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Abstract Stejskal and ValaSek 1996; Saha 1999). There are also a vari-
ety of algorithms that do not fit into either category.

This paper describes new factorization algorithms that exploit Propagation algorithms work by propagating constraints

branch-induced sparsity in the joint-space inertia matrix (JSIM) obetween bodies in such a way that the joint accelerations can

a kinematic tree. It also presents new formulae that show how thige calculated one at a time. They typically have a compu-

cost of calculating and factorizing the JSIM vary with the topologyational complexity that is stated either @&N) or O(n),

of the tree. These formulae show that the cost of calculating fowhereN is the number of bodies andis the number of joint

ward dynamics for a branched tree can be considerably less thamriables; however, there is no real difference between them,

the cost for an unbranched tree of the same size. Branches can a&® O (N) = O(n) for a kinematic tree. Due to their com-

reduce complexity; some examples are presented of kinematic trggtexity, propagation algorithms are often simply cal@¢h)

for which the complexity of calculating and factorizing the JSIM aralgorithms.

less thanD (n2) and O (n3), respectively. Finally, a cost comparison  Inertia-matrix algorithms work by formulating and solving

is made between a@ (n) algorithm and an0 (z3) algorithm, the an equation of the form

latter incorporating one of the new factorization algorithms. It is

shown that theO(n3) algorithm is only 15% slower than th@ (n) H=t-C, (1)

algorithm when applied to a 30-degrees-of-freedom humanoid, bWhereH is the joint-space inertia matrix (JSIMy,is the vec-

is 2.6 times slower when applied to an equivalent unbranched cha%r of joint accelerations; is a vector of joint forces, and is
This is due mainly to the (n3) algorithm running about 2.2 times ’

) _ a bias vector containing gravity terms, Coriolis and centrifu-
faster on the humanoid than on the chain. gal terms, and so on. This equation is a set tihear equa-
KEY WORDS—robot dynamics, inertia matrix, branchedions inz unknowns, where is the number of joint variables.
kinematic chain, sparse matrix factorization In general, the costs of calculatittyandC are O (n?) and

O(n), respectively, and the cost of solving eq. (1)d$n®).

Thus, inertia-matrix algorithms have an overall complexity of
1. Introduction O(n®), and are often referred to simply &»?) algorithms.

If a kinematic tree contains branches, then certain elements
Forward dynamics algorithms for kinematic trees can be clagf the JSIM will automatically be zero. Indeed, the number
sified broadly into two main types: propagation algorithmgf such zeros can be a large fraction of the total. This phe-
and inertia-matrix algorithms. Many examples of these cafomenon is called branch-induced sparsity. The exact number
be found in the literature (e.g., Vereshchagin 1974; Walkejt branch-induced zeros in a JSIM depends only on the topol-
and Orin 1982; Featherstone 1983, 1987; Bae and Haug 1984y of the kinematic tree, and their locations depend only on
Rodriguez 1987; Angeles and Ma 1988; Brandl, Johanni, afle topology and the numbering scheme (which determines
Otter 1988; Balafoutis and Patel 1989; Rosenthal 1990; Lilljhe order in which joint variables appearéih
and Orin 1991; Rodriguez, Jain, and Kreutz-Delgado 1991; Branch-induced sparsity has a profound effect on the ef-
_ . ficiency of inertia-matrix algorithms. If a significant fraction

\T/he International Journal of Robotics Research of the JSIM’s elements are zero, then fewer calculations are
ol. 24, No. 6, June 2005, pp. 487-500, .
DOI: 10.1177/0278364905054928 required to calculate the non-zero elements, and fewer cal-
©2005 Sage Publications culations to factorize the matrix. It is therefore possible for
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an inertia-matrix algorithm to run significantly faster on a This is also not the first paper to advocate the use of an
branched kinematic tree than on an unbranched tree havidfDL factorization on the JSIM, since this has already been
the same number of joints and joint variables. proposed by Saha (1997), who calls it a UDUT factorization.

This paper therefore makes the following contributions: He describes various interesting properties of the factoriza-

tion, but does not consider branch-induced sparsity.

1. it descr_ibes new facto_rizz_altion algorith_ms_that exploit The rest of this paper is organized as follows. Section 2
branch-induced sparsity in the factorization procesgjescribes the sparse factorization algorithm, and Section 3
and explains how it relates to existing sparse matrix theory. Sec-

2. it presents new cost formulae that show how the cotsii)ns 4and’5 present computgtional cost and complexity gnal-

of calculating and factorizing the JSIM depends on thyses for t_he sparse factorization and the CRBA, resp_ectwely,

topology of the kinematic tree. and.Secnon 6 compares co;ts for a 30-DoF humanoid and an
equivalent unbranched chain.

Two factorization algorithms are presented: one that per-

forms an LTL factorizationf = LTL), and one that per- 2 - ;
o ’ : . Spar se Factorization Algorithm
forms an LTDL factorizationf = LTDL), wherelL is a 9

lower-triangular matrix and is diagonal. These factoriza- Thjs section describes an algorithm to factorize an arbitrary
tions have the following special property: if they are applied , ,, symmetric, positive-definite matrix, while optimally

to a matrix with branch-induced sparsity, then the factorizgs,p|oiting any sparsity that fits the pattern of branch-induced
tion proceeds without filling in any of the zeros. Such factorg

e ' k i X cs)arsity ina JSIM.
izations are described as optimal in Duff, Engman, and Reid 7gr0s can appear in a JSIM for four reasons:
(1986), and they produce factors that are maximally sparse. In
contrast, the factors produced by the standard Cholesky andl. coincidental cancellations at particular configurations;
LDLT factorizationsd =L LT andH =L DLT) are dense.
The cost formulae show that the complexity of an inertia- 2- SPecial values of inertia parameters;
matrix algorithm can range betweéx(n) ando (n®), depend-
ing on the topology of the tree. This result is illustrated with
a few examples of trees for which the complexity is less than 4 pranches in the kinematic tree.
O (n®). They also show that calculation costs are lower for
branched trees generally, even when the complexity remaidsros in the first category are transitory, whereas those in the
at 0 (n®). other three are permanent. Zeros in the second and third cat-
This paper also presents a detailed cost comparison legtories are desirable for their ability to simplify dynamics
tween an inertia-matrix algorithm and a propagation algaalculations, and their presence is usually the result of a de-
rithm, applied to two test cases: a 30-degrees-of-freedom (3derate design strategy. Zeros in the fourth category are the
DoF) humanoid (or quadruped) mechanism and an equivsudbject of this paper. They can be very numerous, and can
lent 30-DoF unbranched chain. The inertia-matrix algorithraccount for a large fraction of all the elements in a JSIM.
comprises the fastest published algorithm for calculairig From here on, we assume that the kinematic tree has gen-
eqg. (1) (Balafoutis, Patel, and Misra 1988), the fastest versi@nal inertia and kinematic parameters, and is currently inagen-
of the composite rigid-body algorithm (CRBA) to calculateeral configuration. This rules out all except branch-induced
H, and the LTDL algorithm described in this paper. The propeeros. We therefore use the term “zero” to refer to elements of
agation algorithm is the fastest published implementation t¢iie JSIM that are branch-induced zeros, and the term “non-
the articulated body algorithm (McMillan and Orin 1995azero” to refer to all other elements.
1995b). The results of this comparison can be summarized asConsider the rigid-body system shown in Figure 1, which
follows. The O (n) algorithm beats th® (n®) algorithm by a we call Tree 1. It is a binary kinematic tree consisting of a
factor of 2.6 on the unbranched chain, but is only about 15%bngle fixed body, seven mobile bodies, and seven joints. The
faster on the humanoid. This is mainly due to thé®) algo- fixed body provides a fixed base, or fixed reference frame, for
rithm running approximately 2.2 times faster on the humanoithe rest of the mechanism.
than on the unbranched chain. In the connectivity graph of this mechanism, the bodies are
This is not the first paper to advocate the use of sparsepresented by nodes, the joints by arcs, and the base body
matrix algorithms for robot dynamics. In particular, Baraffis the root node. The bodies are humbered according to the
(1996) has described am(n) algorithm based on sparse ma-following rule: the base is numbered 0, and the other bodies
trix techniques. However, his algorithm exploits a differenaire numbered consecutively from 1in any order such that each
pattern of sparsity in a matrix that is very different from thénas a higher number than its parent. This is called a regular
JSIM. Sparse matrix techniques are also used in multibody dyambering scheme. The joints are then numbered such that
namics simulators (e.g., Orlandea, Chace, and Calahan 1974@nt i connects body to its parent.

3. special values of kinematic parameters;
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Fig. 1. A binary kinematic tree (a) and its connectivity
graph (b).
Fig. 2. Expanding a connectivity graph to account for
multiDoF joints in the original mechanism.

The connectivity of a kinematic tree can be described by

an array of integers called the parent array. It has one entrjte important property of the expanded graph is that the vari-
for each mobile body, which identifies the body number oéble atindex positionin the joint acceleration or force vector

its parent. Thus, ik is the parent array for Tree 1, then=
(0,1, 1, 2,2, 3, 3),andA(i) is the parent of bodyfor anyi
{1...7}. Regular numbering ensures thatas the following

can be associated with jointin the expanded graph. Thus,
joint i in the expanded graph pertains to row and coldnm
the matrix.

important property: The procedure is illustrated in Figure 2. This figure shows
the connectivity graph and numbering scheme that would re-
sult if joints 1, 2, and 6 in Tree 1 were to have 2, 2, and
In the special case of an unbranched kinematic téd, = 3 DoF, respectively. In this case, the JSIM would be an
i1 11 x 11 matrix, and the factorization algorithm would need

If there areN mobile bodies in a kinematic tree, then therén 11-element parent array. The expanded parent array is
are alsav joints. However, the total number ofjoin'[variablesA =01 2 3,2,4,4,58,9,53). S
can be larger than this, because individual joints can have Returning to Tree 1, let us assume that every joint in this
more than one DoF; hence, more than one joint variable. LBtechanismis a 1-DoF joint, so that= N = 7. The JSIM for
n be the number of joint variables for the tree, andi/éte the this mechanism will then be ax/7 matrix with the following

number of variables for joint  is then given by the formula SParsity pattern:

Vi, 0 < A(i) <. 2)

N X X X X X X X
n= Zn,-. 3 X X X X
i=1 X X X X
The joint acceleration and force vectors for the whole system H=1 x x X )
will be n-dimensional vectors, and the JSIM will berax n X X
matrix. X X X
X X X

If a kinematic tree contains joints with more than one DoF, L -

then itis necessary to construct an expanded parent array {@fere ‘x’ denotes a non-zero entry in the matrix, and the ze-
use by the factorization algorithm. This is because the paregis have been left blank. This pattern follows directly from the

array is one of the inputs to the algorithm, and it must have thgsfinition of the JSIM for a branched kinematic tree (Feath-
same dimension as the matrix to be factorized. The expandg@tone 1987; Featherstone and Orin 2000):

parent array is obtained from an expanded connectivity graph,

which is constructed as follows. s I¢s; if jev@)
o _ H; =1 s'ls; if iev()) (5)
For each joint in turn, ifs; > 1, then replace 0 otherwise

joint i with a serial chain of;; — 1 bodies and
n; joints. Number these extra bodies and joints
consecutively, and then add— 1 to each of the
remaining body and joint numbers in the system.

wheres is the motion axis of joint, v(i) is the set of bodies
descended from body including body: itself, andl{ is the
composite rigid-body inertia of all the bodies ir(i). For
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Tree 1,v(1) = {1,2,3,4,5,6, 7}, v(2) = {2, 4,5}, and so

on. Equation (5) gives us the following general formula for 1. never accessed

the pattern of branch-induced sparsity in a JSIM: 7 ;. 1 2. no longer accessed
. . . . 5
I¢U(J)/\J¢v(l)=>l-llj=0 (6) 3 Hkk.: Hkk

Another way to say this is thdi;; = O whenevei andj are k- 3 | }

on different branches. 4. Hyj = Hyj / Hik

If we factorize aJSIMinto eithéd =L LTorH =L DL" ///é// B
(standard Cholesky and LDLT factorizations, respectively) 5. Hij := Hij =Huki Hy

then the resulting triangular factors will be dense. However,
if instead we factorize the JSIM into eithet = LTL or Fig. 3. The factorization process.
H = LTDL (LTL and LTDL factorizations, respectively),

then the factorization proceeds without filling in any of the

zeros in the JSIM, and produces a triangular factor that is

maximally sparse for the given matrix. A factorization that

accomplishes this is considered optimal (Duff, Erisman, and end

Reid 1986). The sparsity pattern for an optimally sparse é = A(0)
en
i¢v(j)=L;=0, end
and the pattern for Tree 1 is The sparse LTDL algorithm differs only slightly from this,

and is described in the Appendix. This appendix also describes
algorithms for calculating the expressiobs, LTx, L=1x,
x andL T x, for arbitrary vectors, in a way that exploits the
x sparsity inL.
The sparse LTL algorithm differs from a standard Cholesky
X X algorithm in only two respects: the outer loop runs backwards
X X from n to 1; and the inner loops iterate over the ancestors of
L X X ] k,i.e.,x(k), A(A(k)), and so on, back to the root. The reversal
of the outer loop is what makes this algorithm perform an
LTL factorization instead of Cholesky, and the behavior of
the inner loops is what exploits the sparsity.
Figure 3 illustrates the factorization process. At the point

.~ where the algorithm begins to process rbwit has already
be aJSIMA need notbe a parentarray, dddeed not contain completed the processing of rowst 1 ton, and these rows

o S M g 01 e
i AqQ Yy thvolves three steps:

that H satisfies eq. 6 is to check, for each rewthat the
non-zero elements below the main diagonal appear only in 1. Replace elemerft,, with its square root.
columnsi(i), A(A(i)), and so on. This algorithm works
situ, and it leaved. in the lower triangle oH.

,_
Il

X X X X X X X
X
X

Given anyn x n symmetric, positive-definite matrikd,
and anyn-element array., such thatH satisfies eq. (6) and
A satisfies eq. (2), the following algorithm will perform an
optimal, sparse LTL factorization d#. Note thatH need not

2. Divide the elements in region 4 (the portion of réw
below the diagonal) byi,,.

for k =ntoldo 3. Subtract from region 5 the outer product of region 4

;{"’( T(k\/)H_kk with itself. Thus, each elemet;; within region 5 is
while j % 0do replaced byH,; — H,; Hy;.

H,, = H;;/Hy, Furthermore, in the processing of réwthe inner loops iterate
Jj=x()) only over the ancestors of boélyThis has the effect of visiting
end only the non-zero elements in region 4, and a subset of the
i = Ak) non-zero elements in region 5. This is where the cost savings
whilei # 0do come from: the algorithm performs the minimum possible

j=i amount of work to accomplish the factorization, given the
while j # 0do sparsity pattern of the matrix.
H; = H;; — Hy Hy; Consider what happens when the algorithm is applied to

Jj =) the JSIM of Tree 1, which has the sparsity pattern shown in
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eq. (4). Starting at = 7, the inner loops iterate over only definite matrix. Permutation matrices are orthogonal (i.e.,
the two values 3 and 1, becausé?) = 3, A(A(7)) = 1 P" = P1), so it follows thatA = PAP".

andA(L(A(7)) = O (the exit condition for the inner loops). A Cholesky factorization oA into A = GG is called a
Thus, the algorithm updates only the two elemekitsand reordered Cholesky factorization Af the factors being G

H, at step 2, and the three elements, Hs,, andH,; at step and(PG)™:

3. In contrast, a dense matrix factorization would update six o - .

elements at step 2, and a further 21 elements at step 3. A=PAP =PGG' P = (PG)(PG) .

In effect, the glgo_rithm performs a s@rip_ped-dow_n V.erSiOFf’o obtain the LTL factorization, we introduce a second per-
of the LTL factorization of a dense matrix, in which it S'mplymutation Q, and insert a factoB QT (which is the identity

_sk|ps over all the entries tha_t are known to pe zeroin the Or'gﬁatrix) as follows:
inal matrix, and thereby omits every operation that involves a

multiplication by zero. This strategy works because the fac- A =PGQQ'G'P’

torization process preserves the sparsity pattern of the matrix: — (PGQ)(PGQ)".

any element that starts out zero, remains zero throughout the

factorization process. We then seP = Q = R, whereR is the special permutation

We can prove this property by induction. First, assume thgtat reverses the order of the rows of a mafRikas ones along
rowsk + 1 ton have already been processed, and that no fill-iits off-diagonal (top right to bottom left) and zeros elsewhere.
has yet occurred as a result of this processing; so the patt§vith this substitution, the factorization becomes
of zeros is still the same as in the original matrix. Now, it is
impossible for fill-in to occur as a result of executing steps A=(RGR)(RGR)".

1 and 2 on rowk, so we focus on step 3. This step affect
every element;; within region 5 for whichH, H,; # O;
however, this expression can only be non-zero if bathd j
are ancestors df, which in turn implies that either € v(j) LT=RGR.

or j € v(i), which is the condition fo#;; to be a non-zero

element oH. Thus, no fill-in occurs during the processing ofHaving established the correspondence, it follows that the
row k. LTL factorization has the same general mathematical and nu-

The LTL and LTDL algorithms have been tested for numerical properties as the Cholesky factorization.
merical accuracy on a variety of JSIMs, with the following Branch-induced sparsity has a pattern that is a symmetric
results. On matrices with a substantial amount of sparsitgermutation of a standard pattern known as nested, doubly-
they tend to be S||ght|y more accurate than MATLAB'’s nativé)ordered block-diagonal. This pattern is defined TECUI’SiV6|y
Cholesky factorization; however, on matrices with little or n@s follows: the matrix as a whole consists of a block-diagonal
sparsity, they tend to be slightly less accurate. submatrix bordered below and to the right by one or more

Compact storage schemes for sparse matrices have FWs and columns of non-zero entries; and zero or more of
been investigated, on the grounds that there is little to Be blocks within the block-diagonal submatrix have the same
gained from them unless the JSIM contains thousands of A&dtucture.

ros. After all, even a thousand zeros is still only eightkilobytes. Any JSIM can be brought into this form by the following
procedure. First, construct a new regular numbering (if nec-

essary) that traverses the tree in depth-first order; then reorder
3. Context the rows and columns &f according to the new regular num-
bering; then reverse the order of the rows and columns. If this

This section puts the new algorithm into its correct conteX@rocedure is applied t8l in eq. (4), to produce a permuted

within existing sparse matrix theory as described in GeorgBatrixH, then
andLiu (1981). Itis shownthatthe new algorithmis equivalent B N

ilow, R G R is an upper-triangular matrix, so we may equate
it with a lower-triangular matrixl_, as follows:

to a reordered Cholesky factorization, and that the JSIM of a * « i i
kinematic tree belongs to a class of matrices which are known « X x %
to be factorizable withoutfill-in. Thus, the new algorithm does A= » < | < 7)
not accomplish anything that could not have been done using « x| x
existing methods. The novelty therefore lies only in the details < x x| x
X X

of its principle of operation, which results in a particularly *~ x x 1 x x
simple and easy factorization process for JSIMs. - -
LetA be a symmetric, positive-definite matrix, andidie In the sparse matrix literature, it is usually the case that a
a permutation matrix. The matrk = P™ A P is then a sym- nested, doubly-bordered block-diagonal matrix has a substan-
metric permutation oA\, and is also a symmetric, positive-tial amount of additional sparsity in its borders and atomic
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blocks (the ones that are not themselves nested, doubly; is the total number of step-2 operations performed by the
bordered block-diagonal). The challenge is then to devise dhctorization algorithm. It is also the total number of non-
gorithms that exploit all of the sparsity. The JSIM is a speciaero elements below the diagonal in the JSIM.is the total
case in which there is no additional sparsity, which makesiitumber of step-3 operations performed by the algorithm, each
amenable to simpler algorithms. such operation involving one multiplication and one subtrac-
One important property dfl is that it contains no zeros tion. The total cost of the sparse LTL factorization is therefore
inside its envelope. The envelope of a sparse matrix is the )
set of elements below the main diagonal that are either non- ny/+ Didiv+ D, (m +a).
zero elements themselves, or are located §0mewhere to Hieere the symbols/, div, m, anda stand for square-root
right of a non-zero element. The envelopetbfconsists of calculations, divisions, multiplications, and additions, respec-
the elementsds;, Hsp, Hea, Hgs, and Hy; . .. Hz6. The impor-  tively, with subtractions counting as additions for cost pur-
tance of the envelope is that a standard Cholesky factorizatiposes.
preserves every zero outside the envelopeHAntains no Table 1 presents a summary of the computational costs
zeros inside its envelope, it follows that a standard Choleskyf factorization, back-substitution, and multiplying a vector
factorization will proceed without filling in any of the zerospy a sparse triangular factor or its inverse, for both the LTL
in this matrix. and LTDT factorizations. As you can see, the LTDL algo-
This is sufficient to demonstrate that an optimal factorizaithm comes out slightly ahead, beating the LTL algorithm
tion of a JSIM with branch-induced sparsity can be acconby n square-root operations in the factorization process:and
plished using standard techniques from sparse matrix theogiisions in the back-substitution process.
In comparison, the only advantages offered by the LTL al- The quantitiesD, and D, are bounded by
gorithm are matters of convenience: it is easy to implement

2
and retro-fit into existing code; it works directly on the origi- 0=<Di= @ —n)/2 (10)
nal JSIM; and it produces factors that are literally triangulagnd
rather than permutations of a triangular matrix.
0< D, < m®*—n)/6. (12)
4. Factorization Cost Analysis Thus, the asymptotic complexity of factorization can vary

betweenO (1) and O (n®), but the asymptotic complexity of
This section presents general formulae for the computatiortzick-substitution can vary only betweérn) and O (n?).
cost of the sparse LTL and LTDL factorizations, and for The lower limit occurs when every body is connected di-
multiplication and back-substitution operations involving theectly to the root (i.e.d; = 1 for all{). In this case, the matrix
sparse factors. It also presents cost formulae for three diffég-diagonal. Although the LTDL factorization can, in theory,
ent families of tree, to show how different topologies affecbe performed without any cost, the algorithm listed in the Ap-

the cost. pendix contains a loop that will iterate over allrows, and
will therefore execut& (n) instructions.

4.1. Sparse Factorization The upper limit occurs when there are no branches in the
kinematic treed, = i for all {). In this case, the matrix is

Let d; be the distance between nodand the root node in gense, and the factorization costs for LTL and LTDL are
the connectivity graph of a kinematic tree, measured as thentical to the costs for standard Cholesky and LDLT fac-
number of intervening arcs (joints). The regular numberingyizations, respectively. However, there is a slight overhead
scheme ensures that< i forall /; so, for any node other than i, the inner loops of the sparse algorithms, in that assignment
the root, 1< d; < i. These numbers play the following role gtatements such as—= A(i) typically take slightly longer

in the cost analysis. Referring back to Figure 3, the numbgg execute than incrementing (or decrementing) a variable.
of non-zero elements in region 4ds — 1; so step 2 in the Nevertheless, the overhead is sufficiently small that there is
factori;ation process for rowinvolvesd, — 1 divisions, aqd almost nothing to lose, and potentially much to gain, by sim-
step 3 involves making updatesdp(d, — 1)/2 elements in |y yeplacing Cholesky and LDLT factorizations with LTL

region5. N and LTDL wherever JSIMs become factorized.
Let us define the quantities The depth of the tree has a major influence on complexity.
n For example, ifZ; is subject to an upper limit,,., such that
D, = Z d -1 ®) 4 <d,., foralli, thenD, and D, are bounded by

i=1

" di(d; -1 and

p,=y &-D ©
i=1 2 O S D2 S n dmax (dmax - 1)/2 (13)
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Table 1. The Cost of Factorization, Back-Substitution and Multiplying a Vector By a Sparse Triangular Factor, for the
SparseLTL and LTDT Algorithms

LTL LTDL
Factorize n./+ Didiv+ D, (m+ a) D, div+ D, (m +a)
Back-substitute 2div+ 2D, (m + a) ndiv+ 2D, (m + a)
Lx,LTx nm~+ Di(m+a) D, (m + a)
Ltx, L Tx ndiv+ Dy (m + a) D, (m +a)

root T
unbranched
100k P short s.b.
span grid
10%t bal. tree
(a) (b) (c) 102k
Fig. 4. A kinematic chain with short side branches (a), a bal-
anced binary tree (b), and a spanning tree for a square grid 1¢°

(©). 10° 10" 10° 10°
Fig. 5. Comparison of factorization cost (operations count)
If d.... is a constant, then botP, and D, are O(n). Sys- versus: for the tree topologies in Table 2.
tems with this property do occur in practice (e.g., a swarm of
identical mobile robots).
The exact cost of a sparse factorization or back-substitutiggirelated ton. The expression = 2m, for example, implies
must be calculated vi®, and D,; however, a reasonable es-thatn must be an even number.
timate can be obtained via the following rule of thumb. ket Figure 5 plots the factorization cost of each topology
be a number between 0 and 1 representing the density of tgainstn. The cost figures in this graph, and those quoted
matrix to be factorized (i.e., the ratio of non-zero elemenis the rest of this section, are based on a simple operations
to the total number of elements in the matrix). The costs @bount (i.e., the cost of an LTDL factorization is simply the
sparse factorization and back-substitution will then be approsumberD, + 2D,). Cost figures in Section 6 are computed
imately «® and« times the costs of dense factorization andiifferently.
back-substitution, respectively. Thus, if 50% of the elements For the chain with short side branch&s,andD, converge
of a JSIM are non-zero, then the sparse factorization will @ one-half and one-quarter, respectively, of their values for
about four times faster than a dense factorization, and so ahe unbranched case. &% dominates, the cost of factoriza-
tion converges to one-quarter of the cost for the unbranched
chain. This is a good example of the rule of thumb mentioned
previously: about half the elements of the JSIM are zeros, and
This section examines the computational cost and complexitye factorization cost is four times less than the unbranched
of the LTDL algorithm for kinematic trees with four differ- case.
ent topologies: an unbranched chain, a chain with short side If we increase the number of bodies in each side branch
branches, a balanced binary tree, and a spanning tree fdir@n one to two, therD, and D, converge to one-third and
square grid. The latter three are illustrated in Figure 4. one-ninth, respectively, of their values for the unbranched
Table 2 presents formulae f@, and D, that allow their case. The same would be true if we kept the branches at their
values to be calculated as functions:ohe formulae for the present size, but had two branches per node on the main chain
unbranched tree are valid for alland are therefore expressednstead of only one. More generally, ff is the ratio of the
directly in terms of:. The other formulae are not valid for all length of the main chain to the total number of bodies, then
n, sothey are expressed in terms of a second integand an D, and D, converge to8 and 82 times their values for the
expression is given in the “where” column to indicate how unbranched case.

4.2. Complexity Examples
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Table 2. Formulae for Dy and D, for Various Tree Topologies

Topology D, D, Where Order
Unbranched (n*—n)/2 (n®*—n)/6 n®
Short side branches m? (2m® 4+ 3m? +m)/6 n=2m n®
Balanced tree Srti2 S hi(i41) -2t n=2"-1 n(log(n))?
Span grid m® —m? (Tm* — 6m® —m?)/12 n = m? n?

The balanced binary tree shows a very different picture. In if 1(i) # Othen

atree containing = 2" — 1 nodes, excluding the root, there [50 =156 +OXT XN,
are 271 nodes for whichi; = k, fork = 1...m. SoD; and end
D, are bounded by j=i
while A(j) = 0do
m—-21-2"r'<D,<(m—-1)-2" f = 2OXF§
J
and J=2x0) .
H;=H; =s;f
mm—1)-2"%?<D,<m@m—1) 2" end
end

Thus,D; is O (mn) andD, is O (m?n), wherem =~ log, n, and ) ]
the cost of factorization is therefoe(n (log(n))2). Compared __ 1 is @lgorithm calculates every non-zero element of the
with the cost of factorizing a dense matrix, the cost of factopSIM. It does not initialize or access the zeros. If the JSIM is

izing the JSIM of a balanced binary tree is 7.8 times less ig be accessed by other software thatis not aware of its sparsity
n = 15. and 430 times less at= 255, structure, then the zero elements must be initialized to zero

Figure 4(c) shows one of several possible designs of Spae;,{_least once. This can be_done when the matrix is grea}ted
ning tree for a square grid of nodes. Any spanning tree & allocated, or before its first use. If other software fills in
acceptable, provided it connects every node in the grid to tia€ Zeros (e.g., by using a dense factorization algorithm), then
root via a minimum-length path. The formulae in Table 2 apI_he zero elements must be initialized each time the JSIM is

ply to all such spanning trees. For this kind of tres, is calculated. o _
0(n*%) and D, is O (n?). Compared with the cost of factor- The quantities appearing in this algorithm are as follows.

izing a dense matrix, the cost of factorizing a JSIM for thié\l 2ré expressed in link coordinates.is a six-dimensional
kind of tree is 5.3 times less at= 16, and 74 times less at VECtor representing the axis of joihtand|; andl; are 6x 6

n — 256. matrices representing the rigid-body inertias of lilkd body
C;, respectively, wher€; is the composite rigid body formed
5. CRBA Cost Analysis by the rigid assembly of all the links in(i). s andl; are

constants in link- coordinates*® X! and’'X}, are coordi-

This section presents a cost formula for the CRBA, for theate transformation matrices that transform a force vector or
case of a branched kinematic tree having general geometaymotion vector, respectively, from the coordinate system in-
general inertia parameters, revolute joints, and an optiondicated in the subscript to the coordinate system indicated in
floating base. A 6-DoF joint connects a floating base to thiée leading superscript. They are related¥yX)" = 'X4, .
fixed base. Finally, f is a vector representing the force required to im-

Consider the following implementation of the CRBA forpart an acceleration &f to C;. This force is first calculated
a kinematic tree, which calculates the JSIM as defined in link-i coordinates, and is then transformed successively to
eq. (5). It is, essentially, the algorithm described in Feathhe coordinate systems of lidl(i), link A(A(i)), and so on.
erstone (1987, Section 7.2), and it differs from the version For cost calculation purposes, it is assumed that the co-
in Featherstone and Orin (2000) only in the order in whicbrdinates ofs consist of five zeros and a one, so that the
the calculations are performed. This implementation assumesiltiplications|¢s ands f simplify to selecting a column
1-DoF joints. from I¢ and an element frorh, respectively. Given these as-
sumptions, the computational cost of the above algorithm can

fori =1tondo
be expressed as

end Dy (ra +rx) + Dy vx, (24)
fori =ntoldo
f=Is where the symbolsz, rx, andvx denote the operations “rigid-
H;=¢sf body add”, “rigid-body transform”, and “vector transform”,
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respectivelyD, is the number of mobile bodies in the system However, as explained in Khalil and Dombre (2002), if
that are not connected directly to the base (i.e., the numberafode has two or more children, then only one child can
bodies for whichi (i) # 0, or the number of bodies for which have the benefit of DH parameters, while the others must
d; > 1). D, can be expressed as use a general coordinate transformation instead (unless the
mechanism has a special geometry). Here, the terms “DH
node” and “non-DH node” are used to refer to those nodes
that do have the benefit of DH parameters and those that do
not, respectively. The root node has no parent, and is therefore
and its value lies in the range excluded from this classification.

The number of non-DH nodes is determined by the con-
nectivity graph. Ifc(i) is the number of children of node
then the number of non-DH nodes is given by the formula

Dy=Y_min(ld;, —1) =) min(1,A@).  (15)
i=1

i=1

0<Dy<n-—1 (16)

The extreme case d?, = 0 occurs when every mobile
body is connected directly to the base. In this cdse; 1 for N
alli, D, = D, = 0, the JSIM is a diagonal matrix, and its non-DH = Z max(0, c(i) — 1), (17)
value is constant. The runtime cost of calculating this matrix =0
is therefore zero, and so the theoretical minimum complexity _ . .
of the CRBA isO (1); however, the algorithm above does nOe/vhereN is the number of mobile bodies in the tree. In an

reach this theoretical minimum because it contains loops witiflPranched chair(i) < 1 for all, so every node is a DH-
an execution cost o (). node; however, Tree 1 has three nodes with two children each,

A system like this is highly unusual, and mainly of theo_and therefore has three non-DH nodes. Referring back to Fig-

retical interest. Most practical systems will have a value daf'® 1(b), one child of node 1, one child of node 2, and one
D, that is either equal to or slightly less than the maximurﬁhIId of nOQe 3 r_nu;t be non-DH nodes, but we are free to
possible value. Examples of systems in whigh< n —1in- choose Wh'Ch. child in each case.
clude systems representing multiple independent robots, a The best figures forx and vx fqr a non-DH node_ are
the spanning trees of closed-loop mechanisms with multip B+ 48a and 24n + 18a, _respectlvely. The former IS t_he
connections to the base (such as a typical parallel robot). .COSt of t.h ree successive axial screws, according to the figures
Equation (14) clearly shows that the cost of the crBA" McMHIgn and Orin (1995a), and the latter comes from
depends oD, and D, rather than directly on. For an un- table 8-3 in Featherstone_(1987). . -
branched kinematic chain, both, and D; take their maxi- To account for these @fferences in cost, it is necessary to
mum possible values, and the asymptotic complexity will pgeparate, andD_l each into two components: one to count
O(n?). If the tree contains branches, thén (at least) wil how many operaﬂong are performed at the DH nodes, and the
be smaller, and the computational cost correspondingly leS¢Ner to count operations atthe non-DH nodes. Thus, we seek
From the data in Table 2, the cost of the CRBA for a chaifin €xPanded cost formula of the form
with short side branches should converge to half the cost of the
unbranched case for the same number of bodies; the asymp-
totic complexity of the CRBA i) (n log(n)) for a balanced + Do, (ra +1x,) + Dy, 03,
binary tree and (n*®) for the spanning tree of a square grid
Much effort has gone into finding minimum-cost imple
mentations for operations suchsas rx, andvx. The mini-
mum cost forra is 1Qu, but the minimum costs for the other
two depend on how the link coordinate frames are defineB.
This is where the situation becomes more complicated for

branched tree than for an unbranched tree. . L :
implementation listed above reveals that it perforas rx +

The most efficient implementations af andvx require . B ) o
that the coordinate frames be located in accordance with all%e(tl)| v gt eafchlnode tsa’_usf.ylng)x(lz)t 7 Od' v;/_herteer(m IS
of DH parameters (Featherstone 1987; Khalil and Domb ednuin bertﬁ eetm?n”stﬁz). do € udsthe 'n? fe”seis DH
2002), in which case the coordinate transformations implieEH] ™, (0 De the setora nodes, andthe set ofafl non-

by *X” and’X" can be accomplished via the successinOdes’ respectively, that are not directly connected to the root.

O ; . .
application of two axial screw transforms: one aligned witht follows immediately from these definitions that

Dy, (ra +rx,) + Dy, vx, (18)

where the subscripte and b refer to the DH and non-DH
“nodes, respectively. We already know the cost figuresdor
rx, andvx, so we just need expressions g, . . . Dy,.

Dq, counts how many timesa + rx is performed at a
H node, Dy, counts how many timesaz + rx is performed
at a non-DH node, and so on. An inspection of the CRBA

thex-axis, and one aligned with theaxis (Featherstone 1987; Do, = |7, | Du =Y. ()
McMillan and Orin 1995a). The current best figures for these o b 8T Liem : (19)
operations are 32 + 33« for rx, and 2@z + 124 for vx (see Dq, = |71, Dy, = Z‘.% [v(@)].

table Il in McMillan and Orin 1995a).

the base cost of a screw transform, instead of the 45164 that appears in
1. After discussing the matter with Professor Orin, | have used-£35: as  this table.
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Before moving on, let us tie up one loose end. It is clearl. Practical Example
necessary thdd,, + Dy, = Dy andDy, + Dy, = D;. The first
equation follows directly from the definitions @i, 7,, and The purpose ofthis sectionistoillustrate the effect of branches
7,. The second equation can be proved as follows. Startigg the cost of forward dynamics calculations. To this end, it
from eq. (8), presents cost figures for two rigid-body systems: a simple hu-
manoid (or quadruped) consisting of a single rigid torso and
" four 6-DoF limbs, and an unbranched chain with a floating
Dy =) (d—1) base at one end. Both systems have 25 bodies connected to-
i=1 gether by 24 revolute joints; both have a floating base, and

. ) hence 30 DoF in total; and both have general geometry and
= Z (v@I =1 general inertias. Thus, the only relevant difference between
e them is that one is branched and the other is not.
_ Z (i) —n The figures presented here support the following two
P statements.
=Y O+ YOI+ Y @l -n 1. An O (n®) algorithm based on the CRBA and the LTDL
iera iem i#(aUmp) factorization can calculate the dynamics of the hu-
- Z [v(i)| + Z lv(@i)|. manoid more than twice as quickly as it can calculate
p— iem the dynamics of the equivalent unbranched chain.
To follow the first step, observe that — 1 and|v(i)| — 1 2. This O(n®) algorithm can calculate the dynamics of
are the numbers of non-zero elements on rolelow and the humanoid almost as quickly as the fastest)

above the main diagonal, respectively. Thus, the summations ~ @lgorithm.
onthe firstand second lines count the total number of non-z
elements below and above the main diagonal, respectively.
the matrix is symmetrical, the two are the same. The final st
uses the fact thap . . |v()| is just a count of all the

descendants of the root node, and therefore evaluates to bra::iﬂ':g;?;h;kwsemg,:'foﬂgﬁ‘ We compare the costs of var-
Given Dy, . .. Dy, and the previously mentioned costs for. paragrap ’ P

ra, rx, andvx, the computational cost of the CRBA for glous calculations by quoting (_:ost ratios. Unfortgpately, these
bréncﬁed kine’matic tree is numbers depend on the relative cost of an addition compared
to a multiplication, and there is no agreed value for this ratio.
Dy, (32m + 43a) + Dy, (20m + 124) We can overcome this_difficulty by_quoting two fig_ures: one
\ Dy (47m + 58a) + Dy, (24m + 184) (20) based on the assumption that additions are free 4i.e.0),
o ¥ : and the other based on the assumption that an addition costs
When choosing the DH nodes, any choice that maximizes the same as a multiplication (|.ez,; .m). These .represent
two extreme cases, and any realistic assumption about the

s Oé)tm?il(')n (20) gives the cost of the CRBA for afixed-basg()St of an addition will lie somewhere in between. Thus, if
q 9 e say that calculatioX is 2.5 times faster than calculation

system; however, thereisone more optl_mlzatmn onecanmage. 0, and 2.6 times faster if — m, then the realistic
for a floating-base system, which exploits the fact that three of

the DH parameters between linkanda (i) can be set to zero cost ratio wil I|e_ spmgwhere in between. P'V'S'Ons will be
counted as multiplications for cost calculation purposes.

iflink A(i) happens to be "?‘f'oa“”g base (McMillan and Orin The first step is to calculate the varioDgjuantities for the

1995b). This allows a saving of &8+ 21a on each affected h id. Th btained f h - h
operation, and 12 + 8a on each affectedx operation. To umanoid. T ese are obtained from the connectivity graph,

r f ’ which is shown in Figure 6. As the torso is connected to the

incorporate this optimization into the cost formula, we deﬁnﬁxed base via a 6-DoF joint, we actually use two connectivity
a third setr., which is the set of DH nodes that are children ’

of a floating base. We then define the numhiegs= |r.| and graph.s: the Qriginal graph and the expand.ed graph, whgrg the

Dy =), |v(i)|, which count the number of occurrencesla.tter IS obtameql from the f(_)rmer_by repl_acmg the 6-Do|_:Jomt

of therx andvx savings, respectively. The final cost formulawIth the expansion shown insetin the_ diagram. To av_o_ld pos-
is then S|ble_ confusion, we apply a superscrépto the D quantities

obtained from the expanded graph.

Do, (32m + 43a) + Dy, (20m + 124) The factori;ation and b_ack-substitution costs depend on

+ Do, (47m + 58a) + Dy, (24m + 180) 1) D; and Ds, which are obtained from the expanded graph as

o ¥ follows. From Figure 6, one can see that there is one body

—Doc (18m +21a) — Dy (12m + 8a). in the expanded graph for which = 1, one body for which

P‘Xgue obvious conclusion is tha(n®) algorithms are still com-
: getitive with O (n) algorithms, even at relatively high values
n, such as = 30, provided there is a sufficient amount of
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torso

6-DOF joint X These are the only three non-DH nodes in the graph. Each

non-DH node is the root of a subtree containing six nodes, so

root |v(i)| = 6 for each one. Thus, from eq. (19), we have

expansion

DOh=37 Dl,,=3x6=18,
DOa = 21, Dla = Dl - le == 66

~—____ - limb
"mbs Finally, there is only one DH node that is the child of a floating

Fig. 6. Connectivity graph of a 30-DoF humanoid Otbase' and this node also ag)| = 6, so

quadruped mechanism consisting of a torso and four 6-DoF D —1 D. —6
limbs. *- o
For comparison, the corresponding figures for the equivalent
unbranched chain are
d; = 2, and so on, up td; = 6, this body being the torso.
i i Dq, = 24 Dy, = 300
Thereafter, there are four bodies for whigh= 7, four for o 0 ’ L 0 ’
whichd; = 8, and so on, up td; = 12. Thus, from egs. (8) Do, =0, Dy, =0,
and (9), Do. =1, D, = 24.

6 12 Plugging these values into eq. (21) gives the cost of cal-
Dy = Z (i—1+4x Z (-1 =219 culating the JSIM of the humanoid as 2475 2124, and
i=1 =7 the cost of calculating the JSIM of the equivalent unbranched
and chain as 6462 + 441%. Thus, the CRBA runs more than
C -1 v -1 twice as quickly on the humanoid than on the equivalent un-
e AU AU branched chain. The cost ratio is 2.37 if we assume m,
Dz = Z > 4x Z; 2 1039 and 2.61 if we assume = 0.
) - ) Let us now look at the cost of the complete forward dy-
These numbers imply that 48% of the elements in thgymics calculation for both the humanoid mechanism and its
humanoid's JSIM (which is a 3& 30 matrix) are branch- equivalent unbranched chain, and let us compare these figures
induced zeros. To see this, recall that is the number of \ith the cost of calculating the forward dynamics via an effi-
non-zero elements below the main diagonal, as menyoneddrémmn) algorithm. For this comparison, we need a set of
Section 4.1. The total number of non-zero elements is the_r&jst figures for an inverse dynamics algorithm (to calculate
fore 2D; + 30 = 468, and hence the number of zeros ig, eq. 1), and for a0 (n) forward dynamics algorithm.
900_.468: 432. ) o For the inverse dynamics, we use the efficient implemen-
Using the formulae in Table 1, the cost of factorizingation of the recursive Newton—Euler algorithm (RNEA) de-
the humanoid's JSIM (settingiv = m for cost purposes) gcriped in Balafoutis, Patel, and Misra (1988) as Algorithm 3.
is 1258n + 103%, and the cost of back-substitution iSThe cost formula for this algorithm i®37 — 69)m + (81n —
468n + 43& per vector. For comparison, the cost of facgg),. However, these figures refer to an unbranched kinematic
torizing a dense 36 30 matrix is 4930: + 4495, and the  chain with a fixed base. To account for a floating base, we first
cost of back-substitution is 980+ 87Q: per vector. __increaser to 25, which accounts for the extra joint, but costs
To calculate the cost of the CRBA, we need the quantitigs 55 revolute. Then, we add a correction term, Z 13,
Dy, ... Dy pertaining to the original connectivity graph. Inyhich is the difference between the cost of a 6-DoF joint and
this graph, the torso is the only body for whigh= 1;then 5 reyolute joint if both are connected to the root node. This
there are four bodies for which = 2, four forwhichd; = 3, giyes us a cost figure of 2268+ 1972 for the equivalent

i=1

and so on, up t@; = 7. Thus, from egs. (15) and (8) chain. To obtain a figure for the humanoid, we add a further
25 correction of 3x (4m + 8a), which accounts for the extra
Dy = Z min(l, d, — 1) = 24 transformation costs at the three non-DH nodes, giving a cost
i=1 figure of 2275 + 1996:. These correction terms are specific

to this algorithm.

For the O (n) forward dynamics, we use the figures in ta-
ble 1l of McMillan and Orin (1995b), which pertain to a very
efficient implementation of the articulated body algorithm
(ABA). According to this table, the cost formula for an un-
The torso is the only body with more than one child. Only onbranched chain with a floating bas€224: —30)m + (2051 —
child can be a DH node, so the other three are non-DH nod&3)a. This immediately gives us a figure of 5346+ 4883

and

7
D;=0+4x) (i—-1) =84

i=2
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for the cost of the ABA on the equivalent unbranched chain. 30-DoF Unbranched Floating Chain
To obtain a figure for the humanoid, we must add a correcti
of 3 x (66m + 57a) to account for the additional transforma-
tion costs incurred at the three non-DH nodes, resulting in-=
total cost of 5544 + 5054:. This correction term is specific ABA
to the algorithm described in McMillan and Orin (1995b), and
it was obtained with the aid of data in table Il of McMillan
and Orin (1995a).

RNEA CRBA Factor & Solve

30-DoF Humanoid

Based on these figures, the cost of the complete forwa rnEA | CRBA Factor & Solve
dynamics calculation via the CRBA is 64#6+ 5597 for T
the humanoid, and 14556+ 11756 for the equivalent un- SEA | cREa | Ras gggfge
branched chain. As a result of the branches in the kinema

tree, the dynamics calculation for the humanoid is 2.18 time<

faster than for the unbranched chain assumirgm, or 2.25 ABA
times faster assuming= 0. It is also only about 14% slower total arith. ops.

e 0 i 1 1 1 1 1
than the ABA assuming = m, or 17% slower assuming 5000 10,000 15,000 20,000 25.000

a = 0. These results are summarized in Figure 7. Observe
that the ABA's speed advantage is almost completely wipgelg. 7. computational cost of forward dynamics, via CRBA

out by the cost reduction due to branch-induced sparsity. b4 ABA, for the humanoid mechanism shown in Figure 6
round numbers, the ABA is faster by a factor of 2.6 on thg,q an equivalent unbranched chain.

unbranched chain, but only 15% faster on the humanoid. One
may therefore conclude that(n®) algorithms are still com-
petitive with O (n) algorithms, even at quite high valuesmnof
such as: = 30, provided there is sufficient branching in the
kinematic tree. gorithm can be competitive with afl(n) algorithm, even at
n = 30, if there are enough branches in the tree, and if the
. branch-induced sparsity is fully exploited.
7. Conclusion This paper has not considered systems with kinematic

This paper has presented a new factorization algorithm tH2PPS. but the results are relevant to any dynamics algorithm
fully exploits branch-induced sparsity in the JSIM. It is simihatsolves closed-loop dynamics viathe JSIM of the spanning

ple to implement and use, and it incurs almost no overhe&&€:

compared with standard algorithms; yet it can deliver large

reductions in the cost of factorizing a JSIM, and in the cost dklgorithms

using the resulting sparse factors. The complexity of factoriza- . )

tion depends on the number of non-zero elements, rather thAHS @Ppendix lists an algorithm for the sparse LTDLTfactor—

the size of the matrix, and the theoretical lower limitigl). |zalt|on, and a;lgorlthms fqr the four mu!tlpllcatlohs<, Lx,

Some examples are presented of kinematic trees with factr- X+ @1dL " X, whereL is a sparse triangular factor ard

ization complexities ranging fror (n(log(n))?) to O (). is an arbitrary vector or rectangular matrlx..xlﬁs a vector,
This paper has also presented a cost and complexity andi€n the symbols; and y; refer to element of vectorsx

ysis for the CRBA for the case of a branched kinematic tre@"dY; Otherwise they refer to rowof matricesx andy. The

It is shown that the cost of this algorithm can be considefMUltiplication algorithms assume thitis a non-unit trian-

ably less for a branched kinematic tree than for an equivale@iiar factor, as produced by the LTL factorization, in which

unbranched chain, and that the theoretical lower limit on thei 7 1. They can be modified to Wor_k W'_th th_e unittriangular

complexity of the CRBA is0 (1). factors produced b3‘/ t,rlwe LTDL factonzajuon simply by re_plac-
Finally, this paper has presented the results of a detaild} 0ccurrences ofL,;;” with *1” and making any appropriate

costing of the forward dynamics of a 30-DoF branched kingMmPlifications.

matic tree that could represent either a simple humanoid robot o

or a quadruped, and an equivalent 30-DoF unbranched chdir] PL factorization

Itwas shown that a® (n°) algorithmincorporating the CRBA The algorithm below is the LTDL equivalent of the LTL al-

and a sparse factorization algorithm runs 2.6 times slower thgorithm described in Section 2. It expects the same inputs as

an efficientO(n) algorithm (the ABA) on the unbranchedthe LTL algorithm, and requires them to meet the same con-

chain, but only 15% slower on the humanoid. This is mainlditions: i.e., am x n symmetric, positive-definite matrix,

due to theO(n®) algorithm running 2.2 times faster on theand anz-element array., such thatA satisfies eq. (6) and

humanoid than on the unbranched chain. Thuspar®) al-  satisfies eq. (2). This algorithm workssitu, and it accesses
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only the lower triangle of its matrix argument. The computed j=A()
factorsD andL are returned in this triangle. As the diago- end
nal elements of. are known to be 1, only the off-diagonal x; = x;/L;;

elements are returned.

for k =ntoldo
i = Mk)
whilei # 0do
a=Ay/Au
J =1
while j # 0do
A=A, —Aya
J=2()
end
Ay =a
i =A()
end
end

Algorithm fory = L x

fori=ntoldo
yi=L;x
J =)
while j # 0do
yi=yi+ Lijx;
J =)
end
end

end

This algorithm worksin situ on the vectorx, replacing
it with L=x. To implementy = L~'x, the algorithm can
be modified by inserting the liney! = x;” between lines 1
and 2, and replacing lines 4 and 7 with; “= y; — L;; ;"
and"“y; = y;/L;", respectively. Alternatively, one can simply
copyx toy and apply the above algorithm yo

Algorithm for x = L= x

fori =ntoldo
X; = x;/Lj;
J=2@)
while j # 0do
Xj =.Xj _L,‘j.xi
J=x()
end
end

This algorithm worksn situ on the vectoi, replacing it
with LT x. To implementy = L =T x, one must copx to y
and apply the algorithm tg.
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