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REVIEW

Decision Theory: What “Should”
the Nervous System Do?

Konrad Koérding

The purpose of our nervous system is to allow us to successfully interact with our environment. This
normative idea is formalized by decision theory that defines which choices would be most
beneficial. We live in an uncertain world, and each decision may have many possible outcomes;
choosing the best decision is thus complicated. Bayesian decision theory formalizes these problems
in the presence of uncertainty and often provides compact models that predict observed behavior.
With its elegant formalization of the problems faced by the nervous system, it promises to
become a major inspiration for studies in neuroscience.

volutionary psychology has found that
many human behaviors can be well un-
derstood assuming adaptation of psychol-
ogy to the past social environment of humans

[e.g., (1)]. Similarly, ethology, the study of animal
behavior [e.g., (2)], has shown that many of the
properties of the nervous system and the bodies of
animals are remarkably well adapted to their eco-

logical niche. These disciplines have shown that,
over the course of evolution, animals are often en-
dowed with solutions to common problems that
are close to optimal [(/), but see (3)]. Many studies
in neuroscience analyze low-level processes. For
example, researchers study how animals con-
trol their limbs, how they infer events in the
world, and how they choose one of several pos-
sible rewards. Such processes may have re-
mained conserved for very long periods of time.
We can thus expect the solution used by the
nervous system for such problems to be close
to optimal.

Normative models formalize how the idea of
adaptation predicts properties of the nervous
system. These models assume that a process has
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an objective (e.g., walk using least energy). Such
an objective is typically formalized by a function
(“utility”) that defines how good the solution is
(e.g., the energy used). By combining the utility
function with constraints (e.g., properties of mus-
cles), it is possible to derive the best possible
solution to the problem, usually using computer
simulations. If the prediction of the model is
matched by biology, it is concluded that, indeed,
we have understood the purpose of a system.
Normative models thus ask the “why?”” question
and formalize the ultimate purpose of a system.
In this review, I focus on normative approaches
to decision making; the nervous system often
comes up with near-optimal decisions in a world
characterized by uncertainty. To understand the
nervous system, descriptive knowledge of how
the nervous system works should be combined
with normative knowledge of which problems it
solves.

Decision Theory

The purpose of the central nervous system is to
make decisions so that we can thrive by inter-
acting successfully with our environment (Fig.
1A). When we play darts, we need to decide
which position on the dartboard to aim at (Fig.
1B). The dartboard assigns a score to any pos-
sible dart position and thus defines the outcome.
The objective of playing darts is to obtain as many
points as possible. Within decision theory, such an
objective is called a utility function [e.g., (4)]. A
utility function Uoutcome) measures how good
or bad any possible decision outcome is. If dart
players could choose where the dart will hit the
board, they would choose the position that yields
the most points and would thus maximize utility.

Although we can freely make decisions, we
cannot directly choose the decision outcomes. If
we always aim for the same position a, say the
center of the bull’s eye, and throw many darts,
we will produce a distribution of dart positions, x,
on the dart board (Fig. 1C, inset). Within decision
theory, this probability distribution is denoted
p(outcome = x|decision = a). If we aim at the
position on the board that gives the highest score,
we may instead hit a neighboring area of the
dartboard and receive a low score. Depending on
the position we aim at, different scores become
more or less likely. This is a special case of a
general problem in decision theory: Outcomes
depend on decisions in a probabilistic way.

To derive the most beneficial decision, it is
necessary to combine the utility function with
knowledge of how our decisions affect potential
outcomes. The expected utility is

E|Utility(decision)] =
S p(outcome|decision) U (outcome)

possible
outcomes

The best decision is then defined as the one that
will maximize the expected utility (5).

The decision theoretic approach can be used
whenever we know how decisions are related to
outcomes and we know the utility of the out-
comes. We can apply this framework to the ex-
ample of darts playing. If we had low motor
noise, we would be best off aiming at the triple
20 (Fig. 1C). In contrast, if we have a realistic
value of motor noise, the best point at which to
aim is not the point of maximal score but is to
the lower left of the board (Fig. 1D, marked by
dart). Both the behavior of advanced amateur
players who have moderate motor variance and
the behavior of professional players who have
low motor variance are predicted by this deci-
sion theoretic approach. A range of recent studies
of decision-making have analyzed situations
that are analogous to playing darts (6). Such
simple decisions are well predicted from the
assumption that people solve their decision
problems in a fashion that is close to optimal.
The approach also applies to many animal be-
haviors: Animals need to choose to forage or
rest, fight or flight, continue moving or freeze in
place. Moreover, any behavior of an animal is,
in some abstract way, a decision. The nervous
system chooses one behavior from the set of all
possible behaviors. Decision theory is thus a
fundamental formalization of many problems that
are solved by the nervous system and studied in
neuroscience.

A number of recent studies, under the um-
brella name of neuroeconomics, have started to
analyze how the nervous system represents and
computes with a utility function (7-9). Because

A B

Decision theory

World knowledge:

' how probable is each _

‘outcome as a function
of the decision?

| Optimal |
_"! decisions !

Cost function: how
good or bad is each
potential decision
outcome?

SPECIALSECTION

utility is central to any decision, it is important
to understand how the nervous system repre-
sents reward. Utilities are important for the
nervous system because it uses them to act
successfully. It has been shown that the ner-
vous system represents changes in expected
utility in a way predicted by a major learning
theory, reinforcement learning (/0). Tradition-
ally simple rewards, such as monetary or food
incentives, are used in experiments that ana-
lyze how the nervous system represents utilities.
However, insights from evolutionary biology (/)
predict that many different factors will influ-
ence the utility of decisions. Indeed, it has
been shown that the nervous system exhibits a
reward signal when someone else who cheated
in a game is punished (/7). Future research will
have to uncover the full complexity of how
utility functions are represented and used by the
nervous system.

Bayesian Statistics

Deciding seems easy: Choose the action that is
associated with the highest expected utility.
However, the probability of an outcome given
the decision is difficult to estimate. To do so, we
need to predict how the world will change until
the outcome and how any decision would affect
the world. This prediction can only be proba-
bilistic because we have uncertainty about the
properties of the world, stemming, for example,
from noisy perception (12).

Bayesian statistics defines how uncertain
pieces of information may be combined into a

C

Very low | Motor errors

uncertainty

High
uncertainty

Fig. 1. Decision theory. (A) To make optimal decisions, we need to combine what we know about
the world with our utility function measuring how good or bad potential outcomes are. (B) In the
example of playing darts, we need to decide where to aim. (C) As a function of the aiming point,
the expected score is shown for an unbelievably good darts player with almost no movement errors.
(D) As in (C) but for a mediocre darts player with large motor errors.
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Fig. 2. (A) In the example of tennis, people need to combine what they know from before (prior,
green) with what they currently see (likelihood, red). That way we can estimate the posterior (black
contour lines) to make an optimal perceptual decision (blue). (B) Similarly if we estimate the life
expectancy of a person who is 39 years old, we need to combine what we know from before (prior,
histogram of lifetimes, green) with our new information (person survived 39 years, likelihood, red)

to come up with an optimal estimate.

joint estimate. New information (called a like-
lihood) needs to be combined or integrated with
information from the past (called a prior). Similar
problems occur when information from several
cues, for example, proprioceptive and visual,
needs to be combined into a joint estimate. Bayes-
ian decision theory (/3), the use of Bayesian
statistics in a decision framework, defines how
our beliefs should be combined with our utility
function. Because most if not all of our de-
cisions are made in the presence of uncertainty,

understanding the way the nervous system deals
with uncertainty is central to understanding its
normal mode of operation.

Integration of priors and likelihoods. To cal-
culate the probabilities of outcomes, it is often
necessary to update our belief from the past
(prior) with new knowledge (likelihood). For
example, when we play tennis it is helpful to
estimate where the ball will land. The visual
system, although noisy, still provides us with
an estimate or a likelihood of where the ball

A -
Observation
(likelihood_) !
Belief at t Dynamics Belief at Bayes rule Belief at t+1 see
(posterior) t+1 (prior) (posterior)
SO - ==
B t=50 ms t =250 ms t =450 ms
NG | ] | | \

Q

v
"
v
"

Likelihood”

.

2
Posterior from past———Prior for future

Fig. 3. Integration of information over time. (A) A diagram of a Kalman filter is shown. At any
point of time t, the person has a belief about the state of the world. The person then updates this
belief with a model of the dynamics of the world (e.g., gravity) to calculate the belief at the next
point of time. This belief (prior) is then combined with new sensory information (likelihood) using
Bayes's rule to calculate the belief at the next time step. The ellipses indicate probability
distributions sketched in (B). (B) To estimate the position of a ball hitting the ground, people
continuously update their beliefs with incoming sensory information, yielding precise estimates.
The posterior of the previous time step is the prior for the new one: The dashed line indicating the
previous posterior is identical to the one standard deviation line of the prior (green).

will land (sketched in red in Fig. 2A). This
knowledge may be combined with information
obtained from experience; the positions where the
ball may land are not uniformly distributed over
the court. The locations may be clustered near the
boundary lines, where it is most difficult to return
the ball. This distribution of positions is called the
prior (sketched in green in Fig. 2A). Bayes’s rule
states that how the probability of the ball land-
ing at position x given our observation o (pos-
terior) needs to be estimated as

pifo) = plx) plof)/p(o)

posterior prior likelihood

Recent studies have analyzed such combi-
nations in simple integration problems. Sen-
sorimotor integration, force estimation, timing
estimation, speed estimation, the interpretation
of visual scenes, just to name a few, have been
analyzed (/4, 15). Together, these studies dem-
onstrate that people intuitively combine prior
knowledge with new evidence in a way pre-
dicted by Bayesian statistics.

Bayesian methods also apply to decision-
making in cognitive contexts (/6). What would
be your guess of the life expectancy of a 39-
year-old? People can use two sources of infor-
mation to answer this question. They may use
the prior, the distribution of lifetimes (Fig. 2B,
green). They may also use the likelihood, this
person must have survived the first 39 years of
his or her life (Fig. 2B, red). With Bayes’s rule,
we can combine these two pieces of informa-
tion, just as in the example of tennis (Fig. 2B,
black). We thus estimate a life expectancy of
about 76 years (using the negative square error
as the utility function). Human participants ex-
hibit cognitive behaviors that are close to op-
timal predictions. The same approach has been
used to successfully predict human estimates for
many other everyday cognition problems (/6).
People incorporate knowledge about the proba-
bility distributions into estimates in a fashion
that is predicted by Bayesian decision theory.

Cue combination. Estimation will often de-
pend on two different cues. For example, we
may see and feel an object and use both senses to
infer the properties of the object. Bayesian sta-
tistics allows us to solve these problems with
the same mathematical framework used for the
combination of prior and likelihood. A couple
of recent studies have examined how subjects
solve such cue combination problems. For ex-
ample, the combinations of visual and auditory
information and visual and tactile information,
as well as within modality cue combination (e.g.,
texture and disparity), have been studied. In such
cases, cues are combined in a fashion that is close
to the optimum prescribed by Bayesian statistics
(14, 15, 17, 18).

Although there is strong evidence that ani-
mals represent their degree of uncertainty and
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A Inverse decision theory

' Observed optimal decisions

Likelihood, prior Cost function

Fig. 4. Inverse dedision theory. (A) In inverse decision theory, it is assumed that
people behave optimally. From a sequence of optimal behavior, the priors, like-
lihoods, and utility functions people use are inferred through various compu-

combine different pieces of information into a
joint estimate, there is still relatively little known
about how the nervous system implements such
computations. Recently, a couple of theoretical
studies proposed how the nervous system may
represent probabilities and combine them into
estimates (/9, 20). What is exciting about these
studies is that they make clear testable predic-
tions of how the nervous system may represent
uncertainty. Understanding this representation
is key for neuroscience because animals essen-
tially make all their decisions in the presence
of uncertainty.

Integration of information over time. The
state of the world and our information about it
is continually changing. In the example of ten-
nis, we only used an estimate at a single point of
time. In reality, tennis players continuously ob-
serve the ball’s motion, updating their beliefs
about the position where the ball will land in a
continuous manner. The Kalman filter formal-
izes how such a process may work. The filter
uses knowledge about the dynamics of the
world to convert its belief about the state of
the world at the previous instance of time into a
belief at a future point in time. For example, in
the tennis game we expect the ball to move be-
cause of its forward momentum and to acceler-
ate because of gravity. The resulting belief (prior,
Fig. 3, green) is then combined with new sen-
sory information (likelihood, Fig. 3, red) to
produce an updated belief (posterior, Fig. 3,
ellipses). This way the Kalman filter updates
its beliefs over time. In the case of playing
tennis, such a strategy predicts that, as the ball
flies, our estimate of the landing position will
progressively be updated and usually become
more precise. It is thus possible to make an
efficient decision in situations that change con-
tinuously over time.

A range of recent studies have probed the
strategies used by human participants in such
situations. The way that people estimate the po-
sition of their hand in the dark is well predicted
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by Kalman filtering (27). Similarly, when people
balance a pole they also seem to use such strat-
egies (22). Moreover, the way the nervous sys-
tem represents changing muscle properties can
be understood by assuming a Kalman filtering
strategy (23, 24). These studies demonstrate that
when people integrate information over time to
make simple sensorimotor decisions, they seem
to do so in a fashion that is consistent with the
optimal Bayesian solution.

The nervous system constantly integrates in-
formation over time, and a range of new studies
analyzed how it does so (25). In many such
experiments, one of two stimuli is given, for
example either a stimulus that moves to the right
or a stimulus that moves to the left. If the stim-
ulus is sufficiently noisy, the nervous system
needs to integrate information over an extended
period of time to make a good decision. Neu-
rons were found that exhibit activities that cor-
relate with the predicted process of optimal
information integration over time. The nervous
system takes into account probabilistic knowl-
edge of potential rewards when integrating evi-
dence for decision-making (26). The resulting
models are particularly useful because they have
a normative component (optimal integration of
evidence) while having a straightforward de-
scriptive component (neurons can integrate in-
puts over time).

Inverse Decision Theory

If people make decisions optimally, the mecha-
nism of decision theory may be inverted: Com-
putational techniques [e.g., (27)] are used to
infer which priors, likelihoods, and utility func-
tions the participants used to make their de-
cisions. For example, a utility function with a
few free parameters may be proposed, and the
parameters may be fit to human behavior. Ex-
perimental economics (28) has extensively asked
which utility functions people are optimizing.
Only recently has the study of neuroscience and
low-level decision-making started asking which

SPECIALSECTION
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tational methods. (B) In motor control, the utility function of producing forces of
varying duration and magnitude have been calculated. (C) For visual decisions,
people assume that small velocities are much more likely than large velocities.

priors are used and which utility functions are
optimized.

Many studies in neuroscience analyze motor
control, an area where decision-making is key.
For example, would you rather carry a 2-kg
weight for 1 min or a 1-kg weight for 2 min?
We intuitively make repeatable choices in such
situations that are of relevance to everyday life.
Such a utility function was recently inferred by
using inverse decision theory (29) (Fig. 4A).
This utility function is highly nonlinear in force
magnitude and duration and is more compli-
cated than previously proposed utility functions
(30). This highlights a problem in decision the-
ory: Frequently, good fits to behavior may be
obtained with wrong utility functions. Inverse
decision theory can thus be seen as a way of
searching for violations of the assumptions made
when building a decision theoretic model.

The framework of inverse decision theory
also allows the analysis of which priors and
which likelihoods are used by people. Studies
indicate that people underestimate the speed of
visual motion (37). This has been argued as the
result of using a Gaussian prior for interpreting
that low speeds are most likely. But why should
people use a Gaussian distribution? We do not
know which prior would be optimal in real life,
although some recent progress in the statistics of
natural scenes may lead that way (32). In a recent
experiment, the prior used by human participants
was measured by using inverse decision theory
(33) (Fig. 4A). The prior is not Gaussian and is
rather similar to an exponential function. This
may inspire future experiments to characterize
how the nervous system implements such a prior.

The strength of inverse decision theory in
allowing for a wide range of possible utility
functions is also its weakness. Inverse decision
theory will always yield a utility function, like-
lihood, or prior for which the actually observed
behavior is optimal. If the results differ from
those assumed by a previous decision theoretic
model, we can falsify this model. However, the
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results should only be the basis of a new model
if we can understand (and test) how the inferred
functions derive from properties of the world.
Similar problems also appear in other decision
theoretic models that do not explicitly use in-
verse decision theory. The theoretician may
fiddle with the decision theoretic model, trying
different utilities, likelihoods, and priors, until
there are good fits to human performance. As in
all other models that explain data, overfitting is
also a problem for decision theoretic models.
Inverse decision theory allows for the es-
timations of the used utility functions, priors,
and likelihoods, which may alleviate the search
for their neural representation. For example, if
we know how utility functions depend on ideas
of fairness when playing games, it is possible to
search for brain areas that represent this aspect
of the utility function (/7). Searching for the
neural representation of a utility function that
has been proposed on theoretical grounds, but is
irrelevant for human behavior, may miss im-
portant aspects of decision-making. When search-
ing for the representation of priors or utility
functions in the nervous system, it seems central
to know the form of the priors and utility func-
tions that are actually used by human participants.

Discussion

The world is complicated, and consequently so
is deciding. Models in neuroscience typically
analyze simple relationships between variables.
However, at least our high-level behavior is
characterized by structural relationships. Events
in the world have causes, and we naturally in-
terpret events in terms of cause and effect. A
few studies of Bayesian statistics over the past
couple of years have started to address the issue
of how people may be able to infer the structure
of the world (34, 35). Structure implies that not
only features but their relationships play a fun-
damental role. This concept has long been at the
heart of cognitive science. How people solve
complicated real-world problems needs to be
understood. A lot of recent progress in machine
learning aims at inferring the structure of the
world from real data (36), a process that people
perform effortlessly. The study of decisions in
neuroscience can draw upon advances in machine-
learning to make interesting new predictions.
The decision theoretic approach may be
limited in several ways. Humans should behave
suboptimally for ethologically new kinds of de-
cisions that are not repeated enough to allow for
learning [but see (37)]. This may, for example,
be relevant to the way people participate in lot-
teries (38). Using Bayes’s rule to combine pieces

of information is the best mathematical solution
to any information combination problem and
thus always has been the best solution. Similarly,
moving efficiently has always been beneficial
to animals. The simple low-level properties of
neural decision-making should thus be expected
to be close to optimal.

Decision theory formalizes how animals
should decide and thus does not directly make
predictions of how the nervous system should
implement the algorithm leading to such deci-
sions (39). Countless different implementations
may lead to the same optimal decision rules.
However, the normative approach is not limited
to decision theory. There may equally be costs
and benefits to implementing algorithms in var-
ious ways. For example, having many long con-
nections between neurons may use volume and
energy and lead to slow information transmis-
sion. The idea of wiring length minimization
explains well the placement of neurons in cortical
maps (40) as well as within the body of the
nematode Caenorhabditis elegans (41). Similarly,
it may be argued that visual neurons should
faithfully represent the world with the fewest
spikes (least metabolic cost), an idea that pre-
dicts many properties of sensory representations
(42). Normative ideas may even apply to cel-
lular properties. The density of sodium channels
in the squid giant axon may be understood from
the idea that the squid giant axon should rapidly
transmit action potentials used to allow the
squid to flee from a predator (43, 44). Norma-
tive models and decision theory in particular
offer ways of formalizing important problems
that the nervous system needs to solve. Models
in neuroscience should seek to explain the
wealth of available experimental data and also
incorporate knowledge of the problem solved by
the system.
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