐶, 𝐴), where 𝐾in ‖ 𝐾out
is the random variable for the session key of user 𝑖 for nonce 𝑁 . The message
𝑀 is determined from 𝐶 if we know all pairs (𝑋, 𝐸(𝐾out, 𝑋)) for every string
𝑋 ∈ 1{0, 1}𝑛−1. Consider the following cases.

Case 1: There is no entry (prim, 𝐾𝑖, 𝑋, ·, ·) with 𝑋 ∈ {pad(𝑁, 0), . . . , pad(𝑁, 5)}.
Assume that all prim entries are compatible; otherwise the adversary simply loses
the game. Let 𝑉 ← xor(𝐻(𝐾in, 𝑀, 𝐴), 𝑁). Processing this verification query will
return true only if 𝐸(𝐾out, 𝑉 ) = 𝑇 . After programming 𝐸, given all prim entries
and 𝐾𝑖, since KD is 2-unpredictable, there are at least 2𝑘−1 equally choices
for the 𝐾out. Assume that 𝐾out ̸= 𝐾𝑖, which happens with probability at least
1− 2/2𝑘 ≥ 1− 2/2𝑛.

Suppose that there is no entry (prim, 𝐾out, 𝑉, ·, ·). Note that 𝑉 starts with 0.
Given all prim entries, (𝑁, 𝐶, 𝐴, 𝐾𝑖, 𝐾in, 𝐾out) and all pairs (𝑋, 𝐸(𝐾out, 𝑋)) for
every 𝑋 ∈ 1{0, 1}𝑛−1, (i) one can determine 𝑉 , but (ii) there are at least 2𝑛−1−
6𝑄 ≥ 2𝑛−2 equally likely choices for 𝐸(𝐾out, 𝑉 ), and thus the chance that 𝑇 =
𝐸(𝐾out, 𝑉 ) is at most 4/2𝑛.

Suppose that there is an entry (prim, 𝐾out, 𝑉, 𝑇 ′, ·), with 𝑇 ′ ̸= 𝑇 . Then after
programming 𝐸, the chance that 𝑇 = 𝐸(𝐾out, 𝑉 ) is 0.

We now bound the chance that there is an entry (prim, 𝐾out, 𝑉, 𝑇, ·). Clearly
this entry, if exists, is not created by Eval(𝑖, ·) queries since 𝐾out ̸= 𝐾𝑖. First
consider the case that either (1) 𝐴 ̸= 𝜀, or (2) 𝑀 ̸= 𝜀, or (3) 𝐻 is 𝑐-regular.
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After programming 𝐸, given all prim entries, (𝑁, 𝐶, 𝐴, 𝐾𝑖, 𝐾out) and all pairs
(𝑋, 𝐸(𝐾out, 𝑋)) for every 𝑋 ∈ 1{0, 1}𝑛−1, (i) one can uniquely determine 𝑀 ,
but (ii) since KD is 2-unpredictable, for any string 𝐾, the conditional probability
that 𝐾in = 𝐾 is at most 21−𝑛. Hence, for any entry (prim, 𝐾, 𝑋, ·, ·) that is not
created by Eval(𝑖, ·) queries, due to the (possibly weak) 𝑐-regularity of 𝐻 and
the 2-regularity of xor, the chance that 𝐾out = 𝐾 and 𝑉 = 𝑋 is at most

2
2𝑘
·

2 · 𝑐 ·E
[︀
|𝐶|𝑛 + |𝐴|𝑛

]︀
2𝑛−1 =

8𝑐 ·E
[︀
|𝐶|𝑛 + |𝐴|𝑛

]︀
2𝑘+𝑛

.

Summing over 6𝑄 entries (prim, 𝐾, 𝑋, ·, ·), we obtain a bound 48𝑄𝑐·E
[︀
|𝐶|𝑛+|𝐴|𝑛

]︀
2𝑛+𝑘 .

Next we consider the case that both 𝐴 and 𝑀 are the empty string, and 𝐻 is
weakly 𝑐-regular. Note that one can check if 𝑀 = 𝜀 without knowing the key
𝐾out, by comparing |𝐶| with 𝑛. Now since 𝐻 is weakly regular, 𝐻(𝐾in, 𝑀, 𝐴) =
0𝑛, and thus 𝑉 = xor(0𝑛, 𝑁). From the balls-into-bins assumption above, there
are at most 2𝑎 entries (prim, 𝐾, 𝑉, 𝑇, ·), and the chance that one such 𝐾 is 𝐾out
is at most 2𝑎/2𝑘.
Summing up, for this case, the chance that the verification query (𝑖, 𝑁, 𝐶, 𝐴)
makes game 𝐺1 return true is at most

6
2𝑛

+
48𝑄𝑐 ·E

[︀
|𝐶|𝑛 + |𝐴|𝑛

]︀
2𝑛+𝑘

+ 2𝑎

2𝑘
.

Case 2: There is an entry (prim, 𝐾𝑖, 𝑍, ·,−) for 𝑍 ∈ 𝛺 = {pad(𝑁, 0), . . .
pad(𝑁, 5)}. Regardless of how the adversary chooses (𝑖, 𝑁), there are at most 6𝑎
entries (prim, ·, 𝑉, ·,−) with 𝑉 ∈ 𝛺. Since the key 𝐾𝑖 is sampled independent of
the (prim, ·, ·, ·,−) entries, this case happens with probability at most 6𝑎

2𝑘 .
Case 3: Entries (prim, 𝐾𝑖, pad(𝑁, 0), ·, +), . . . , (prim, 𝐾𝑖, pad(𝑁, 5), ·, +) exist.
Note that those entries are not created by queries Eval(𝑖, ·), because the ad-
versary is not allowed to query Eval(𝑖, 𝑁) and then output a verification query
(𝑖, 𝑁, 𝐶, 𝐴). Except for entries created by Eval(𝑖, ·), the key 𝐾𝑖 is independent
of the remaining entries. Since KD is 2-unpredictable, assume that 𝐾out ̸= 𝐾𝑖,
which happens with probability at least 1− 2𝑄

2𝑘 · 1
2𝑘 ≥ 1− 2𝑄

2𝑘+𝑛 . We consider the
following sub-cases.
Case 3.1: There is no entry (prim, 𝐾out, 𝑍, 𝑇, ·), where 𝑍 is a string starting
with 0. Assume that the entries are compatible; otherwise the adversary simply
loses the game. After programming 𝐸, given all entries, (𝐾𝑖, 𝐾in, 𝐾out), and
all pairs (𝑋, 𝐸(𝐾out, 𝑋)) for every 𝑋 ∈ 1{0, 1}𝑛−1, (i) one can determine 𝑀
from 𝐶, and then compute 𝑉 ← xor(𝐻(𝐾in, 𝑀, 𝐴), 𝑁), but (ii) either there
is an entry (prim, 𝐾out, 𝑉, 𝑇 ′, ·) with 𝑇 ′ ̸= 𝑇 , meaning 𝐸(𝐾out, 𝑉 ) = 𝑇 ′ ̸= 𝑇 ,
or there is no entry (prim, 𝐾out, 𝑉, ·, ·), meaning that there are still at least
2𝑛−1−6𝑄 ≥ 2𝑛−2 equally likely choices for 𝐸(𝐾out, 𝑉 ), and therefore the chance
that 𝐸(𝐾out, 𝑉 ) = 𝑇 is at most 4/2𝑛. Hence in this case the chance that the
verification query above can make 𝐺1 answer true is at most 4/2𝑛.
Case 3.2: There is an entry (prim, 𝐾out, 𝑍, 𝑇, +) where 𝑍 is a string start-
ing with 0. Now, the entry (prim, 𝐾out, 𝑍, 𝑇, +), if exists, does not come from
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Eval(𝑖, ·) queries, since 𝐾𝑖 ̸= 𝐾out as mentioned above. Note that due to the
balls-into-bins assumption above, there are at most 𝑎2 septets (prim, 𝐽, ·, 𝑇, +),
(prim, 𝐾, pad(𝑁 ′, 0), 𝑅0, +), . . . , (prim, pad(𝑁 ′, 5), 𝑅5, +) such that (i) 𝐽 is the
𝑘-bit suffix of KD.Map(𝑅0, . . . , 𝑅5), and (ii) those entries are not from the eval-
uation queries of user 𝑖. For each such septet, the chance that 𝐾 = 𝐾𝑖 is 2−𝑘.
Hence this case happens with probability at most 𝑎2/2𝑘.

Case 3.3: There is an entry (prim, 𝐾out, 𝑍, 𝑇,−), where 𝑍 ∈ 0{0, 1}𝑛−1. Assume
that 𝑍 ̸∈ 𝛺 = {pad(𝑁, 0), . . . , pad(𝑁, 5)}. This happens with probability at
least 1 − 6𝑎2/2𝑘, since due to the balls-into-bins assumption above, there are
at most 6𝑎2 septets of entries (prim, 𝐽, 𝑍 ′, 𝑇,−), (prim, 𝐾, pad(𝑁, 0), 𝑅0, +), . . . ,
(prim, 𝐾, pad(𝑁, 5), 𝑅5, +) such that 𝐽 is the 𝑘-bit suffix of KD.Map(𝑅0, . . . , 𝑅5)
and 𝑍 ′ ∈ 𝛺.

If incompatibility does not happen then either (prim, 𝐾𝑖, pad(𝑁, 0), ·, +), . . . ,
(prim, 𝐾𝑖, pad(𝑁, 5), ·, +) all belong to the ideal-cipher queries, or they all are
created by queries Eval(𝑗, ·) for some 𝑗 ̸= 𝑖. Consider all septets 𝒯 of entries
(prim, 𝐾, pad(𝑁, 0), 𝑅0, +), . . . , (prim, 𝐾, pad(𝑁, 5), 𝑅5, +), (prim, 𝐽, 𝑈, 𝑇,−), in
which 𝐽 ′ ‖ 𝐽 ← KD.Map(𝑅0, . . . , 𝑅5), such that (1) either the first six entries
belong to the ideal-cipher queries, or they are created by queries Eval(𝑗, ·),
with 𝑗 ̸= 𝑖, and (2) 𝐽 ̸= 𝐾 and (3) 𝑈 ∈ 0{0, 1}𝑛−1∖{pad(𝑁, 0), . . . , pad(𝑁, 5)}.
For such a septet 𝒯 , denote 𝐾 = MKey(𝒯 ), 𝐽 = OKey(𝒯 ), 𝐽 ′ = IKey(𝒯 )
and 𝑈 = Input(𝒯 ), and let Msg(𝒯 , 𝐶) be the message obtained by decrypt-
ing CTR[𝐸].D(OKey(𝒯 ), 𝐶). This query (𝑖, 𝑁, 𝐶, 𝐴) makes game 𝐺1 return true
only if incompatibility does not happen, and there is a septet 𝒯 such that
xor(𝐻(IKey(𝒯 ), Msg(𝒯 , 𝐶), 𝐴), 𝑁) = Input(𝒯 ) and 𝐾𝑖 = MKey(𝒯 ).

Now consider the following game 𝐺2 that is equivalent of 𝐺1, but adds
some extra bookkeeping. In the first phase, we let bad ← false, and then run
𝒜New,Eval,𝐸,𝐸−1

as usual. After the adversary finishes querying and outputs its
verification queries, let (𝑖, 𝑁, 𝐶, 𝐴) be the 𝑗*-th verification query. Excluding
the prim entries created by Eval(𝑖, ·) queries, we check for compatibility of the
remaining entries. If incompatibility happens we terminate the game and re-
turn false. Otherwise, among septets 𝒯 such that MKey(𝒯 ) = 𝐾𝑖, we check if
xor(𝐻(IKey(𝒯 ), Msg(𝒯 , 𝐶), 𝐴), 𝑁) = Input(𝒯 ), and if this happens, we set bad
to true. Note that here OKey(𝒯 ) ̸= MKey(𝒯 ) = 𝐾𝑖, and thus the additional
calls to 𝐸(OKey(𝒯 ), ·) to compute Msg(𝒯 , 𝐶) will not create further incompat-
ibility with the prim entries created by Eval(𝑖, ·) queries. In the second phase,
we check the compatibility of all entries, program 𝐸, and proceed to handle the
verification queries.

Note that in this case, the verification query (𝑖, 𝑁, 𝐶, 𝐴) makes game 𝐺1
return 1 only if game 𝐺2 sets bad. Thus it suffices to prove that

Pr[𝐺2 sets bad] ≤ 1
2𝑛

+
𝑛𝑎 ·E

[︀
|𝐶|𝑛 + |𝐴|𝑛

]︀
2𝑘

.
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Analyzing game 𝐺2. Let game 𝐺3 be identical to game 𝐺2, but in 𝐺3, we
drop the second phase. Then

Pr[𝐺3 sets bad] = Pr[𝐺2 sets bad]

since the part we drop does not modify bad. Consider the following game 𝐺4
that is identical to game 𝐺3, except the following. In game 𝐺3, recall that we
check xor(𝐻(IKey(𝒯 ), Msg(𝒯 , 𝐶), 𝐴), 𝑁) = Input(𝒯 ) for only septets 𝒯 such that
MKey(𝒯 ) = 𝐾𝑖. In 𝐺4, we instead check xor(𝐻(IKey(𝒯 ), Msg(𝒯 , 𝐶), 𝐴), 𝑁) =
Input(𝒯 ) for all septets, and then among septets 𝒯 of affirmative answers, we set
bad if there is some 𝒯 such that MKey(𝒯 ) = 𝐾𝑖. The two games are equivalent,
and thus

Pr[𝐺4 sets bad] = Pr[𝐺3 sets bad]

Let Bad be the event that in game 𝐺4, the adversary can find 𝑛𝑎(|𝐶|𝑛 + |𝐴|𝑛)
or more septets of affirmative answers. Note that the septets and their checking
are independent of the key 𝐾𝑖. Hence it suffices to prove that Pr[Bad] ≤ 1/2𝑛.
The difficulty here is that the adversary can adaptively make (𝑖, 𝑁, 𝐶, 𝐴) after
seeing the queries and answers. This creates an issue in using the regularity of 𝐻
in checking xor(𝐻(IKey(𝒯 ), Msg(𝒯 , 𝐶), 𝐴), 𝑁) = Input(𝒯 ), since (𝐶, 𝐴, 𝑁) might
depend on IKey(𝒯 ). However, we claim that for any fixed choice (𝑖*, 𝑁*, 𝐶*, 𝐴*),

Pr[Bad ∩
(︀
(𝑖, 𝑁, 𝐶, 𝐴) = (𝑖*, 𝑁*, 𝐶*, 𝐴*)

)︀
] ≤ 21−(3𝑛ℓ+2𝑛) (12)

where ℓ = |𝐶*|𝑛 + |𝐴*|𝑛 ≥ 2. By union bound, the chance that Bad happens is
at most

∞∑︁
ℓ=2

∑︁
(𝑖*,𝑁*,𝐶*,𝐴*)
|𝐶*|𝑛+|𝐴*|𝑛=ℓ

21−(3𝑛ℓ+2𝑛) ≤
∞∑︁

ℓ=2
22𝑛ℓ+2𝑛 · 21−(3𝑛ℓ+2𝑛) =

∞∑︁
ℓ=2

2
2𝑛ℓ
≤ 1

2𝑛
.

To justify Equation (12), fix such a value (𝑖*, 𝑁*, 𝐶*, 𝐴*). Consider the follow-
ing game 𝐺5. Initially, we let bad ← false, and run 𝒜New,Eval,𝐸,𝐸−1

as usual.
After the adversary finishes querying, we ignore its verification queries. Exclud-
ing prim entries created by Eval(𝑖, ·) queries, we check for compatibility of the
remaining entries. If incompatibility happens, we terminate the game and re-
turn false. Otherwise, consider all septets 𝒯 of (prim, 𝐾, pad(𝑁*, 0), 𝑅0, +), . . . ,
(prim, 𝐾, pad(𝑁*, 5), 𝑅2, +), (prim, 𝐽, 𝑈, 𝑇 *,−), with 𝐽 ′‖𝐽 ← KD.Map(𝑅0, . . . , 𝑅5)
such that (1) either the first six entries belong to the ideal-cipher queries, or
they are created by queries Eval(𝑗, ·), with 𝑗 ̸= 𝑖, and (2) 𝐽 ̸= 𝐾 and (3)
𝑈 ∈ 0{0, 1}𝑛−1∖{pad(𝑁*, 0), . . . , pad(𝑁*, 5)}. Check

xor(𝐻(IKey(𝒯 ), Msg(𝒯 , 𝐶*), 𝐴*), 𝑁*) = Input(𝒯 )

for all such septets 𝒯 , and if there are 𝑛𝑎ℓ or more septets of affirmative answers
then we set bad to true. Then

Pr[Bad ∩
(︀
(𝑖, 𝑁, 𝐶, 𝐴) = (𝑖*, 𝑁*, 𝐶*, 𝐴*)

)︀
] ≤ Pr[𝐺5 sets bad] .
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Consider the following game 𝐺6. It is identical to game 𝐺5, but we grant the
adversary the keys 𝐾𝑗 , for every 𝑗 ̸= 𝑖*, at the beginning. This should only help
the adversary. Then

Pr[𝐺5 sets bad] ≤ Pr[𝐺6 sets bad] .

Consider the following game 𝐺7. It is identical to game 𝐺6 but here we lazily
implement 𝜋𝑗 for every 𝑗 ̸= 𝑖*, and also lazily implement 𝐸. That is, initially 𝜋𝑗

is undefined on all inputs. Only when we need to compute 𝜋𝑗(𝑋) do we sample
the output from a proper distribution. Likely, initially 𝐸(·, ·) is undefined on all
inputs. Only when we need to compute 𝐸(𝐾, 𝑋) or 𝐸−1(𝐾, 𝑌 ) do we sample
the outputs from proper distributions. Moreover, we eagerly do the compatibility
checking and programming 𝐸. That is, each time the adversary makes an ideal-
cipher query we immediately do the compatibility checking and terminate the
game if incompatibility is detected. Likewise, each time the adversary makes a
query to Eval(𝑗, ) with 𝑗 ̸= 𝑖*, we immediately do the compatibility checking,
terminate the game if incompatibility is detected, and program 𝐸 otherwise.
Since 𝐺7 is simply a different implementation of 𝐺6,

Pr[𝐺7 sets bad] = Pr[𝐺6 sets bad] .

Next, in game 𝐺7, for any 𝑗 ̸= 𝑖*, querying Eval(𝑗, 𝑁 ′) either causes premature
termination without setting bad, or effectively calls 𝑅𝑠 ← 𝐸(𝐾𝑗 , pad(𝑁 ′, 𝑠))
for every 𝑠 ∈ {0, . . . , 5}, and returns KD.Map(𝑅0, . . . , 𝑅5). Since the adver-
sary knows the keys 𝐾𝑗 , without loss of generality, assume that the adversary
makes no evaluation query Eval(𝑗, ·) for any 𝑗 ̸= 𝑖*, and makes at most 6𝑄
ideal-cipher queries: whenever it is supposed to query Eval(𝑗, 𝑁 ′), it will query
𝐸(𝐾𝑗 , pad(𝑁 ′, 𝑠)) for every 𝑠 ∈ {0, . . . , 5} instead. (If those queries are redundant
then the adversary can reuse the past answers without querying 𝐸.) Now, we
say that an entry (prim, 𝐽, 𝑈, 𝑇 *,−) is bad if it belongs to an affirmative septet.
Consider the following game 𝐺8. It is essentially the same as game 𝐺7, but we set
bad if there are at least 𝑛ℓ bad entries. Note that each entry (prim, 𝐽, 𝑈, 𝑇 *,−)
can belong to at most 𝑎 septets, due to the balls-into-bins assumption above.
Hence

Pr[𝐺7 sets bad] ≤ Pr[𝐺8 sets bad] .

Game 𝐺9 is essentially the same as game 𝐺8, but at the beginning, we grant the
adversary free queries 𝐸(𝐾, pad(𝑁*, 0)), . . . , 𝐸(𝐾, pad(𝑁*, 5)), for every 𝐾 ∈
{0, 1}𝑘, and then grant it free queries 𝐸(𝐾, 𝑋) for every 𝐾 ∈ {0, 1}𝑘 and 𝑋 ∈
1{0, 1}𝑛−1. (However, if some query 𝐸(𝐾, 𝑋) repeats a prior query then we will
not grant this query.) Note that our free queries may prohibit the adversary
from making some backward queries as those now become redundant. However,
the entries (prim, 𝐾, 𝑈, ·,−) corresponding to those backward queries are not
bad, because those 𝑈 ’s will belong to 1{0, 1}𝑛−1 ∪{pad(𝑁*, 0), . . . , pad(𝑁*, 5)}.
Hence

Pr[𝐺8 sets bad] ≤ Pr[𝐺9 sets bad] .

What is left is to analyze the chance that game 𝐺9 sets bad.
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Analyzing game 𝐺9. Consider the following balls-into-bins game. For each 6-
tuple of queries 𝐸(𝐾, pad(𝑁*, 0)), . . . , 𝐸(𝐾, pad(𝑁*, 5)) with answer 𝑅0, . . . , 𝑅5
respectively, we view them as throwing a ball into bin 𝑍[𝑛 + 1 : 𝑛 + 𝑘], where
𝑍 ← KD.Map(𝑅0, . . . , 𝑅5). So totally we throw 2𝑘 balls. Since KD[𝐸] is 2-
unpredictable, for the 𝑗-th throw, given the result of prior throws, the condi-
tional probability that the 𝑗-th ball lands in any particular bin is at most 21−𝑘.
Assume that each bin contains at most ⌈𝑘ℓ/2⌉ ≤ 𝑛ℓ balls, which happens with
probability at least 1− 2−(3ℓ+2)𝑘 ≥ 1− 2−(3ℓ+2)𝑛, according to Lemma 11. Now,
partition the septets according to their backward queries. Each partition con-
tains at most 𝑛ℓ septets, due to the balls-into-bins assumption above. Since there
are at most 𝑝 backward queries, there are at most 𝑝 partitions.

Now, for each entry (prim, 𝐽, 𝑈, 𝑇 *,−), for it to be bad, at least one of the 𝑛ℓ
septets in its partition must be an affirmative one. Given all prior prim entries,
the random variable 𝑈 has at least 2𝑛−1 − 6𝑄− 6 ≥ 2𝑛−2 equally likely values,
and thus the conditional probability that this entry is bad is at most 𝑛ℓ/2𝑛−2.
Hence the chance that there are 𝑛ℓ bad entries is at most(︂

𝑝

𝑛ℓ

)︂(︁ 𝑛ℓ

2𝑛−2

)︁𝑛ℓ

≤ 𝑝𝑛ℓ

(𝑛ℓ)!

(︁ 𝑛ℓ

2𝑛−2

)︁𝑛ℓ

≤ (𝑛ℓ/64)𝑛ℓ

(𝑛ℓ)! ≤ (𝑛ℓ/64)𝑛ℓ

(𝑛ℓ/𝑒)𝑛ℓ
≤ 1

16𝑛ℓ

≤ 1
2(3ℓ+2)𝑛

,

where the second equality is based on the hypothesis that 𝑝 ≤ 2𝑛−8, the third
inequality is due to the fact that 𝑚! ≥ (𝑚/𝑒)𝑚 for any integer 𝑚 ≥ 1, and the
last inequality is due to the fact that ℓ ≥ 2. Summing up,

Pr[𝐺9 sets bad] ≤ 21−(3ℓ+2)𝑛 .

This concludes the proof.

M Proof of Theorem 6

From Proposition 1, we can construct 𝑑-repeating adversaries 𝒜1 and 𝒜2 such
that

Advmu-mrae
AE,𝐸

(𝒜) ≤ Advmu-priv
AE,𝐸

(𝒜1) + Advmu-auth
AE,𝛱

(𝒜2) + 2𝑞

2𝑛
.

Moreover, any query of 𝒜1 or 𝒜2 is also a query of 𝒜. In particular, 𝒜1 makes
at most 𝑞 encryption queries of total 𝐿 blocks, and at most 𝐵 blocks per (user,
nonce) pair, and 𝑝 ideal-cipher queries. Likewise, 𝒜2 makes at most 𝑞 encryp-
tion/verification queries of total 𝐿 blocks, and encryption queries of 𝐵 blocks
per (user, nonce) pair, and 𝑝-ideal cipher queries. Let AE* = KtE[KD[𝑘], AE].

Privacy analysis. We first bound the privacy advantage of𝒜1. From Lemma 6,

Advmu-priv
AE,𝐸

(𝒜1) ≤ Advmu-priv
AE*,𝐸 (𝒜1) + 2

2𝑛/2 + 48(𝐿 + 𝑝)𝑞 + 36𝑞2

2𝑘+𝑛

+2𝑎(𝐿 + 𝑝) + 2𝑑(𝐿 + 𝑝 + 3𝑞)
2𝑘

.
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Now, since 𝑞 ≤ 𝐿/2 (as each query consist of at least two blocks, one from
associated data, another from plaintext/ciphertext), the bound above can be
simplified as

Advmu-priv
AE,𝐸

(𝒜1) ≤ Advmu-priv
AE*,𝐸 (𝒜1)+ 2

2𝑛/2 +33𝐿2 + 24𝐿𝑝

2𝑘+𝑛
+(2𝑎 + 5𝑑)𝐿 + (2𝑎 + 2𝑑)𝑝

2𝑘
.

Authenticity analysis. We next bound the authenticity advantage of 𝒜2.
From Lemma 9, we can construct an adversary 𝒜3 such that

Advmu-auth
AE,𝐸

(𝒜2) ≤ Advmu-auth
AE*

,𝐸
(𝒜3) + 5

2𝑛/2 + 11𝑞

2𝑛
+ 336(𝐿 + 𝑝)𝑞 + 72𝑞2

2𝑛+𝑘

+ 48𝑐(𝐿 + 𝑝 + 𝑞)𝐿
2𝑛+𝑘

+ (8𝑎 + 7𝑎2 + 9𝑑)𝑞 + (𝑛𝑎 + 8𝑎 + 8𝑑)𝐿 + 8(𝑎 + 𝑑)𝑝
2𝑘

.

Moreover, any query of 𝒜3 is also a query of 𝒜2. In particular, 𝒜3 makes at most
𝑞 encryption/verification queries of total 𝐿 blocks, and encryption queries of 𝐵
blocks per (user, nonce) pair, and 𝑝-ideal cipher queries. Again, since 𝑞 ≤ 𝐿/2,
the bound above can be simplified as

Advmu-auth
AE,𝐸

(𝒜2) ≤ Advmu-auth
AE*

,𝐸
(𝒜3) + 5

2𝑛/2 + (186 + 72𝑐)𝐿2 + (168 + 48𝑐)𝐿𝑝

2𝑛+𝑘

+ 11𝑞

2𝑛
+ (12𝑎 + 4𝑎2 + 13𝑑 + 𝑛𝑎)𝐿 + 8(𝑎 + 𝑑)𝑝

2𝑘
.

Combining privacy and authenticity. From the analysis above, on the one
hand,

Advmu-mrae
AE,𝐸

(𝒜) ≤ Advmu-priv
AE*,𝐸 (𝒜1) + Advmu-auth

AE*
,𝐸

(𝒜3) + 7
2𝑛/2 + 13𝑞

2𝑛

+ (14𝑎 + 4𝑎2 + 18𝑑 + 𝑛𝑎)𝐿 + 10(𝑎 + 𝑑)𝑝
2𝑘

+ (219 + 72𝑐)𝐿2 + (192 + 48𝑐)𝐿𝑝

2𝑛+𝑘
.

On the other hand, using Proposition 2, we can construct an adversary 𝒜 such
that

Advmu-priv
AE*,𝐸 (𝒜1) + Advmu-auth

AE*
,𝐸

(𝒜3) ≤ 3 Advmu-mrae
AE,KeyGen,𝐸(𝒜),

where the key-generation algorithm KeyGen is given in Fig. 7. Adversary 𝒜
makes at most 𝑞 encryption/verification queries of total 𝐿 blocks, and encryption
queries of 𝐵 blocks per user, and 𝑝-ideal cipher queries. Hence

Advmu-mrae
AE,𝐸

(𝒜) ≤ 3 Advmu-mrae
AE,KeyGen,𝐸(𝒜) + 7

2𝑛/2 + 13𝑞

2𝑛

+ (14𝑎 + 4𝑎2 + 18𝑑 + 𝑛𝑎)𝐿 + 10(𝑎 + 𝑑)𝑝
2𝑘

+ (219 + 72𝑐)𝐿2 + (192 + 48𝑐)𝐿𝑝

2𝑛+𝑘
.
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Finally, using Theorem 4 with 𝛽 = 4 if 𝐻 is 𝑐-regular, or Theorem 5 with 𝛽 = 4
if 𝐻 is weakly 𝑐-regular

Advmu-mrae
AE,KeyGen,𝐸(𝒜) ≤ 1

2𝑛/2 + (4𝑎 + 𝑑)𝑝 + (2𝑑 + 𝑎)𝐿
2𝑘

+(12𝑐 + 28)𝐿2 + 16𝑐𝐿𝑝

2𝑛+𝑘
+ (16𝑐 + 8.5)𝐿𝐵

2𝑛

and note that 𝑞 ≤ 𝐿𝐵/4,

Advmu-mrae
AE,𝐸

(𝒜) ≤ 10
2𝑛/2 + (17𝑎 + 4𝑎2 + 24𝑑 + 𝑛𝑎)𝐿 + (22𝑎 + 13𝑑)𝑝

2𝑘

+ (48𝑐 + 30)𝐿𝐵

2𝑛
+ (303 + 108𝑐)𝐿2 + (192 + 96𝑐)𝐿𝑝

2𝑛+𝑘
.

This concludes the proof.
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