
CSE 490P Homework:
Simple control methods applied to 2-link arm

Emo Todorov
University of Washington

Due Jan 28 (not Jan 23 as previously advertised)

1 Dynamical system

The goal of this exercise is to implement and test the simple control methods
discussed in class on a model of a 2-link arm moving the in vertical plane
(with gravity). The equations of motion are in the general form

_v =M (q)�1 (u� c (q; v))

where q; v are the joint angle and velocity vectors (both 2D, since the arm
has two joints �shoulder and elbow), M (q) is the 2-by-2 joint-space inertia
matrix, c (q; v) is the 2D vector of Coriolis, centripetal and gravitational
forces, and u is the 2D vector of joint torques that your controller can apply.
The Cartesian position of the hand/end-e¤ector y is given by the forward
kinematics y = f (q). The functions M (q) ; c (q; v) ; f (q) are given in the
attached MATLAB �le arm2.m. To obtain the Jacobian J (q) = @f

@q you
should compute the derivatives of f (q) analytically.

2 Control and numerical integration

Suppose you have implemented a controller in the general form

u = g (q; v; y�)

The function g somehow "decides" what controls u to generate given the
current position and velocity, and also the spatial target y�. Note that y� is
not part of the dynamics; instead it is a 2D vector provided externally by
the user. In practice y� will change occasionally (when the user wants the

1



hand to move to a new location) but the controller has no way of knowing
when that will happen, so it treats it as a known constant.

Once a controller is speci�ed, we have an autonomous dynamical system

_q = v

_v = M (q)�1 (g (q; v; y�)� c (q; v))

In order to integrate this system forward in time (i.e. simulate what the arm
will do), we can discretize the time axis at small intervals h, and implement
discrete-time semi-implicit Euler integration as

q (t+ 1) = q (t) + hv (t+ 1)

v (t+ 1) = v (t) + hM (q (t))�1 (g (q (t) ; v (t) ; y�)� c (q (t) ; v (t)))

The second equation should be evaluated �rst, because the update for q (t+ 1)
needs v (t+ 1). This is what "semi-implicit" means. We could also use the
explicit integrator q (t+ 1) = q (t)+hv (t) but it tends to be less stable. The
time step h can be 0:001 seconds (i.e. 1 msec). Note that you have to use
consistent units: meters, seconds, Newtons.

3 Controller A: Push towards the goal

The �rst control method is based on the idea of pushing the hand towards
the target. It has the form

u = k1J (q)
T (y� � f (q))� k2v

Here k1; k2 are positive constants that you have to adjust manually to make
the system work well. The �rst term acts like a virtual spring pulling the
hand towards the target. The sti¤ness of the spring is k1. The second term
is damping, which is needed to avoid oscillations at the target.

4 Controller B: Proportional-derivative control

The second control method relies on making a plan for the movement, and
then executing the plan. These two steps are as follows.

4.1 Planning

We will make a plan in joint space. First we have to transform the de-
sired hand location y� to a corresponding joint con�guration q� such that

2



y� = f (q�). In other words, we need to invert the forward kinematics func-
tion f and compute the inverse kinematics. This comes down to solving
a nonlinear system of equations, which you can do numerically with the
fsolve command in MATLAB.

Now that we have a target q� in joint space, we can connect the initial
con�guration and the target with a straight line. This gives us a geometric
path, but does not tell us how fast we should move at each point along the
path (i.e. we do not yet have a speed pro�le). To design a speed pro�le we
choose some bell-shaped function of time, such as the Gaussian

N (t;m; s) = exp
�
�0:5 (t�m)2 =s2

�
with mean m and covariance s. We want to generate a speed pro�le of
desired duration T (where the choice of T is up to us), so the peak/mean
should occur in the middle of the time interval: m = T=2. The covariance
s should be around T=4. We interpret N (t;m; s) as being proportional to
the speed at time t. One complication is that at t = 0 the above function is
not exactly 0, but we can subtract this bias and de�ne the speed as

speed (t) = d (N (t;m; s)�N (0;m; s))

The scaling constant d is needed to make sure that the integral of this speed
pro�le matches the length of the trajectory (i.e. the distance between the
initial con�guration and the target in joint space). Then we construct a
desired trajectory, i.e. a sequence of positions q� (1) ; q� (2) ; : : : that lie on a
straight line and are spaced apart so that the e¤ective speed at each point,
i.e. the quantity v� (t) = (q� (t+ 1)� q� (t)) =h, is proportional to the above
speed function. Be careful with the computations at the two endpoints.

4.2 Execution

Once we have a plan, we can implement a proportional-derivative (PD)
controller as

u (t) = k (q� (t)� q (t)) + b (v� (t)� v (t))

where k; b are positive coe¢ cients that need to be adjusted to make the
system work well.

3



5 What to do in the assignment

1. Write MATLAB functions for the forward kinematics (already given to
you, just copy from arm2.m), inverse kinematics (using fsolve), forward
dynamics, and numerical integration.

2. Choose initial joint con�guration q0 and Cartesian target position y�,
and make sure they do not coincide. You should repeat steps 2�4 for
multiple pairs of initial and target positions, to make sure your code
always works.

3. Implement the two controllers. In A you need to compute the Jaco-
bian matrix, in B you need to compute the desired/planned trajectory.
After than you have simple formulas for each controller.

4. Plug each controller in the simulation, integrate the dynamics and see
what it does. Adjust the two parameters of each controller to make it
work well.

5. Make plots of the joint angles over time, to illustrate how well your
controllers work.

4


