
Foundations of Homomorphic Secret Sharing
Elette Boyle1, Niv Gilboa2, Yuval Ishai3, Huijia Lin4, and Stefano
Tessaro4

1 IDC Herzliya, Herzliya, Israel
eboyle@alum.mit.edu

2 Ben Gurion University, Be’er Sheva, Israel
gilboan@bgu.ac.il

3 Technion, Haifa, Israel
yuvali@cs.technion.ac.il

4 University of California Santa Barbara, Santa Barbara, CA, USA
{rachel.lin,tessaro}@cs.ucsb.edu

Abstract
Homomorphic secret sharing (HSS) is the secret sharing analogue of homomorphic encryption.
An HSS scheme supports a local evaluation of functions on shares of one or more secret inputs,
such that the resulting shares of the output are short. Some applications require the stronger
notion of additive HSS, where the shares of the output add up to the output over some finite
Abelian group. While some strong positive results for HSS are known under specific cryptographic
assumptions, many natural questions remain open.

We initiate a systematic study of HSS, making the following contributions.
A definitional framework. We present a general framework for defining HSS schemes
that unifies and extends several previous notions from the literature, and cast known results
within this framework.
Limitations. We establish limitations on information-theoretic multi-input HSS with short
output shares via a relation with communication complexity. We also show that additive
HSS for non-trivial functions, even the AND of two input bits, implies non-interactive key
exchange, and is therefore unlikely to be implied by public-key encryption or even oblivious
transfer.
Applications. We present two types of applications of HSS. First, we construct 2-round
protocols for secure multiparty computation from a simple constant-size instance of HSS.
As a corollary, we obtain 2-round protocols with attractive asymptotic efficiency features
under the Decision Diffie Hellman (DDH) assumption. Second, we use HSS to obtain nearly
optimal worst-case to average-case reductions in P. This in turn has applications to fine-
grained average-case hardness and verifiable computation.

1998 ACM Subject Classification Mathematical foundations of cryptography

Keywords and phrases Cryptography, homomorphic secret sharing, secure computation, com-
munication complexity, worst-case to average case reductions

Digital Object Identifier 10.4230/LIPIcs.ITCS.2018.21

1 Introduction

Fully homomorphic encryption (FHE) [53, 35] is a powerful cryptographic primitive that
supports general computations on encrypted inputs. Despite intensive study, FHE schemes
can only be based on a narrow class of cryptographic assumptions [56, 17, 36], which are all
related to lattices, and their concrete efficiency leaves much to be desired.

© Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro;
licensed under Creative Commons License CC-BY

9th Innovations in Theoretical Computer Science Conference (ITCS 2018).
Editor: Anna R. Karlin; Article No. 21; pp. 21:1–21:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Foundations of Homomorphic Secret Sharing

In this paper we consider the following secret sharing analogue of FHE, referred to
as homomorphic secret sharing (HSS) [14]. A standard (threshold) secret sharing scheme
randomly splits an input x into m shares, (x1, . . . , xm), such that any set of t shares reveals
nothing about the input. An HSS scheme supports computations on shared inputs by means
of local computations on their shares. More concretely, there is a local evaluation algorithm
Eval and decoder algorithm Dec satisfying the following homomorphism requirement. Given
a description of a function F , the algorithm Eval(F ;xj) maps an input share xj to a
corresponding output share yj , such that Dec(y1, . . . , ym) = F (x).

An HSS scheme as above can be trivially obtained by letting Eval output (F, xj) and
Dec first reconstruct x from the shares and then compute F . Analogously to the output
compactness requirement of FHE, we require that the HSS output shares be compact in the
sense that their length depends only on the output length of F and the security parameter.
In fact, it is often useful to make the more stringent requirement that Dec compute F (x) as
the sum y1 + . . .+ ym in some finite Abelian group. We refer to such an HSS scheme as an
additive HSS. We also consider a relaxed notion of weak compactness that allows the length
of the output shares to grow sublinearly with the input size.

Finally, one can naturally consider a multi-input variant of HSS, where inputs x1, . . . , xn
are independently shared, Eval locally maps the j-th shares of the n inputs to the j-th output
share, and Dec outputs F (x1, . . . , xn). In fact, multi-input HSS is meaningful even when F
is a fixed function rather than an input of Eval. For instance, one may consider additive
2-input HSS where F computes the AND of two input bits, or compact 2-input HSS where
F takes an inner product of two input vectors.

HSS vs. FHE. HSS can generally be viewed as a relaxation of FHE that offers protection
against bounded collusions. However, as observed in [14], in some applications of FHE it
is possible to use HSS as an alternative that offers the same level of security. For instance,
in the context of secure two-party computation [57, 40], using HSS to share the inputs of
the two parties does not compromise security in any way, since the two parties together can
anyway learn both inputs.

More importantly for this work, HSS can potentially offer several useful features that are
inherently impossible for FHE. One such feature is information-theoretic security. Information-
theoretic HSS schemes for multiplying two secrets with security threshold t < m/2 serve as
the basis for information-theoretic protocols for secure multiparty computation [9, 20, 25].
Information-theoretic HSS schemes for certain classes of depth-2 circuits implicitly serve
as the basis for the best known constructions of information-theoretic private information
retrieval schemes and locally decodable codes [58, 29, 8]. Another potential feature of HSS
is optimal compactness: if F has a single output bit, then the output shares yj can be as
short as a single bit. Indeed, special types of FHE schemes can be used to obtain additive
HSS schemes with t = m− 1 that support general homomorphic computations with optimal
compactness [27]. This feature is useful for several applications of HSS, including ones we
discuss in this work.

Finally, recent works obtain HSS schemes that support rich classes of computations
under the Decision Diffie Hellman (DDH) assumption [14, 16] or the security of the Paillier
encryption scheme [30], which are not known to imply FHE. These constructions use very
different techniques from those underlying known FHE constructions. This suggests a
potential for further diversifying the assumptions and structures on which HSS can be based,
which may potentially lead to more efficient substitutes for known FHE schemes.

E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro 21:3

1.1 Our Contribution
The current state of the art in HSS mostly consists of isolated positive results and leaves
open some of the most basic questions. In this work we initiate a more systematic study of
HSS, making the following contributions. We refer the reader to the relevant sections for a
high level overview of the main ideas behind each contribution.

A definitional framework. We start, in Section 2, by presenting a general framework for
HSS that unifies and extends several previous notions from the literature. In Section 3 we
cast some known primitives and previous results within this framework. This includes a
simple extension of a previous Learning With Errors (LWE)-based construction from [27] to
the setting of multi-input HSS, whose details appear in full version.

Limitations. In Section 4 we establish two types of limitations on multi-input HSS. First,
in Section 4.1, we show that weakly compact information-theoretic multi-input HSS schemes
for security threshold t ≥ m/2 shares do not exist for functions that have high (randomized,
one-way) two-party communication complexity. This includes simple functions such as inner
product or set disjointness. The high level idea is to obtain a low-communication two-party
protocol from the HSS scheme by having the two parties use a common source of randomness
to locally simulate the HSS input shares of both inputs, without any interaction, and then
have one party send its HSS output share to the other. Second, in Section 4.2, we show that
additive HSS for non-trivial functions, or even for computing the AND of two input bits,
implies non-interactive key exchange (NIKE), a cryptographic notion which is not known to
be implied by standard public-key primitives such as oblivious transfer. Loosely, two parties
can simultaneously exchange HSS shares of input bits whose AND is zero, and output their
HSS-evaluated output share as a shared key. This result provides some explanation for the
difficulty of constructing strong types of HSS schemes from general assumptions.

Applications. In Section 5 we present two types of applications of HSS. First, in Section 5.1,
we construct 2-round protocols for secure Multi-Party Computation (MPC) from a simple
constant-size instance of additive HSS with n = 3 inputs and m = 2 shares, for computing
3Mult-Plus((x1, z1), (x2, z2), (x3, z3)) = x1x2x3 + z1 + z2 + z3. At a very high level, this
reduction crucially relies on a randomized encoding of functions by degree-3 polynomials [2],
to decompose the computation of an arbitrary function F into the computation of many
degree-3 monomials. The computation of each monomial is further decomposed into many
invocation of HSS for 3Mult-Plus among only a constant number of parties. As a corollary,
we can transform a previous DDH-based 2-round MPC protocol in [16] (which requires a
public-key infrastructure) for only a constant number of parties, into a 2-round protocol for
an arbitrary polynomial number of parties.

In the literature, 2-round MPC protocols exist in the CRS model, based on LWE (e.g., [3,
52]) and in the plain model, from indistinguishability obfuscation or witness encryption with
NIZK (e.g., [32, 42]) or bilinear groups [33], or even 2-round semi-honest Oblivious Transfer
(OT) protocols [34, 11]. Our protocol can be instantiated in the public-key infrastructure
model under DDH, which is weaker than or incomparable to the feasibility results of other
recent constructions. However, our protocols using HSS still have several advantages, in
particular, they enjoy better asymptotic efficiency, and they are in the more general client-
server model, where the input clients’ computation can be done offline, and the output clients’
computation is relatively cheap.

A second type of applications, presented in Section 5.2, is to obtaining worst-case
to average-case reductions in P. Roughly speaking, the HSS evaluation function Eval for

ITCS 2018

21:4 Foundations of Homomorphic Secret Sharing

computing F defines a function F̂ such that computing F on any given input x can be
reduced to computing F̂ on two or more inputs that are individually pseudorandom. A
similar application of FHE was already pointed out in [24]. However, an advantage of the
HSS-based reductions is that they allow F̂ to have a single bit of output. Another advantage
is the potential of diversifying assumptions. We discuss applications of the reductions implied
by HSS to fine-grained average-case hardness and verifiable computation. In particular,
the HSS-based approach yields checking procedures for polynomial-time computations that
achieve better soundness vs. succinctness tradeoffs than any other approach we are aware of.

2 General Definitional Framework for HSS

In this section we give a general definition of homomorphic secret sharing (HSS) that can be
instantiated to capture different notions from the literature. We consider multi-input HSS
schemes that support a compact evaluation of a function F on shares of inputs x1, . . . , xn
that originate from different clients. More concretely, each client i randomly splits its input
xi between m servers using the algorithm Share, so that xi is hidden from any t colluding
servers. We assume t = m− 1 by default. Each server j applies a local evaluation algorithm
Eval to its share of the n inputs, and obtains an output share yj . The output F (x1, . . . , xn)
is reconstructed by applying a decoding algorithm Dec to the output shares (y1, . . . , ym).

To make HSS useful, we require that Dec be in some sense “simpler” than computing
F . The most natural simplicity requirement, referred to as compactness, is that the output
length of Eval, and hence the complexity of Dec, depend only on the output length of F and
not on the input length of F . A more useful notion of simplicity is the stronger requirement
of additive decoding, where the decoder computes the exclusive-or of the output shares or,
more generally, adds them up in some Abelian group G. We also consider weaker notions of
simplicity that are are needed to capture HSS constructions from the literature.

Finally, for some of the main applications of HSS it is useful to let F and Eval take an
additional input x0 that is known to all servers. This is necessary for a meaningful notion of
single-input HSS (with n = 1). Typically, the input x0 will be a description of a function f
applied to the input of a single client, e.g., a description of a circuit, branching program, or
low-degree polynomial. The case of single-input HSS is considerably different from the case
of multi-input HSS with no server input. In particular, the negative results presented in this
work do not apply to single-input HSS.

We now give our formal definition of general HSS. We refer the reader to Example 5
for an example of using this definition to describe an HSS scheme for multiplying two field
elements using Shamir’s secret sharing scheme. Here and in the following, we use the notation
Pr[A1; . . . ;Am : E] to denote the probability that event E occurs following an experiment
defined by executing the sequence A1, . . . , Am in order.

I Definition 1 (HSS). An n-client, m-server, t-secure homomorphic secret sharing scheme
for a function F : ({0, 1}∗)n+1 → {0, 1}∗, or (n,m, t)-HSS for short, is a triple of PPT
algorithms (Share,Eval,Dec) with the following syntax:

Share(1λ, i, x): On input 1λ (security parameter), i ∈ [n] (client index), and x ∈ {0, 1}∗
(client input), the sharing algorithm Share outputs m input shares, (x1, . . . , xm). By
default, we require Share to run in (probabilistic) polynomial time in its input length;
however, we also consider a relaxed notion of efficiency where Share is given the total
length ` of all n+ 1 inputs (including x0) and may run in time poly(λ, `).
Eval

(
j, x0, (xj1, . . . , xjn)

)
: On input j ∈ [m] (server index), x0 ∈ {0, 1}∗ (common server

input), and xj1, . . . , x
j
n (jth share of each client input), the evaluation algorithm Eval

E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro 21:5

outputs yj ∈ {0, 1}∗, corresponding to server j’s share of F (x0;x1, . . . , xn).
Dec(y1, . . . , ym): On input (y1, . . . , ym) (list of output shares), the decoding algorithm
Dec computes a final output y ∈ {0, 1}∗.

The algorithms (Share,Eval,Dec) should satisfy the following requirements:
Correctness: For any n+ 1 inputs x0, . . . , xn ∈ {0, 1}∗,

Pr
[
∀i ∈ [n] (x1

i , . . . , x
m
i)← Share(1λ, i, xi)

∀j ∈ [m] yj ← Eval
(
j, x0, (xj1, . . . , xjn)

) : Dec(y1, . . . , ym) = F (x0;x1, . . . , xn)
]

= 1.

Alternatively, in a statistically correct HSS the above probability is at least 1− µ(λ) for
some negligible µ and in a δ-correct HSS (or δ-HSS for short) it is at least 1− δ − µ(λ).
In the case of δ-HSS the error parameter δ may be given as an additional input to Eval,
and the running time of Eval is allowed to grow polynomially with 1/δ.
Security: Consider the following semantic security challenge experiment for corrupted
set of servers T ⊂ [m]:
1: The adversary gives challenge index and inputs (i, x, x′)← A(1λ), with |x| = |x′|.
2: The challenger samples b← {0, 1} and (x1, . . . , xm)← Share(1λ, i, x̃), where x̃ = x if
b = 0 and x̃ = x′ if b = 1.

3: The adversary outputs a guess b′ ← A((xj)j∈T), given the shares for corrupted T .
Denote by Adv(1λ,A, T) := Pr[b = b′]− 1/2 the advantage of A in guessing b in the above
experiment. For circuit size bound S = S(λ) and advantage bound α = α(λ), we say that
an (n,m, t)-HSS scheme Π = (Share,Eval,Dec) is (S, α)-secure if for all T ⊂ [m] of size
|T | ≤ t, and all non-uniform adversaries A of size S(λ), we have Adv(1λ,A, T) ≤ α(λ).
We say that Π is:

computationally secure if it is (S, 1/S)-secure for all polynomials S;
statistically α-secure if it is (S, α)-secure for all S;
statistically secure if it statistically α-secure for some negligible α(λ);
perfectly secure if it is statistically 0-secure.

I Remark 2 (Unbounded HSS). Definition 1 treats the number of inputs n as being fixed.
We can naturally consider an unbounded multi-input variant of HSS where F is defined over
arbitrary sequences of inputs xi, and the correctness requirement is extended accordingly.
We denote this flavor of multi-input HSS by (∗,m, t)-HSS.

I Remark 3 (Robust decoding). Definition 1 allows Dec to use all output shares for decoding
the output. When t < m−1, one can consider a stronger variant of HSS where Dec can recover
the output from any t+ 1 output shares. Such a robust notion of threshold homomorphic
encryption was recently considered in [44]. In this work we do not consider robust decoding.

2.1 Notions of Simple Decoding
As discussed above, to make HSS useful we impose two types of simplicity requirements on
Dec. The most stringent requirement is that Dec adds its input over some Abelian group
G. We refer to such an HSS scheme as being additive. Note that any HSS scheme where
Dec computes a fixed linear combination of the output shares (over some finite field) can be
converted into an additive scheme by letting Eval multiply its outputs by the coefficients of
the linear combination. See Example 5 for a relevant concrete example.

A more liberal requirement is compactness, which says that the length of the output
shares depends only on the output length and the security parameter, independently of the
input length. Finally, we also consider a further relaxation that we call weak compactness,

ITCS 2018

21:6 Foundations of Homomorphic Secret Sharing

requiring that the length of the output shares be sublinear in the input length when the
input length is sufficiently bigger than the security parameter and the output length. This
weaker notion is needed to capture some HSS constructions from the literature, and is used
for making our negative results stronger. We formalize these notions below.

I Definition 4 (Additive and compact HSS). We say that an (n,m, t)-HSS scheme Π =
(Share,Eval, Dec) for F is:

Additive if Dec outputs the exclusive-or of the m output shares, or G-additive if Dec
computes addition in an Abelian group G;
Compact if there is a polynomial p such that for every λ, `out, and inputs x0, x1, . . . , xn ∈
{0, 1}∗ such that |F (x0;x1, . . . , xn)| = `out, the length of each output share obtained by
applying Share with security parameter λ and then Eval is at most p(λ) · `out (or O(`out)
for perfect or statistically α-secure HSS with a constant α);
Weakly compact if there is a polynomial p and sublinear function g(`) = o(`), such
that for every λ, `in, `out, and inputs x0, x1, . . . , xn ∈ {0, 1}∗ of total length `in with
|F (x0;x1, . . . , xn)| = `out, the length of each output share obtained by applying Share
with security parameter λ and then Eval is at most g(`in)+p(λ) ·`out (or g(`in)+O(`out) for
perfect or statistically α-secure HSS with a constant α). More generally, we can specify the
precise level of compactness by referring to an HSS scheme as being g(λ, `in, `out)-compact.

2.2 Default Conventions
It is convenient to make the following default choices of parameters and other conventions.

We assume t = m− 1 by default and write (n,m)-HSS for (n,m,m− 1)-HSS.
We assume computational security by default, and refer to the statistical and perfect
variants collectively as “information-theoretic HSS.”
In the case of perfectly secure or statistically α-secure HSS, λ is omitted.
For n ≥ 2 clients, we assume by default that the servers have no input and write
F (x1, . . . , xn), omitting the server input x0. Note that (n,m, t)-HSS with server input
can be reduced to (n+ 1,m, t)-HSS with no server input by letting the server input be
shared by one of the clients.
We consider additive HSS by default. This stronger notion is useful for several application
of HSS, and most HSS constructions realize it.
We will sometimes be interested in additive HSS for a constant-size (finite) function F ,
such as the AND of two bits; this can be cast into Definition 1 by just considering an
extension F̂ of F that outputs 0 on all invalid inputs. Note that our two notions of
compactness are not meaningful for a constant-size F . We can similarly handle functions
F that impose restrictions on the relation between the lengths of different inputs. Since
Eval can know all inputs lengths, we can ensure that Dec outputs 0 in case of mismatch.
As noted above, the common server input x0 is often interpreted as a “program” P from a
class of programs P (e.g., circuits or branching programs), and F is the universal function
defined by F (P ;x1, . . . , xn) = P (x1, . . . , xn). We refer to this as HSS for the class P.

2.3 HSS with Setup
When considering multi-input HSS schemes, known constructions require different forms of
setup to coordinate between clients. This setup is generated by a PPT algorithm Setup and
is reusable, in the sense that the same setup can be used to share an arbitrary number of
inputs. We consider the following types of setup:

No setup: This is the default notion of HSS defined above.

E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro 21:7

Common random string (CRS) setup: An algorithm Setup(1λ) is used to generate a
uniformly random string σ which is given as input to Share, Eval, and Dec.
Public-key setup: We consider here a strong form of public-key setup in which Setup(1λ)
outputs a public key pk and m secret evaluation keys (ek1, . . . , ekm), where each key is
given to a different server. The algorithm Share is given pk as an additional input, and
Eval

(
j, . . .

)
is given ekj as an additional input. The security game is changed by giving

both the adversary and the challenger pk and giving to the adversary (ekj)j∈T in addition
to (xj)j∈T . Following the terminology from [16], we refer to HSS with this type of setup
as public-key (∗,m, t)-HSS.

3 Constructions

In this section we present positive results on HSS that are either implicit in the literature or
can be easily obtained from known results. We cast these results in terms of the general HSS
framework from Section 2.

We start with a detailed example for casting Shamir’s secret sharing scheme [54] over a
finite field F as a perfectly secure, F-additive (2,m, t)-HSS scheme for the function F that
multiplies two field elements. Such a scheme exists if and only if m > 2t.

I Example 5 (Additive (2,m, t)-HSS for field multiplication). Let m, t be parameters such that
m > 2t, let F be a finite field with |F| > m, let θ1, . . . , θm be distinct nonzero field elements,
and let λ1, . . . , λn be field elements (“Lagrange coefficients”) such that for any univariate
polynomial p over F of degree at most 2t we have p(0) =

∑m
j=1 λjp(θj). Let F : F× F→ F

be the (constant-size) function defined by F (x1, x2) = x1 · x2. A perfectly secure, additive
(2,m, t)-HSS scheme for F is defined by the following algorithms. (Since F is a constant-size
function we are not concerned with efficiency; we also omit x0 since there is no server input
and omit the security parameter λ since security is perfect.)
1. Share(i, x): pick r1, . . . , rt uniformly at random from F and let p(Z) = x+ r1Z + r2Z

2 +
. . .+rtZ

t be a random polynomial of degree at most t with x as its free coefficient. Output
(p(θ1), . . . , p(θm)). Note that Share does not depend on i (the inputs are shared the same).

2. Eval
(
j, (xj1, x

j
2)
)
: Output λj · xj1x

j
2.

3. Dec(y1, . . . , ym): Output y1 + . . .+ ym.

We now survey some other instances of HSS schemes from the literature.

Additive m-out-of-m secret sharing over an Abelian group G is a G-additive, perfectly
secure (∗,m)-HSS for the function F (x1, . . . , xn) = x1 + . . .+ xn where xi ∈ G. This is
the first instance of HSS considered in the literature [10].
Generalizing Example 5, multiplicative secret sharing [25] over a finite field F is an
F-additive, perfectly secure (2,m, t)-HSS for the function F that multiplies two field
elements. Such schemes exist if and only if m > 2t. Multiplicative secret sharing schemes
such as Shamir’s scheme serve as the basis for secure multiparty computation protocols in
the information-theoretic setting [9, 20]. More generally, information-theoretic F-additive
(d,m, t)-HSS for multiplying d elements of F exists if and only if m > dt [7]. Multiplicative
schemes with a smaller threshold t that work over a constant-size field (independent of
m) can be based on algebraic geometric codes [21]. Efficient multiplicative schemes that
support a pointwise multiplication of two vectors are considered in [31, 19].
A 1-round k-server private information retrieval (PIR) scheme [22, 23] can be seen as a
weakly compact (1, k, 1)-HSS for the selection function F (D; γ) = Dγ . For the 2-server
case (k = 2), information theoretic PIR schemes provably cannot achieve our stronger

ITCS 2018

21:8 Foundations of Homomorphic Secret Sharing

notion of compactness unless the share size is linear in |D| [39, 47]. Moreover, current
schemes only realize our relaxed notion of efficiency for Share, since the share size is
super-polynomial in |γ| (see [28] for the best known construction in terms of total size of
input shares and output shares). In the computational case, there are in fact additive
2-server schemes based on the existence of one-way functions, where Share satisfies the
default strict notion of efficiency (see [15] for the best known construction).
Non-trivial instances of compact, perfectly-secure (1,3,1)-HSS for certain classes of depth-
2 boolean circuits [8] implicitly serve as the basis for the best known constructions of
information-theoretic 3-server PIR schemes and 3-query locally decodable codes [58, 29].
The main result of [14] is a construction of (single-input, computationally secure, additive)
(1, 2)-δ-HSS for branching programs under the DDH assumption. The same paper also
obtains a public-key (∗, 2)-δ-HSS variant of this result. Similar results assuming the
circular security of the Paillier encryption were recently obtained in [30].
The notion of function secret sharing (FSS) from [13] is dual to the notion of HSS for
a program class P. It can be cast as an additive (1,m)-HSS for the universal function
F (x;P) = P (x), where P ∈ P is a program given as input to the client and x is the
common server input. The special case of distributed point function (DPF) [37] is FSS
for the class of point functions (namely, functions that have nonzero output for at most
one input). DPF can be seen as additive (1,m)-HSS for the function F (x; (α, β)) that
outputs β if x = α and outputs 0 otherwise. It is known that one-way functions are
necessary and sufficient for DPF [37].
We observe that additive1 (∗,m)-HSS for circuits with statistical correctness can be
obtained from the Learning With Errors (LWE) assumption, by a simple variation of the
FSS construction from spooky encryption of [27] (more specifically, their techniques for
obtaining 2-round MPC). The share size in this construction must grow with the circuit
depth, hence Share only satisfies the relaxed notion of efficiency; this dependence can be
eliminated by relying on a stronger variant of LWE that involves circular security. We
provide details of the underlying tools and construction in the full version.

We note that a key feature of HSS is that Dec does not require a secret key. This
rules out nontrivial instances of single-server HSS. In particular, single-server PIR [49] and
fully homomorphic encryption [35] cannot be cast as instances of our general definitional
framework of HSS.

4 Limitations

In this section, we discuss some inherent limitations in HSS. First, in Section 4.1, we show
lower bounds on the length of output shares in statistically-secure HSS using communication
complexity lower bounds. In Section 4.2, we show that additive (2, 2)-HSS for the AND of
two bits implies non-interactive key-exchange (NIKE). Given what is known about NIKE (in
particular it only follows from non-generic assumptions, and it is not known to be implied
directly by public-key encryption or OT), this gives a strong justification for the lack of
instantiations from generic assumptions.

1 If one settles for the weaker notion of compactness, then single-input HSS can be trivially obtained
from any FHE scheme by letting Share include an encryption of the input in one of the shares and split
the decryption key into m shares.

E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro 21:9

4.1 Lower Bounds for Statistically-Secure Multi-Input HSS
We show lower bounds on the length of output shares in statistically-secure multi-input HSS
using lower bounds from communication complexity. The key step is to derive a public-coin
two-party protocol to compute a function F from an HSS scheme for the function F , and
such that the communication cost of the resulting protocol only depends on the length of the
output shares.

Communication complexity refresher. We consider public-coin interactive protocols Π
between two parties, Alice and Bob, who start the execution with respective inputs x ∈ X
and y ∈ Y , and common random tape R. (We can assume wlog that the protocol is otherwise
deterministic, and all random coins come from R.) At any point in the execution, one of
the parties can return an output value, denoted Π(R, x, y). The cost of Π is the maximum
number of bits exchanged by Alice and Bob, taken as the worst case over all possible inputs
x, y, and random tapes R. We also say that such a protocol is one-way (or one round) if
only one message is sent, and this goes from Alice to Bob.

We are interested in the inherent cost of a protocol Π that evaluates a function F : X×Y →
Z. In particular, the (randomized) communication complexity of F with error ε, denoted
Rε(F), is the minimum cost of a public-coin protocol Π such that Pr[Π(R, x, y) 6= F (x, y)] ≤ ε
for all x, y, where the probability is over the public random string R. If we restrict ourselves
to one-way protocols, then we define analogously the one-way communication complexity of
F with error ε, denoted RA→Bε (F). It is clear that RA→Bε (F) ≥ Rε(F).

The following are classical examples of lower bounds on the (one-way) randomized
communication complexity.

I Theorem 6 (e.g., [50]). Let IP` : {0, 1}` × {0, 1}` → {0, 1} be such that IP`(x, y) =∑`
i=1 xiyi (mod 2). Then, R1/3(IP`) = Ω(`).

I Theorem 7 ([45]). Let DISJ` : {0, 1}` × {0, 1}` → {0, 1} be such that DISJ`(x, y) =
¬
∨`
i=1(xi ∧ yi). Then, R1/3(DISJ`) = Ω(`).

I Theorem 8 ([48]). Let INDEX` : {0, 1}`×[`]→ {0, 1} be such that INDEX`(x1x2 . . . x`, i) =
xi. Then, RA→B1/3 (INDEX`) = Ω(`).

Lower bounds on the length of output shares. We start with a lower bound on
the length of the output shares in (2, 2)-HSS. (Recall that (n,m)-HSS is a shorthand for
(n,m, t = m− 1)-HSS.) Below, we extend the technique to more general settings.

Recall that a (2, 2)-HSS scheme is defined for a function F : ({0, 1}∗)2 → {0, 1}∗. (In
this section, we consider the case where the servers have no input x0, but the results
extend straightforwardly to handle server inputs.) For any two integers `1,in, `2,in, it is
convenient to define the restriction F `1,in,`2,in : {0, 1}`1,in × {0, 1}`2,in → {0, 1}∗ such that
F `1,in,`2,in(x1, x2) = F (x1, x2). Also, for a suitable function g, we say that a (2, 2)-HSS scheme
is g-compact if, for security parameter λ, when the two inputs have lengths `1,in and `2,in,
respectively, the output shares have length each at most g(λ, `1,in, `2,in).
I Proposition 9 (Compactness lower bound). Let (Share,Eval,Dec) be a (2, 2)-HSS scheme for
a function F : ({0, 1}∗)2 → {0, 1}∗, which is statistically α-secure, g-compact, and δ-correct.
Then, for all λ, and `1,in, `2,in > 0, g(λ, `1,in, `2,in) ≥ RA→Bδ(λ)+4α(λ)(F `1,in,`2,in) .

We defer a proof to the full version, and only give a sketch here. It is easy to give a
protocol for Alice and Bob to evaluate F `1,in,`2,in on their respective inputs x1, x2: Bob runs
(x1

2, x
2
2)← Share(1λ, 2, x2), and sends x1

2 to Alice. Alice then runs (x1
1, x

2
1)← Share(1λ, 1, x1)

ITCS 2018

21:10 Foundations of Homomorphic Secret Sharing

and y1 ← Eval(1λ, 1, (x1
1, x

1
2)), and sends (x2

1, y1) to Bob. Finally, Bob computes y2 ←
Eval(1λ, 2, (x2

1, x
2
2)), as well as the output y ← Dec(1λ, y1, y2). However, we would like to

make the protocol complexity independent of the input shares – this can be achieved by
exploiting HSS security, as well as reverse sampling. Namely, we generate the shares x2

1 and
x1

2 by running Share(1λ, 1, 0`1,in) and Share(1λ, 2, 0`2,in), respectively, and make these shares
part of the common randomness. Then, when Alice and Bob need the shares x1

1 and x2
2,

respectively, they each exploit knowlege of their respective inputs x1 and x2 to locally sample
a share consistent with the input and the other share being equal the pre-sampled share in
the common random tape. HSS security implies that the distribution of the resulting shares
is close to the correct one, and the new protocol only has Alice send y1 to Bob.

As an application, consider any statistically secure (2, 2)-HSS scheme for inner products,
i.e., for the function IP : ({0, 1}∗)2 → {0, 1} such that IP(x1, x2) = IP`(x1, x2) whenever
|x1| = |x2| = `. Then, the following corollary implies that such scheme cannot be weakly
compact. Similar lower bounds can be obtained for disjointness, and for the index function.

I Corollary 10. There exists no weakly compact, statistically 1/24-secure 1/6-correct (2, 2)-
HSS scheme for IP.

Proof. Apply Proposition 9 with `1,in = `2,in = `, δ = 1/6, and α = 1
24 . Regardless of the

security parameter, the length of the output shares must be at least RA→B1/3 (IP`) = Ω(`1,in+`2,in)
by Theorem 6, and this violates weak compactness. J

Extensions. Proposition 9 can be extended to obtain lower bounds for general (n,m, t)-HSS
where m,n ≥ 2 and t ≥ m/2. We briefly summarize the main ideas here.

(n, 2)-HSS. For any n-ary function F : ({0, 1}∗)n → {0, 1}∗, we can define a two-party
function as follows. Fix k ∈ {1, . . . , n − 1}, as well as Alice’s indices I1 = (a1, . . . , ak),
and Bob’s indices I2 = (b1, . . . , bn−k), where {a1, . . . , ak, b1, . . . , bn−k} = [n]. Then,
F ′((xa1 , . . . , xak

), (xb1 , . . . , xbn−k
)) = F (x1, . . . , xn) . The proof of Proposition 9 can be

adapted to lower bound the length of the output shares in an (n, 2)-HSS scheme for F
via RA→B(F ′), noting one would then choose the sets I1, I2 to maximize communication
complexity of the resulting F ′.
(n,m, t)-HSS for t ≥ m/2. A lower bound for (n, 2)-HSS extends straightforwardly to
a lower bound for (n,m, t)-HSS where t ≥ m/2, since the latter type of HSS implies
the former type, by simply having one of the two servers in the (n, 2)-HSS simulate
m/2 ≤ m1 ≤ t servers from the (n,m, t)-HSS scheme, and the other simulate the
remaining m2 = m−m1 servers.
Simultaneous messages. In the case of (n,m)-HSS, where n ≥ m, we can alternatively
obtain useful lower bounds via communication complexity in the simultaneous message
model [48, 5], where m players send a message to a referee that decides the output.
Roughly, a variant of the proof of Proposition 9 would build a protocol where the
messages sent are exactly the m servers’ output shares.

4.2 Additive Multi-Input HSS Implies Non-Interactive Key Exchange
It is known that roughly any non-trivial additive HSS (even for a single input) implies the
existence of one-way functions [37, 13]; in turn, one-way functions have been shown to imply
additive (1, 2)- and (1,m)-HSS for certain classes of simple functions [23, 37, 13, 15]. However,
to date, all constructions of additive HSS supporting multiple inputs rely on a select list of
heavily structured assumptions: DDH, LWE, Paillier, and obfuscation [14, 27, 30]. A clear

E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro 21:11

challenge is whether one can instantiate such an object from weaker general assumptions,
such as one-way functions, public-key encryption, or oblivious transfer.

We show that this is unlikely to occur. We demonstrate the power of additive multi-input
HSS by proving that even the minimal version of (2, 2)-additive-HSS for the AND of two
input bits already implies the existence of non-interactive key exchange (NIKE) [26], a
well-studied cryptographic notion whose known constructions similarly are limited to select
structured assumptions. NIKE is black-box separated from one-way functions and highly
unlikely to be implied by generic public-key encryption or oblivious transfer.

On the other hand, we observe that (2, 2)-additive-HSS for AND is unlikely to be implied
by NIKE, as the primitive additionally implies the existence of 2-message oblivious transfer
(OT) [14], unknown to follow from NIKE alone.

We first recall the definition – for a two-party protocol Π between Alice and Bob, we denote
by outA(Π) and outB(Π) their respective outputs, and Transc(Π) the resulting transcript.

I Definition 11 (NIKE). A 2-party protocol Π with single-bit output is a secure non-
interactive key-exchange (NIKE) protocol if the following conditions hold:

Non-Interactive: The protocol Π consists of exchanging a single (simultaneous) message.
Correctness: The parties agree on a consistent output bit: Pr[outA(Π) = outB(Π)] = 1,
over randomness of Π.
Security: There exists a negligible function ν such that for any non-uniform polynomial-
time E, for every λ ∈ N, it holds Pr[b← E(1λ,Transc(Π)) : b = outA(Π)] ≤ 1/2 + ν(λ),
where probability is taken over the randomness of Π and E.

I Proposition 12. The existence of additive (2, 2)-HSS for the AND function F : {0, 1}2 →
{0, 1} defined by F (x1, x2) = x1x2 implies the existence of non-interactive key exchange.

Proof. Consider the candidate NIKE protocol given in Figure 1.

Communication Round:
Alice samples shares of 0: i.e., (xA, xB)← Share(1λ, A, 0).
Send xB to Bob.
Bob samples a random bit b← {0, 1} and shares b: (yA, yB)← Share(1λ, B, b).
Send yA to Alice.

Output round:
Alice outputs zA = Eval(A, (xA, yA)) ∈ {0, 1}.
Bob outputs zB = Eval(B, (xB , yB)) ∈ {0, 1}.

Figure 1 NIKE protocol from any additive (2, 2)-HSS for AND.

Non-interactive: By construction, the protocol consists of a single communication round.
Correctness: Follows by the additive decoding correctness of the (2, 2)-HSS for AND.

Namely, with probability 1, it holds zA + zB = 0 ∈ {0, 1}; that is, zA = zB .
Security: Suppose there exists a polynomial-time eavesdropper E who, given the transcript

of the protocol xB , yA succeeds in predicting Bob’s output bit zB = Eval(B(xB , yB)) with
advantage α: i.e.,

Pr

b← 0, 1;

(xA, xB)← Share(1λ, A, 0);
(yA, yB)← Share(1λ, B, b);

b′ ← E(1λ, (xB , yA))

: b′ = Eval(B, (xB , yB))

 ≥ 1/2 + α(λ).

ITCS 2018

21:12 Foundations of Homomorphic Secret Sharing

We prove in such case α must be negligible, via the following two claims.

I Claim 13. E must succeed with advantage α if Alice shares 1 instead of 0: Explicitly, there
exists a negligible function ν1 for which

Pr

b← 0, 1;

(xA, xB)← Share(1λ, A, 1);
(yA, yB)← Share(1λ, B, b);

b′ ← E(1λ, (xB , yA))

: b′ = Eval(B, (xB , yB))

 ≥ 1/2 + α(λ)− ν1(λ).

Proof of Claim 13. Follows by the security of Alice’s HSS execution. Namely, consider a
distinguishing adversary D for the (2, 2)-AND-HSS, who performs the following:
1: Sample a random bit b← {0, 1}, and HSS share b as (yA, yB)← Share(1λ, B, b).
2: Receive a challenge secret share xB, generated either as (xA, xB) ← Share(1λ, A, 0) or

(xA, xB)← Share(1λ, A, 1).
3: Execute E on “transcript” xB and yA: Let b′ ← E(1λ, (xB , yA)).
4: Output 0 if and only if b′ = b.

By construction, the distinguishing advantage of D is exactly the difference in the prediction
advantage of E from the real protocol and the protocol in which Alice shares 1 instead of 0.
Thus, this difference must be bounded by some negligible function ν1. J

I Claim 14. The prediction advantage α(λ) of E must be negligible in λ.

Proof of Claim 14. Follows by the security of Bob’s HSS execution. Namely, consider a
distinguishing adversary D for the (2, 2)-AND-HSS, who performs the following:
1: Generate HSS shares of 1, as (xA, xB)← Share(1λ, A, 1).
2: Receive challenge secret share yA, generated as (yA, yB)← Share(1λ, B, b) for random

challenge bit b← {0, 1}.
3: Execute E on “transcript” xB and yA: Let b′ ← E(1λ, (xB , yA)).
4: Output b′ as a guess for b.

By construction, the distinguishing advantage of D is precisely α(λ)− ν1(λ). Thus (since ν1
is negligible), it must be that α is negligible, as desired. J

This concludes the proof of Proposition ??. J

As a direct corollary of this result, any form of HSS which implies additive (2, 2)-HSS for
AND automatically implies NIKE as well. This includes HSS for any functionality F with
an embedded AND in its truth table.

As an example, consider a form of split distributed point function [37], where the nonzero
input value α ∈ {0, 1}` of the secret point function fα is held split as additive shares across
two clients. This corresponds to additive (2, 2)-HSS for the function F (x;α1, α2) = [x ==
(α1 ⊕ α2)] (i.e., evaluates to 1 if and only if x = α1 ⊕ α2). Such a notion would have
applications for secure computation protocols involving large public databases, where the
index α of the desired data item is not known to either party, but rather determined as
the result of an intermediate computation. Unfortunately, we show that such a tool (even
for inputs of length 2 bits) implies NIKE, and thus is unlikely to exist from lightweight
primitives.

I Corollary 15. The existence of “split” DPF, i.e. additive (2, 2)-HSS for the function
F (x;α1, α2) = [x == (α1 ⊕ α2)], implies the existence of NIKE.

E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro 21:13

Proof. Consider the special case of 2-bit values α0, α1 ∈ {0, 1}2. We show evaluation of F
enables evaluation of AND of clients’ input bits, and thus additive (2, 2)-HSS for AND. Indeed,
for any b1, b2 ∈ {0, 1}, observe that F ((0, 0); (1, b1), (b2, 1)) = [(0, 0) == ((1, b1)⊕ (b2, 1))] =
[(0, 0) == (b1 ⊕ 1, b2 ⊕ 1)] = b1 ∧ b2. J

5 Applications

In this section we present two types of applications of HSS. In Section 5.1 we present an
application to 2-round secure multiparty computation, and in Section 5.2 we present an
application to worst-case to average-case reductions.

5.1 From (3, 2)-HSS to 2-Round MPC

Let us define the following function over Z2: 3Mult(x1, x2, x3) = x1x2x3. In this section,
we show that (3, 2)-HSS for 3Mult implies 2-round MPC for arbitrary functions in the client-
server model. Recall that (n,m)-HSS refers to HSS with n clients, m servers, tolerating up
to m − 1 corrupted servers. An n-client m-server MPC protocol for computing an n-ary
functionality F , is a standard MPC protocol with n + m + 1 parties, including n (input)
clients each holding an input xi, m servers, and a single output client who receives the output
F (x1, · · · , xn). A 2-round n-client m-server MPC protocol has the special communication
pattern that in the first round each client sends a message (a.k.a. input share) to each server,
and in the second round each server sends a message (a.k.a. output share) to the output
client, who then recovers the output. Such a protocol is t-secure if secure against any passive,
semi-honest, adversary corrupting any set of parties including at most t servers, according to
the standard definition of semi-honest security of MPC. Below we consider the default case
of t = m− 1, and denote such MPC as (n,m)-MPC. Due to the lack of space, we refer the
reader to [18, 38] for standard definitions of MPC protocols, and to the full version for more
details on client-server MPC.

I Theorem 16. Assume the existence of PRGs in NC1. For any n,m, and any polynomial-
time computable function F : ({0, 1}∗)n → {0, 1}, there is a construction of an (n,m)-MPC
protocol that securely computes F , from an additive (3, 2)-HSS for 3Mult.

Combining this with the additive δ-HSS construction of [14] from DDH would result in
(n,m)-MPC from DDH with (at best) only 1/poly(λ) correctness. Fortunately, we can do
better. Indeed, as an intermediate step in the proof of Theorem 16 (Lemmas 21 and 22
below), we prove that (3, 3)-MPC for 3Mult also suffices to imply (n,m)-MPC for general
functions. A construction of (3, 3)-MPC for general functions (in the PKI model) was shown
to follow from DDH in [16] (in fact, they obtain (n, c)-MPC for any constant number of
servers c). Combining this with Lemmas 21 and 22, and the fact that PRGs in NC1 also
follow from DDH, we obtain the following result. This improves directly over the 2-round
MPC result of [16], by supporting an arbitrary polynomial number of servers instead of
constant. (See Introduction for comparison with other recent 2-round MPC results.)

I Corollary 17 (2-round MPC from DDH). For any n,m, and any polynomial-time computable
function F : ({0, 1}∗)n → {0, 1}, there is a construction of an (n,m)-MPC protocol that
securely computes F in the PKI model, assuming DDH.

We prove Theorem 16 by combining the following steps; see full version for details.

ITCS 2018

21:14 Foundations of Homomorphic Secret Sharing

Step 1: (3, 2)-HSS for 3Mult-Plus. Starting from an additive (3, 2)-HSS scheme Π3Mult for
the function 3Mult, thanks to the property of additive reconstruction, we can directly modify
it to obtain an additive (3, 2)-HSS for the function 3Mult-Plus (again over Z2) defined as

3Mult-Plus((x1, z1), (x2, z2), (x3, z3)) = x1x2x3 + z1 + z2 + z3 .

I Lemma 18. There is a construction of additive (3, 2)-HSS for the function 3Mult-Plus
from any additive (3, 2)-HSS for the function 3Mult.

Step 2: (3, 3)-MPC for 3Mult-Plus. From an additive (3, 2)-HSS scheme for 3Mult-Plus,
we can use the server-emulation technique from [16] to construct a 3-client 3-server MPC
protocol for 3Mult-Plus. In fact, the technique in [16] is way more general, it shows that from
any given n-client m-server HSS for 3Mult-Plus, one can construct a n-client m2-server MPC
protocol for any n-ary function F , assuming the existence of low-depth PRGs.

I Lemma 19 (Server-Emulation in [16]). Assume existence of PRGs in NC1. For any n,m and
polynomial-time function F : ({0, 1}∗)n → {0, 1}, there is a construction of an (n,m2)-MPC
protocol Π that securely computes F , from an additive (n,m)-HSS for 3Mult-Plus.

Their general lemma implies the following corollary we need, using the fact that one can
reduce the number of servers by having a single server simulating multiple ones.

I Corollary 20. Assume the existence of PRGs in NC1. There is a construction of a (3, 3)-
MPC protocol that securely computes 3Mult-Plus, from an additive (3, 2)-HSS for 3Mult-Plus.

Step 3: (3,m)-MPC for 3Mult-Plus — Increase the number of servers. Next, from
a (3, 3)-MPC protocol for computing 3Mult-Plus, we show how to construct (3,m)-MPC
protocol for computing the same function 3Mult-Plus, with an arbitrary number m of servers.

I Lemma 21. For any m, there is a construction of (3,m)-MPC protocol that securely
computes 3Mult-Plus, from a (3, 3)-MPC protocol that securely computes 3Mult-Plus.

Proof Overview. Let Π3 be a (3, 3)-MPC protocol for 3Mult-Plus; consider m servers, and
three clients C1, C2, and C3. Recall that each client Cd has input (xd, zd). If we naively let
the three clients execute Π3 with some subset of 3 servers, in the case all three servers are
corrupted, the security of Π3 no longer holds, and the inputs of all clients are potentially
revealed. Thus, the challenge is ensuring that when all but one server is corrupted, the
inputs of honest clients remain hidden. To achieve this, each client secret-shares its input bit
xd =

∑
j s
d
j ; as long as server Sj is uncorrupted, the j’th share sdj for each honest client’s

input xd remains hidden, and hence so are the inputs xd. (As we will see shortly, the
additive part of the inputs zd can be hidden easily.) Towards this, note that multiplying
x1, x2, x3 boils down to computing the sum of all possible degree 3 monomials over the shares
x1x2x3 =

∑
ijk s

1
i s

2
js

3
k. Our idea is using the protocol Π3 to compute the each monomial

s1
i s

2
js

3
k hidden with some random blinding bits, and in parallel, use a protocol ΠAdd for

addition to cancel out these random blinding bits, as well as add z1, z2, z3. More specifically,
for every i, j, k, C1, C2, C3 together with three appropriate servers described below run
Π3 to enable the output client to obtain Mijk = s1

i s
2
js

3
k + t1ijk + t2ijk + t3ijk, where tdijk is a

random blinding bit sampled by client Cd;
in parallel, C1, C2, C3 together with all m servers run a (3,m)-MPC protocol ΠAdd to
enable the output client to obtain the sum T = T 1 +T 2 +T 3, where T d = zd−

∑
i,j,k t

d
ijk;

finally, the output client adds all Mijk with T , which gives the correct output, i.e.,
x1x2x3 + z1 + z2 + z3.

E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro 21:15

The only question left is what are the three servers involved for computing Mijk; they
naturally should be servers Si, Sj , Sk, since for an honest client, say C1, if server Si is
uncorrupted, the share s1

i remains hidden in all computations of Mijk involving this share.
This allows us to argue security. One technicality is that some monomials may have form
s1
i s

2
i s

3
j or s1

i s
2
i s

3
i and only correspond to two servers Si, Sj or one Si. In the former case, we

will use the (3, 2)-MPC protocol Π2, and in the latter case, we directly implement a trivial
protocol with one server. J

Step 4: (n,m)-MPC for F — Increase the number of clients and handle general function.
Finally, we show how to construct MPC protocols for computing any n-ary function F , from
MPC protocols for computing 3Mult-Plus, using the same number m of servers.

I Lemma 22. Assume the existence of PRGs in NC1. For any n,m, and any polynomial-time
computable function F : ({0, 1}∗)n → {0, 1}, there is a construction of (n,m)-MPC protocol
that securely computes F , from a (3,m)-MPC protocol that securely computes 3Mult-Plus.

Proof Overview. Staring from a (3,m)-MPC protocol Π3Mult-Plus for 3Mult-Plus, our goal is
constructing a (n,m)-MPC protocol ΠF for an arbitrary F with an arbitrary number of
clients. To do so, we reduce the task of computing F to the task of computing a degree-3
randomized encoding REF (x1, · · · , xn; r) of F . Here, having a degree of 3 means that REF
can be represented as a degree 3 polynomial in its input and random bits. Such a randomized
encoding scheme is constructed in [43, 1], assuming the existence of a low-depth PRG. The
first question is where does the random tape r come from. Clearly, r can not be determined by
any subset of clients. Therefore, the natural choice is having r = r1+· · ·+rn contributed by all
clients. When the randomized encoding has degree 3, its computation can be expanded into a
sum of degree three monomials, that is, REF (x1, · · · , xn ; r = r1 + · · ·+rn) =

∑
a`ijk vivjvk ,

where each variable vi is either a bit in some input xl or a bit in some random tape rl.
This decomposes the computation of F into many 3-way multiplications, which can be done
securely using 3Mult-Plus. More specifically, in the protocol ΠF ,

for every monomial a`ijkvivjvk, the three clients Cli , Clj , Clk holding the variables vi, vj , vk
run Π3Mult-Plus with all m servers to enable the output client to obtainMijk = a`ijkvivjvk+
t`,1ijk + t`,2ijk + t`,3ijk, where the three t variables are random blinding bits sampled by the
three clients respectively;
in parallel, all clients and servers run a (n,m)-MPC protocol ΠAdd for addition to enable
the output client to obtain the sum of all t blinding elements;
the output client adds all Mijk terms, subtracts the sum of blinding elements to obtain
the randomized encoding of F , and decodes the randomized encoding.

J

5.2 Worst-Case to Average-Case Reductions
In this section we describe a simple application of HSS to worst-case to average-case reductions.
We then discuss applications of these reductions to fine-grained average-case hardness and
verifiable computation. These applications of HSS can be seen as more efficient or more
general conditional variants of previous applications of locally random reductions that rely
on arithmetization or error-correcting codes [51, 12, 4, 55, 37, 6]. In contrast to the above
reductions, the HSS-based reductions can reduce any polynomial-time computable function
to another polynomial-time computable function with closely related complexity.

Worst-case to average-case reductions based on fully homomorphic encryption (FHE) were
previously used by Chung et al. [24] in the context of delegating computations. Compared

ITCS 2018

21:16 Foundations of Homomorphic Secret Sharing

to the FHE-based reductions, the use of HSS has the advantages of diversifying assumptions,
making only a constant number of queries to a Boolean function (as small as 2), and
minimizing the complexity of recovering the output from the answers to the queries.

To make the discussion concrete, we focus here on the application of (computationally
secure, additive2 for the universal function F (C;x) = C(x). Such HSS schemes can be based
on variants of the LWE assumption (as described in the full version). Weaker versions of the
following results that apply to branching programs can be based on the DDH assumption or
the circular security of Paillier encryption using the HSS schemes from [14, 30].

A high level overview. The idea of using HSS for worst-case to average-case reductions is
similar to previous applications of locally random reductions for this purpose, except that we
apply a “hybrid HSS” technique [14] to improve the efficiency of the reduction. Concretely,
the reduction proceeds as follows. Suppose for simplicity that the HSS sharing algorithm
Share(1λ, x) outputs a pair of shares (x1, x2) such that each share is individually pseudo-
random. Moreover, suppose that the evaluation function Eval(j, C, xj) does not depend on
j. The evaluation of a circuit C : {0, 1}n → {0, 1} on an arbitrary input x ∈ {0, 1}n can
then be reduced to the evaluation of an extended circuit Ĉ, defined by Ĉ(x̂) = Eval(C, x̂),
on the two inputs x1, x2. Indeed, C(x) = Ĉ(x1) ⊕ Ĉ(x2). Now, suppose that Ĉ∗ is a
polynomial-size circuit that agrees with Ĉ on all but an ε fraction of the inputs. Then, by
the pseudo-randomness of x1, x2, the probability that Ĉ∗ agrees with Ĉ on both inputs, and
hence the reduction outputs the correct value C(x), is at least 1− 2ε− negl(n). Finally, to
make the reduction run in near-linear time, we convert the given HSS into a hybrid HSS
scheme in which the sharing Share′ can be implemented in near-linear time. The algorithm
Share′ uses Share to share a short seed r for a pseudorandom generator G, and includes the
masked input G(r) ⊕ x as part of both shares. Given a circuit C and G(r) ⊕ x, one can
efficiently compute a circuit C ′ such that C ′(r) = C(x). The algorithm Eval′ of the hybrid
scheme applies Eval to homomorphically evaluate C ′ on r.

The following theorem formalizes and generalizes the above. Here, by a “near-linear time”
algorithm we refer to an algorithm whose running time is O(n1+ε) for an arbitrary ε > 0.
The proof of the theorem is deferred to the full version.

I Theorem 23 (Worst-case to average-case reductions from HSS). Suppose there is a (1, 2)-HSS
scheme (Share,Eval,Dec) for circuits. Then, there is a near-linear time probabilistic oracle
algorithm Q[·] : {0, 1}∗ → {0, 1}∗, polynomial-time algorithm A : {0, 1}∗ × {0, 1}∗ → {0, 1},
and a PPT sampling algorithm D(1n) with the following properties:

Q makes two queries to a Boolean oracle (where the queries are computed in near-linear
time and the answers are 1-bit long) and outputs the exclusive-or of the two answer bits.
For any x ∈ {0, 1}n and circuit C : {0, 1}n → {0, 1}, we have Pr[QA(C,·)(x) = C(x)] = 1.
For any polynomial p(·) there is a negligible µ(·) such that the following holds. For any
x ∈ {0, 1}n and circuits C : {0, 1}n → {0, 1}, A∗C : {0, 1}n → {0, 1} of size ≤ p(n) such
that Prx̂←D(1n)[A∗C(x̂) = A(C, x̂)] ≥ 1− ε, we have Pr[QA∗C(·)(x) = C(x)] ≥ 1− 2ε−µ(n).

Moreover, if Share produces pseudorandom shares then the distribution D(1n) can be
replaced by the uniform distribution.

I Remark 24 (Instantiating Theorem 23). The strong flavor of HSS required by Theorem 23
can be instantiated under a variant of the LWE assumption that further assumes circular

2 The requirement of being additive can be relaxed here to small decoding complexity.

E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro 21:17

security [35, 27]. Due to the negligible decoding error of the HSS, we get a slightly weaker
version of the conclusion where Pr[QA(C,·)(x) = C(x)] ≥ 1 − negl(n). On the other hand,
since the implementation of Eval has a small asymptotic overhead, we get the stronger
guarantee that the oracle A(C, ·) has roughly the same circuit size as C (rather than being
polynomially bigger). One can relax the assumption to a more standard variant of LWE
by using depth-dependent HSS for circuits, where the length of the input shares grows
polynomially with the depth of the circuit C being evaluated by Eval. In this case, using an
LWE-based NC1 implementation of the PRG G, the conclusion of Theorem 23 still holds
when restricted to NC-circuits C. More generally, the complexity of Q should in this case be
allowed to grow with the depth of C.

We now informally discuss two types of applications of Theorem 23, which follow previous
applications of such worst-case to average-case reductions from the literature.

Fine-grained average-case hardness. Theorem 23 implies, assuming HSS for circuits,
that the following holds for any constants c′ > c. For every polynomial-time computable
function f there is a polynomial-time computable “extension” f̂ , such that if f̂ has a
time-O(nc) algorithm that computes it correctly on, say, 90% on the inputs, then f has a
time-O(nc′) probabilistic algorithm that computes it correctly (with overwhelming probability)
on every input. This implies that if f is hard in the worst case for time O(nc′) then f̂ is hard
in the average case for time O(nc). The same connection holds also in a non-uniform setting.

A similar result under the incomparable assumption that FHE exists is given in [24]. These
results are incomparable to recent results on fine-grained average case hardness [6, 41] that
obtain tighter and unconditional connections of this kind, but only for specific functions f .

Verifiable computation. The goal of program checking [12] is to reliably compute a given
function f using an untrusted program or piece of hardware that purportedly computes f . We
consider a variant of the problem in which a program M for computing f : {0, 1}n → {0, 1}
can access a purported implementation of a related function f̂ . The program M can make
oracle calls to f̂ and perform additional computations, as long as the complexity of these
additional computations is significantly smaller than that of computing f from scratch. The
requirements are that if f̂ is implemented correctly, then M f̂ (x) = f(x) for all x. On the
other hand, even if f̂ is replaced by an incorrect implementation f̂∗, the output of M f̂∗(x) on
every input x is either f(x) or ⊥ except with small failure probability ε. This is very similar to
the traditional goal of verifiable computation, except that a malicious “prover” f̂∗ is required
to be stateless. In this setting, one can make a direct use of probabilistically checkable proofs
(PCPs) for proving the correctness of f(x) without any additional cryptographic machinery.

Using the HSS-based worst-case to average-case reduction from Theorem 23, we get check-
ers M with the following feature: after an input-independent polynomial-time preprocessing,
any computation f(x) can be verified with an arbitrarily small inverse polynomial error by
receiving just a constant number of bits from f̂∗. (See full version for details.) We do not
know of any other approach for verifiable computation that yields such a result.

6 Conclusions and Open Problems

In this work we initiate a systematic study of homomorphic secret sharing (HSS) by providing
a taxonomy of HSS variants and establishing some negative results and relations with other
primitives. We also present applications of HSS in cryptography and complexity theory.

There is much left to understand about the feasibility and efficiency of HSS in different
settings. In the information-theoretic setting, we have no strong negative results for single-

ITCS 2018

21:18 Foundations of Homomorphic Secret Sharing

input, (weakly) compact HSS. This should be contrasted with multi-input compact HSS, for
which negative results are obtained in this work, and with single-input additive HSS, where
information-theoretic impossibility results are also known [22]. The difficulty of making
progress on this question can be partially explained by its relation with information-theoretic
private information retrieval and locally decodable codes [46, 8], for which proving good
lower bounds is still an outstanding challenge. However, this barrier only seems to apply
to special instances of the general problem. In the computational setting, the main open
problems are to obtain HSS schemes for circuits under new assumptions and, more broadly,
extend the capabilities of HSS schemes that do not rely on FHE.

Acknowledgements. We thank the anonymous ITCS reviewers for helpful comments.
E. Boyle was supported by ISF grant 1861/16, AFOSR Award FA9550-17-1-0069, and ERC grants

307952, 742754. N. Gilboa was supported by ISF grant 1638/15, a grant by the BGU Cyber Center by
the European Union’s Horizon 2020 ICT program (Mikelangelo project), and ERC grant 742754. Y. Ishai
was supported by ERC grant 742754, NSF-BSF grant 2015782, BSF grant 2012366, ISF grant 1709/14,
DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174,
and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant
from Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the
DARPA through the ARL under Contract W911NF-15-C-0205. H. Lin was supported by NSF grants CNS-
1528178, CNS-1514526, CNS-1652849 (CAREER), a Hellman Fellowship, the Defense Advanced Research
Projects Agency (DARPA) and Army Research Office (ARO) under Contract No. W911NF-15-C-0236,
and a subcontract No. 2017-002 through Galois. S. Tessaro was supported by NSF grants CNS-1553758
(CAREER), CNS-1423566, CNS-1719146, CNS-1528178, and IIS-1528041, and by an Alfred P. Sloan
Research Fellowship. The views expressed are those of the authors and do not reflect the official policy or
position of the Department of Defense, the National Science Foundation, or the U.S. Government.

References

1 Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In FOCS
2004, pages 166–175, 2004.

2 Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private randomiz-
ing polynomials and their applications. In CCC, pages 260–274, 2005.

3 Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan,
and Daniel Wichs. Multiparty computation with low communication, computation and
interaction via threshold FHE. In EUROCRYPT, pages 483–501, 2012.

4 László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential
time simulations unless EXPTIME has publishable proofs. Computational Complexity,
3:307–318, 1993.

5 László Babai, Anna Gál, Peter G. Kimmel, and Satyanarayana V. Lokam. Communication
complexity of simultaneous messages. SIAM J. Comput., 33(1):137–166, 2003.

6 Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Average-case
fine-grained hardness. In STOC 2017, pages 483–496, 2017.

7 Omer Barkol, Yuval Ishai, and Enav Weinreb. On d-multiplicative secret sharing. J.
Cryptology, 23(4):580–593, 2010.

8 Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Ilan Orlov. Share conversion and private
information retrieval. In CCC 2012, pages 258–268, 2012.

9 Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC, pages
1–10, 1988.

10 Josh Cohen Benaloh. Secret sharing homomorphisms: Keeping shares of A secret sharing.
In CRYPTO 1986, pages 251–260, 1986.

11 Fabrice Benhamouda and Huijia Lin. k-round MPC from k-round OT via garbled interac-
tive circuits. Manuscript, 2017.

E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro 21:19

12 Manuel Blum and Sampath Kannan. Designing programs that check their work. In STOC
1989, pages 86–97, 1989.

13 E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. In EUROCRYPT, pages
337–367, 2015.

14 Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure com-
putation under DDH. In CRYPTO, pages 509–539, 2016. Full version: IACR Cryptology
ePrint Archive 2016: 585 (2016).

15 Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and
extensions. In ACM CCS 2016, pages 1292–1303, 2016.

16 Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure computation: Optimizing
rounds, communication, and computation. In EUROCRYPT 2017, Part II, pages 163–193,
2017.

17 Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. SIAM J. Comput., 43(2):831–871, 2014.

18 Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, pages 143–202, 2000.

19 Ignacio Cascudo Pueyo, Hao Chen, Ronald Cramer, and Chaoping Xing. Asymptotically
good ideal linear secret sharing with strong multiplication over Any fixed finite field. In
CRYPTO, pages 466–486, 2009.

20 David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure
protocols (extended abstract). In STOC, pages 11–19, 1988.

21 Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and secure
multi-party computations over small fields. In CRYPTO, pages 521–536, 2006.

22 B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. J.
ACM, 45(6):965–981, 1998.

23 Benny Chor and Niv Gilboa. Computationally private information retrieval (extended
abstract). In STOC 1997, pages 304–313, 1997.

24 Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved delegation of compu-
tation using fully homomorphic encryption. In CRYPTO 2010, pages 483–501, 2010.

25 Ronald Cramer, Ivan Damgård, and Ueli M. Maurer. General secure multi-party computa-
tion from any linear secret-sharing scheme. In EUROCRYPT, pages 316–334, 2000.

26 Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

27 Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption
and its applications. In CRYPTO, pages 93–122, 2016.

28 Z. Dvir and S. Gopi. 2-server PIR with sub-polynomial communication. In STOC, pages
577–584, 2015.

29 Klim Efremenko. 3-query locally decodable codes of subexponential length. In STOC,
pages 39–44, 2009.

30 Nelly Fazio, Rosario Gennaro, Tahereh Jafarikhah, and William E. Skeith III. Homomor-
phic secret sharing from paillier encryption. In ProvSec, pages 381–399, 2017.

31 Matthew K. Franklin and Moti Yung. Communication complexity of secure computation
(extended abstract). In STOC, pages 699–710, 1992.

32 Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure MPC
from indistinguishability obfuscation. In TCC, pages 74–94, 2014.

33 Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two round MPC from
bilinear maps. In FOCS 2017, 2017.

34 Sanjam Garg and Akshayaram Srinivasan. Two-round secure multiparty computation from
minimal assumptions. Manuscript, 2017.

ITCS 2018

21:20 Foundations of Homomorphic Secret Sharing

35 Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178,
2009.

36 Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO
(1), pages 75–92, 2013.

37 N. Gilboa and Y. Ishai. Distributed point functions and their applications. In Proc. EU-
ROCRYPT ’14, pages 640–658, 2014.

38 Oded Goldreich. Foundations of Cryptography — Basic Applications. Cambridge University
Press, 2004.

39 Oded Goldreich, Howard J. Karloff, Leonard J. Schulman, and Luca Trevisan. Lower
bounds for linear locally decodable codes and private information retrieval. Computational
Complexity, 15(3):263–296, 2006.

40 Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

41 Oded Goldreich and Guy N. Rothblum. Worst-case to average-case reductions for subclasses
of p. Electronic Colloquium on Computational Complexity (ECCC), 17-130, 2017.

42 S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness and
guarantee of output delivery. In CRYPTO, Part II, pages 63–82, 2015.

43 Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In ICALP, pages 244–256, 2002.

44 Aayush Jain, Peter M. R. Rasmussen, and Amit Sahai. Threshold fully homomorphic
encryption. IACR Cryptology ePrint Archive, 2017:257, 2017.

45 Bala Kalyanasundaram and Georg Schintger. The probabilistic communication complexity
of set intersection. SIAM J. Discret. Math., 5(4), November 1992.

46 Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for
error-correcting codes. In STOC, pages 80–86, 2000.

47 Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally de-
codable codes via a quantum argument. J. Comput. Syst. Sci., 69(3):395–420, 2004.

48 Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication
complexity. Computational Complexity, 8(1):21–49, 1999.

49 E. Kushilevitz and R. Ostrovsky. Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In Proc. FOCS ’97, pages 364–373, 1997.

50 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997.

51 Richard J. Lipton. New directions in testing. In DIMACS Workshop on Distributed Com-
puting And Cryptography, pages 191–202, 1989.

52 Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key
FHE. In EUROCRYPT, pages 735–763, 2016.

53 Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On data banks and privacy
homomorphisms. In Foundations of secure computation, pages 169–179. 1978.

54 Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
55 Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the

XOR lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.
56 Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomor-

phic encryption over the integers. In Proc. EUROCRYPT 2010, pages 24–43, 2010.
57 Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In

FOCS, pages 162–167, 1986.
58 S. Yekhanin. Towards 3-query locally decodable codes of subexponential length. In Proc.

STOC, pages 266–274, 2007.

	Introduction
	Our Contribution

	General Definitional Framework for HSS
	Notions of Simple Decoding
	Default Conventions
	HSS with Setup

	Constructions
	Limitations
	Lower Bounds for Statistically-Secure Multi-Input HSS
	Additive Multi-Input HSS Implies Non-Interactive Key Exchange

	Applications
	From (3,2)-HSS to 2-Round MPC
	Worst-Case to Average-Case Reductions

	Conclusions and Open Problems

