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Abstract

This paper describes new factorization algorithms that exploit
branch-induced sparsity in the joint-space inertia matrix (JSIM) of
a kinematic tree. It also presents new formulae that show how the
cost of calculating and factorizing the JSIM vary with the topology
of the tree. These formulae show that the cost of calculating for-
ward dynamics for a branched tree can be considerably less than
the cost for an unbranched tree of the same size. Branches can also
reduce complexity; some examples are presented of kinematic trees
for which the complexity of calculating and factorizing the JSIM are
less thanO(n2) andO(n3), respectively. Finally, a cost comparison
is made between anO(n) algorithm and anO(n3) algorithm, the
latter incorporating one of the new factorization algorithms. It is
shown that theO(n3) algorithm is only 15% slower than theO(n)

algorithm when applied to a 30-degrees-of-freedom humanoid, but
is 2.6 times slower when applied to an equivalent unbranched chain.
This is due mainly to theO(n3) algorithm running about 2.2 times
faster on the humanoid than on the chain.

KEY WORDS—robot dynamics, inertia matrix, branched
kinematic chain, sparse matrix factorization

1. Introduction

Forward dynamics algorithms for kinematic trees can be clas-
sified broadly into two main types: propagation algorithms
and inertia-matrix algorithms. Many examples of these can
be found in the literature (e.g., Vereshchagin 1974; Walker
and Orin 1982; Featherstone 1983, 1987; Bae and Haug 1987;
Rodriguez 1987; Angeles and Ma 1988; Brandl, Johanni, and
Otter 1988; Balafoutis and Patel 1989; Rosenthal 1990; Lilly
and Orin 1991; Rodriguez, Jain, and Kreutz-Delgado 1991;
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Stejskal and Valášek 1996; Saha 1999). There are also a vari-
ety of algorithms that do not fit into either category.

Propagation algorithms work by propagating constraints
between bodies in such a way that the joint accelerations can
be calculated one at a time. They typically have a compu-
tational complexity that is stated either asO(N) or O(n),
whereN is the number of bodies andn is the number of joint
variables; however, there is no real difference between them,
asO(N) = O(n) for a kinematic tree. Due to their com-
plexity, propagation algorithms are often simply calledO(n)

algorithms.
Inertia-matrix algorithms work by formulating and solving

an equation of the form

H q̈ = τ − C, (1)

whereH is the joint-space inertia matrix (JSIM),q̈ is the vec-
tor of joint accelerations,τ is a vector of joint forces, andC is
a bias vector containing gravity terms, Coriolis and centrifu-
gal terms, and so on. This equation is a set ofn linear equa-
tions inn unknowns, wheren is the number of joint variables.
In general, the costs of calculatingH andC areO(n2) and
O(n), respectively, and the cost of solving eq. (1) isO(n3).
Thus, inertia-matrix algorithms have an overall complexity of
O(n3), and are often referred to simply asO(n3) algorithms.

If a kinematic tree contains branches, then certain elements
of the JSIM will automatically be zero. Indeed, the number
of such zeros can be a large fraction of the total. This phe-
nomenon is called branch-induced sparsity. The exact number
of branch-induced zeros in a JSIM depends only on the topol-
ogy of the kinematic tree, and their locations depend only on
the topology and the numbering scheme (which determines
the order in which joint variables appear inq̈).

Branch-induced sparsity has a profound effect on the ef-
ficiency of inertia-matrix algorithms. If a significant fraction
of the JSIM’s elements are zero, then fewer calculations are
required to calculate the non-zero elements, and fewer cal-
culations to factorize the matrix. It is therefore possible for
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an inertia-matrix algorithm to run significantly faster on a
branched kinematic tree than on an unbranched tree having
the same number of joints and joint variables.

This paper therefore makes the following contributions:

1. it describes new factorization algorithms that exploit
branch-induced sparsity in the factorization process;
and

2. it presents new cost formulae that show how the cost
of calculating and factorizing the JSIM depends on the
topology of the kinematic tree.

Two factorization algorithms are presented: one that per-
forms an LTL factorization (H = LT L), and one that per-
forms an LTDL factorization (H = LT D L), whereL is a
lower-triangular matrix andD is diagonal. These factoriza-
tions have the following special property: if they are applied
to a matrix with branch-induced sparsity, then the factoriza-
tion proceeds without filling in any of the zeros. Such factor-
izations are described as optimal in Duff, Erisman, and Reid
(1986), and they produce factors that are maximally sparse. In
contrast, the factors produced by the standard Cholesky and
LDLT factorizations (H = L LT andH = L D LT) are dense.

The cost formulae show that the complexity of an inertia-
matrix algorithm can range betweenO(n)andO(n3), depend-
ing on the topology of the tree. This result is illustrated with
a few examples of trees for which the complexity is less than
O(n3). They also show that calculation costs are lower for
branched trees generally, even when the complexity remains
atO(n3).

This paper also presents a detailed cost comparison be-
tween an inertia-matrix algorithm and a propagation algo-
rithm, applied to two test cases: a 30-degrees-of-freedom (30-
DoF) humanoid (or quadruped) mechanism and an equiva-
lent 30-DoF unbranched chain. The inertia-matrix algorithm
comprises the fastest published algorithm for calculatingC in
eq. (1) (Balafoutis, Patel, and Misra 1988), the fastest version
of the composite rigid-body algorithm (CRBA) to calculate
H, and the LTDL algorithm described in this paper. The prop-
agation algorithm is the fastest published implementation of
the articulated body algorithm (McMillan and Orin 1995a,
1995b). The results of this comparison can be summarized as
follows. TheO(n) algorithm beats theO(n3) algorithm by a
factor of 2.6 on the unbranched chain, but is only about 15%
faster on the humanoid. This is mainly due to theO(n3) algo-
rithm running approximately 2.2 times faster on the humanoid
than on the unbranched chain.

This is not the first paper to advocate the use of sparse
matrix algorithms for robot dynamics. In particular, Baraff
(1996) has described anO(n) algorithm based on sparse ma-
trix techniques. However, his algorithm exploits a different
pattern of sparsity in a matrix that is very different from the
JSIM. Sparse matrix techniques are also used in multibody dy-
namics simulators (e.g., Orlandea, Chace, and Calahan 1977).

This is also not the first paper to advocate the use of an
LTDL factorization on the JSIM, since this has already been
proposed by Saha (1997), who calls it a UDUT factorization.
He describes various interesting properties of the factoriza-
tion, but does not consider branch-induced sparsity.

The rest of this paper is organized as follows. Section 2
describes the sparse factorization algorithm, and Section 3
explains how it relates to existing sparse matrix theory. Sec-
tions 4 and 5 present computational cost and complexity anal-
yses for the sparse factorization and the CRBA, respectively,
and Section 6 compares costs for a 30-DoF humanoid and an
equivalent unbranched chain.

2. Sparse Factorization Algorithm

This section describes an algorithm to factorize an arbitrary
n × n symmetric, positive-definite matrix, while optimally
exploiting any sparsity that fits the pattern of branch-induced
sparsity in a JSIM.

Zeros can appear in a JSIM for four reasons:

1. coincidental cancellations at particular configurations;

2. special values of inertia parameters;

3. special values of kinematic parameters;

4. branches in the kinematic tree.

Zeros in the first category are transitory, whereas those in the
other three are permanent. Zeros in the second and third cat-
egories are desirable for their ability to simplify dynamics
calculations, and their presence is usually the result of a de-
liberate design strategy. Zeros in the fourth category are the
subject of this paper. They can be very numerous, and can
account for a large fraction of all the elements in a JSIM.

From here on, we assume that the kinematic tree has gen-
eral inertia and kinematic parameters, and is currently in a gen-
eral configuration. This rules out all except branch-induced
zeros. We therefore use the term “zero” to refer to elements of
the JSIM that are branch-induced zeros, and the term “non-
zero” to refer to all other elements.

Consider the rigid-body system shown in Figure 1, which
we call Tree 1. It is a binary kinematic tree consisting of a
single fixed body, seven mobile bodies, and seven joints. The
fixed body provides a fixed base, or fixed reference frame, for
the rest of the mechanism.

In the connectivity graph of this mechanism, the bodies are
represented by nodes, the joints by arcs, and the base body
is the root node. The bodies are numbered according to the
following rule: the base is numbered 0, and the other bodies
are numbered consecutively from 1 in any order such that each
has a higher number than its parent. This is called a regular
numbering scheme. The joints are then numbered such that
joint i connects bodyi to its parent.
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Fig. 1. A binary kinematic tree (a) and its connectivity
graph (b).

The connectivity of a kinematic tree can be described by
an array of integers called the parent array. It has one entry
for each mobile body, which identifies the body number of
its parent. Thus, ifλ is the parent array for Tree 1, thenλ =
(0, 1, 1, 2, 2, 3, 3), andλ(i) is the parent of bodyi for anyi ∈
{1 . . . 7}. Regular numbering ensures thatλ has the following
important property:

∀i, 0 ≤ λ(i) < i. (2)

In the special case of an unbranched kinematic tree,λ(i) =
i − 1.

If there areN mobile bodies in a kinematic tree, then there
are alsoN joints. However, the total number of joint variables
can be larger than this, because individual joints can have
more than one DoF; hence, more than one joint variable. Let
n be the number of joint variables for the tree, and letni be the
number of variables for jointi. n is then given by the formula

n =
N∑

i=1

ni. (3)

The joint acceleration and force vectors for the whole system
will be n-dimensional vectors, and the JSIM will be ann × n

matrix.
If a kinematic tree contains joints with more than one DoF,

then it is necessary to construct an expanded parent array for
use by the factorization algorithm. This is because the parent
array is one of the inputs to the algorithm, and it must have the
same dimension as the matrix to be factorized. The expanded
parent array is obtained from an expanded connectivity graph,
which is constructed as follows.

For each joint in turn, ifni > 1, then replace
joint i with a serial chain ofni − 1 bodies and
ni joints. Number these extra bodies and joints
consecutively, and then addni − 1 to each of the
remaining body and joint numbers in the system.

1

2

3

4 5 6
7

0

1

2

3

4

5

6 7

8

9

10
11

0

Fig. 2. Expanding a connectivity graph to account for
multiDoF joints in the original mechanism.

The important property of the expanded graph is that the vari-
able at index positioni in the joint acceleration or force vector
can be associated with jointi in the expanded graph. Thus,
joint i in the expanded graph pertains to row and columni in
the matrix.

The procedure is illustrated in Figure 2. This figure shows
the connectivity graph and numbering scheme that would re-
sult if joints 1, 2, and 6 in Tree 1 were to have 2, 2, and
3 DoF, respectively. In this case, the JSIM would be an
11× 11 matrix, and the factorization algorithm would need
an 11-element parent array. The expanded parent array is
λ = (0, 1, 2, 3, 2, 4, 4, 5, 8, 9, 5).

Returning to Tree 1, let us assume that every joint in this
mechanism is a 1-DoF joint, so thatn = N = 7. The JSIM for
this mechanism will then be a 7×7 matrix with the following
sparsity pattern:

H =




× × × × × × ×
× × × ×
× × × ×
× × ×
× × ×
× × ×
× × ×




(4)

where ‘×’ denotes a non-zero entry in the matrix, and the ze-
ros have been left blank. This pattern follows directly from the
definition of the JSIM for a branched kinematic tree (Feath-
erstone 1987; Featherstone and Orin 2000):

Hij =



sT
i

Ic
i

sj if j ∈ ν(i)

sT
i

Ic
j

sj if i ∈ ν(j)

0 otherwise
(5)

wheresi is the motion axis of jointi, ν(i) is the set of bodies
descended from bodyi, including bodyi itself, andIc

i
is the

composite rigid-body inertia of all the bodies inν(i). For
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Tree 1,ν(1) = {1, 2, 3, 4, 5, 6, 7}, ν(2) = {2, 4, 5}, and so
on. Equation (5) gives us the following general formula for
the pattern of branch-induced sparsity in a JSIM:

i /∈ ν(j) ∧ j /∈ ν(i) ⇒ Hij = 0. (6)

Another way to say this is thatHij = 0 wheneveri andj are
on different branches.

If we factorize a JSIM into eitherH = L LT orH = L D LT

(standard Cholesky and LDLT factorizations, respectively),
then the resulting triangular factors will be dense. However,
if instead we factorize the JSIM into eitherH = LT L or
H = LT D L (LTL and LTDL factorizations, respectively),
then the factorization proceeds without filling in any of the
zeros in the JSIM, and produces a triangular factor that is
maximally sparse for the given matrix. A factorization that
accomplishes this is considered optimal (Duff, Erisman, and
Reid 1986). The sparsity pattern for an optimally sparseL is

i /∈ ν(j) ⇒ Lij = 0,

and the pattern for Tree 1 is

L =




×
× ×
× ×
× × ×
× × ×
× × ×
× × ×




.

Given anyn × n symmetric, positive-definite matrixH,
and anyn-element arrayλ, such thatH satisfies eq. (6) and
λ satisfies eq. (2), the following algorithm will perform an
optimal, sparse LTL factorization onH. Note thatH need not
be a JSIM,λ need not be a parent array, andH need not contain
any branch-induced sparsity. In particular, ifλ(i) = i − 1 for
all i, then the matrix is treated as dense. A quick way to verify
that H satisfies eq. 6 is to check, for each rowi, that the
non-zero elements below the main diagonal appear only in
columnsλ(i), λ(λ(i)), and so on. This algorithm worksin
situ, and it leavesL in the lower triangle ofH.

for k = n to 1 do
Hkk = √

Hkk

j = λ(k)

while j �= 0 do
Hkj = Hkj/Hkk

j = λ(j)

end
i = λ(k)

while i �= 0 do
j = i

while j �= 0 do
Hij = Hij − Hki Hkj

j = λ(j)

1

2

34

5

1.

2.

3.

4.

5.

k

never accessed

no longer accessed

H kk :=   H kk

H k j := H k j /  H kk 

H i j  := H i j  − H ki H k j

Fig. 3. The factorization process.

end
i = λ(i)

end
end

The sparse LTDL algorithm differs only slightly from this,
and is described in theAppendix.This appendix also describes
algorithms for calculating the expressionsL x, LT x, L−1 x,
andL−T x, for arbitrary vectorsx, in a way that exploits the
sparsity inL.

The sparse LTL algorithm differs from a standard Cholesky
algorithm in only two respects: the outer loop runs backwards
from n to 1; and the inner loops iterate over the ancestors of
k, i.e.,λ(k), λ(λ(k)), and so on, back to the root. The reversal
of the outer loop is what makes this algorithm perform an
LTL factorization instead of Cholesky, and the behavior of
the inner loops is what exploits the sparsity.

Figure 3 illustrates the factorization process. At the point
where the algorithm begins to process rowk, it has already
completed the processing of rowsk + 1 ton, and these rows
now contain rowsk + 1 to n of L. The processing of rowk
involves three steps:

1. Replace elementHkk with its square root.

2. Divide the elements in region 4 (the portion of rowk
below the diagonal) byHkk.

3. Subtract from region 5 the outer product of region 4
with itself. Thus, each elementHij within region 5 is
replaced byHij − Hki Hkj .

Furthermore, in the processing of rowk, the inner loops iterate
only over the ancestors of bodyk.This has the effect of visiting
only the non-zero elements in region 4, and a subset of the
non-zero elements in region 5. This is where the cost savings
come from: the algorithm performs the minimum possible
amount of work to accomplish the factorization, given the
sparsity pattern of the matrix.

Consider what happens when the algorithm is applied to
the JSIM of Tree 1, which has the sparsity pattern shown in
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eq. (4). Starting atk = 7, the inner loops iterate over only
the two values 3 and 1, becauseλ(7) = 3, λ(λ(7)) = 1
andλ(λ(λ(7)) = 0 (the exit condition for the inner loops).
Thus, the algorithm updates only the two elementsH73 and
H71 at step 2, and the three elementsH33, H31, andH11 at step
3. In contrast, a dense matrix factorization would update six
elements at step 2, and a further 21 elements at step 3.

In effect, the algorithm performs a stripped-down version
of the LTL factorization of a dense matrix, in which it simply
skips over all the entries that are known to be zero in the orig-
inal matrix, and thereby omits every operation that involves a
multiplication by zero. This strategy works because the fac-
torization process preserves the sparsity pattern of the matrix:
any element that starts out zero, remains zero throughout the
factorization process.

We can prove this property by induction. First, assume that
rowsk+1 ton have already been processed, and that no fill-in
has yet occurred as a result of this processing; so the pattern
of zeros is still the same as in the original matrix. Now, it is
impossible for fill-in to occur as a result of executing steps
1 and 2 on rowk, so we focus on step 3. This step affects
every elementHij within region 5 for whichHki Hkj �= 0;
however, this expression can only be non-zero if bothi andj

are ancestors ofk, which in turn implies that eitheri ∈ ν(j)

or j ∈ ν(i), which is the condition forHij to be a non-zero
element ofH. Thus, no fill-in occurs during the processing of
row k.

The LTL and LTDL algorithms have been tested for nu-
merical accuracy on a variety of JSIMs, with the following
results. On matrices with a substantial amount of sparsity,
they tend to be slightly more accurate than MATLAB’s native
Cholesky factorization; however, on matrices with little or no
sparsity, they tend to be slightly less accurate.

Compact storage schemes for sparse matrices have not
been investigated, on the grounds that there is little to be
gained from them unless the JSIM contains thousands of ze-
ros.After all, even a thousand zeros is still only eight kilobytes.

3. Context

This section puts the new algorithm into its correct context
within existing sparse matrix theory as described in George
and Liu (1981). It is shown that the new algorithm is equivalent
to a reordered Cholesky factorization, and that the JSIM of a
kinematic tree belongs to a class of matrices which are known
to be factorizable without fill-in. Thus, the new algorithm does
not accomplish anything that could not have been done using
existing methods. The novelty therefore lies only in the details
of its principle of operation, which results in a particularly
simple and easy factorization process for JSIMs.

LetA be a symmetric, positive-definite matrix, and letP be
a permutation matrix. The matrix̃A = PT A P is then a sym-
metric permutation ofA, and is also a symmetric, positive-

definite matrix. Permutation matrices are orthogonal (i.e.,
PT = P−1), so it follows thatA = P Ã PT.

A Cholesky factorization of̃A into Ã = G GT is called a
reordered Cholesky factorization ofA, the factors beingP G
and(P G)T:

A = P Ã PT = P G GT PT = (P G) (P G)T.

To obtain the LTL factorization, we introduce a second per-
mutation,Q, and insert a factorQ QT (which is the identity
matrix) as follows:

A = P G Q QT GT PT

= (P G Q) (P G Q)T.

We then setP = Q = R, whereR is the special permutation
that reverses the order of the rows of a matrix.R has ones along
its off-diagonal (top right to bottom left) and zeros elsewhere.
With this substitution, the factorization becomes

A = (R G R) (R G R)T.

Now, R G R is an upper-triangular matrix, so we may equate
it with a lower-triangular matrix,L, as follows:

LT = R G R.

Having established the correspondence, it follows that the
LTL factorization has the same general mathematical and nu-
merical properties as the Cholesky factorization.

Branch-induced sparsity has a pattern that is a symmetric
permutation of a standard pattern known as nested, doubly-
bordered block-diagonal. This pattern is defined recursively
as follows: the matrix as a whole consists of a block-diagonal
submatrix bordered below and to the right by one or more
rows and columns of non-zero entries; and zero or more of
the blocks within the block-diagonal submatrix have the same
structure.

Any JSIM can be brought into this form by the following
procedure. First, construct a new regular numbering (if nec-
essary) that traverses the tree in depth-first order; then reorder
the rows and columns ofH according to the new regular num-
bering; then reverse the order of the rows and columns. If this
procedure is applied toH in eq. (4), to produce a permuted
matrix H̃, then

H̃ =




× × ×
× × ×

× × × ×
× × ×

× × ×
× × × ×

× × × × × × ×




. (7)

In the sparse matrix literature, it is usually the case that a
nested, doubly-bordered block-diagonal matrix has a substan-
tial amount of additional sparsity in its borders and atomic
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blocks (the ones that are not themselves nested, doubly-
bordered block-diagonal). The challenge is then to devise al-
gorithms that exploit all of the sparsity. The JSIM is a special
case in which there is no additional sparsity, which makes it
amenable to simpler algorithms.

One important property of̃H is that it contains no zeros
inside its envelope. The envelope of a sparse matrix is the
set of elements below the main diagonal that are either non-
zero elements themselves, or are located somewhere to the
right of a non-zero element. The envelope ofH̃ consists of
the elementsH̃31, H̃32, H̃64, H̃65, andH̃71 . . . H̃76. The impor-
tance of the envelope is that a standard Cholesky factorization
preserves every zero outside the envelope. AsH̃ contains no
zeros inside its envelope, it follows that a standard Cholesky
factorization will proceed without filling in any of the zeros
in this matrix.

This is sufficient to demonstrate that an optimal factoriza-
tion of a JSIM with branch-induced sparsity can be accom-
plished using standard techniques from sparse matrix theory.
In comparison, the only advantages offered by the LTL al-
gorithm are matters of convenience: it is easy to implement
and retro-fit into existing code; it works directly on the origi-
nal JSIM; and it produces factors that are literally triangular,
rather than permutations of a triangular matrix.

4. Factorization Cost Analysis

This section presents general formulae for the computational
cost of the sparse LTL and LTDL factorizations, and for
multiplication and back-substitution operations involving the
sparse factors. It also presents cost formulae for three differ-
ent families of tree, to show how different topologies affect
the cost.

4.1. Sparse Factorization

Let di be the distance between nodei and the root node in
the connectivity graph of a kinematic tree, measured as the
number of intervening arcs (joints). The regular numbering
scheme ensures thatdi ≤ i for all i; so, for any node other than
the root, 1≤ di ≤ i. These numbers play the following role
in the cost analysis. Referring back to Figure 3, the number
of non-zero elements in region 4 isdk − 1; so step 2 in the
factorization process for rowk involvesdk − 1 divisions, and
step 3 involves making updates todk(dk − 1)/2 elements in
region 5.

Let us define the quantities

D1 =
n∑

i=1

(di − 1) (8)

and

D2 =
n∑

i=1

di(di − 1)

2
. (9)

D1 is the total number of step-2 operations performed by the
factorization algorithm. It is also the total number of non-
zero elements below the diagonal in the JSIM.D2 is the total
number of step-3 operations performed by the algorithm, each
such operation involving one multiplication and one subtrac-
tion. The total cost of the sparse LTL factorization is therefore

n
√ + D1 div + D2 (m + a),

where the symbols
√

, div, m, anda stand for square-root
calculations, divisions, multiplications, and additions, respec-
tively, with subtractions counting as additions for cost pur-
poses.

Table 1 presents a summary of the computational costs
of factorization, back-substitution, and multiplying a vector
by a sparse triangular factor or its inverse, for both the LTL
and LTDT factorizations. As you can see, the LTDL algo-
rithm comes out slightly ahead, beating the LTL algorithm
by n square-root operations in the factorization process andn

divisions in the back-substitution process.
The quantitiesD1 andD2 are bounded by

0 ≤ D1 ≤ (n2 − n)/2 (10)

and

0 ≤ D2 ≤ (n3 − n)/6. (11)

Thus, the asymptotic complexity of factorization can vary
betweenO(1) andO(n3), but the asymptotic complexity of
back-substitution can vary only betweenO(n) andO(n2).

The lower limit occurs when every body is connected di-
rectly to the root (i.e.,di = 1 for all i). In this case, the matrix
is diagonal. Although the LTDL factorization can, in theory,
be performed without any cost, the algorithm listed in the Ap-
pendix contains a loop that will iterate over alln rows, and
will therefore executeO(n) instructions.

The upper limit occurs when there are no branches in the
kinematic tree (di = i for all i). In this case, the matrix is
dense, and the factorization costs for LTL and LTDL are
identical to the costs for standard Cholesky and LDLT fac-
torizations, respectively. However, there is a slight overhead
in the inner loops of the sparse algorithms, in that assignment
statements such asi = λ(i) typically take slightly longer
to execute than incrementing (or decrementing) a variable.
Nevertheless, the overhead is sufficiently small that there is
almost nothing to lose, and potentially much to gain, by sim-
ply replacing Cholesky and LDLT factorizations with LTL
and LTDL wherever JSIMs become factorized.

The depth of the tree has a major influence on complexity.
For example, ifdi is subject to an upper limit,dmax , such that
di ≤ dmax for all i, thenD1 andD2 are bounded by

0 ≤ D1 ≤ n (dmax − 1) (12)

and

0 ≤ D2 ≤ n dmax (dmax − 1)/2. (13)
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Table 1. The Cost of Factorization, Back-Substitution and Multiplying a Vector By a Sparse Triangular Factor, for the
Sparse LTL and LTDT Algorithms

LTL LTDL

Factorize n
√ + D1 div + D2 (m + a) D1 div + D2 (m + a)

Back-substitute 2n div + 2D1 (m + a) n div + 2D1 (m + a)

L x, LT x n m + D1 (m + a) D1 (m + a)

L−1 x, L−T x n div + D1 (m + a) D1 (m + a)

(a) (b)

root

(c)

Fig. 4. A kinematic chain with short side branches (a), a bal-
anced binary tree (b), and a spanning tree for a square grid
(c).

If dmax is a constant, then bothD1 and D2 are O(n). Sys-
tems with this property do occur in practice (e.g., a swarm of
identical mobile robots).

The exact cost of a sparse factorization or back-substitution
must be calculated viaD1 andD2; however, a reasonable es-
timate can be obtained via the following rule of thumb. Letα

be a number between 0 and 1 representing the density of the
matrix to be factorized (i.e., the ratio of non-zero elements
to the total number of elements in the matrix). The costs of
sparse factorization and back-substitution will then be approx-
imately α2 andα times the costs of dense factorization and
back-substitution, respectively. Thus, if 50% of the elements
of a JSIM are non-zero, then the sparse factorization will be
about four times faster than a dense factorization, and so on.

4.2. Complexity Examples

This section examines the computational cost and complexity
of the LTDL algorithm for kinematic trees with four differ-
ent topologies: an unbranched chain, a chain with short side
branches, a balanced binary tree, and a spanning tree for a
square grid. The latter three are illustrated in Figure 4.

Table 2 presents formulae forD1 andD2 that allow their
values to be calculated as functions ofn. The formulae for the
unbranched tree are valid for alln, and are therefore expressed
directly in terms ofn. The other formulae are not valid for all
n, so they are expressed in terms of a second integer,m, and an
expression is given in the “where” column to indicate hown
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  unbranched

  short s.b.

   span grid

   bal. tree

Fig. 5. Comparison of factorization cost (operations count)
versusn for the tree topologies in Table 2.

is related tom. The expressionn = 2m, for example, implies
thatn must be an even number.

Figure 5 plots the factorization cost of each topology
againstn. The cost figures in this graph, and those quoted
in the rest of this section, are based on a simple operations
count (i.e., the cost of an LTDL factorization is simply the
numberD1 + 2D2). Cost figures in Section 6 are computed
differently.

For the chain with short side branches,D1 andD2 converge
to one-half and one-quarter, respectively, of their values for
the unbranched case. AsD2 dominates, the cost of factoriza-
tion converges to one-quarter of the cost for the unbranched
chain. This is a good example of the rule of thumb mentioned
previously: about half the elements of the JSIM are zeros, and
the factorization cost is four times less than the unbranched
case.

If we increase the number of bodies in each side branch
from one to two, thenD1 andD2 converge to one-third and
one-ninth, respectively, of their values for the unbranched
case. The same would be true if we kept the branches at their
present size, but had two branches per node on the main chain
instead of only one. More generally, ifβ is the ratio of the
length of the main chain to the total number of bodies, then
D1 andD2 converge toβ andβ2 times their values for the
unbranched case.
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Table 2. Formulae for D1D1D1 and D2D2D2 for Various Tree Topologies

Topology D1 D2 Where Order

Unbranched (n2 − n)/2 (n3 − n)/6 n3

Short side branches m2 (2m3 + 3m2 + m)/6 n = 2m n3

Balanced tree
∑m−1

i=1 i · 2i
∑m−1

i=1 i (i+1) · 2i−1 n = 2m − 1 n(log(n))2

Span grid m3 − m2 (7m4 −6m3 −m2)/12 n = m2 n2

The balanced binary tree shows a very different picture. In
a tree containingn = 2m − 1 nodes, excluding the root, there
are 2k−1 nodes for whichdi = k, for k = 1 . . . m. SoD1 and
D2 are bounded by

(m − 1) · 2m−1 ≤ D1 ≤ (m − 1) · 2m

and

m(m − 1) · 2m−2 ≤ D2 ≤ m(m − 1) · 2m−1.

Thus,D1 isO(mn) andD2 isO(m2n), wherem � log2 n, and
the cost of factorization is thereforeO(n(log(n))2). Compared
with the cost of factorizing a dense matrix, the cost of factor-
izing the JSIM of a balanced binary tree is 7.8 times less at
n = 15, and 430 times less atn = 255.

Figure 4(c) shows one of several possible designs of span-
ning tree for a square grid of nodes. Any spanning tree is
acceptable, provided it connects every node in the grid to the
root via a minimum-length path. The formulae in Table 2 ap-
ply to all such spanning trees. For this kind of tree,D1 is
O(n1.5) andD2 is O(n2). Compared with the cost of factor-
izing a dense matrix, the cost of factorizing a JSIM for this
kind of tree is 5.3 times less atn = 16, and 74 times less at
n = 256.

5. CRBA Cost Analysis

This section presents a cost formula for the CRBA, for the
case of a branched kinematic tree having general geometry,
general inertia parameters, revolute joints, and an optional
floating base. A 6-DoF joint connects a floating base to the
fixed base.

Consider the following implementation of the CRBA for
a kinematic tree, which calculates the JSIM as defined in
eq. (5). It is, essentially, the algorithm described in Feath-
erstone (1987, Section 7.2), and it differs from the version
in Featherstone and Orin (2000) only in the order in which
the calculations are performed. This implementation assumes
1-DoF joints.

for i = 1 to n do
Ic
i
= Ii

end
for i = n to 1 do

f = Ic
i

si

Hii = sT
i

f

if λ(i) �= 0 then
Ic
λ(i)

= Ic
λ(i)

+ λ(i)XF
i

Ic
i

iXM
λ(i)

end
j = i

while λ(j) �= 0 do
f = λ(j)XF

j
f

j = λ(j)

Hij = Hji = sT
j

f
end

end

This algorithm calculates every non-zero element of the
JSIM. It does not initialize or access the zeros. If the JSIM is
to be accessed by other software that is not aware of its sparsity
structure, then the zero elements must be initialized to zero
at least once. This can be done when the matrix is created
or allocated, or before its first use. If other software fills in
the zeros (e.g., by using a dense factorization algorithm), then
the zero elements must be initialized each time the JSIM is
calculated.

The quantities appearing in this algorithm are as follows.
All are expressed in link coordinates.si is a six-dimensional
vector representing the axis of jointi, andIi andIc

i
are 6× 6

matrices representing the rigid-body inertias of linki and body
Ci , respectively, whereCi is the composite rigid body formed
by the rigid assembly of all the links inν(i). si and Ii are
constants in link-i coordinates.λ(i)XF

i
and iXM

λ(i)
are coordi-

nate transformation matrices that transform a force vector or
a motion vector, respectively, from the coordinate system in-
dicated in the subscript to the coordinate system indicated in
the leading superscript. They are related by(λ(i)XF

i
)T = iXM

λ(i)
.

Finally, f is a vector representing the force required to im-
part an acceleration ofsi to Ci . This force is first calculated
in link-i coordinates, and is then transformed successively to
the coordinate systems of linkλ(i), link λ(λ(i)), and so on.

For cost calculation purposes, it is assumed that the co-
ordinates ofsi consist of five zeros and a one, so that the
multiplicationsIc

i
si andsT

i
f simplify to selecting a column

from Ic
i

and an element fromf , respectively. Given these as-
sumptions, the computational cost of the above algorithm can
be expressed as

D0 (ra + rx) + D1 vx, (14)

where the symbolsra,rx, andvx denote the operations “rigid-
body add”, “rigid-body transform”, and “vector transform”,
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respectively.D0 is the number of mobile bodies in the system
that are not connected directly to the base (i.e., the number of
bodies for whichλ(i) �= 0, or the number of bodies for which
di > 1). D0 can be expressed as

D0 =
n∑

i=1

min(1, di − 1) =
n∑

i=1

min(1, λ(i)), (15)

and its value lies in the range

0 ≤ D0 ≤ n − 1. (16)

The extreme case ofD0 = 0 occurs when every mobile
body is connected directly to the base. In this case,di = 1 for
all i, D0 = D1 = 0, the JSIM is a diagonal matrix, and its
value is constant. The runtime cost of calculating this matrix
is therefore zero, and so the theoretical minimum complexity
of the CRBA isO(1); however, the algorithm above does not
reach this theoretical minimum because it contains loops with
an execution cost ofO(n).

A system like this is highly unusual, and mainly of theo-
retical interest. Most practical systems will have a value of
D0 that is either equal to or slightly less than the maximum
possible value. Examples of systems in whichD0 < n−1 in-
clude systems representing multiple independent robots, and
the spanning trees of closed-loop mechanisms with multiple
connections to the base (such as a typical parallel robot).

Equation (14) clearly shows that the cost of the CRBA
depends onD0 andD1, rather than directly onn. For an un-
branched kinematic chain, bothD0 andD1 take their maxi-
mum possible values, and the asymptotic complexity will be
O(n2). If the tree contains branches, thenD1 (at least) will
be smaller, and the computational cost correspondingly less.
From the data in Table 2, the cost of the CRBA for a chain
with short side branches should converge to half the cost of the
unbranched case for the same number of bodies; the asymp-
totic complexity of the CRBA isO(n log(n)) for a balanced
binary tree andO(n1.5) for the spanning tree of a square grid.

Much effort has gone into finding minimum-cost imple-
mentations for operations such asra, rx, andvx. The mini-
mum cost forra is 10a, but the minimum costs for the other
two depend on how the link coordinate frames are defined.
This is where the situation becomes more complicated for a
branched tree than for an unbranched tree.

The most efficient implementations ofrx andvx require
that the coordinate frames be located in accordance with a set
of DH parameters (Featherstone 1987; Khalil and Dombre
2002), in which case the coordinate transformations implied
by λ(i)XF

i
and iXM

λ(i)
can be accomplished via the successive

application of two axial screw transforms: one aligned with
thex-axis, and one aligned with thez-axis (Featherstone 1987;
McMillan and Orin 1995a). The current best figures for these
operations are 32m + 33a for rx, and 20m + 12a for vx (see
table II in McMillan and Orin 1995a).1

1. After discussing the matter with Professor Orin, I have used 15m+ 15a as

However, as explained in Khalil and Dombre (2002), if
a node has two or more children, then only one child can
have the benefit of DH parameters, while the others must
use a general coordinate transformation instead (unless the
mechanism has a special geometry). Here, the terms “DH
node” and “non-DH node” are used to refer to those nodes
that do have the benefit of DH parameters and those that do
not, respectively. The root node has no parent, and is therefore
excluded from this classification.

The number of non-DH nodes is determined by the con-
nectivity graph. Ifc(i) is the number of children of nodei,
then the number of non-DH nodes is given by the formula

non-DH=
N∑

i=0

max(0, c(i) − 1), (17)

whereN is the number of mobile bodies in the tree. In an
unbranched chain,c(i) ≤ 1 for all i, so every node is a DH-
node; however, Tree 1 has three nodes with two children each,
and therefore has three non-DH nodes. Referring back to Fig-
ure 1(b), one child of node 1, one child of node 2, and one
child of node 3 must be non-DH nodes, but we are free to
choose which child in each case.

The best figures forrx and vx for a non-DH node are
47m + 48a and 24m + 18a, respectively. The former is the
cost of three successive axial screws, according to the figures
in McMillan and Orin (1995a), and the latter comes from
table 8-3 in Featherstone (1987).

To account for these differences in cost, it is necessary to
separateD0 andD1 each into two components: one to count
how many operations are performed at the DH nodes, and the
other to count operations at the non-DH nodes. Thus, we seek
an expanded cost formula of the form

D0a (ra + rxa) + D1a vxa

+ D0b (ra + rxb) + D1b vxb,
(18)

where the subscriptsa andb refer to the DH and non-DH
nodes, respectively. We already know the cost figures forra,
rx, andvx, so we just need expressions forD0a . . . D1b.

D0a counts how many timesra + rx is performed at a
DH node,D0b counts how many timesra + rx is performed
at a non-DH node, and so on. An inspection of the CRBA
implementation listed above reveals that it performsra+rx+
|ν(i)| vx at each nodei satisfyingλ(i) �= 0, where|ν(i)| is
the number of elements inν(i). So let us define the setsπa

andπb to be the set of all DH nodes, and the set of all non-DH
nodes, respectively, that are not directly connected to the root.
It follows immediately from these definitions that

D0a = |πa| , D1a = ∑
i∈πa

|ν(i)|,
D0b = |πb| , D1b = ∑

i∈πb
|ν(i)|. (19)

the base cost of a screw transform, instead of the 15m + 16a that appears in
this table.
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Before moving on, let us tie up one loose end. It is clearly
necessary thatD0a +D0b = D0 andD1a +D1b = D1. The first
equation follows directly from the definitions ofD0, πa, and
πb. The second equation can be proved as follows. Starting
from eq. (8),

D1 =
n∑

i=1

(di − 1)

=
n∑

i=1

(|ν(i)| − 1)

=
n∑

i=1

|ν(i)| − n

=
∑
i∈πa

|ν(i)| +
∑
i∈πb

|ν(i)| +
∑

i �∈(πa∪πb)

|ν(i)| − n

=
∑
i∈πa

|ν(i)| +
∑
i∈πb

|ν(i)|.

To follow the first step, observe thatdi − 1 and|ν(i)| − 1
are the numbers of non-zero elements on rowi below and
above the main diagonal, respectively. Thus, the summations
on the first and second lines count the total number of non-zero
elements below and above the main diagonal, respectively.As
the matrix is symmetrical, the two are the same. The final step
uses the fact that

∑
i �∈(πa∪πb)

|ν(i)| is just a count of all the
descendants of the root node, and therefore evaluates ton.

GivenD0a . . . D1b and the previously mentioned costs for
ra, rx, andvx, the computational cost of the CRBA for a
branched kinematic tree is

D0a (32m + 43a) + D1a (20m + 12a)

+ D0b (47m + 58a) + D1b (24m + 18a).
(20)

When choosing the DH nodes, any choice that maximizesD1a

is optimal.
Equation (20) gives the cost of the CRBA for a fixed-base

system; however, there is one more optimization one can make
for a floating-base system, which exploits the fact that three of
the DH parameters between linksi andλ(i) can be set to zero
if link λ(i) happens to be a floating base (McMillan and Orin
1995b). This allows a saving of 18m + 21a on each affected
rx operation, and 12m+8a on each affectedvx operation. To
incorporate this optimization into the cost formula, we define
a third set,πc, which is the set of DH nodes that are children
of a floating base. We then define the numbersD0c = |πc| and
D1c = ∑

i∈πc
|ν(i)|, which count the number of occurrences

of therx andvx savings, respectively. The final cost formula
is then

D0a (32m + 43a) + D1a (20m + 12a)

+D0b (47m + 58a) + D1b (24m + 18a)

−D0c (18m + 21a) − D1c (12m + 8a).

(21)

6. Practical Example

The purpose of this section is to illustrate the effect of branches
on the cost of forward dynamics calculations. To this end, it
presents cost figures for two rigid-body systems: a simple hu-
manoid (or quadruped) consisting of a single rigid torso and
four 6-DoF limbs, and an unbranched chain with a floating
base at one end. Both systems have 25 bodies connected to-
gether by 24 revolute joints; both have a floating base, and
hence 30 DoF in total; and both have general geometry and
general inertias. Thus, the only relevant difference between
them is that one is branched and the other is not.

The figures presented here support the following two
statements.

1. AnO(n3) algorithm based on the CRBA and the LTDL
factorization can calculate the dynamics of the hu-
manoid more than twice as quickly as it can calculate
the dynamics of the equivalent unbranched chain.

2. This O(n3) algorithm can calculate the dynamics of
the humanoid almost as quickly as the fastestO(n)

algorithm.

The obvious conclusion is thatO(n3) algorithms are still com-
petitive withO(n) algorithms, even at relatively high values
of n, such asn = 30, provided there is a sufficient amount of
branching in the kinematic tree.

In the paragraphs that follow, we compare the costs of var-
ious calculations by quoting cost ratios. Unfortunately, these
numbers depend on the relative cost of an addition compared
to a multiplication, and there is no agreed value for this ratio.
We can overcome this difficulty by quoting two figures: one
based on the assumption that additions are free (i.e.,a = 0),
and the other based on the assumption that an addition costs
the same as a multiplication (i.e.,a = m). These represent
two extreme cases, and any realistic assumption about the
cost of an addition will lie somewhere in between. Thus, if
we say that calculationX is 2.5 times faster than calculation
Y if a = 0, and 2.6 times faster ifa = m, then the realistic
cost ratio will lie somewhere in between. Divisions will be
counted as multiplications for cost calculation purposes.

The first step is to calculate the variousD quantities for the
humanoid. These are obtained from the connectivity graph,
which is shown in Figure 6. As the torso is connected to the
fixed base via a 6-DoF joint, we actually use two connectivity
graphs: the original graph and the expanded graph, where the
latter is obtained from the former by replacing the 6-DoF joint
with the expansion shown inset in the diagram. To avoid pos-
sible confusion, we apply a superscripte to theD quantities
obtained from the expanded graph.

The factorization and back-substitution costs depend on
De

1 andDe
2, which are obtained from the expanded graph as

follows. From Figure 6, one can see that there is one body
in the expanded graph for whichdi = 1, one body for which
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root

limbs

torso
6−DoF joint

expansion

Fig. 6. Connectivity graph of a 30-DoF humanoid or
quadruped mechanism consisting of a torso and four 6-DoF
limbs.

di = 2, and so on, up todi = 6, this body being the torso.
Thereafter, there are four bodies for whichdi = 7, four for
which di = 8, and so on, up todi = 12. Thus, from eqs. (8)
and (9),

De

1 =
6∑

i=1

(i − 1) + 4 ×
12∑
i=7

(i − 1) = 219

and

De

2 =
6∑

i=1

i (i − 1)

2
+ 4 ×

12∑
i=7

i (i − 1)

2
= 1039.

These numbers imply that 48% of the elements in the
humanoid’s JSIM (which is a 30× 30 matrix) are branch-
induced zeros. To see this, recall thatDe

i
is the number of

non-zero elements below the main diagonal, as mentioned in
Section 4.1. The total number of non-zero elements is there-
fore 2De

1 + 30 = 468, and hence the number of zeros is
900− 468= 432.

Using the formulae in Table 1, the cost of factorizing
the humanoid’s JSIM (settingdiv = m for cost purposes)
is 1258m + 1039a, and the cost of back-substitution is
468m + 438a per vector. For comparison, the cost of fac-
torizing a dense 30× 30 matrix is 4930m + 4495a, and the
cost of back-substitution is 900m + 870a per vector.

To calculate the cost of the CRBA, we need the quantities
D0a . . . D1c pertaining to the original connectivity graph. In
this graph, the torso is the only body for whichdi = 1; then
there are four bodies for whichdi = 2, four for whichdi = 3,
and so on, up todi = 7. Thus, from eqs. (15) and (8)

D0 =
25∑
i=1

min(1, di − 1) = 24

and

D1 = 0 + 4 ×
7∑

i=2

(i − 1) = 84.

The torso is the only body with more than one child. Only one
child can be a DH node, so the other three are non-DH nodes.

These are the only three non-DH nodes in the graph. Each
non-DH node is the root of a subtree containing six nodes, so
|ν(i)| = 6 for each one. Thus, from eq. (19), we have

D0b = 3 , D1b = 3 × 6 = 18,

D0a = 21, D1a = D1 − D1b = 66.

Finally, there is only one DH node that is the child of a floating
base, and this node also has|ν(i)| = 6, so

D0c = 1, D1c = 6.

For comparison, the corresponding figures for the equivalent
unbranched chain are

D0a = 24, D1a = 300,

D0b = 0, D1b = 0,

D0c = 1, D1c = 24.

Plugging these values into eq. (21) gives the cost of cal-
culating the JSIM of the humanoid as 2475m + 2124a, and
the cost of calculating the JSIM of the equivalent unbranched
chain as 6462m + 4419a. Thus, the CRBA runs more than
twice as quickly on the humanoid than on the equivalent un-
branched chain. The cost ratio is 2.37 if we assumea = m,
and 2.61 if we assumea = 0.

Let us now look at the cost of the complete forward dy-
namics calculation for both the humanoid mechanism and its
equivalent unbranched chain, and let us compare these figures
with the cost of calculating the forward dynamics via an effi-
cientO(n) algorithm. For this comparison, we need a set of
cost figures for an inverse dynamics algorithm (to calculateC
in eq. 1), and for anO(n) forward dynamics algorithm.

For the inverse dynamics, we use the efficient implemen-
tation of the recursive Newton–Euler algorithm (RNEA) de-
scribed in Balafoutis, Patel, and Misra (1988) as Algorithm 3.
The cost formula for this algorithm is(93n − 69)m + (81n −
66)a. However, these figures refer to an unbranched kinematic
chain with a fixed base. To account for a floating base, we first
increasen to 25, which accounts for the extra joint, but costs
it as revolute. Then, we add a correction term, 7m + 13a,
which is the difference between the cost of a 6-DoF joint and
a revolute joint if both are connected to the root node. This
gives us a cost figure of 2263m + 1972a for the equivalent
chain. To obtain a figure for the humanoid, we add a further
correction of 3× (4m + 8a), which accounts for the extra
transformation costs at the three non-DH nodes, giving a cost
figure of 2275m+1996a. These correction terms are specific
to this algorithm.

For theO(n) forward dynamics, we use the figures in ta-
ble II of McMillan and Orin (1995b), which pertain to a very
efficient implementation of the articulated body algorithm
(ABA). According to this table, the cost formula for an un-
branched chain with a floating base is(224n−30)m+(205n−
37)a. This immediately gives us a figure of 5346m + 4883a
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for the cost of the ABA on the equivalent unbranched chain.
To obtain a figure for the humanoid, we must add a correction
of 3× (66m + 57a) to account for the additional transforma-
tion costs incurred at the three non-DH nodes, resulting in a
total cost of 5544m + 5054a. This correction term is specific
to the algorithm described in McMillan and Orin (1995b), and
it was obtained with the aid of data in table II of McMillan
and Orin (1995a).

Based on these figures, the cost of the complete forward
dynamics calculation via the CRBA is 6476m + 5597a for
the humanoid, and 14555m + 11756a for the equivalent un-
branched chain. As a result of the branches in the kinematic
tree, the dynamics calculation for the humanoid is 2.18 times
faster than for the unbranched chain assuminga = m, or 2.25
times faster assuminga = 0. It is also only about 14% slower
than the ABA assuminga = m, or 17% slower assuming
a = 0. These results are summarized in Figure 7. Observe
that the ABA’s speed advantage is almost completely wiped
out by the cost reduction due to branch-induced sparsity. In
round numbers, the ABA is faster by a factor of 2.6 on the
unbranched chain, but only 15% faster on the humanoid. One
may therefore conclude thatO(n3) algorithms are still com-
petitive withO(n) algorithms, even at quite high values ofn,
such asn = 30, provided there is sufficient branching in the
kinematic tree.

7. Conclusion

This paper has presented a new factorization algorithm that
fully exploits branch-induced sparsity in the JSIM. It is sim-
ple to implement and use, and it incurs almost no overhead
compared with standard algorithms; yet it can deliver large
reductions in the cost of factorizing a JSIM, and in the cost of
using the resulting sparse factors.The complexity of factoriza-
tion depends on the number of non-zero elements, rather than
the size of the matrix, and the theoretical lower limit isO(1).
Some examples are presented of kinematic trees with factor-
ization complexities ranging fromO(n(log(n))2) to O(n3).

This paper has also presented a cost and complexity anal-
ysis for the CRBA for the case of a branched kinematic tree.
It is shown that the cost of this algorithm can be consider-
ably less for a branched kinematic tree than for an equivalent
unbranched chain, and that the theoretical lower limit on the
complexity of the CRBA isO(1).

Finally, this paper has presented the results of a detailed
costing of the forward dynamics of a 30-DoF branched kine-
matic tree that could represent either a simple humanoid robot
or a quadruped, and an equivalent 30-DoF unbranched chain.
It was shown that anO(n3)algorithm incorporating the CRBA
and a sparse factorization algorithm runs 2.6 times slower than
an efficientO(n) algorithm (the ABA) on the unbranched
chain, but only 15% slower on the humanoid. This is mainly
due to theO(n3) algorithm running 2.2 times faster on the
humanoid than on the unbranched chain. Thus, anO(n3) al-
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Fig. 7. Computational cost of forward dynamics, via CRBA
and ABA, for the humanoid mechanism shown in Figure 6
and an equivalent unbranched chain.

gorithm can be competitive with anO(n) algorithm, even at
n = 30, if there are enough branches in the tree, and if the
branch-induced sparsity is fully exploited.

This paper has not considered systems with kinematic
loops, but the results are relevant to any dynamics algorithm
that solves closed-loop dynamics via the JSIM of the spanning
tree.

Algorithms

This appendix lists an algorithm for the sparse LTDL factor-
ization, and algorithms for the four multiplicationsL x, LT x,
L−1 x, andL−T x, whereL is a sparse triangular factor andx
is an arbitrary vector or rectangular matrix. Ifx is a vector,
then the symbolsxi and yi refer to elementi of vectorsx
andy; otherwise they refer to rowi of matricesx andy. The
multiplication algorithms assume thatL is a non-unit trian-
gular factor, as produced by the LTL factorization, in which
Lii �= 1. They can be modified to work with the unit triangular
factors produced by the LTDL factorization simply by replac-
ing occurrences of “Lii” with “1” and making any appropriate
simplifications.

LTDL factorization

The algorithm below is the LTDL equivalent of the LTL al-
gorithm described in Section 2. It expects the same inputs as
the LTL algorithm, and requires them to meet the same con-
ditions: i.e., ann × n symmetric, positive-definite matrixA,
and ann-element arrayλ, such thatA satisfies eq. (6) andλ
satisfies eq. (2). This algorithm worksin situ, and it accesses
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only the lower triangle of its matrix argument. The computed
factorsD andL are returned in this triangle. As the diago-
nal elements ofL are known to be 1, only the off-diagonal
elements are returned.

for k = n to 1 do
i = λ(k)

while i �= 0 do
a = Aki/Akk

j = i

while j �= 0 do
Aij = Aij − Akj a

j = λ(j)

end
Aki = a

i = λ(i)

end
end

Algorithm for y = L x

for i = n to 1 do
yi = Lii xi

j = λ(i)

while j �= 0 do
yi = yi + Lij xj

j = λ(j)

end
end

If y andx are different vectors, then this algorithm assigns
the valueL x to y, leavingx unaltered. Ify andx refer to the
same vector then this algorithm performs anin situ multipli-
cation onx, overwriting it withL x.

Algorithm for y = LT x

for i = 1 to n do
yi = Lii xi

j = λ(i)

while j �= 0 do
yj = yj + Lij xi

j = λ(j)

end
end

This algorithm assigns the valueLT x to y, leavingx unal-
tered. It does not workin situ, sox andy must be different.
An in situ version would be inefficient.

Algorithm for x = L−1 x

for i = 1 to n do
j = λ(i)

while j �= 0 do
xi = xi − Lij xj

j = λ(j)

end
xi = xi/Lii

end

This algorithm worksin situ on the vectorx, replacing
it with L−1 x. To implementy = L−1 x, the algorithm can
be modified by inserting the line “yi = xi” between lines 1
and 2, and replacing lines 4 and 7 with “yi = yi − Lij yj ”
and “yi = yi/Lii”, respectively. Alternatively, one can simply
copyx to y and apply the above algorithm toy.

Algorithm for x = L−T x

for i = n to 1 do
xi = xi/Lii

j = λ(i)

while j �= 0 do
xj = xj − Lij xi

j = λ(j)

end
end

This algorithm worksin situ on the vectorx, replacing it
with L−T x. To implementy = L−T x, one must copyx to y
and apply the algorithm toy.
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