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A computational method is introduced for modeling the paths of muscles in the human
body. The method is based on the premise that the resultant muscle force acts along the
locus of the transverse cross-sectional centroids of the muscle. The path of the muscle is
calculated by idealizing its centroid path as a frictionless elastic band, which moves freely
over neighboring anatomical constraints such as bones and other muscles. The anatomical
constraints, referred to as obstacles, are represented in the model by regular-shaped, rigid
bodies such as spheres and cylinders. The obstacles, together with the muscle path, define
an obstacle set. It is proposed that the path of any muscle can be modeled using one or
more of the following four obstacle sets: single sphere, single cylinder, double cylinder,
and sphere-capped cylinder. Assuming that the locus of the muscle centroids is known
for an arbitrary joint configuration, the obstacle-set method can be used to calculate the
path of the muscle for all other joint configurations. The obstacle-set method accounts not
only for the interaction between a muscle and a neighboring anatomical constraint, but
also for the way in which this interaction changes with joint configuration. Consequently,
it is the only feasible method for representing the paths of muscles which cross joints
with multiple degrees of freedom such as the deltoid at the shoulder.
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INTRODUCTION

Mathematical models are commonly used to
determine the forces transmitted by the muscles,
ligaments, and articular surfaces at the joints during
movement [1—14]. The results of these studies are
sensitive to the model assumed for the muscle paths
because, for a given configuration of the joints, the
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paths of the muscles determine the lengths, moment
arms, forces, and torques of the muscles at the
joints [15,16].

Two distinctly different models have been used
to represent the paths of muscles in the body: the
straight-line model and the centroid-line model. In
the straight-line model, the path of the muscle is
represented by a straight line joining the centroids of
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the muscle attachment areas [1,5,17-20]. Although
this model is relatively easy to implement, it may
not yield meaningful results when the muscle passes
through a tendon sheath or when it wraps around a
bone or another muscle. Alternatively, the centroid-
line model represents the path of the muscle by a
line that passes through the locus of cross-sectional
centroids of the muscle [10,21-23]. Although the
centroid-line model produces a more realistic des-
cription of the muscle’s line of action, application
of this model is limited by the fact that the locations
of the muscle cross-sectional centroids are difficult
to obtain for even a single configuration of the
joint [21,24-26]. Furthermore, even if the muscle
centroid path is known for one joint configuration,
the problem remains to represent the path of the
muscle for all other configurations of the joint.

Several approaches have been used to approxi-
mate the centroid-line path of a muscle for all joint
configurations. One method is to introduce effective
attachment sites, or via points, at specific locations
along the centroid path, and to assume that the line
of action of the muscle is defined either by straight-
line segments or by a combination of straight-line
and curved-line segments between the via points
[20,27-31]. In either case, the via points remain
fixed relative to the bones even as the joints move.
To account for anatomical constraints, such as when
the muscle wraps over a bone or another muscle,
these via points become active or inactive depending
on the joint configuration. Although this approach is
reasonable when representing the path of a muscle
spanning a simple revolute joint, it is generally not
adequate for joints which have more than one rota-
tional degree of freedom. Joint motion occurring in
more than one plane can cause the muscle path to
slide over the surfaces of the anatomical constraints,
and importantly, the fixed-via-point method does not
account for such effects. This method may therefore
produce discontinuities in the length and moment
arm of the muscle at joint configurations where via
points become active or inactive.

In this paper, an alternate approach is presented
for modeling the path of a muscle for all joint config-
urations. This approach, the obstacle-set method, is

based on three assumptions. First, the force transmit-
ted by a muscle acts along the locus of the transverse
cross-sectional centroids of the muscle {21]. Second,
the centroid path of the muscle can be idealized as
a frictionless elastic band that moves freely over
neighboring anatomical constraints {32,33]. Third,
anatomical structures that constrain the path of the
muscle may be represented by regular-shaped, rigid
bodies such as spheres and cylinders. If the locus of
the muscle centroids is known for an arbitrary joint
configuration, an obstacle-set model may be con-
structed for the muscle path, and, by applying the
algorithms presented in this paper, the path of the
muscle can be calculated for all other configurations
of the joint.

OBSTACLE-SET TERMINOLOGY

In the obstacle-set method, a muscle path is defined
by a series of straight-line and curved-line segments
joined together by via points. These via points may
or may not be fixed relative to the bones. Straight-
line segments span adjacent via points unencum-
bered, whereas curved-line segments wrap around
anatomical structures which constrain the path of
the muscle. An obstacle is a regular-shaped rigid
body that is used to model the shape of a con-
straining anatomical structure; typical examples of
muscle-path constraints are bones and other mus-
cles (see Figure 1). A reference frame is any set of
three orthogonal unit vectors that is fixed on a rigid
body and is used to specify the position and orienta-
tion of the body in space. Bone reference frames are
attached to bones, and obstacle reference frames are
attached to obstacles. A via point is a point along
a muscle path whose position is constrained by the
presence of another anatomical structure. A via point
may be active (the muscle path passes through the
point) or inactive (the muscle path does not pass
through the point). There are two types of via points:
a fixed via point remains fixed in a bone reference
frame and is always active; an obstacle via point is
not fixed in any reference frame, but is constrained
to move on the surface of an underlying obstacle.
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FIGURE 1 Schematic of a hypothetical muscle (A) represented by the obstacle-set model (B and C). The muscle spans a single joint
which connects bones A and B. Reference frames attached to the bones are used to describe the position and orientation of the bones
relative to each other. At certain joint configurations, the muscle contacts the bones and causes the centroid path of the muscle to
deviate from a straight line (A). The muscle path is modeled using a total of seven via points: five of these serve as fixed via points
(P1, P2, S1, 82, and §3); the remaining two are obstacle via points (@ and T) which move relative to the bones and the obstacle.
Points PI and SI are the origin and insertion of the muscle. Points P2 and S3 are bounding-fixed via points. The obstacle is shown
as a shaded circle which represents the cross-section of a sphere or a cylinder. An obstacle reference frame positions and orients the
obstacle relative to the bones. The obstacle is made larger than the cross sections of the bones in order to account for the thickness
of the muscle belly. The obstacle set is defined by the obstacle, the four via points P2, @, T, and $3, and the segments of the muscle
path between the via points P2 and §3. At some joint configurations, the muscle path loses contact with the obstacle and the obstacle
via points then become inactive (C).
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An obstacle via point defines the beginning of con-
tact with the obstacle and may become active or
inactive as contact is made or lost. A fixed via point
that lies adjacent to an obstacle via point in the
path of the muscle is called a bounding-fixed via
point. The portion of the muscle path that interacts
with an obstacle is referred to as an obstacle set.
An obstacle set usually comprises one obstacle, two
bounding-fixed via points, two obstacle via points,
and the path spanned by the muscle between the
two bounding-fixed via points (Figure 1). It should
be noted, however, that some obstacle sets do com-
prise more than one obstacle. Although there is no
restriction on the number of obstacle sets which can
be used to model the path of a muscle, in most cases
a muscle’s path may be accurately reproduced using
a series of fixed via points and just one obstacle
set. We propose that the path of any muscle can be
modeled using one or more of the following obsta-
cles sets: a single sphere, a single cylinder, a double
cylinder, and a sphere-capped cylinder.

The single-sphere obstacle set is comprised of a
sphere, two bounding-fixed via points, and two obsta-
cle via points (Figure 2A). This obstacle set is most
appropriate for modeling the paths of ligaments at a
joint (e.g., the ACL when it contacts the roof of the
intercondylar notch near full extension of the knee).
Within the framework of the obstacle-set method, lig-
aments may be treated as passive muscles. The param-
eters which define the single-sphere obstacle set are
the radius of the sphere, the position and orientation
of a reference frame fixed at the center of the sphere,
and the positions of the two bounding-fixed via points,
each expressed in its own bone reference frame.

The single-cylinder obstacle set is comprised of
a cylinder, two bounding-fixed via points, and two
obstacle via points (Figure 2B). This obstacle set can
be used to model the paths of uniarticular muscles
which wrap around cylindrical structures such as long
bones and the thorax. The parameters which define
the single-cylinder obstacle set are the radius of the
cylinder, the position and orientation of a reference
frame fixed on the cylinder, and the positions of the
two bounding-fixed via points, each expressed in its
own bone reference frame.

The double-cylinder obstacle set is comprised
of two cylinders, two bounding-fixed via points,
and four obstacle via points, two for each cylin-
der (Figure 2C). This obstacle set can be used to
model the path of biarticular muscles such as the
long head of triceps brachii and the rectus femoris.
There are no restrictions on either the size or the
position and orientation of each cylinder used in
the obstacle set, provided that the cylinders do not
interfere with each other in the regions where the
muscle path contacts the cylinders. The parameters
which define the double-cylinder obstacle set are the
radius of each cylinder, the position and orientation
of the reference frame fixed on each cylinder, and
the positions of the two bounding-fixed via points,
each expressed in its own bone reference frame.
The double-cylinder obstacle set differs from two
consecutive single-cylinder obstacle sets in that no
bounding-fixed via point appears between the cylin-
ders. Therefore, the positions of the obstacle via
points in the double-cylinder obstacle set are not inde-
pendent (see Appendix E).

The most complicated of the proposed obstacle
sets is the sphere-capped cylinder. This obstacle set
is comprised of a single sphere, a single cylinder,
two bounding-fixed via points, and three obstacle
via points (Figure 2D). The sphere and cylinder
share a common radius, with the center of the
sphere lying on the axis of the cylinder. The sphere-
capped cylinder was designed to model the paths of
relatively long muscles which span joints with more
than one rotational degree of freedom (e.g., the three
heads of deltoid at the shoulder). The parameters
which define the sphere-capped obstacle set are the
radius of the sphere (which is equal to the radius
of the cylinder), the position and orientation of a
reference frame fixed at the center of the sphere, and
the positions of the two bounding-fixed via points,
each expressed in its own bone reference frame.

OBSTACLE-SET ALGORITHM

The obstacle-set algorithm assumes that the skeleton
is modeled as a set of rigid bodies (bones) which
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articulate at well-defined joints. For a given con-
figuration of the joints, the skeletal model fully
describes the relative positions and orientations of
the bones. Furthermore, since obstacles and fixed via
points are fixed relative to the bones, the positions
and orientations of these objects are also known
for a given configuration of the joints. The prob-
lem, then, is to calculate the unknown positions
of the obstacle via points within the muscle path.
Since the muscle is idealized as a {frictionless elas-
tic band, the path of the muscle is determined by
minimum potential energy. Thus, the problem is
equivalent to finding the minimum-distance path
between the two bounding-fixed via points within
an obstacle set. Consider again the muscle path
shown in Figure 1. The model for the muscle path
is constrained by a single obstacle, which is fixed to
bone A (Figures, 1B and C). The path of the muscle
is defined by the positions of the five fixed via points
and the positions of the two obstacle via points. Via
points Py and P are fixed to bone A, whereas via
points Sy, §,, and S3 are fixed to bone B. For a given
configuration of the joint, the paths of all segments
of the muscle are known, except those between the
bounding-fixed via points, P, and S3. Calculating
the positions of the obstacle via points, @ and T,
then fully describes the muscle path.

There are four steps in the computational algo-
rithm that is used to find the locations of the obsta-
cle via points for a specific obstacle set at a given
joint configuration (Figure 3). First, the positions of
the two bounding-fixed via points are expressed in
the obstacle reference frame. Second, the locations
of the obstacle via points are found assuming that
these points are all active. Third, a wrapping con-
dition is used to determine which, if any, of the
obstacle via points are inactive (see Appendix A). If
any of the obstacle via points are found to be inac-
tive, steps 2 and 3 are repeated with the inactive via
points removed from the calculation of the muscle
path. Fourth, the locations of all active via points are
used to calculate the length of each muscle segment
between the two bounding-fixed via points. Since
the geometry of each obstacle set shown in Figure 2
is different, a separate version of the computational

algorithm given in Figure 3 was developed for each
obstacle set (see Appendices C through F).

APPLICATION TO THE UPPER LIMB

The algorithms given in the Appendices were used
to model the paths of the triceps brachii and deltoid
muscles in the arm. The paths of these muscles were
calculated using a kinematic model of the arm, which
was developed from high-resolution medical images
obtained from the National Library of Medicine’s
Visible Human Male (VHM) dataset [34]. The kine-
matic model includes seven joints and uses thirteen
degrees of freedom to describe the relative move-
ments of seven upper-extremity bones: the clavicle,
scapula, humerus, ulna, radius, carpal bones, and
hand. Locations of the joint centers and joint axes
were derived directly from three-dimensional bone
surfaces, which were reconstructed from the medi-
cal images. The centroid path of each muscle was
calculated from transverse cross sections of recon-
structed muscle surfaces (also reconstructed from the
medical images) taken over the whole length of the
muscle belly. To evaluate the accuracy with which
the obstacle-set model is able to represent the path of
each muscle, we compared the moment arms calcu-
lated from the model with measured values obtained
from human cadavers [35,36]. In the model, as in
the experiments, the moment arm of each muscle
was found by calculating muscle length over the full
range of joint movement, and by then computing
the derivative of muscle length with respect to joint
angle [37-39].

Triceps Brachii

The triceps brachii is a large, thick muscle which is
divided into three parts: the long head, the medial
head, and the lateral head. The long head, which
originates from a depression on the scapula that is
immediately below the glenoid cavity, spans both
the glenohumeral and elbow joints. The medial and
lateral heads, which originate from the posterior
surface of the shaft of the humerus, span only
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FIGURE 3 Flowchart of the obstacle-set algorithm. The purpose of the algorithm is to completely describe-the centroid path of a
muscle for a given configuration of the joints. Given the relative positions of the bones, the locations of all fixed via points are known
and may be expressed in the obstacle reference frame (Step 1). The locations of the remaining via points in the muscle path, the
obstacle via points, may be calculated using one or more of the four different types of obstacle sets described in this paper (Step 2).
A separate version of the obstacle-set algorithm for each of the four different obstacle sets is given in Appendices C-F. Once the
Tocations of the obstacle via points are known, a check is made to determine whether any of these points should be inactive (Step 3).
If an obstacle via point should be inactive, it is removed from the muscle path and the locations of the remaining obstacle via points
are then recomputed (repeat Steps 2 and 3). Finally, the lengths of the muscle-path segments between all of the active via points are

computed (Step 4).

the elbow. All three heads insert on the olecranon
process of the ulna, and so they wrap around the
distal humerus as the elbow is moved into flexion.

Each head of the triceps brachii was represented
as a separate and distinct muscle path with its own

obstacle set. The origin and insertion of each path
were found by inspecting transverse cross-sections
of the muscle obtained from the VHM dataset and by
calculating the centroids of the muscle attachment
areas on the bones; these points were treated as fixed
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via points in the model. Since the medial and lateral ~ and 3). The long head of the triceps is biarticular,
heads are uniarticular, a single-cylinder obstacle set  and so its path was modeled using a double-cylinder
was used to model the way each of these muscles obstacle set: one cylinder was used to model the
wraps around the distal humerus (Figure 4, paths 1 way in which the muscle winds over the neighboring

FIGURE 4 Posterolateral view of the obstacle-set model used to represent the paths of the three heads of triceps brachii. The medial
head (1) and lateral head (3) are each modeled using a single-cylinder obstacle set (obstacles not shown). The long head (2) is modeled
using a double-cylinder obstacle set as shown. The locations of the attachment sites of the muscle and the locations and orientations of
the obstacles were chosen to reproduce the centroid paths of each head. The geometry of the bones and centroid paths of the muscles
were obtained from three-dimensional reconstructions of the anatomical structures (see text).
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muscles at the shoulder, while a second cylinder was
used to model wrapping of the muscle around the
condyles of the humerus (Figure 4, path 2).

Figure 5 shows the variation in the calculated and
measured values of the moment arms as a function
of elbow flexion angle. For the model, these moment
arms were computed with the shoulder in the neutral
position and the humerus lying alongside the torso.
Good agreement between model and experiment
over the full range of elbow flexion indicates that
the paths of these muscles are represented accurately
in the model (cf. gray and black lines). Consistent
with the experimental data, the calculations show
that all three heads of the triceps extend the elbow
over the full range of joint movement [24,36,40].
As the elbow flexes from full extension to 56°, no
contact occurs between the muscles and the bones,
and the path of each muscle is represented by a

Moment Arm (mm)

0

straight line between origin and insertion. At flexion
angles greater than 56°, the muscles wrap around the
condyles of the humerus, and so the obstacle via
points in the model become active. By accounting
for the contact between the muscles and the bones,
the computed extensor moment arms remain larger
than if the muscle paths had been modeled simply
by straight lines (Figure 5, black lines; see also
Figure 9A below).

Deltoid

The deltoid is a large, thick triangular muscle which
is composed of three parts: the anterior head, the
middle head, and the posterior head. The anterior
head originates from the outer third of the anterior
border and upper surface of the clavicle; the middle

Murray [36] N

Lemay [40] —\

20 1
25
—— Model
TS AR [24) o BEXperiment
230 1 t + : t : t
0 20 40 60 80 100 120 140 160

Elbow Flexion (deg)

FIGURE 5 Comparison of measured moment arms (gray lines) and calculated moment arms (black lines) for the three heads of
triceps brachii. The measurements were obtained from cadaver specimens; the calculated values were obtained using the obstacle-set
model shown in Figure 4. Negative values of moment arm indicate elbow extension.
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head originates from the outer margin and upper
surface of the acromion process; and the posterior
head originates from the lower lip of the posterior
border of the spine of the scapula. All three heads
cross the glenohumeral joint and unite to form a
thick tendon, which inserts on the middle of the
outer side of the shaft of the humerus.

Each head of the deltoid was represented by a sep-
arate and distinct muscle path with its own obstacle
set. The origin and insertion of each path were found
by inspecting transverse cross-sections of the muscle
obtained from the VHM dataset and by calculating
the centroids of the muscle attachment areas on the
bones; these points were treated as fixed via points
in the model. A sphere-capped cylinder was used to
model the path of each muscle segment, since all
three heads of deltoid are relatively long and the
joint range of motion at the shoulder is relatively
large (Figure 6, segments 1, 2, and 3). Although the
dimensions of the sphere-capped cylinders are simi-
lar, the position and orientation of each obstacle is
different, reflecting the fact that each head of the
deltoid takes a substantially different course as it
crosses over the shoulder.

Figure 7 shows the variation in the calculated and
measured values of the moment arms of the deltoid
as a function of shoulder abduction. In the model
and in the experiments [35], the shaft of the humerus
was constrained to move in the plane of the scapula,
with no combined axial rotation. Consistent with
experiment, the calculated moment arms vary almost
linearly with abduction. The middle and posterior
heads, respectively, cause abduction and adduction
of the shoulder over the entire range of joint move-
ment in the scapular plane; the anterior head causes
either adduction or abduction, depending upon the
relative orientation of the bones in the scapular plane
(cf. Anterior, Middle, and Posterior in Figure 7).

Effect of Muscle-Path Modeling

To illustrate the differences between the straight-line
model, the fixed-via-point model, and the obstacle-
set model, each was used to calculate the length

and moment arm of the long head of the triceps
brachii as a function of elbow flexion. For these
calculations, the upper arm was positioned along-
side the torso with the humerus either in neutral
rotation or in 45° internal rotation. In each model,
the locations of the origin and insertion sites were
identical. The obstacle-set model has been described
previously (see Triceps and Figure 4 above). The
path of the muscle in the fixed-via-point model
was designed to closely follow the path prescribed
in the obstacle-set model with the shoulder in the
neutral position. Specifically, the via points in the
fixed-via-point model were chosen to lie on the sur-
face of the cylinder in the obstacle-set model. Fur-
thermore, the elbow flexion angles at which these
via points become active or inactive were selected
so that the muscle length changed smoothly as the
elbow flexion angle was varied with the shoulder in
the neutral position.

The lengths and moment arms obtained by the
straight-line model are noticeably different from
those obtained by the fixed-via-point and obstacle-
set models at large flexion angles of the elbow
(Figures 8 and 9). The straight-line model also
yields values of the moment arm which are sig-
nificantly different from measurements reported in
the literature (cf. Straight in Figure 9A with gray
lines in Figure 5). Perhaps most significantly, at
flexion angles greater than 120°, the straight-line
model indicates that the long head of the triceps
acts to flex the elbow, whereas the fixed-via-point
and obstacle-set models both show, in agreement
with experiment, that the muscle acts to extend the
elbow throughout the range of joint movement (cf.
Straight with Fixed and Obstacle in Figure 9A).

With the shoulder in the neutral position, all three
models yield identical values for the muscle lengths
and moment arms between 0 and 56° of elbow
flexion. At these angles, the path of the muscle in
each model is defined by a straight line between the
origin and insertion (Figures 8 and 9, solid lines). At
flexion angles greater than 56°, additional via points
become active in the obstacle-set and fixed-via-point
models in order to account for contact between
the muscle and the humeral condyles. Although the
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FIGURE 6 Posterolateral view of the obstacle-set model used to represent the paths of the three heads of deltoid. The anterior
head (1), middle head (2), and posterior head (3) are each modeled using a sphere-capped cylinder obstacle set. Only the obstacle-set
used to model the middle head (2) is shown. The paths of the three heads are modeled using different sizes, positions, and orientations
for the obstacles. The locations of the attachment sites of the muscle and the locations and orientations of the obstacles were chosen
to reproduce the centroid paths of each head. The geometry of the bones and centroid paths of the muscles were obtained from

three-dimensional reconstructions of the anatomical structures.

muscle lengths and moment arms calculated by these
two models are in close agreement at large flexion
angles, minor differences are apparent.

With the shoulder in the neutral position and the
elbow flexed beyond 56°, the moment arm curves

for the fixed-via-point model are characterized by
a series of concave-upward line segments joined
together by corners (Figure 9A, Fixed). Each corner
is the result of a fixed via point becoming active
at a particular elbow flexion angle. If a fixed via
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FIGURE 7 Comparison of measured moment arms (gray lines) and calculated moment arms (black lines) for the three heads of
deltoid. The measurements were obtained from cadaver specimens; the calculated values were obtained using the obstacle-set model
shown in Figure 6. Positive values of moment arm indicate shoulder abduction.

point was not added to the muscle path at each
of these flexion angles, the moment arm curves
would continue their concave-upward trend, thereby
mimicking the results obtained by the straight-line
model (Figure 9A, Straight). By adding a new via
point, a new straight-line model is initiated that
more closely approximates the path of the real
muscle in the region of flexion where the via point
became active. In contrast, the moment arm curves
obtained by the obstacle-set model exhibit only one
corner at 56°, which corresponds to the flexion
angle at which the obstacle via points become active
(Figure 9A, Obstacle). Beyond 56° of elbow flexion,
the obstacle-set moment arm curves are smooth
and bend concave-downwards, much like the curves
obtained from experiment (cf. Obstacle in Figure 9A
with gray lines in Figure 5). This result is indicative
of the fact that the obstacle-set model accounts for
the actual, curved path of the muscle.

Between 0 and 56° of elbow flexion, the lengths
and moment arms obtained by each model are
slightly different for the neutral and internally-
rotated positions of the shoulder (cf. solid and dotted
lines in Figure 9A). This occurs because a change in
the configuration of the shoulder causes the attach-
ment sites of the muscle to move relative to each
other. For the straight-line and obstacle-set models,
the difference in muscle moment arms between
the two shoulder positions continues throughout the
range of elbow flexion because each of these models
continues to take into account the change in the rela-
tive positions of the muscle attachment sites. In the
fixed-via-point model, however, the moment arms
are exactly the same at all flexion angles greater than
56°, irrespective of the shoulder position (compare
solid and dotted lines for Fixed in Figure 9A). Once
the first fixed via point becomes active for a given
shoulder position, the length of the path segment
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FIGURE 8 (A) Comparison of muscle lengths for the long head of triceps obtained using the straight-line model (Straight),
fixed-via-point model (Fixed), and obstacle-set model (Obstacle). For each model, muscle length was computed over the entire
range of elbow flexion with the humerus positioned alongside the torso in neutral rotation (solid lines) and in 45° internal rotation
(dotted lines). (B) Expanded scale of the graph in (A), where the muscle lengths obtained using the fixed-via-point and obstacle-set
models are shown near the elbow flexion angle where the muscle first begins to wrap around the obstacle (cylinder) at the elbow. The
fixed-via-point model produces a discontinuity in muscle length when the shoulder is rotated 45° internally (Fixed, dotted line).

between the origin and the fixed via point is fixed,
and subsequent changes in muscle length depend
only on the flexion angle of the elbow. Conse-
quently, at the flexion angle where the first via point

becomes active, a discontinuity results in the muscle
length, and therefore in the moment arm, for shoul-
der positions other than neutral (dotted lines for
Fixed in Figures 9A and B). Because the locations
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FIGURE 9 (A) Comparison of moment arms for the long head of triceps obtained using the straight-line model (Straight),
fixed-via-point model (Fixed), and obstacle-set model (Obstacle). For each model, the moment arms were computed over the entire
range of elbow flexion with the humerus positioned alongside the torso in neutral rotation (solid lines) and in 45° internal rotation
(dotted lines). (B) Expanded scale of the graph in (A), where the moment arms obtained using the fixed-via-point and obstacle-set
models are shown near the elbow flexion angle where the muscle first begins to wrap around the obstacle (cylinder) at the elbow. The
fixed via-point model produces a discontinuity in moment arm when the shoulder is rotated 45° internally (Fixed, dotted line).

of the via points for the fixed-via-point model were
chosen with the shoulder in neutral rotation, those
via-point locations are valid only for that particular
configuration of the joint. This result illustrates a

major limitation of the fixed-via-point model when
it is used to represent the paths of muscles at joints
which have more than one rotational degree of
freedom.
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DISCUSSION

The obstacle-set model approximates the centroid
path of a muscle for all configurations of the joint.
It therefore shares many of the same limitations
with other centroid-line models such as the fixed-
via-point model. First, determining the actual cen-
troid path of a muscle is difficult and requires a
large database, particularly if the joint configura-
tion changes. Centroid paths can usually be obtained
only for a limited number of muscles and only for
a single configuration of the joint. Second, cen-
troid paths derived from cadaver measurements will
generally underestimate the distance between the
muscle centroid line-of-action and the joint axis
of rotation because muscle tone is neglected in
these measurements. In this respect, the straight-
line model may produce a better approximation of
the true muscle path than its centroid-line coun-
terpart [19]. Third, assuming that the muscle force
acts along the centroids of the muscle cross-sections
presumes that the attachment sites can be modeled
as single points. This assumption may be reason-
able for muscles which attach over relatively small
areas of the bones (e.g., medial and lateral heads of
gastrocnemius on the distal femur), but it is undoubt-
edly limiting for broad, fan-shaped muscles which
attach over larger regions (e.g., serratus anterior,
subscapularis, and infraspinatus on the scapula). One
way to circumvent this difficulty is to model the
muscle using several distinct paths. For example,
Hogfors et al. [32] modeled the action of the trape-
zius by dividing the muscle into four separate paths,
with the origin and insertion of each path repre-
sented as single points. In a later study, Van der
Helm and Veenbaas [41] showed that no more than
six paths are needed to accurately model the action
of any muscle in the body.

Despite the above limitations, the obstacle-set
model for representing muscle paths is more accurate
than previous models reported in the literature
[19,20,27]. While the straight-line model may pro-
duce reasonable results under certain circumstances
[19,42], it cannot provide meaningful results over
an entire range of motion for many of the joints.

In the case of the long head of the triceps brachii,
for example, contrary to experimental findings, the
straight-line model causes the triceps to flex rather
than extend the elbow at large flexion angles of
the joint (cf. Straight in Figure 9A with gray lines
in Figure 5). Although the fixed-via-point model
accounts for the effects of neighboring anatomical
constraints, it does not allow for the possibility of
relative movement between the muscle and the con-
straints. As indicated by the results of Figures 8
and 9, discontinuities in the calculated length and
moment arm of the muscle may occur as a result of
this limitation. The obstacle-set model accounts not
only for the interaction between the muscle path and
the neighboring anatomical constraints, but also for
how this interaction changes with a change in joint
configuration. Consequently, the obstacle-set model
is the only model that can be used to represent the
paths of muscles which cross joints with multiple
degrees of freedom (e.g., deltoid at the shoulder).
Although the obstacle-set model can provide an
accurate representation of a muscle’s path, the posi-
tions of all fixed via points and the positions and
orientations of all obstacles must be carefully chosen
in order to reproduce the actual path of the muscle
for the entire range of joint movement. There are
two necessary and sufficient conditions for ensuring
that this requirement is met: first, the model must
accurately reproduce the centroid path of the muscle
for an arbitrary joint configuration; and second, the
model must accurately reproduce the moment arms
of the muscle over the full range of joint move-
ment. Since the moment arm of the muscle is equal
to the total derivative of muscle length with respect
to joint angle, these two conditions should guarantee
that the actual muscle path is represented accurately
in the model for all configurations of the joint. (See
Pandy [43] for a review of muscle moment arms.)
In order to model the muscle centroid path for
an arbitrary joint configuration, the actual muscle
centroid path must be known for the configura-
tion in question. The actual centroid path can be
found by reconstructing two-dimensional medical
images obtained either from cadaver specimens or
from living people. Using the reconstructed muscle



16 B. A. GARNER AND M. G. PANDY

centroid path as a reference, the locations of the
fixed via points and the positions and orientations of
the obstacles can be chosen so that the muscle path
is accurately modeled for the given joint configu-
ration. In this study, the obstacle-set models of the
triceps brachii and deltoid muscles were developed
using a computer graphics workstation and a Graphi-
cal User Interface, which enabled the obstacle-set
parameters to be interactively adjusted so as to
reproduce the muscle centroid paths obtained from
the reconstructed bones and muscles of the VHM
male cadaver.

Once the muscle centroid path has been mod-
eled for one configuration of the joint, the moment
arms calculated in the model can be compared with
measured values obtained over the entire range of
joint movement (Figure 5, gray and black lines). If
needed, minor trial-and-error adjustments can then
be made to the locations of the fixed via points
and/or to the locations and orientations of the obsta-
cles until an acceptable level of agreement is found
between model and experiment. Once again, in this
study a computer graphics workstation and a Graphi-
cal User Interface were used to make such adjust-
ments and to visualize the effects of these changes
on the paths of the modeled muscles.

APPENDIX A — WRAPPING CONDITION

Step 3 of the obstacle-set algorithm is to deter-
mine whether or not, for a given joint configuration,
a muscle path wraps around an obstacle; that is,
whether or not the obstacle via points are active (see
Figure 3, Step 3). This wrapping condition changes
with joint configuration because the bounding-fixed
via points move with respect to the obstacle. Mathe-
matically, the wrapping condition is defined in terms
of the angle formed by the muscle path as it wraps
over the surface of an obstacle (see Figure A). If the
wrapping angle is greater than 180°, we conclude
that wrapping should not occur.

A computationally efficient way to determine
whether the wrapping angle exceeds 180° is to
examine the orientation of the two obstacle via

points relative to the center of the obstacle in the
plane normal to the curvature of wrapping. Appen-
dices C—F describe how the coordinates of the
obstacle via points are computed for each obstacle in
this plane. In general, the relative orientation of three
points in a plane can be determined by calculating
the determinant of the following matrix:

X o1
Det=|X, ¥, 1
X3 Y3 1

if Det > 0 orientation is
unter clockwise
=4 & . . (A1)
if Det = 0 points are colinear

if Det < O orientation is clockwise

where (X1,Y7), (X»,Y3), and (X3,Y3) are the xy
coordinates of the three points in question. For
our case, if the origin of an zy coordinate system
is centered at the obstacle center in the plane of
curvature, then the wrapping condition reduces to:

Det = (Q, T, — Q,T,) = if(R)(Det) < 0,

then wrapping does rot occur (A2)

where (Q,, Q,) are the coordinates of the first obsta-
cle via point, (T;,T,) are the coordinates of the
second obstacle via point, (0,0) is the origin of
the coordinate system, and R is the obstacle radius
(the sign of the radius determines the wrapping
direction — see Appendix B).

APPENDIX B — CIRCLE TANGENCY

Step 2 of the obstacle-set algorithm is to compute
the locations of the obstacle via points associated
with an obstacle (see Figure 3, Step 2). By defi-
nition, obstacle via points are located on the sur-
face of an obstacle. To ensure a minimum-distance
muscle path, straight-line segments which join the
obstacle via points to their neighboring bounding-
fixed via points must be tangent to the obstacle
surface. These two geometric conditions, together
with the fact that both a sphere and a cylinder
are circular in cross-section, may be used to cal-
culate the coordinates of the obstacle via points
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(A)

P

(B)

©

D)

FIGURE A lustration of the wrapping condition. In each configuration, the obstacle set consists of two bounding-fixed via points,
P and S, two obstacle via points, @ and T, a single obstacle, and the muscle path between P and S. The locations of Q and T are
computed using the tangency equations for right-handed wrapping described in Appendix B. The wrapping condition is based on the
angle formed by the arc from Q to T, referred to as the wrapping angle (see text). In (A) the wrapping angle is less than 180° and
in (B) the wrapping angle is equal to 180°. Thus, in these configurations, the obstacle via points are assumed to be active, and the
muscle path passes through them. In (C) and (D), because the wrapping angle is greater than 180°, the obstacle via points are assumed
to be inactive, and the muscle path does not pass through these points.

in the plane of the cross-section (i.e. two of the
three coordinates for each obstacle via point may
be found). Appendices C—F describe how to define
the plane of cross-section for each obstacle within
an obstacle set.

Consider a generic obstacle set with two bounding-
fixed via points, P and S, two obstacle via points, Q

and T, and one obstacle with radius R and center point
O (see Figure B). In the plane of the cross-section, the
obstacle is described by a circle. The problem is to
compute the locations of @ and T given the locations
of P and S, subject to the geometric conditions noted
above. Focusing on line segment PQ, two constraint
equations may be derived:
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FIGURE B [lustration of the circle tangency and wrapping direction. The obstacle set consists of two bounding fixed via points, P
and S, two obstacle via points, @ and T, a single obstacle of radius R, and the muscle path between P and S. The zy coordinates of Q
and T are computed using the tangency constraint equations and the known locations of P and S. Two sets of solutions are possible:
one solution leads the path to wrap around the obstacle in a right-handed sense (thick solid line); the other solution leads the path to

wrap in a left-handed sense (thin dotted line).
R?=Q:+Q,
R2+(Px_QJE)Z'F(PQJ*Qy)z:Pf-!-PyZ
(B.2)

(B.1)

These equations may be combined, squared, and
rearranged to eliminate ()

R'=PlQi+ PHR* - Q)+ 2P,Q.(R* — P,Q,)
(B.3)
Using the quadratic formula, the solution for @), is:

P,R*+ RP,\/ P} + P} — R?
Q=

(P} + P))

(B.4)

Similarly, the solution for @, is:

P,R* ¥ RP,y/ P2+ P} — R?

. (P2 + P2

(B.5)

Equations B.4 and B.5 each have two solutions,
corresponding to the two possible directions which
the path can take around the circle. If the top
solution set is used (“+” in B.4 and “~” in B.5) the
path will wrap in a right-handed sense (with respect
to the z-axis) from P to S. If the bottom solution
set is used (“—” in B.4 and “+” in B.5) the path
will wrap in a left-handed sense. Either wrapping
direction can be specified by always using the top
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solution set and giving a signed value to the radius,
R. In this way, positive and negative values for R
would correspond to right-handed and left-handed
wrapping, respectively. The top solution set for Q,
and the analogous solution set for T (note the sign
reversal) are:

P,R*+ RP,,/P}+ P2 — R?
Q:r = :

(P;+P))
P,R* — RP,\/P?+ P} — R?
= : B.6
% (P4 P) 0
SR’ — RS,y /S + 82— R?
T, = 0 S
/ (S7+5)
SyR* + RS,/ S2+ S2 — R?
= (B.7)

(7 +5))

Step 4 of the obstacle-set algorithm is to com-
pute the segment lengths of the respective muscle
path segments (see Figure 3, Step 4). It is con-
venient, while doing calculations in the plane of
the cross-section of the obstacle, to also compute
the planar component of the segment lengths (see
Appendices C~F). The planar components of the
straight-line segments, [[PQ|,, and ||TQ],,, may
be computed simply as the straight-line distance
between the respective points. The planar compo-
nent of the arc length of segment ||QT ||, is found
using the law of cosines, thus:

R COS—I 1— (T:L - Qx)z'*'(Ty - Qy)z
2R?

10T |2y =

(B.®)

APPENDIX C — SINGLE SPHERE
OBSTACLE-SET ALGORITHM

This version of the obstacle-set algorithm computes
the minimum-distance path around a single-sphere
obstacle set (see Figures C and 2A). The locations
of the sphere center, O, and the bounding-fixed via
points, P and S, are known and are assumed to be

expressed in the sphere reference frame (Figure C,
Step 1). The locations of the obstacle via points, Q
and T, are computed based on the fact that all points
along the minimum-distance path around a sphere
lie in a plane which passes through the center of
the sphere.

Reference Frame

(4 = origin of frame, center
of the sphere
Axes = orthonormal, arbitrarily oriented

Parameters
R => radius of sphere (positive only —
see Appendix B)
Inputs
P = bounding-fixed via point,
start of path
S = bounding-fixed via point,
end of path
Outputs
0 = obstacle via point, start of path
which contacts the sphere
T = obstacle via point, end of path

which contacts the sphere
Lengths = lengths of path segments
between P, Q, T, and S

Compute Locations of Obstacle Via Points
(Figure C, Step 2)

Based on the condition mentioned above, points O,
P, Q, T, and §, lie in a common plane. This plane
may be defined from the known locations of O, P,
and S. We define the plane in terms of a temporary
reference frame whose z-axis is normal to the plane
and whose origin is at the center of the sphere. The
rotation matrix transforming point coordinates from
the sphere reference frame to the plane reference
frame may be computed as:

os
M = | N xOS | = 3 x 3 rotation matrix (C.1)
N
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Inputs radius R;
bounding fixed via points P and S

express P and S in sphere frame

Step 2 -

compute rotation matrix M for
plane reference frame (C.1-C.4)

v

express P and S in plane frame (C.5)
-—> p and s, respectively

Y

compute xy coordinates of q (C.6);
compute xy coordinates of t (C.7);
z coordinates of ¢ and t are zero (C.8)

Y

express ¢ and t in plane frame (C.9)
—> Q and T, respectively

v

muscle path is

Step 3 Y

Q and T inactive (C.10)? >t

yes

straight line

fromPto S

Step 4

compute lengths of path segments (C.11)

Outputs coordinates of obstacle via
points Q and T; segment lengths

FIGURE C Flowchart of the single-sphere obstacle-set algorithm. Symbols are defined in the text.

where
P LSz, Sy, S-]

S = e
\/ 52+ 52+ 52

=> the unit vector from O to S

N = OP x OS = the unit vector normal
to the plane (z-axis)

(C.2)

(C.3)

[P, Py, P.]

\/ P2+ P:+ P?

from O to P (C.4)

OP = => the unit vector

Points P and S may then be expressed in the
plane reference frame by a simple transformation
(points expressed in the plane reference frame will
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be written in lower case):

p=[M]P s =[M]S (C.5)

Within the plane reference frame, the locations of
points ¢ and ¢ may be found using the circle tan-
gency equations (see Appendix B):

PR + Rpyy /D% + P — R?

Gz =
(02 +p})
pyR: — Rpyq/p2 + p; — R?
qy = : (C.6)
! % +pp)
s, R — Rsyy/s2 + s% — R?
t, =
* (si + 55)
syR* + Rsy[s2+ 82 — R?
t, = S (C.7)
(s3 +sy)
=0 t,=0 (C.8)

These points are then expressed in the sphere refer-
ence frame, thus:

0=M1"q T=[M"t (C.9)

Determine Wrapping Conditions (Figure 3,
Step 3)

To determine whether or not @ and T are active,
the wrapping conditions (see Appendix A) may be
applied using @ and T expressed in the plane refer-
ence frame (i.e; Equation A.2 is used with g and ¢
defined as in Equations C.6 to C.8)

Det = (gut, — gyt.) = if (R)(Det) <0,

then wrapping does not occur (C.10)

Compute Muscle Segment Lengths (Figure 3,
Step 4)

If points @ and T are inactive, the minimum-distance
path is simply a straight line between points P and
S. Otherwise, the minimum-distance path traverses
from P, through @, around the sphere to T, and

terminates at S (see Figure 2A). The lengths of
segments PQ and TS may be computed simply as the
straight-line distance between the respective points.
The arc length of line segment QT is found using
the law of cosines, thus:

(qe — tl‘)z + (Qy - ty)z
2R?

|QT | = RCos™! (1.0 -
(C.11)

APPENDIX D — SINGLE CYLINDER
OBSTACLE-SET ALGORITHM

This version of the obstacle-set algorithm computes
the minimum-distance path around a single-cylinder
obstacle set (see Figures D and 2B). The locations
of the origin of the cylinder reference frame, O, and
the bounding-fixed via points, P and S, are known
and are assumed to be expressed in the cylinder
reference frame (Figure D, Step 1). The locations
of the obstacle via points are computed based on
the fact that the minimum-distance path around a
cylinder forms a straight line in the space tangent
to and wrapping around the cylinder (like a straight
line drawn on a piece of paper wrapped around the
cylinder).

Reference Frame

o = origin of frame, any convenient point
on the axis of the cylinder

=> z-axis aligned with axis of the
cylinder, - and y-axes orthonormal

Axes

Parameters

R = radius of cylinder (positive or
negative — see Appendix B)

Inputs
P = bounding-fixed via point, start of path
S = bounding-fixed via point, end of path
Outputs

o = obstacle via point, start of path
contact with cylinder
T => obstacle via point, end of path
contact with cylinder
Lengths => lengths of respective path segments
between P, Q, T, and S
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radius R;

bounding fixed via points P and S

express P and S in cylinder frame

Step 2 Y

compute xy coordinates of Q (D.1);
compute xy coordinates of T (D.2)

¥

compute xy coordinates of
segment lengths in xy plane (D.3)

v

compute 7 coordinates of Q (D.4);
compute z coordinates of T (D.5)

muscle path is

Step 3 Y

Q and T inactive (D.6)?

yes

straight line

fromPtoS

compute lengths of path segments (D.7)

Outputs

points

coordinates of obstacle via
and T; segment lengths

FIGURE D Flowchart of the single-cylinder obstacle-set algorithm. Symbols are defined in the text.

Compute Locations of Obstacle Via Points
(Figure D, Step 2)

The projection of the cylinder onto the xzy-plane of
the cylinder reference frame is a circle. Because
the line segments PQ and TS must be tangent to
the cylinder, the 2 and y coordinates of @ and T
may be found using the circle tangency equations
(Appendix B), thus:

P,R>+ RP,,/P2+ P2 — R?
Q _ Y x Y

(P2 +P))

P,R* — RP,/P}+ P} — R?
Qy:

(P} +P))

(D.1)

S,R* — RS,/ 5%+ 57 — R?
T, = :
‘ (S7+5))
SyR* + RS,/ S2+ 52— R?
T, = : (D.2)

(S:+ S

The z coordinates of Q and T are computed based
on the condition that the path forms a straight
line in the space wrapping around the cylinder. To
compute these coordinates, it is first necessary to
compute the lengths of the path segments in the
zy plane. The lengths of |PQ]., and ||TS||,, may
be computed simply as the straight-line distance
between the respective points. The length of line
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segment ||QT |, is found using the law of cosines,
thus:

o7,
RCos™! (1.0 QT+, - Ty)Z)

2R?

(D.3)

Knowing the lengths of the path segments in the zy
plane, the z coordinates of Q and T may be found
using similar triangle formulas, thus:

Qz = Pz +
1PQ oy + |QT [y + I TS |2y

(D.4)

(S — PITS ||y
T.=5,-
IPQ 2y + QT l|zy + [ TS |y

(D.5)

Determine Wrapping Conditions (Figure D,
Step 3)

To determine whether or not Q and T are active,
the wrapping conditions (see Appendix A) may be
applied using the z and y coordinates of these points
(Equation A.2):

Det = (Q.T, — Q,T) = if (R)(Det) < 0,

then wrapping does not occur (D.6)

Compute Muscle Segment Lengths (Figure D,
Step 4)

If points Q and T are inactive, the minimum-distance
path is simply a straight line between points P and
S. Otherwise, the minimum-distance path traverses
from P, through @, around the cylinder to T, and
terminates at S. The lengths of segments PQ and
TS may be computed simply as the straight-line
distances between the respective points. Finally, the
entire length of line segment QT may be found using
equations D.3 to D.5, thus:

|07 | = \/IQT |2, + (T. - Q. (D.7)

APPENDIX E — DOUBLE CYLINDER
OBSTACLE-SET ALGORITHM

This version of the obstacle-set algorithm computes
the minimum-distance path around a double cylinder
obstacle set (see Figures E and 2C). The locations of
the cylinder reference frame origins, U and V, and
the bounding fixed via points, P and S, are known
and are assumed to be expressed in the reference
frame of the appropriate cylinder (Figure E, Step
1). The locations of the obstacle via points are
computed by iteratively applying the single cylinder
algorithm to the obstacle via points of each cylinder.
Note that, for each cylinder, an obstacle via point on
the opposite cylinder acts as a bounding-fixed via
point, as expected by the single cylinder algorithm.

Reference Frames

U-Origin = any convenient point along
axis of the U-cylinder

U-Axes = z-axis aligned with axis of
U-cylinder, z- and y-axes
orthonormal

V-Origin = any convenient point along axis
of the V-cylinder

V-Axes = z-axis aligned with axis of
V-cylinder, z- and y-axes

orthonormal
Parameters
Ry = radius of U-cylinder (positive or
negative — see Appendix E)
Ry = radius of V-cylinder (positive or
negative — see Appendix E)
Inputs
U = origin of U-cylinder frame
expressed in V-cylinder frame
|4 = origin of V-cylinder frame
expressed in U-cylinder frame
M => rotation matrix transforming
points from U-cylinder to
V-cylinder frame
P =- bounding fixed via point (in
U-cylinder frame), start of path
S = bounding fixed via point (in

V-cylinder frame), end of path
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Inputs radii Ry and Ry cylinder origins U and V;
matrix M; bounding fixed via points P and S

Step 1 express P in U-cylinder frame;
express S inV-cylinder frame

Y

guess H inV-cylinder frame

¥

express H in
—| U-cylinder frame
—h (E.1)

compute Q and G using
> single cylinder algorithm
with U-cylinder, P and h

y

express G in
V-cylinder frame
—>g(E.2)

compute H and T using
> single cylinder algorithm
with V-cylinder, g and S

;____l

compare guessed location of H
with computed location of H;
both versions identical?

yes

no ¥

modify guessed location of H
according to root-solving method

v

Step 3

Q and G inactive (E.3)?

v

H and T inactive (E.4)?

single

segment lengths already computed by

cylinder algorithm

coordinates of obstacle via

single cylinder
algorithm with
V-cylinder

single cylinder
algorithm with
U-cylinder

FIGURE E Flowchart of the double-cylinder obstacle-set algorithm. Symbols are defined in the text.
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Outputs

o = obstacle via point (in U-cylinder
frame), start of path which
contacts U-cylinder

G =- obstacle via point (in U-cylinder
frame), end of path which
contacts U-cylinder

H = obstacle via point (in V-cylinder
frame), start of path which
contacts V-cylinder

T => obstacle via point (in V-cylinder
frame), end of path which
contacts V-cylinder

Lengths = lengths of path segments
between points P, @, G, H,
T, and S

Compute Locations of Obstacle Via Points
(Figure E, Step 2)

The double-cylinder obstacle set is treated as two
single-cylinder obstacle sets except that the locations
of the two inner obstacle via points (G and H) are
not independent. Specifically, the location of H on
the V-cylinder affects the locations of @ and G
on the U-cylinder, and the location of G on the
U-cylinder affects the locations of H and T on
the V-cylinder. Therefore, computing the locations
of points Q, G, H, and T requires an iterative
approach. The approach we have adopted is as
follows: 1) guess the location of H; 2) compute the
location of @ and G based on the initial guess;
3) compute the locations of H and T based on the
location of G; and 4) iteratively modify the guessed
location of H until it matches the computed location
of H. Matching the =z, y, and z coordinates of
the guessed and computed locations of H forms
three constraint equations which can be solved using
standard root-solving techniques.

In order to compute the locations of @ and G
based on the guessed location of H (step 2 above),
the coordinates of H must be expressed in the U-
cylinder frame (points expressed in the reference
frame of the cylinder opposite their own will be

written in lower case):

h=V +M|"H (E.1)

The single cylinder algorithm can then be applied
to the U-cylinder as if A were the second bounding-
fixed via point (i.e; Appendix D is applied with P
and h as inputs for the bounding-fixed via points,
and @ and G as outputs for the obstacle via points).

The same process can be done in reverse to
compute the locations of T and H based on that of
G (step 3 above). First, the coordinates of G must
be expressed in the V-cylinder frame:

g=U+[MIG (E.2)

Then, the single cylinder algorithm can be applied to
the V-cylinder as if g were the first of its bounding-
fixed via points (i.e; Appendix D is applied with g
and S as inputs for the bounding-fixed via points,
and H and T as outputs for the obstacle via points).

Determine Wrapping Conditions (Figure E,
Step 3)

To determine whether or not  and G are active,
and whether or not H and T are active, the wrapping
conditions (see Appendix A) may be applied using
z and y coordinates of these points (Equation A.2):

Det = (Q.G, — Q,G,) = if (Ry)(Det) <0
then path does not contact U-cylinder (E.3)

Det = (HrT;J - Hz/Tr) = if (Ry)(Det) < 0
then path does not contact V-cylinder (E.4)

If the pair of obstacle via points associated with one of
the cylinders proves to be inactive, the single cylinder
algorithm should be applied to the other cylinder.
The single cylinder algorithm may then show that
the other cylinder is also inactive, in which case the
minimum-distance path around the double-cylinder
set is simply a straight line between P and S.

Compute Muscle Segment Lengths (Figure E,
Step 4)

If all the obstacle via points of the double-cylinder
obstacle set are active, the minimum-distance path
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traverses from P, through @, around the U-cylinder
to G, across the gap between cylinders to H, around
the V-cylinder to T, and finally terminates at S
(see Figure 2C). The lengths of segments PQ, GH,
and TS may be computed simply as the straight-
line distances between the respective points. The
lengths of segments QG and HT are calculated
during iterations performed in steps 2 and 3 above.

APPENDIX F — SPHERE-CAPPED
CYLINDER OBSTACLE-SET ALGORITHM

This version of the obstacle-set algorithm com-
putes the minimum-distance path around a sphere-
capped cylinder obstacle set (see Figures F and 2D).
The locations of the origin of the sphere-capped
reference frame, O, and the bounding fixed via
points, P and S, are known and are assumed to be
expressed in the sphere-capped cylinder reference
frame (Figure F, Step 1). The locations of the obsta-
cle via points, @, W, and T, are computed by
methodically considering a number of possible con-
figurations for the minimum-distance path (i.e; the
path could contact only the cylinder section, only the
sphere section, both the cylinder and sphere sections,
or neither). If contact is found to occur on both
the cylinder and sphere sections, the locations of
the three obstacle via points are computed by an
iterative process which attempts to simultaneously
satisfy the minimum-distance conditions of both the
sphere and the cylinder.

The sphere-capped cylinder algorithm further ass-
umes a particular configuration for the bounding
fixed via points. Specifically, the bounding-fixed via
point at the start of the muscle path is assumed
to be located more towards the cylinder section of
the sphere-capped cylinder than the bounding fixed
via point at the end of the muscle path (i.e; the z
coordinate of P is assumed to be less than or equal
to the 2 coordinate of S). If the opposite happens
to be true (i.e; the z coordinate of S is greater than
the z coordinate of P), then the algorithm should be
applied with S as the starting point, P as the ending
point, and the sign of the radius reversed (i.e; the
algorithm should be applied with S, P, and - R, rather

than P, S, and R, as inputs for the bounding fixed
via points and radius, respectively).

Reference Frame

o => center of sphere, on axis of cylinder

Axes = z-axis aligned with axis of cylinder
and positive towards sphere, z- and
y-axes orthogonal. To avoid
numerical problems, the z-axis
should be positive towards area
central to where most wrapping
will occur.

Parameters
R = radius of sphere and cylinder
(positive or negative — see
Appendix B)
Inputs
P = bounding fixed via point, start of path
S = bounding fixed via point, end of path
Outputs

Q = obstacle via point, start of path
which contacts the cylinder

W = obstacle via point, transition of path
contact from cylinder to sphere

T = obstacle via point, end of path which
contacts the sphere

Lengths = lengths of path segments between

P, Q W, T and S

Compute Locations of Obstacle Via Points
(Figure F, Step 2)

To compute the locations of the obstacle via points,
the various possible configurations of the minimum-
distance path must be considered. Clearly, if P and
S are both located towards either the cylinder or
the sphere section, then the muscle path could only
contact that section. Thus,

if (P, > 0) and (S, > 0) = path
contacts only sphere, use single

sphere algorithm (F.1)

if (P, <0)and (S, <0)= path
contacts only cylinder, use single

cylinder algorithm (F.2)
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Inputs radius R;
bounding fixed via points P and S

¥

Step 1 express P and S in sphere-capped cylinder frame

¥
P and S on sphere side (F.1)?
¥ no
P and S on cylinder side (F.2)?

Step 2

]

S outside cylinder (F.3)? :l yes
no

single cylinder Q and T inactive (F.4)? OR
algorithm  [7| only cylinder contact (F.5)?

+ + no
single sphere | || Q and T inactive (F.6)? OR
algorithm only sphere contact (F.7)?

;'—_'no

compute xy coordinates of Q (F.8);
iteratively compute Oy (F.9-F11)

\
only sphere contact (F.12)?

¥ 10

compute W and Q based on Oy, (F.13-F.14);
compute T using single sphere algorithm;

yes |

yes

yes

yes

yes

Step 3 all obstacle via points, Q, W, and T, are active

Step 4 compute lengths of path segments (F.15)

Outputs coordinates of obstacle via
points Q, W, and T; segment lengths

single sphere |
algorithm

single cylinde
algorithm

algorithm

algorithm

FIGURE F Flowchart of the sphere-capped cylinder obstacle-set algorithm. Symbols are defined in the text.
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If neither of these sets of conditions is true, then
P is located towards the cylinder section, and S
is located towards the sphere section (P, < 0 and
S, > 0). It is still possible, however, that the path
contacts only the sphere or only the cylinder, in
which case additional conditions must be checked.
If S is located outside the volume of the cylinder
(projected beyond the sphere), then the path may
only contact the cylinder:

if (S;; + S;) > R? = § is outside volume of

cylinder, try single cylinder algorithm (F.3)

If condition (F.3) is true, the single cylinder algo-
rithm should be tried. The results will reveal whether
or not the path contacts only the cylinder. If the loca-
tions of Q and T, computed by the single cylinder
algorithm, are both towards the cylinder section, or
if @ and T are found to be inactive, then the single
cylinder algorithm results should be used, thus:

if @ and T are inactive = path is
a straight line, use single

cylinder algorithm F4
if (@, <0) and (T, < 0) = path

contacts only cylinder, use single

cylinder algorithm (F.5)

If condition (F.3) is not true, or if conditions (F.4)
and (F.5) are not true, then the path may contact
the sphere and possibly only the sphere. To check
for these possibilities, the single sphere algorithm
should be tried. The results will reveal whether
or not the path contacts only the sphere. If the
locations of @ and T, computed by the single sphere
algorithm, are both towards the sphere section, or if
Q and T are found to be inactive, then the single
sphere algorithm results should be used, thus:

if @ and T are inactive = path is

a straight line, use single

sphere algorithm (F.0)
if (@, <0)and (T, < 0) = path

contacts only sphere, use single

sphere algorithm F.7

If conditions (F.6) and (F.7) are not true, then the
path is assumed to contact both the cylinder and
the sphere. In this case, by the definitions of the
respective obstacle via points, @ will be on the
surface of the cylinder, W will be on the seam
joining the cylinder and the sphere (W, =0), and T
will be on the surface of the sphere. The problem is
then to compute the locations of these points which
satisfy the criterion for a minimum-distance path
around both the cylinder and sphere. As in the single
cylinder algorithm, the = and y coordinates of Q may
be computed based on the circle tangency equations
(see Appendices B and C):

P,R*+ RP,,/ P} + P} — R?
Qe =

(P +P))
(F.8)
P,R* — RP,\/P2+ P} - R?
Q= (P} + P}

Further, as in the single sphere algorithm, the loca-
tion of W can be computed based on the locations
of § and @ (independent of the location of T). Con-
veniently, since the location of P is known, the z
coordinate of @ is not needed in order to compute W.
In fact, it can be shown that the following equation
is a necessary condition for the minimum-distance
path criterion:

PRJ%+%%mW—%wam@WW@

* [SZ \/(P e = Qe+ (P — Qy)z} 1—]];

=0 (F9

where Oy, 8g, 6p, and Op are the trigonometric
angles formed by the = and y coordinates of via
points W, S, Q. and P, respectively:

Oy = Tan™! (—%) Og = Tan™! (%)

- -1 _Q_g = -1 Bi
6o = Tan <Qz> 0p = Tan (H)

The only unknown in Equation (F.9) is the value
of By, which can be found using standard root-
solving techniques. Because the valid solution for
By in Equation (F.9) must lie between fp and 6¢ (6w

(F.10)
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lies between €p and 65 in the path), a good initial
guess for the root solver can be made by linearly
interpolating between the angles, thus:

P,
Oy (guess) = Op — (05 — Op) =

TF (F.11)

Once Equation (F.9) has been satisfied, the com-
puted value of 8y should be compared with the
value of 0, because 6y should come before fy in
the path. If the values are reversed in order (accor-
ding to the wrapping direction), then the path must,
after all, contact only the sphere:

if (R > 0) and (6 < 0g) = path

contacts only sphere, use single

sphere algorithm (F.12a)
if (R < 0) and (Ow > 0¢) = path

contacts only sphere, use single

sphere algorithm (F.12b)

If neither of conditions (F.12) is true, the minimum-
distance path contacts both the cylinder and the
sphere. The remaining unknown components of W
and Q may be then computed:

W, = |R|cos(@w) W, = |R|sin(0w)

W,=0 (F.13)

|R(Ow — 00)| P:

Qz =W.+ B
|R(Ow — 00)| + |PQ ||y

(F.14)

Finally, the location of T may be computed by
applying with single sphere algorithm with W and
S used as inputs for the bounding fixed via points.

Determine Wrapping Conditions (Figure F,
Step 3)

The process of computing the locations of the
obstacle via points for the sphere-capped cylinder
obstacle set have already determined what wrap-
ping configuration the minimum-distance path will
take. Therefore, no additional conditions need to be
checked.

Compute Muscle Segment Lengths (Figure F,
Step 5)

Assuming that the minimum-distance path contacts
both the cylinder and the sphere, all three via points,
Q, W, and T, will be active. The path therefore
traverses from P, through Q, around the cylinder
to W, around the sphere to T, and finally terminates
at S (see Figure 2D). The lengths of segments PQ
and TS may be computed simply as the straight-line
distances between the respective points. The length
of segment WT will have been computed by the
single sphere algorithm used to compute the location
of T. Finally, the length of segment QW may be
computed based on the arc length:

low | = \/ (R(Bw — 00))* + (T — Q.)*  (F.15)
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