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Continuous-time formulation

Notation and terminology:

x(t) € R" state vector
u(t) € R™ control vector
w (t) € RF Brownian motion (integral of white noise)

dx =f(x,u)dt + G (x,u)dw continuous-time dynamics

T (xu) =G (xu)G(xu)| noise covariance

{(x,u) >0 cost for choosing control u in state x

gr (x) >0 (optional) scalar cost at terminal states x € 7
T (x) € R™ control law

v (x) >0 value/ cost-to-go function

T (x), v* (x) optimal control law and its value function
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Stochastic differential equations and integrals

Ito diffusion / stochastic differential equation (SDE):
dx =f (x)dt + g (x) dw

This cannot be written as X = f (x) 4+ g (x) w because w does not exist.
The SDE means that the time-integrals of the two sides are equal:

X (1)~ x(0) = [ F @)+ [ g (o) deo ()

The last term is an Ito integral. For an Ito process y (t) adapted to w (t),
i.e. depending on the sample path only up to time f, this integral is

Definition (Ito integral)

u A q N—-1
[ ymaome  timo Ty () @ () - w (1)

0=tg<ty <---<tny=T

Replacing y (¢;) with y ((tj11 +t;) /2) yields the Stratonovich integral.
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Forward and backward equations, generator

Let p (y,s|x,t), s > t denote the transition probability density under the Ito
diffusion dx = f (x)dt + g (x)dw. Then p satisfies the following PDEs

Theorem (Kolmogorov equations)

‘ 0 d
forward (FP) equation 5P = _B_y 2 ay (32 p)
backuward equat —3—30 22 ) =Ll o)
ackward equation at”_fax 58 8 A4 p sl |
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Forward and backward equations, generator

Let p (y,s|x,t), s > t denote the transition probability density under the Ito
diffusion dx = f (x)dt + g (x) dw. Then p satisfies the following PDEs:

Theorem (Kolmogorov equations)

‘ d 2]
forward (FP) equation 5P = _a_y 2 ay (82 p)
backuward equat —3—30 22 ) =Ll o)
ackward equation 5P = f py 78 8x2 p p (v, sl |

The operator £ which computes expected directional derivatives is called the
generator of the stochastic process. It satisfies (in the vector case):

Theorem (generator)

Emo Todorov (UW)

CSE P590, Spring 2014



Discretizing the time axis

Consider the explicit Euler discretization with time step A:
X (E+A) = x(£) + Af (x (1), u (t)) + VAG (x (t) ,u (1)) £ (t)

where & () ~ N (0,1). The term /A appears because the variance grows
linearly with time.

Thus the transition probability p (X'|x, u) is Gaussian, with mean x + Af (x, u)
and covariance matrix AX (x, u). The one-step cost is AZ (x, u).

Now we can apply the Bellman equation (in the finite horizon setting):
o(xt) = min{AL(u)+ Eypixm [0 (Xt +8)]} =
min {M (x, 1) + EqN(Af(xu), AR (xu)) [0 (x+d E+ A)]}

Next we use the Taylor-series expansion of v ...
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Hamilton-Jacobi-Bellman (HJB) equation

v(x+dt+A) = v(xt) +Av (xF) +0 (Az) +
7o (0 1) + yd 0w (x 1) d 0 ()
Using the fact that E [dTMd} = tr (cov [d] M) + o (A?), the expectation is
Eqlo(x+d,t+A)] = v(xt)+Av(xt)+0 (A2> +

8 () 0 () + 3 1 (Z (1) 0 (1)
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Hamilton-Jacobi-Bellman (HJB) equation

v(x+d,t+A) = v(xt)+Av(xt)+o0 (Az) +
7o (0 1) + yd 0w (x 1) d 0 ()
Using the fact that E [dTMd} = tr (cov [d] M) + o (A?), the expectation is
Eqlo(x+d,t+A)] = v(xt)+Av(xt)+0 (A2> +

8 () 0 () + 3 1 (Z (1) 0 (1)

Substituting in the Bellman equation,
Al (x,u) + 0 (x, 1) + Ao (x, ) + 0 (A%) +
+Af(x,u)! oy (X, 1) + Str (2 (x,u) v (X, 1))
Simplifying, dividing by A and taking A — 0 yields the HJB equation

v (x,t) = min

—vt (x, t) = min {é (x,u) +f(x,u)! oy (x) + % tr (X (x, u) Uxx (x))}
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HJB equations for different problem formulations

Definition (Hamiltonian)

H o, (] 2 £06w) £ (5w) 0 () 4 5 17 (2 (x,0) 0 () = £+ £ 1]

The HJB equations for the optimal cost-to-go v* are

Theorem (HJB equations)

first exit 0 = miny H [x, u,v* (+)] v* (xe€T)=q7(x)
finite horizon ~ —vf (x,t) = ming H [x, u,0* (-,t)] 0" (x,T) =q71 (x)
discounted %v* (x) = ming H [x, u,v* (+)]

average ¢ = miny H [x, u, 7" (-)]

Discounted cost-to-go: v (x) = E [” exp (—t/7) £ (x (), u (t))dt.
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Existence and uniqueness of solutions

@ The HJB equation has at most one classic solution (i.e. a function which
satisfies the PDE everywhere.)

o If a classic solution exists then it is the optimal cost-to-go function.

o The HJB equation may not have a classic solution; in that case the
optimal cost-to-go function is non-smooth (e.g. bang-bang control.)

@ The HJB equation always has a unique viscosity solution which is the
optimal cost-to-go function.

@ Approximation schemes based on MDP discretization (see below) are
guaranteed to converge to the unique viscosity solution / optimal
cost-to-go function.

@ Most continuous function approximation schemes (which scale better)
are unable to represent non-smooth solutions.

@ All examples of non-smoothness seem to be deterministic; noise tends to
smooth the optimal cost-to-go function.
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Example of noise smoothing

Noisy dynamics Deterministic dynamics
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More tractable problems

Consider a restricted family of problems with dynamics and cost

dx = (a(x)+B(x)u)dt+C(x)dw
l(x,u) = q(x)—i—%uTR(x)u

For such problems the Hamiltonian can be minimized analytically w.r.t. u.
Suppressing the dependence on x for clarity, we have

o 1 7 T 1 T
min H = min {q+ Fu Ru—+ (a+Bu) vx+ St (CC vxx)
The minimum is achieved at u* = —R'B' v, and the result is
1 1
minH = g+ aTsz + 5 tr (CCTUXX) — EUIBRABTUX
u

Thus the HJB equations become 2nd-order quadratic PDEs, no longer
involving the min operator.
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Pendulum example

0 =ksin(0) +u

First-order form:

Stochastic dynamics:
dx = a(x)dt + B (udt + cdw)
Cost and optimal control:
Cxu) = q(x)+ %uz
u (x) = -1 loy, (%)
HJB equation (discounted):

—v = g+ XUy, +ksin (x1) vy,

o? 1,

Ty an T 5 %
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Pendulum example continued

Parameters: k=c=r=1, 7=03, g=1—exp (—292) , B=099

Dicretize state space, approximate derivatives via finite differences, iterate:

o) = oM 4+ (1 B) Tmin H™

v(x) u(x)

u‘ N
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q(x)

0

velocity

0 +n
position
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MDP discretization

Define discrete state and control spaces X(;;) C R", i) C R™ and discrete
time step A(;), where /1 is a "coarseness” parameter and 1 — 0 corresponds to
. . . . . . ,

infinitely dense discretization. Construct p(y (x(h) X(ny, wny) st

Definition (local consistency)

o

[ S '}

N / . X(h)
= X X Af
E [d = A(h)f(X(h)/ u(h)) + O(A(h))
COoV [d = A(h)Z(x(h),u(h)) S O(A(h))

(h)
AS ‘

In the limit & — 0 the MDP solution ?f(kh) converges to the solution v* of the
continuous problem, even when v* is non-smooth (Kushner and Dupois)
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