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Pontryagin’s maximum principle

For deterministic dynamics x = f (x,u) we can compute extremal open-loop
trajectories (i.e. local minima) by solving a boundary-value ODE problem
with given x (0) and A (T) = %qT (x), where A () is the gradient of the
optimal cost-to-go function (called costate).
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Pontryagin’s maximum principle

For deterministic dynamics x = f (x,u) we can compute extremal open-loop
trajectories (i.e. local minima) by solving a boundary-value ODE problem
with given x (0) and A (T) = %qT (x), where A () is the gradient of the
optimal cost-to-go function (called costate).

Definition (deterministic Hamiltonian)

Hxu,A)20(xu)+f(xu) A

4

Theorem (continuous-time maximum principle)

Ifx (t),u(t), 0 <t < T is the optimal state-control trajectory starting at x (0), then
there exists a costate trajectory A (t) with A (T) = 2 q7 (x) satisfying

x = Hy(x,uA)=f(xu)
—A = Hx(xuA) =l (x,u) + fx (x, u)T A
u = argminH (x,u,A)
u
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Derivation from the H]JB equation (continuous time)

For deterministic dynamics x = f (x,u) the optimal cost-to-go in the
finite-horizon setting satisfies the HJB equation

—v (x, 1) = Il’}lil’l {E (x,u) +f (x,u)T vx (X, t)} = rrhinﬁ (x,u,vx (X, 1))
If the optimal control law is 7t (x, t), we can set u = 7t and drop the ‘min”:

0= (x,8) + £ (%, 7T (x,)) +£(x, 7T (x,1)) 0x (X, £)

Now differentiate w.r.t. x and suppress the dependences for clarity:
0= vpx + bt 0] by + (£ + 7L 6] ) o+ vk
Using the identity 9x = vix + vxxf and regrouping yields
0=0x+ lx + fiox+ Ty (€u+flvx) = ox + Hx + 7ty Hy

Since u is optimal we have H, = 0, thus —A = Hy (x, 7t, ) where A = vy.
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Derivation via Largrange multipliers (discrete time)

Optimize total cost subject to dynamics constraints xi 1 = £ (xg, ug).
Define the Lagrangian L (x.,u., A.) as
-
L = )+ Zk 0 € (X, ug) + (F (g, wg) =Xk 1) Akp
N-1+
= qr (XN) —XGAN X Ao+ Y H (% e Apsr) — X A
Setting Lx = Ly = 0 and explicitly minimizing w.r.t. u yields

Theorem (discrete-time maximum principle)

If xg, ug, 0 < k < N is the optimal state-control trajectory starting at Xo, then there
exists a costate trajectory Ay with A = %qT (xN) satisfying

Xer1 = Ha (gug Agyr) = £ (xe ug)
M = Hy(up Appr) = b O we) + £ O we) T Apig
u = arg IIINIHH (xk/ u, Ak—}—l)
u
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Gradient of the total cost

The maximum principle provides an efficient way to evaluate the gradient of
the total cost w.r.t. u, and thereby optimize the controls numerically.

Theorem (gradient)

For given control trajectory uy, let xx, Ay be such that

Xer1 = (g w)
M = b Opup) + fx (o we) T A

with xo given and Ay = 247 (xv). Let ] (x.,u.) be the total cost. Then

9 _
a—uk] (x.,w.) = Hu (X, g, A1) = Lu (X ug) + fu (X ug) T Agig

Note that x; can be found in a forward pass (since it does not depend on A),
and then Ay can be found in a backward pass.
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Proof by induction

The cost accumulated from time k until the end can be written recursively as

Je (XteooNs Weeo.N—1) = £ (X, W) + Jig1 (Xege1Ns Uk 1...N—1)

Noting that uy, affects future costs only through xi.1 = f (X, u;), we have

d d
aTk]k = Ly (g, wg) + fu O wp) aka]kH

d
We need to show that A, = gfk' For k = N this holds because [y = g7.
k
For k < N we have

d d
37,(]" = Oy (X wp) + fx (x ug) T axk+1]k+1

which is identical to Ay = fx (Xg, ug) + £x (xx, uk)T Akit.

Emo Todorov (UW) AMATH/CSE 579, Winter 2012 Lecture 5



Enforcing terminal states

The final state x (T) is usually different from the minimum of the final
cost g7, because it reflects a trade-off between final and running cost.

We can enforce x (T) = X as a boundary condition and remove the
boundary condition on A (T).

Once the solution is found, we can construct a function g7 such that
A(T) = aa—xqq— (x(T)). However if A (T) # 0 then x (T) is not the
minimum of this 7.

We can also define the problem as infinite horizon average cost, in which
case it is usually suboptimal to have an asymptotic state different from
the minimum of the state cost function. The maximum principle does not
apply to infinite horizon problems, so one has to use the HJB equations.
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More tractable problems

When the dynamics and cost are in the restricted form

x = a(x)+Bu
l(x,u) = q(x)+%uTRu

the Hamiltonian can be minimized analytically, which yields the ODE
x = a(x)—BR'BTA
A= W tax’A

with boundary conditions x (0) and A (T) = 247 (x). If B,R depend on x,
the second equation has additional terms involving the derivatives of B, R.
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More tractable problems

When the dynamics and cost are in the restricted form

x = a(x)+Bu
l(x,u) = q(x)+%uTRu

the Hamiltonian can be minimized analytically, which yields the ODE
x = a(x)—BR'BTA
A= W tax’A

with boundary conditions x (0) and A (T) = 247 (x). If B,R depend on x,
the second equation has additional terms involving the derivatives of B, R.

We have Hy = R (x)u+ B (x)" A and Hyy = R (x) > 0. Thus the maximum
principle here is both a necessary and a sufficient condition for a local
minimum.
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Pendulum example

Passive dynamics:

ak) = [kSizz(xl)]
a9 = {kcoso(xl) (1)]

Optimal control:
u= —r_lAz

ODE (with g = 0):

X1 = X

Xp = ksin(x1) — A,
—A1 = kcos(x1) Ay
A = M
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Pendulum example

Passive dynamics: Cost-to-go and trajectories:

20 = | ity |

ax () = {kcoso(xl) (1)]

Optimal control:

u= —T_l)Lz
Control law (from HJB):
ODE (with g = 0):

o= x

X = ksin (Xl) —1‘_1)\2
—/.\1 = kcos (xl) /\2
A = A
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Using the maximum principle

Recall that for deterministic dynamics x = f (x,u) and cost rate ¢ (x,u)
the optimal state-control-costate trajectory (x (-),u(-),A (+)) satisfies

x = f(xu)
—A Ix (x,u) + £« (x,u)T A
u = argrrgn{ﬁ(x,ﬁ)—i—f(x,ﬁ)TA}
u

with x (0) givenand A (T) = aa—qu (x(T)). Solving this boundary-value ODE
problem numerically is a trajectory-based method.
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Using the maximum principle

Recall that for deterministic dynamics x = f (x,u) and cost rate ¢ (x,u)
the optimal state-control-costate trajectory (x (-),u(-),A (+)) satisfies

x = f(xu)
—A Uy (x,u) + fx (x,u)T A
u = argrrgn{ﬁ(x,ﬁ)+f(x,ﬁ)TA}
u

with x (0) givenand A (T) = g—qu (x(T)). Solving this boundary-value ODE
problem numerically is a trajectory-based method.

We can also use the fact that, if (x (-), A (-)) satisfies the ODE for some u (-)
which is not a minimizer of the Hamiltonian H (x,u,A) = £ (x,u) + f (x, u)T A,
then the gradient of the total cost ] is given by

Jx(),u0) = ar )+ [ 00, u)d
u@ Hy (x,u,A) = ly (x,u) + £y (x,u)" A

Thus we can perform gradient descent on | with respect to u (-)
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Compact representations

Given the current u (-), each step of the algorithm involves computing x (-) by
integrating forward in time starting with the given x (0), then computing A (-)
by integrating backward in time starting with A (T) = aa—qu (x(T)).
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Compact representations

Given the current u (-), each step of the algorithm involves computing x (-) by
integrating forward in time starting with the given x (0), then computing A (-)
by integrating backward in time starting with A (T) = aa—qu (x(T)).

One way to implement the above methods is to discretize the time axis and
represent (x,u, A) independently at each time step. This may be inefficient

because the values at nearby time steps are usually very similar, thus it is a
waste to represent/optimize them independently.
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Compact representations

Given the current u (-), each step of the algorithm involves computing x (-) by
integrating forward in time starting with the given x (0), then computing A (-)
by integrating backward in time starting with A (T) = aa—qu (x(T)).

One way to implement the above methods is to discretize the time axis and
represent (x,u, A) independently at each time step. This may be inefficient
because the values at nearby time steps are usually very similar, thus it is a
waste to represent/optimize them independently.

Instead we can splines, Legendre or Chebyshev polynomials, etc.

u(t) =g(tw)

Gradient: — \\

u
9 = ! Tia] /‘\/0
e —/0 gw (t, W) Ta (t)dt
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Space-time constraints

We can also minimize the total cost | as an explicit function of the
(parameterized) state-control trajectory:

x(t) = h(tv)
u(t) g (t,w)

We have to make sure that the state-control trajectory is consistent with the
dynamics x = f (x,u) . This yields a constrained optimization problem:

min {7 (0 (Tv) + [ £(h(0v), 800wt

oh (t,v)

s.t. o =f(h(t,v),g(tv)), Vtel0,T]

Emo Todorov (UW) AMATH/CSE 579, Winter 2012 Lecture 6 4/13



Space-time constraints

We can also minimize the total cost | as an explicit function of the
(parameterized) state-control trajectory:

x (¢) h (t,v)
u() = gtw)

We have to make sure that the state-control trajectory is consistent with the
dynamics x = f (x,u) . This yields a constrained optimization problem:

min {7 (0 (Tv) + [ £(h(0v), 800wt

oh (t,v)

s.t. T:f(h(t,v),g(t,v)), vVt € [0,T]

In practice we cannot impose the contraint for all £, so instead we choose a finite set of
points {#} where the constraint is enforced. The same points can also be used to
approximate f £. There may be no feasible solution (depending on h, g) in which case
we have to live with constraint violations.

This requires no knowledge of optimal control (which may be why it is popular:)
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Second-order methods

More efficient methods (DDP, iLQG) can be constructed by using the Bellman
equations locally. Initialize with some open-loop control u(?) (-), and repeat:

@ Compute the state trajectory x() (-) corresponding to u(® (-).

@ Construct a time-varying linear (iLQG) or quadratic (DDP)
approximation to the function f around x (-),u(® (), which gives the
local dynamics in terms of the state and control deviations 0x (), du (+).
Also construct quadratic approximations to the costs £ and g7

@ Compute the locally-optimal cost-to-go (") (dx, t) as a quadratic in dx. In
iLQG this is exact (because the local dynamics are linear and the cost is
quadratic) while in DDP this is approximate.

@ Compute the locally-optimal linear feedback control law in the form
7 (6x,t) = ¢ (t) — L (t) 6x.

@ Apply (" to the local dynamics (i.e. integrate forward in time) to
compute the state-control modification éx™ (-),éu(™ (-), and set
a1 () = u™ (-) + sul® (-). This requires linesearch to avoid jumping
outside the region where the local approximation is valid.
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Numerical comparison

Conj. ODE DDP

time(s) 5.9 1.25 0.61
1
Z.. () Steepest
I N : <
R
' N ' o
H RO —
: g Conjugate
H ' -2
. .
. .
1 100 200
Iteration
iter 10 iter 100 iter 200
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Finding Locally-Optimal, Collision-Free Trajectories with
Sequential Convex Optimization
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Motion Planning

e Sampling-based methods like RRT

slow down as dimensionality increases
e Graph search methods like A*

e Optimization based methods

® Reactive control
e Potential-based methods for high-DOF problems (Khatib, '86)

e Optimize over the entire trajectory
e Elastic bands (Quinlan & Khatib, '93)
e CHOMP (Ratliff, et al. ‘09) & variants (STOMP, ITOMP)

Industrial robot arm (6 DOF)  Mobile manipulator (18 DOF) Humanoid (34 DOF)

Finding Locally-Optimal, Collision-Free Trajectories. Presenter: John Schulman
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Trajectory Optimization

min ZHQtH — 0,]|* + other costs
t

01.7

subject to

no collisions « non-convex
joint limits

other constraints

Finding Locally-Optimal, Collision-Free Trajectories. Presenter: John Schulman
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Trajectory Optimization

01.7

min ZHHHl — 0,]|* + other costs
t

subject to

no collisions « non-convex
joint limits

other constraints

e Sequential convex optimization
e Repeatedly solve local convex approximation

e Challenge
e Approximating collision constraint

Finding Locally-Optimal, Collision-Free Trajectories. Presenter: John Schulman

Thursday, July 4, 13


file://localhost/Users/joschu/Movies/car-1.ogv
file://localhost/Users/joschu/Movies/car-1.ogv

Collision Constraint as L1 Penalty

|

Penalty

0 d safe

Signed Distance

Finding Locally-Optimal, Collision-Free Trajectories. Presenter: John Schulman
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Collision Constraint as L1 Penalty
I [

Penalty

0 d safe

Signed Distance

Linearize w.r.t. degrees of freedom

SdAB(H) ~ SdAB(H()) -+ flTJpA (00)(8 — 60)

Finding Locally-Optimal, Collision-Free Trajectories. Presenter: John Schulman

Thursday, July 4, 13



Continuous-Time Safety

Collision check against swept-out volume
e Continuous-time collision avoidance

e Allows coarsely sampling trajectory
e overall faster

e Finds better local optima

Finding Locally-Optimal, Collision-Free Trajectories. Presenter: John Schulman
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Optimization: Toy Example

Finding Locally-Optimal, Collision-Free Trajectories. Presenter: John Schulman
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Benchmark: Example Scenes

7 DOF (one arm) 18 DOF (two arms + base + torso)

198 problems | 96 problems

example scene (imported from Trimble 3d
Warehouse / Google Sketchup)

Finding Locally-Optimal, Collision-Free Trajectories. Presenter: John Schulman

example scene (taken from Movelt collection)
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Benchmark Results

Arm planning (7 DOF) 10s limit
Trajopt BIiRRT (*)  CHOMP

success 99% 97 % 85%
time (s) 0.32 1.2 6.0
path length 1.2 1.6 2.6

Full body (18 DOF) 30s limit
Trajopt BIiRRT (*) CHOMP (**)

success 84% 53% N/A
time (s) 7.6 18 N/A
path length 1.1 1.6 N/A

(*) Top-performing algorithm from Movelt/OMPL
(**) Not supported in available implementation

Finding Locally-Optimal, Collision-Free Trajectories. Presenter: John Schulman

Thursday, July 4, 13



Other Experiments -- Videos at Interactive Session

" Planning for 34-DOF humanoid
(stability constraints)

» Box picking with industrial robot
(orientation constraints)

= Constant-curvature 3D needle
steering (non-holonomic constraint)

Finding Locally-Optimal, Collision-Free Trajectories. Presenter: John Schulman
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Try it out yourself!

= Code and docs: rll.berkeley.edu/trajopt

= Run our benchmark: github.com/joschu/planning_benchmark

Finding Locally-Optimal, Collision-Free Trajectories. Presenter: John Schulman

Thursday, July 4, 13
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