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Modulators of decision making
Kenji Doya1,2

Human and animal decisions are modulated by a variety of environmental and intrinsic contexts. Here I consider computational 
factors that can affect decision making and review anatomical structures and neurochemical systems that are related to 
contextual modulation of decision making. Expectation of a high reward can motivate a subject to go for an action despite a large 
cost, a decision that is influenced by dopamine in the anterior cingulate cortex. Uncertainty of action outcomes can promote 
risk taking and exploratory choices, in which norepinephrine and the orbitofrontal cortex appear to be involved. Predictable 
environments should facilitate consideration of longer-delayed rewards, which depends on serotonin in the dorsal striatum and 
dorsal prefrontal cortex. This article aims to sort out factors that affect the process of decision making from the viewpoint of 
reinforcement learning theory and to bridge between such computational needs and their neurophysiological substrates.

Our daily life is a chain of decisions. For example, when you go out to 
lunch, you choose which restaurant to go to, what dish to eat, whom to 
go with and even whether or not to take a lunch at all. Such decisions 
vary day to day depending on external and internal factors, such as where 
you ate yesterday, how hungry you are and whom you hope to see.

The process of decision making can be decomposed into four steps. First, 
one recognizes the present situation (or state). Second, one evaluates action 
candidates (or options) in terms of how much reward or punishment each 
potential choice would bring. Third, one selects an action in reference to 
one’s needs. Fourth, one may reevaluate the action based on the outcome. 
Although these steps may not always be followed explicitly, the normative 
theoretical models of how these steps should be carried out are useful in 
understanding of how these steps are realized in the brain.

In situations such as detecting the motion direction of a noisy visual 
stimulus, the first step would be the main determinant of the choice. 
Such a process of perceptual decision making has been studied within 
the theoretical framework of bayesian inference1. In the following 
sections, I first review theoretical models of the other three steps—
evaluation, action selection and learning—based on the framework of 
reinforcement learning2,3. I next discuss how the parameters for those 
steps should be modulated by environmental factors and the decision 
maker’s needs and experiences. Finally, I review recent literature related 
to decision making and try to link factors affecting decision making 
with their neurobiological substrates.

Computational model of decision making
Evaluation of action candidates. What makes everyday decisions 
so difficult is that decisions can result in rewards or punishments of 
different amounts at different timings with different probabilities.  

In a general form, the value of a reward given by an action at a state is 
a function of reward amount, delay and probability. Although there is 
no general guarantee that the three factors are independent, it is often 
assumed they work multiplicatively4:

V = f(amount) × g(delay) × h(probability)

Figure 1 illustrates different models of the effects of these 
components. The function f is called the ‘utility function’. For example, 
the value of a perishable food should saturate depending on how much 
the animal can eat. Thus the function is often regarded as a saturating 
nonlinear function.

The second function, g, determines ‘temporal discounting’ of delayed 
rewards, which is a decreasing function of the delay. In many animal 
and human choice experiments, subjects tend to be more sensitive to 
differences in shorter delays than longer delays, which is well modeled 
by hyperbolic functions5,6.

The last function, h, represents the possible over- or undervaluation 
of stochastic outcomes. When there are multiple possible outcomes, 
the value of the option is their sum,

V =     f(amounti) × g(delayi) × h(probabilityi)Σ
i

In standard ‘expected utility’ theory7, h is assumed to be identity, 
resulting in a simpler form:

V = E[f(amount) × g(delay)]

where E denotes expectation. However, subjects often undervalue 
probabilistic outcomes, which is better modeled by a function h that is 
smaller than unity for probability < 1 (except at very small probabilities, 
which can be overvalued). Such deviations from expected utility theory 
are summarized in ‘prospect theory’8.

Action selection. After evaluating the value of each action candidate, the 
next issue is how to select an appropriate one. Given the values for action 
candidates V(a1),…, V(an), the most straightforward way is to choose the 
one with the highest value. This is called greedy action selection.
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In real life, the true value of each action candidate is rarely known 
exactly. When the values of actions are being learned by experience, 
exploration of actions is necessary. A simple way is to take a random 
action at probability ε and take the greedy action with respect to 
the current estimates of the value function the rest of the time. 
This is called ε-greedy action selection. Another common solution 
is ‘Boltzmann selection’ in which selection probabilities p are 
proportional to the exponentials of the estimated values:

By an analogy with thermodynamics9, the scaling parameter β is called 
the ‘inverse temperature’; β = 0 means all actions are taken with an equal 
probability of 1/n, and the larger the β, the greedier the selection.

In animal behavior studies, a well known principle is the matching 
law10,11, in which an action is selected in proportion to its value:

p(action = a1) ∝ V(ai)

This is a nearly optimal strategy in ‘baited’ tasks, in which a reward 
becomes available at a given location with a certain probability and will 
stay there until it is taken12. In such an environment, a less rewarded 
action becomes more profitable after a long interval.

Learning. In learning the values of actions in dynamic environments, 
a critical issue is to identify which action in time caused a given out-
come. For example, if you feel sick after lunch, you wonder what the 
cause was: something you ate at the meal? the cold wind on the way 
there? or words you heard from your dining companion? This is the 
problem of ‘temporal credit assignment’.

There are three basic ways for learning values in dynamic 
environments3. First, keep in memory which action was taken at 
which state in the form of ‘eligibility traces’, and when a reward is 
given, reinforce the state-action associations in proportion to the 
eligibility traces. Second, use so-called temporal difference learning. 
In the case of exponential temporal discounting, this involves 
following a model using a recursive relationship of the values of 
subsequent states and actions

V(state, action) = E[reward + γV(new state, new action)]

to update the previous state-action pair. Third, learn a model of action-
dependent state-transition probability and, given the present state, 
predict the future rewards for hypothetical actions in order to select 
the best evaluated13.

These three methods have pros and cons. Learning by eligibility trace 
is simple and robust but not very efficient for delayed rewards. Temporal 
difference learning is more efficient but depends on the appropriate 
choice of the state variable. Model-based planning requires more 
contrived operations but can provide flexible adaptation to changes 
in behavioral goals.

Factors that affect decisions and learning
Let us now consider how valuation, action selection and learning should be 
tuned depending on the environment and the needs of the decision maker.

Needs and desires. The utility curve f should reflect the decision 
maker’s physiological or economic needs. Suppose you found that you 
had lost your wallet: picking up a penny on the road would not help 
you with bus fare back home. The utility of any amount exceeding the 
maximal consumption should also saturate. Thus utility functions often 
have sigmoid shape with threshold and saturation. In people, different 
desires leads to different thresholds of nonlinear valuation. To enter a 
good school, attaining a certain score in the exam is a must. Different 
life goals, such as buying a home or starting a company, put different 
thresholds and saturation into utility curves.

Flattening of the utility curve, for instance by satiety, is called devaluation 
and is a useful tool for assessing the mechanism of valuation14,15.

Risk and uncertainty. Buying insurance is supposed to be a rational 
behavior, even though it leads to a loss on average. The main reason for 
buying insurance is to improve the value of the worst-case outcome.  
A conservative choice for the worst-case scenario can result from min-max  
evaluation: to minimize the maximal punishment or to maximize the 
minimal possible reward. Another example of deviation from average 
evaluation is buying a lottery ticket. If the utility function has a high 
threshold—for example, enough for a person of humble income to own 
a house—playing the lottery may be the only choice for going above the 
threshold at a nonzero probability. Such deviations from simple linear 
evaluation can be regarded as ‘risk-averse’ or ‘risk-seeking’ decisions 
and be modeled by nonlinearity in either the utility function f or the 
probability evaluation function h.

Knowledge and uncertainty about the environment are also 
important in decision making. There are different kinds of 
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Figure 1  Standard models of evaluation of amount, delay and probability of reward4. (a) The utility function for the amount of reward is modeled by a 
saturating function: f (r) = r/(r + Q), where r is the size of the reward and Q determines the amount with which the utility curve saturates. (b) A common way  
to express nonlinear evaluation of probability is take a hyperbolic function f(θ) = 1/(1 + Hθ), where θ is called the odds against: θ = (1 – p)/p, where p is the 
probability4,88. When expressed as a function of the probability, the function is h(p) = p/[p + H(1 – p)]. The parameter H = 1 means linear evaluation and  
H > 1 means under-evaluation of stochastic rewards. (c) In the standard theory of economics and reinforcement learning3, the temporal discounting function 
for delay d is supposed to be exponential: g (d ) = g γd, where the parameter γ is called the discount factor; the larger the γ, the longer delayed rewards are 
taken into account. An alternative model supported by psychology experiments is a hyperbolic function6: g (d ) = 1/(1 + K × ), where the parameter  
K determines the steepness of discounting, large K meaning rapid discounting. Hyperbolic functions decay rapidly near zero and slowly as the delay increases.
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uncertainties: from the stochasticity inherent 
in the environmental dynamics, from 
unexpected variation of the environment 
and from the limited knowledge possessed 
by the decision maker.

Stochastic environmental dynamics limit 
the predictability of the future state of the 
environment, which should affect the optimal 
setting of temporal discounting. Looking too 
far ahead can make prediction more difficult, 
leading to slower learning. In reinforcement 
learning, the temporal horizon needs to be set 
long enough, but not too long. In addition, 
predictability depends not only on the features 
of the environment but also on the knowledge 
and actions of the subject. Even a regular 
environment can appear random if someone 
fails to capture an essential sensory cue; 
conversely, experienced individuals may become 
skilled at reading very subtle cues. For example, 
a good surfer may be able to plan maneuvers 
ahead, while a novice on the same wave will end 
up being tumbled into the water.

Unexpected changes in the environment and the degree of the 
subject’s knowledge also affect the optimal degree of exploration 
and memory updating16. In a familiar, reliable environment, 
there is no need for exploration and learning. In contrast, if the 
subject is aware that his knowledge of the environment could 
be improved, or that the environment could have changed, he 
needs to take exploratory actions and increase the learning rate. 
Uncertainty in prediction can also favor one learning framework 
over another—for example, model-free temporal difference  
learning and model-based planning17.

Time spent and time remaining. A general issue in learning is 
how fast one should learn from new experiences and how stably 
old knowledge should be retained. The appropriate choice of the 
learning rate depends on both the character of the environment and 
the experience of the subject. In a constant environment, the theo-
retically optimal way to learn is to start with rapid memory updating 
and then to decay the learning rate as an inverse of the number of 
experiences. When the dynamics of the environment change over 
time, the setting of the learning rate should depend on the estimate 
of the time for which the past experiences remain valid.

The time left for learning and foraging should also affect temporal 
discounting and exploration. Most animals have to find food before 
sunset (or dawn in the case of nocturnal animals) and before they starve 
to death. Such deadlines for reward acquisition naturally set the upper 
limit on appropriate temporal discounting.

Another important factor is the exclusiveness of commitment. 
Your decision of whether to wait for a table at a popular restaurant 
may depend on whether you have to keep standing in line or you can 
just sign up and spend the time shopping or drinking. In deciding 
between actions with less-than-average rewards, an action with 
smaller reward in shorter time can be more appropriate because it 
allows moving on to the next action earlier, resulting in an apparently 
impulsive choice18,19. Such ‘opportunity cost’ can manifest as a linear 
temporal discounting of reward. Whereas most choice experiments 
in animals involve real, exclusive waiting, most choice experiments 
in humans using imaginary questionnaires (such as “Which do 
you prefer, $10 now or $11 tomorrow?”) implicitly assume that the 
subjects can do whatever they want during the waiting period.

Neural substrates modulating decision making
Now let us consider how the environmental factors and the decision 
maker’s needs and experiences can modulate the neurobiological 
process of decision making. To begin, it is worthwhile to examine 
the key players in the neurobiology of decision making. Figure 2 
depicts our current view on how decisions are made in the circuit 
linking the cerebral cortex and the basal ganglia2,20. Reward-predictive 
neural activities are found in a variety of areas in the cortex21–24, the 
striatum25,26, the globus pallidus27 and the thalamus28,29. Neural 
recording experiments in animals reveal that midbrain dopamine 
neurons encode reward prediction errors30,31, whereas functional brain 
imaging in humans show activity related to reward prediction error 
in the striatum32–35, which receives strong dopaminergic projections. 
Dopamine-dependent plasticity in the striatum seems to be important 
in learning of reward-predictive neural activities36,37. The dynamic 
interaction of these areas composing the cortex–basal ganglia loops, as 
well as other subcortical structures, especially the amygdala, is believed 
to result in reward-dependent selection of particular actions20,27. 
The network is affected by the sensory and contextual information 
represented in the cortex, as well as in diffuse neurochemical systems, 
such as serotonin, norepinephrine and acetylcholine38. Table 1 
lists recent studies on the roles of these anatomical structures and 
neuromodulatory systems in decision making.

Gains and losses. The amygdala is involved in processing of aversive 
stimuli and avoidance learning. Human brain imaging shows response 
of the amygdala to expectation of losses as opposed to gains39. However, 
a neural recording study in nonhuman primates showed that neurons 
in the amygdala respond to reward expectation as well40. Human 
functional brain imaging reveals that different parts in the striatum 
respond to gains and losses41.

Midbrain dopamine neurons respond to reward predictive cues 
or unexpected delivery of rewards. However, because of their low 
spontaneous firing rate, their inhibitory response to prediction of no 
reward or omission of reward is weak31,42. A hypothetical medium 
of such aversive prediction is serotonergic neurons43. However, 
little evidence directly supports loss- or aversion-specific response 
of serotonergic neurons. On the other hand, a recent recording 
study has clearly demonstrated that neurons in the lateral habenula 

Cerebral cortex
State/action coding

Striatum
Reward prediction

Pallidum
Action selection

Dopamine neurons
TD signal

Thalamus

State Action

Figure 2  A hypothetical model of realization of reinforcement learning in the cortex–basal ganglia 
network2. Left, coronal section of the brain. Right, functional model, where δ denotes the reward 
prediction error carried by the midbrain dopamine neurons.
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Table 1  Roles of neurochemical and anatomical systems in valuation and decision

System Function Task Method Ref.

Gain and loss

Amygdala Response to expected loss Gambling Human, fMRI 39

Amygdala Expected reward and punishment Pavlovian Monkey, recording 40

Lateral habenula Prediction of no reward omission Saccade Monkey, recording 44

Cost and effort

Dopamine Effort for reward Lever press Rat, antagonist 62

Dopamine (D2 receptor) Effort and delayed rewards T-maze Rat, antagonist 45

Dopamine, tonic Opportunity cost Lever press Model 18

ACC Effort for reward T-maze Rat, lesion 54

ACC Effort for reward T-maze Rat, lesion 63

Risk or variance

Lateral OFC High variance Gambling Human, fMRI 47

Norepinephrine (β receptor) Variance of losses Gambling Human, antagonist 64

Nucleus accumbens, anterior insula Risk seeking Investment Human, fMRI 46

Nucleus accumbens core Large, uncertain reward Lever choice Rat, lesion 65

Delay discounting

Glutamate (NMDA receptor) Delayed reward Lever press Rat, NMDA antagonist 62

Serotonin Delayed reward T-maze Rat, serotonin synthesis blocker 45

Serotonin Withholding pavlovian response Approach behavior Rat, neurotoxin 66

Serotonin in medial PFC Delay discounting task Lever choice Rat, microdialysis 55

Serotonin in dorsal striatum Activity for long-term value Liquid reward Human, ATDL, fMRI 56

Serotonin in ventral striatum Less activity for short-term value Liquid reward Human, ATDL, fMRI 56

Dopamine (D1 receptor) Large delayed reward Nose poke Rat, antagonist 67

Dopamine in OFC Large delayed reward Lever choice Rat, neurotoxin 68

Dopamine in OFC Delay discounting task Lever choice Rat, microdialysis 55

Norepinephrine Large delayed reward Lever choice Rat, reuptake inhibitor 69

OFC Delayed reward T-maze Rat, lesion 70

OFC Delayed or uncertain reward Lever press Rat, lesion 71

OFC Large delayed reward Lever choice Rat, lesion 72,73

OFC Small immediate reward Lever choice Rat, lesion 74

Nucleus accumbens core Large delayed reward Lever choice Rat, lesion 75

Nucleus accumbens core Large delayed reward Lever choice Rat, lesion 76

Basolateral amygdala Large delayed reward Lever choice Rat, lesion 74

Nucleus accumbens, medial OFC, ACC, PCC Immediate reward Liquid reward Human, fMRI 52

Dorsolateral PFC, PPC, anterior insula Delayed and immediate reward Liquid reward Human, fMRI 52

Ventral striatum Small immediate reward Questionnaire Human, fMRI 77

Ventral striatum, medial PFC, PCC Subjective value Questionnaire Human, fMRI 53

Learning rate

ACC Volatility and learning rate Gambling Human, fMRI 57

ACC Sustaining rewarded actions Joystick, reversal Monkey, lesion 78

Switching and exploration

Norepinephrine Reset of network dynamics Review Rat, monkey 58

Norepinephrine, tonic Unexpected uncertainty Model Rat, monkey 79

Norepinephrine, phasic Interrupt for unexpected events Model Rat, monkey 59

Norepinephrine, tonic Exploration-exploitation Review Monkey 60

Norepinephrine, phasic Temporal filtering Review Monkey 60

Serotonin Extradimensional shift Visual discrimination Human, ATD 80

Serotonin Greedy choice Gambling Human, ATD 81

Serotonin Probabilistic choice reversal Probabilistic learning Human, SSRI 82

Serotonin in PFC Choice reversal Visual discrimination Marmoset, neurotoxin 61

Serotonin in OFC Inhibiting perseverative choice Visual discrimination Marmoset, neurotoxin 83

Serotonin in medial PFC Response to reward change Spatial and odor 
discrimination

Rat, neurotoxin 84

Frontal polar cortex, IPC Exploratory decisions Gambling Human, fMRI 85

OFC Greedy choice Gambling Human, focal damage 81

Medial PFC Goal-directed learning Devaluation Rat, lesion 86

Dorsomedial striatum Goal-directed learning Devaluation Rat, lesion 87

ACC, anterior cingulate cortex; ATD, acute tryptophan depletion; ATDL, acute tryptophan depletion and loading; IPC, intraparietal cortex; OFC, orbitofrontal cortex; PCC, posterior cingulate 
cortex; PFC, prefrontal cortex; PPC, posterior parietal cortex.
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respond to no-reward predictive cues as well as reward omission, in 
exactly the opposite way as dopamine neurons, and that stimulation 
of the lateral habenula causes inhibition of dopamine neurons44. 
The result highlights the lateral habenula as a possible center of 
aversive learning, and its role in guiding decision making would  
be a very interesting question.

Cost and effort. In a T-maze with a small reward behind a low wall 
on one side and a large reward behind a high wall on the other, lesions 
of the anterior cingulate cortex (ACC) cause choices of small rewards 
obtained by smaller effort. Choice of a larger reward with a larger effort 
is impaired by a dopamine D2 receptor antagonist45.

It has been proposed that the tonic level of dopamine represents the 
‘opportunity cost’, predicting that animals will work more vigorously 
when the average expected reward is high, which is signaled by the tonic 
firing of dopamine neurons18.

Risk and variance. Brain imaging shows that the striatum, especially 
the ventral striatum, is involved in expectation of rewards. How is 
variance or uncertainty of reward represented? Imaging studies show 
activity in the anterior insula46 and the lateral orbitofrontal cortex 
(OFC)47 in response to variance in the predicted reward. Risk-seeking 
choice also activates the ventral striatum46.

Delay discounting. Deficits in the serotonergic system are implicated 
in impulsivity, both in suppression of maladaptive motor behaviors and 
in choices of larger but delayed rewards. However, the results of lesion 
and pharmacology studies are by no means simple, possibly because of 
autoregulatory feedback mechanisms in the serotonergic system (see 
ref. 48 for in-depth review).

The rat T-maze experiment mentioned above showed dissociation of 
the dopaminergic and serotonergic systems in choices of larger reward 
after more effort and longer delay, respectively45.

In functional brain imaging studies using a game in a dynamic 
environment, the dorsolateral prefrontal cortex, dorsal premotor cortex, 
parietal cortex and insula are more activated in conditions requiring 
long-term prediction of rewards rather than in conditions requiring 
short-term predictions49,50. Also, functional magnetic resonance 
imaging (fMRI) experiments using a monetary questionnaire51 or 
liquid rewards52 found activation of the ventral striatum, medial 
OFC, ACC and posterior cingulate cortex for expectation of immediate 
rewards. However, another study found these areas to be activated by 
the subjective value after discounting, irrespective of the delay of the 
reward53. The rat T-maze experiments also found regional dissociation 
of ACC and OFC in effort and delay discounting54.

How are these regional specializations in evaluation of immediate 
and delayed rewards related to the serotonergic system? Serotonin 
efflux increases in medial prefrontal cortex while rats perform a delay 
discounting task55. Acute tryptophan depletion and loading has shown 
that activation of the ventral striatum for immediate reward prediction 
is enhanced during a low-serotonin condition, whereas activation of 
the dorsal striatum for delayed reward prediction is enhanced during 
a high-serotonin condition56.

Learning and exploration. The optimal setting of the learning rate 
depends on how quickly the world is changing. Subjects’ learning rates 
vary depending on the volatility of the task environment, which is also 
correlated with the activity of ACC57.

After an abrupt change of the environment, it is more appropriate 
to totally reset what has been learned (or switch to another learning 
module) and start over. Norepinephrine is implicated in such ‘resets’ 
of ongoing activities58,59. Norepinephrine is also suggested to be 
important in regulating the decision to explore alternatives versus 
exploiting a known resource60. Deficits in serotonin, especially in the 
medial prefrontal cortex, disturb adaptation to changes in the required 
action for a given cue (reversal learning) by making the subjects more 
likely to stick to prelearned behaviors61.

Conclusion
I have reviewed the computational mechanisms that should affect 
decision making and the neurobiological substrates that are related 
to regulation of decision making. Reports for a variety of systems 
in varieties of tasks and species are rather equivocal. Functional 
correspondence of frontal cortical areas between rodents, monkeys and 
humans poses a further challenge for any unified view. Nevertheless, 
there are some common observations (Fig. 3).

Expectation of a high reward motivates subjects to choose an action 
despite a large cost, for which dopamine in the anterior cingulate 
cortex is important. Uncertainty of action outcomes can promote 
risk taking and exploratory choices, in which norepinephrine and the 
orbitofrontal cortex seem to be involved. Predictable environments 
promote consideration of longer-delayed rewards, for which serotonin 
and the dorsal part of the striatum as well as the dorsal prefrontal cortex 
are key. Much work will be required to build quantitative models of how 
decision parameters should be regulated depending on the environment 
and experience, and then to elucidate how they could be realized by 
network, cellular and neurochemical mechanisms.
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