Human-Robot Interaction

MAYA CAKMAK

COMPUTER SCIENCE & ENGINEERING

UNIVERSITY of WASHINGTON

Human-Robot Interaction

MAYA CAKMAK

COMPUTER SCIENCE & ENGINEERING

UNIVERSITY of WASHINGTON

PLAN

- What is HRI?
- Maya's research in HRI
- Discussion: How is HRI different from HCI?
- Methods in HRI

HUMAN-ROBOT INTERACTION

HUMAN-ROBOT INTERACTION

programming a robot

ABOUT ME

Georgia Institute of Technology, 2012

Willow Garage, Inc, 2013

ABOUT ME

Georgia Institute of Technology, 2012

Willow Garage, Inc, 2013

I < 3 robots

GENERAL-PURPOSE ROBOTS

One robot, many uses...

GENERAL-PURPOSE ROBOTS

... but programming it is hard!

END-USER PROGRAMMABLE ROBOTS

WHY IS IT CHALLENGING?

Existing tools assume good teachers...

- large number of demos
- variance in demos
- ▶ smooth/consistent demos

WHY IS IT CHALLENGING?

Existing tools assume good teachers...

- large number of demos
- variance in demos
- ▶ smooth/consistent demos

... everyday users are not!

- ▶ limited time, patience, attention, memory
- inaccurate mental model

Make robot ask questions

Instruct or train users

Simplify and visualize model

Make robot ask questions

Instruct or train users

Simplify and visualize model

ROBOTS THAT ASK QUESTIONS

ROBOTS THAT ASK QUESTIONS

Make robot ask questions

Instruct or train users

Simplify and visualize model

HOWTO INSTRUCT USERS

ROBOT EXPERIMENTER USER

HOWTO INSTRUCT USERS

ROBOT EXPERIMENTER USER

INSTRUCTIONAL MATERIALS

number of participants who requested tech support

INSTRUCTIONAL MATERIALS

appropriate feedback reduces learning load

appropriate feedback reduces learning load

choice of distinct lexicon is crucial

Mistake made by 24/30 participants at least once!

choice of distinct lexicon is crucial

USER VARIABILITY

Make robot ask questions

Instruct or train users

Simplify and visualize model

ONE-SHOT ACTION PROGRAMMING

INTERACTIVE VISUALIZATION

ACTIVE LEARNING WITH THE CROWD

SUMMARY: USEFUL & USABLE ROBOTS

DISCUSSION

How is HRI different from HCI? >>What is a robot?

AGENCY & INTENTIONALITY

https://www.youtube.com/watch?v=76p64j3HINg

[Heider & Simmel, 1944]

DISCUSSION

How is HRI different from HCI? >>What is a robot?

What does that imply for studying HRI?

Should robots exploit being perceived as agents?

METHODS IN HCI

Discovery

pre-design (formative)

Evaluation

during/post-design (summative)

METHODS

- Asking users
- -Questionnaires, interviews, focus groups, contextual inquiry
- Observing users
- -Passive observation, empirical user studies, think-aloud protocol, ethnography, field studies
- Make users observe themselves
- -Diaries, experience sampling
- Ask experts
- -Heuristic evaluation, cognitive walkthrough

DATA OBTAINED

HRI EXAMPLES

- Asking users
- -Questionnaires, interviews, focus groups, contextual inquiry
- Observing users
- -Passive observation, empirical user studies, think-aloud protocol, ethnography, field studies
- Make users observe themselves
- -Diaries, experience sampling
- Ask experts
- -Heuristic evaluation, cognitive walkthrough

SURVEYS

- Ju & Takayama. Should Robots or People Do These Jobs? A Survey of Robotics Experts and Non-Experts About Which Jobs Robots Should Do. IROS 2011.
- Lee & Sabanovic. Culturally variable preferences for robot design and use in South Korea, Turkey, and the United States. HRI 2014.

CONTEXTUAL INQUIRY

 Pantofarou et al. Exploring the Role of Robots in Home Organization. HRI 2012.

Figure 1: Storage areas seen in informants' homes. These are the dark, cluttered and variable spaces that a robot tasked with organization will face.

HRI EXAMPLES

- Asking users
- -Questionnaires, interviews, focus groups, contextual inquiry
- Observing users
- -Passive observation, empirical user studies, think-aloud protocol, ethnography, field studies
- Make users observe themselves
- -Diaries, experience sampling
- Ask experts
- -Heuristic evaluation, cognitive walkthrough

ETHNOGRAPHY

 Mutlu & Forlizzi. Robots in Organizations: The Role of Workflow, Social, and Environmental Factors in Human-Robot Interaction. HRI 2008.

FIELD STUDIES

 Fink et al. Which Robot Behavior Can Motivate Children to Tidy up Their Toys?
 Design and Evaluation of "Ranger", HRI 2014.

Figure 3: Children interacting with Ranger during the field study: The robot's eyes received remarkable attention. Left: first moments of a family exploring together the robot; center: two boys putting toys into Ranger, which displays red lights; right: a girl showing a toy to the robot

HRI EXAMPLES

- Asking users
- -Questionnaires, interviews, focus groups, contextual inquiry
- Observing users
- Passive observation, empirical user studies, think-aloud protocol, ethnography, field studies
- Make users observe themselves
- -Diaries, experience sampling
- Ask experts
- -Heuristic evaluation, cognitive walkthrough

Sung et al. Domestic Robot Ecology: An Initial
 Framework to Unpack Long-Term Acceptance of Robots at Home, Journal of social Robotics.

Fig. 2 Long-term effect of robot usage in P15: the mother described that the robot use motivated her to undertake major cleaning throughout the house. Robots kept the floor clean and clutter-free, and she wanted to keep the rest of the house up to the same standard

Fig. 3 Above: P25 highlighted entire home as expected areas for Roomba use. Below: P25 localized cleaning areas as highlighted in red after six months

HRI EXAMPLES

- Asking users
- -Questionnaires, interviews, focus groups, contextual inquiry
- Observing users
- -Passive observation, empirical user studies, think-aloud protocol, ethnography, field studies
- Make users observe themselves
- Diaries, experience sampling
- Ask experts
- -Heuristic evaluation, cognitive walkthrough

OBSERVING INTERACTION

Passive observation

Comparative study

• Cakmak & Takayama. Teaching people how to teach robots: The effect of instructional materials and dialog design, HRI 2014.

Comparative study

Passive observation

• Cakmak & Takayama. Teaching people how to teach robots: The effect of instructional materials and dialog design, HRI 2014.

Comparative study

number of participants who requested tech support

 Cakmak & Takayama. Teaching people how to teach robots: The effect of instructional materials and dialog design, HRI 2014.

Passive observation

appropriate feedback reduces learning load

choice of **distinct lexicon** is crucial

What is being compared?

- -Independent variables
- What are they being compared in?
- -Dependent variables ("metrics")
- What (else) is being varied?
- (What is kept constant?)
- -Extraneous variables

WHAT IS BEING COMPARED?

- Example: Interval independent variable
 - -What is the effect of **height** on telepresence systems?

[Rae, Takayama & Mutlu, 2013]

WHAT IS BEING COMPARED?

- Example: Ordinal independent variable
 - -What is the effect of **educational background** on acceptance of robots in the workplace?

WHAT IS BEING COMPARED?

- Example: Categorical independent variable
- -What is the effect of **input modality** on telepresence systems?

-keyboard

-mouse

-joystick

WITHIN -VS- BETWEEN

within

- + allows comparison
- + requires less participants
- subject to ordering effects
 - > Order counterbalancing

between

- What is being compared?
- -Independent variables
- What are they being compared in?

- Dependent variables ("metrics")
- What (else) is being varied?
- (What is kept constant?)
- -Extraneous variables

INDEPENDENT VS. DEPENDENT VARS

• Example:

-What is the effect of height on telepresence systems?

in terms of what?

WHAT TO MEASURE/OBSERVE?

© 2008 by Christian Rohrer

WHAT TO MEASURE/OBSERVE?

- Effectiveness (e.g. accuracy, #of errors, engagement/compliance)
- Efficiency (e.g. time to complete)
- Effort (e.g. mental load)

DEPENDENT VARIABLES

what people do.. what people say..

WHAT IS BEING MEASURED?

- Example: Interval dependent variable
- -What is the effect of height on conversation control?

- -ratio of time speaking
- -ratio of decisions influenced
- -self assessment of control

...

WHAT IS BEING MEASURED?

- Example: Ordinal dependent variable
- -What is the effect of height on <u>user preference</u>?

-user rating of the system

WHAT IS BEING MEASURED?

- Example: Categorical dependent variable
 - -What is the effect of height on conversation control?

-choose one:

"I felt like the leader"

"I felt like the follower"

- What is being compared?
- -Independent variables
- What are they being compared in?
- -Dependent variables ("metrics")
- What (else) is being varied?

- (What is kept constant?)
- -Extraneous variables

EXTRANEOUS VARIABLES

- Similar to independent variables but we are not looking for an effect
 - -What is the effect of on conversation control?
 - things that vary unless you control for them gender, age, background of participants
 - things that you explicitly vary to demonstrate lack of effect tasks performed using the system

INTERPRETING THE RESULTS

- What is being compared?
 - -Independent variables
- What are they being compared in?
 - -Dependent variables ("metrics")

Main question:

Does <independent variable> cause differences in <dependent variable>?

INTERPRETING THE RESULTS

Does height effect ratio of time speaking?

Yes/No?

OBSERVING INTERACTION

Passive observation

Think-aloud protocol

Comparative study

POST-HOC COMPARISONS

Passive observation

Comparative study

Post-hoc analysis

WIZARD OF OZ

WIZARD OF OZ

MODEL HUMAN-HUMAN INTERACTIONS

Human-Robot Interaction

MAYA CAKMAK

Human-Centered Robotics Lab @ UW www.mayacakmak.com | hcrlab.cs.washington.edu

Get in touch: mcakmak@cs.washington.edu