Function Approximation

Pieter Abbeel
UC Berkeley EECS

Value lteration

= Algorithm: Impractical for large
= Start with V' (s) = 0 forallss. state spaces
= Fori=l, .., H

For all statess € S:

Vit 1(s) « mngT(S, a,s') [R(S,a, s') + 7\/2-*(3’)}

S

W;k_|_1(3) « arg rg]eajl(ZT(s, a,s)[R(s,a,s’) + ’yVZ-*(s/)]
S/

= V.*(s)=the expected sum of rewards accumulated when
starting from state s and acting optimally for a horizon of i steps

0 7Tf2k (S) = the optimal action when in state s and getting to act
for a horizon of i steps

Example: tetris

state: board configuration + shape of the falling piece ~22% states!

action: rotation and translation applied to the falling piece

88
. . DDEEIS_
22 features aka basis functions ¢, Dalmamﬁo

]
@

U

[] 00)]
[(][]
oans

SIS
e
EEEE]

O

Ten basis functions, O, . . ., 9, mapping the state to the height h[k] of each of the
ten columns.

Nine basis functions, 10, . . ., 18, each mapping the state to the absolute
difference between heights of successive columns: |h[k+1] - h[k]|, k=1, ..., 9.

One basis function, 19, that maps state to the maximum column height: max, h[k]
One basis function, 20, that maps state to the number of ‘holes’ in the board.

One basis function, 21, that is equal to 1 in every state.

Vo(s) = Z 0idi(s) = 0" d(s)

[Bertsekas & loffe, 1996 (TD); Bertsekas & Tsitsiklis 1996 (TD); Kakade 2002 (policy gradient); Farias & Van Roy, 2006 (approximate LP)]

Function Approximation

V(s) = (90 + 91 “distance to closest ghost”
+(92 “distance to closest power pellet”
+(93 “in dead-end”

+(94 “closer to power pellet than ghost is”
+

— 297:@(8) =0"¢(s)

Function Approximation

s O’th order approximation (1-nearest neighbor):

3
EERG
0
(O
g X5 g X6 .X7 g X8 0 A
I 5 S [Y e
0
EECEEt
\ 0

Only store values for x1, x2, ..., x12
—call these values 601,05, ...,015

o, .n

Assign other states value of nearest “x” state

A

V(s) =V (zd) =64

Function Approximation

s 1'th order approximation (k-nearest neighbor interpolation):

V(s) = ¢1(5)01 + ¢2(5)02 + ¢5(s5)05 + de(s)06
_—
mx1 m X2 ' m x4 (0.2\
s 0.6
0
g X5 s 6 . X7 g X8 0 ~
S S P v
0.15
CECERN
\ 0
Only store values for x1, x2, ..., x12

— call these values 6,05, ...,045
Assign other states interpolated value of nearest 4 “x” states

Function Approximation

s Examples:

= S V(S) — (91 -+ (928

J—]R,
= S = R, V(S) — (91 + (928 -+ (9382

. S=R, V(s)= Z@isi
i=0
1

. S Vi(s) = log(1 x0T o))

)

Function Approximation

= Main idea:

= Use approximation VQ of the true value function V/,

" 9 is a free parameter to be chosen from its domain ('—')

= Representation size: |S‘% downto: |@|
+ : less parameters to estimate

- : less expressiveness, typically there exist many V for which there

is no@such that V@ — V

Supervised Learning

s Given:

= set of examples

(s, V(s), (s, V(s'?),.., (s, V(st™)

m Asked for:
- llbest” "/\/e

= Representative approach: find v through least squares:

m

' 7 (s()) (4)1)2
min Y~ (Vo(s0) = V(s)

1=1

Supervised Learning Example

= Linear regression

Observation y

Prediction g

Overfitting

m To avoid overfitting: reduce number of features used

m Practical approach: leave-out validation

= Perform fitting for different choices of feature sets using
just 70% of the data

= Pick feature set that led to highest quality of fit on the
remaining 30% of data

Value Iteration with Function Approximation

= Picksome G’ C § (typically |S/‘ < <L ‘S|)
= [nitialize by choosing some setting for 9(0)
m |teratefori=0,1, 2, .., H:

= Step 1: Bellman back-ups

Vs e S 1 Vipi(s) mC?XZT(s, a,s’) {R(s,a, s") + V0 (s’)}

= Step 2: Supervised learning

find 9(i+1) as the solution of:

min 3 (Voo ()~ Vi (5))

seS’

Infinite Horizon Linear Program

S/

L4 is @ probability distribution over S, with py(s)> 0 for all s € S.

Theorem. V' is the solution to the above LP.

Infinite Horizon Linear Program

S/

- Linear program that finds Vg(s) — HTgb(S)

Approximate Linear Program —
Guarantees™*

s LP solver will converge

= Solution quality: [de Farias and Van Roy, 2002]

Assuming one of the features is the feature that is equal to
one for all states, and assuming S’=S we have that:

* 2 . *
[V* = @01, < ﬁmemHV — ®0| o
(slightly weaker, probabilistic guarantees hold for S’ not
equal to S, these guarantees require size of S’ to grow as the
number of features grows)

Sampling-Based Motion Planning

Pieter Abbeel
UC Berkeley EECS

Many images from Lavalle, Planning Algorithms

Motion Planning

= Problem
= Given start state X, goal state X

= Asked for: a sequence of control inputs that leads from
start to goal

= Why tricky!?
= Need to avoid obstacles

= For systems with underactuated dynamics: can’t simply
move along any coordinate at will

= E.g., car, helicopter, airplane, but also robot manipulator hitting
joint limits

Solve by Nonlinear Optimization for Control?

= Could try by, for example, following formulation:

min, , (x7 — ze) (xr — z¢)
s.t. Ty = f(ay,up) VE
up € Uy
Ty € Xy

rog=T8

X. can encode obstacles

= Or, with constraints, (which would require using an infeasible method):

miny, |ull
s.t. Tir1 = flxg,uy) Vit
ur € Uy
Ty € Xy
o =TS

XTIQSG

= Can work surprisingly well, but for more complicated problems with longer
horizons, often get stuck in local maxima that don’t reach the goal

Examples

= Helicopter path planning

= Swinging up cart-pole

s Acrobot

Examples

Examples

Examples

Motion Planning: Outline

= Configuration Space

= Probabilistic Roadmap
= Boundary Value Problem
= Sampling
= Collision checking

= Rapidly-exploring Random Trees (RRTs)

= Smoothing

Configuration Space (C-Space)

={x| xis a pose of the robot}

= obstacles = configuration space obstacles

Workspace Configuration Space

(2 DOF: translation only, no rotation)

free space
obstacles [

' 4
g =

Motion planning

_ conf-1
conf-2

S Pelb

@ shou

Probabilistic Roadmap (PRM)

Free/feasible space

Space (" forbidden s

Probabilistic Roadmap (PRM)

Configurations are sampled by picking coordinates at random

Probabilistic Roadmap (PRM)

Configurations are sampled by picking coordinates at random

Probabilistic Roadmap (PRM)

Sampled configurations are tested for collision

Probabilistic Roadmap (PRM)

The collision-free configurations are retained as milestones

Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmap (PRM)

The collision-free links are retained as local paths to form the PRM

)

Probabilistic Roadmap (PRM)

The start and goal configurations are included as milestones

Probabilistic Roadmap (PRM)

The PRM is searched for a path from s to g

Probabilistic Roadmap

= [nitialize set of points with X and X
= Randomly sample points in configuration space

= Connect nearby points if they can be reached from each
other

= Find path from X, to X in the graph

= Alternatively: keep track of connected components
incrementally, and declare success when X and X are in
same connected component

PRM example

PRM example 2

Sampling

= How to sample uniformly at random from [0,]]" ?

= Sample uniformly at random from [0, |] for each
coordinate

= How to sample uniformly at random from the surface of the
n-D unit sphere!?

= Sample from n-D Gaussian = isotropic; then just
normalize

= How to sample uniformly at random for orientations in 3-D?

PRM: Challenges

|. Connecting neighboring points: Only easy for holonomic
systems (i.e., for which you can move each degree of freedom at

will at any time). Generally requires solving a Boundary Value
Problem

min, , ||ull
st @1 = floe,w) Vi Typically solved without
ur € Uy collision checking; later
Ty € X verified if valid by collision
To =Ts checking
Xt =2qg

2. Collision checking:

Often takes majority of time in applications (see Lavalle)

PRM’s Pros and Cons

= Pro:

= Probabilistically complete: i.e., with probability one, if run
for long enough the graph will contain a solution path if
one exists.

s Cons:
= Required to solve 2 point boundary value problem

= Build graph over state space but no particular focus on
generating a path

Rapidly exploring Random Trees

m Basic idea:

= Build up a tree through generating “next states” in the
tree by executing random controls

= However: not exactly above to ensure good coverage

Rapidly-exploring Random Trees (RRT)

GENERATE_RRT (z;nit, K, At)
1 Tlnlt(xzmt) y
2 fork=1to K do
3 Trand +— RANDOM_STATE();
4 Tnear +— NEAREST_NEIGHBOR(Zyqnd, T);
5 u < SELECTINPUT(Zrqnd, Tnear);
6 Tnew NEW—STATE(xneara u, At);
7 T .add_vertex(Z,ew);
8 T.add_edge(iﬁnear, Lnew U),
9 Return 7

RANDOM_STATE(): often uniformly at random over space with probability 99%, and the goal state
with probability 1%, this ensures it attempts to connect to goal semi-regularly

RRT Practicalities

= NEAREST_NEIGHBOR(X,,, 4
nearest neighbor efficiently

= KD Trees data structure (upto 20-D) [e.g., FLANN]

T): need to find (approximate)

= Locality Sensitive Hashing

= SELECT_INPUT(X,, 4 X _.)

= [wo point boundary value problem

= If too hard to solve, often just select best out of a set of control
sequences. This set could be random, or some well chosen set of
primitives.

RRT Extension

= No obstacles, holonomic:

(i)

qo

= With obstacles, holonomic:

= Non-holonomic: approximately (sometimes as approximate as picking

best of a few random control sequences) solve two-point boundary value
problem

Growing RRT

w
A

£ et ons 390 1teratons

Demo: http://en.wikipedia.org/wiki/File:Rapidly-exploring_Random_Tree_(RRT)_500x373.gif

Bi-directional RRT

= Volume swept out by unidirectional RRT:

= Volume swept out by bi-directional RRT:

= Difference becomes far more pronounced in higher dimensions

Multi-directional RRT

= Planning around obstacles or through narrow passages can
often be easier in one direction than the other

qr 4G

(c) (d)

Resolution-Complete RRT (RC-RRT)

= [ssue: nearest points chosen for
expansion are (too) often the ones

stuck behind an obstacle

qgr qc

RC-RRT solution:

m Choose a maximum number of times, m, you are willing to try to expand each node
m For each node in the tree, keep track of its Constraint Violation Frequency (CVF)

= Initialize CVF to zero when node is added to tree

= Whenever an expansion from the node is unsuccessful (e.g., per hitting an obstacle):
= Increase CVF of that node by |

= Increase CVF of its parent node by |/m, its grandparent |/m? ...

= When a node is selected for expansion, skip over it with probability CVF/m

RRT*

Algorithm 6: RRT*

© 00 N9 O Ootox W

[—
N = O

13
14
15

16

17

V {ziit}; E « 0

fori=1,...,ndo

Trand < SampleFree;

Tnearest < Nea-reSt(G = (V> E)a xrand);

Tnew < Steer(Znearest, Zrand) ;

if ObtacleFree(Z earest; Tnew) then

Xnear — Near(G' = (Va E)a Tnews mjn{'YRRT* (log(ca.rd (V))/ card (V))l/da 7’}))

V +— VU{Zpew};

Tmin < Tnearests Cmin < COSt(xncarcst) + C(Line(wnearwta wnew));

foreach Z,car € Xpear do // Connect along a minimum-cost path

if CollisionFree(Zpear, Tnew) A COSt(Znear) + c(Line(Znear; Tnew)) < Cmin then

| Zmin < Tnear; Cmin + COSt(Tnear) + c(Line(ZTnear; Tnew))

E+EU {(xmin;xncw)};

foreach z,car € Xypear do // Rewire the tree
if CollisionFree(Tnew, Znear) A COSt(Znew) + c(Line(Tnew, Tnear)) < Cost(ZTnear)
then zparent ¢ Parent(Zpear);

E + (E\ {(xparcnta xncar)}) U {(xnews xnear)}

return G = (V, E);

Source: Karaman and Frazzoli

RRT*

= Asymptotically optimal
= Main idea:

= Swap new point in as parent for nearby vertices who can
be reached along shorter path through new point than
through their original (current) parent

RRT*

RRT

Source: Karaman and Frazzoli

RRT*

RRT*

RRT

.t
o © © < o~ o o~

1 i

’l
i

I

i

il

c;:iuzkz
-2

e A-//;//"/j
-4

-6

.\ \ 1 == “ Ju
‘ N { |
2 - A9 e | ' _,._I y = 4/_
=) © © - o~ [S) o~ < © © =)

10 -10

-

RN UTES I

o
/"3
5

8

v

3]
%’
g 23
o A N
6

gl e | &a&@&.ﬂ ¥

STHTE
- ‘i’*‘

A S
S
-6

T o N S
A% Tade ok je L T ST ST T AT TR,
S
’Jn&yasﬁ; s - ..&A »L.‘&WB.W%@.; o

<

g

y ©
x4
1)
- ‘\
© @ oY

Source: Karaman and Frazzoli

LQR-trees (Tedrake, IJRR 2010)

= |dea: grow a randomized
tree of stabilizing
controllers to the goal

= Like RRT

= Can discard sample
points in already o w
stabilized region \

LQR-trees (Tedrake)

Algorithm 1 LQR-tI’CC (f, Xg, Ug, Q, R) region after
. [A, B] <= linearization of f(x, u) around (x;, ug) iteration k
: |[K,S] < LQR(A, B, Q,R)
. p. <= level set computed as described in §3.1.1
4: Tanit({x,, u,, S, K, p ., NULL})
fork=1toKdo

Xrand < random sample

if X, € C; then

continue

end if

[7,x0(1), up(r)] from trajectory optimization with a

“final tree constraint™
11: if xo(t7) € 7y then
12: continue
13: end if
14: |K(7), S(7)] from time-varying LQR
15: p, <= level set computed as in §3.1.1
16: i <= pointer to branch in T containing Xo(7s)
17: T.add-branch(xy(z), up(z), S(z), K(1), p, i)
18: end for

= W N =

N R AR 4

e

LQR-trees (Tedrake)

a 0 1 2 3 s = 0 1 2 3 a
x(1) x(1)
(a) Goal region (b) One branch

2 -1 0 1 2 3 4
(1) (1)

(c) Six branches (d) Thirteen branches

Smoothing

Randomized motion planners tend to find not so great paths for
execution: very jagged, often much longer than necessary.

—> In practice: do smoothing before using the path

= Shortcutting:

= along the found path, pick two vertices X.,, X, and try to
connect them directly (skipping over all intermediate
vertices)

= Nonlinear optimization for optimal control

= Allows to specify an objective function that includes
smoothness in state, control, small control inputs, etc.

