
Synthesis of complex movements
with optimal control

Emo Todorov

Applied Mathematics, Computer Science & Engineering
University of Washington

Kendall LowreyVikash Kumar Yuval Tassa Tom ErezIgor Mordatch Paul Kulchenko

Contributions from:

Funding: NSF, NIH, DARPA

Solving unsolved problems via numerical optimization

Suppose an algorithm for division was not yet invented. How can we compute 3/2?
We are looking for a number x such that 2x = 3.
We could check all numbers, but that will take forever.

Convert the original problem into an optimization problem:

Most problems in robotics (and elsewhere) can be expressed as optimization problems.
Computers can then search the solution space efficiently and find sensible solutions,
without having an “algorithm” for the original problem.

Examples: General recipe:
- inverse kinematics - define an easy-to-optimize cost whose
- state estimation minimum corresponds to the solution
- system identification - apply an efficient optimization method
- motion planning - if necessary, wait for Moore’s law to
- motion control make the optimization tractable 

Optimal control models in biology

Optimality as a meta-theory

observe something

imagine a space of things that you
could have observed but didn’t

imagine costs
over that space

pick a cost that makes
the observation optimal

and another one

and another one

To obtain a concrete theory from the meta-theory of optimal control,
we must specify a cost function and/or constraints.
We must also specify a level of detail for the (bio)physics model.

As with every scientific theory, we should keep the assumptions
as simple and a priori justified as possible, and seek predictions
that are as elaborate as possible (agreement with data would also be nice)

From simple assumptions to elaborate predictions

physics
model

costs and
constraints

behavior
optimization machine

Erez, Tassa and Todorov, IROS 2012

cost: torque2

constraint: symmetric limit cycle, fixed duration and distance

We represent the movement trajectory in a Fourier basis which guarantees that the
constraints are always satisfied. Then we express the cost (integrated squared torque)
as a function of the trajectory, and optimize it with a Gauss-Newton method.

The cost has the extra term

where e is the vector distance to the nearest surface.

The planned contact impulse is penalized in full,
but scaled by c before being applied.

The optimizer has to “declare” the contacts it relies on,
forcing it to reason about contact dynamics explicitly.

Contact-invariant optimization (CIO)

We introduce auxiliary decision variables
indicating if potential contact i should be active
in movement phase .

Mordatch, Todorov and Popovic, SIGGRAPH 2o12
Mordatch, Popovic and Todorov, SCA 2012

1 2

3 4

Results

Extension to musculo-skeletal dynamics

Mordatch, Wang, Todorov and Koltun, SIGGRAPH ASIA 2013

- skeletal dynamics simulated in MuJoCo (our physics engine)
- muscle model based on Wang et al 2012
- metabolic energy model based on Anderson and Pandy 1999
- modifications to the CIO method

fce = flv(lce, vce)a

fpe(lce)

fse(lse)

Walking at 1.5 m/s

GLU

RF

VAS

HAM

TA

SOL

GAS

Kinematics

Torques

Running at 4 m/s

GLU

RF

VAS

HAM

TA

SOL

GAS

Kinematics

Torques

Other behaviors

jumping kicking slope stopping moon gravity

Observations

Trajectory optimization can generate surprisingly long and complex movements,
without help from motion capture, manual scripting or careful initialization.

Contacts must be handled carefully, so as to provide sufficient smoothing for
derivatives while avoiding the issues associated with earlier spring-dampers.

Optimizing high-level variables (as in CIO) together with the low-level
trajectory produces the richest behaviors we have obtained.

We need ~1000 iterations to discover these trajectories from scratch,
no matter which representation or algorithm we use.

Currently this takes ~5 minutes, which is quite amazing but at the same time is
too slow for control applications that require online re-planning.

The role of fast simulation in optimization

The optimizer evaluates a vast number of candidate control signals
in order to find a sequence that works.

This evaluation is done with a physics simulator – which needs to be
much faster than real time.

We have developed the first simulator (MuJoCo) that is sufficiently
fast and accurate to enable efficient optimization of complex behavior.

Forward dynamics: 100 times faster than real-time.
Inverse dynamics: 1000 times faster than real-time.

Todorov, ICRA 2011, 2014 (?)
Todorov, Tassa, Erez, IROS 2012

Model-predictive control (MPC)

Once every ~30 msec:
- re-optimize the plan () up to some horizon (~ 1 sec),

starting from the current state ()
- execute () the initial portion of the plan,

while the next plan is being computed

MPC has been used to control chemical plants, play computer chess, drive the Google car.
However robot dynamics are too fast for existing optimizers to keep up.

We were able to apply MPC to complex robots for the first time, due to:
- improved models of contact dynamics;
- efficient physics simulator (MuJoCo);
- efficient optimization algorithm (iLQG);
- selection of cost functions that are realistic yet easier to optimize.

Tassa, Erez and Todorov, IROS 2012
Erez et al, Humanoids 2013
Tassa et al; Kumar et al; Erez et al; ICRA 2014 (?)

A case for MPC in the brain

But if that were true, most of the primate brain would shut down
during execution of simple familiar movements… and it doesn’t.

Complex hardwired behaviors can be generated by “neural machines”
with few neurons.

We often think of primate learning as setting up a similar neural machine,
which is then responsible for motor execution.

Reaching could also be generated this way: the frog wipe reflex is essentially
a reaching movement, with coordinate transformations, online feedback etc.

Whatever the brain is doing, it appears to be an overkill for executing movements
that have already been learned. Conversely, whatever is learned must be insufficient
to execute movements – so we see extensive online processing even after learning.

Most neurons are in the cerebellum – which is presumably a big internal model.
This many neurons seem an overkill given the current (limited) views on what
internal models are used for.

What is this processing doing? Unless you have a better idea, consider MPC 

MPC has a better use for internal models: asking lots of “what-if” questions and
thereby optimizing the behavior online. This takes 70% of CPU time in our case.

Cost parameters as high-level commands

Suppose the low level controller is capable of
approximately optimizing different costs.

Then the high level command can be a time-varying cost,
(or time-varying parameters of a cost).

Low level: MPC Low level = neural net trained with MPC

