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n  Kalman Filter = special case of a Bayes’ filter with dynamics model and 
sensory model being linear Gaussian: 

Kalman Filter 
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n  At time 0:  

n  For t = 1, 2, … 

n  Dynamics update: 

n  Measurement update: 

Kalman Filtering Algorithm 
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Nonlinear Dynamical Systems 

n  Most realistic robotic problems involve nonlinear functions: 

n  Versus linear setting: 
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Linearity Assumption Revisited 
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Linearity Assumption Revisited 
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Non-linear Function 

“Gaussian of p(y)” has 
mean and variance of y 
under p(y)  
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EKF Linearization (1) 
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EKF Linearization (2)  

p(x) has high variance relative to region in which linearization is accurate.  
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EKF Linearization (3) 

p(x) has small variance relative to region in which linearization is accurate.  
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n  Dynamics model: for xt “close to” µt we have: 

n  Measurement model: for xt “close to” µt we have: 

EKF Linearization: First Order Taylor 
Series Expansion 



n  Numerically compute Ft column by column: 

n  Here ei is the basis vector with all entries equal to zero, 
except for the i’t entry, which equals 1. 

n  If wanting to approximate Ft as closely as possible then ² 
is chosen to be a small number, but not too small to avoid 
numerical issues 

EKF Linearization: Numerical  



n  Given: samples {(x(1), y(1)), (x(2), y(2)), …, (x(m), y(m))} 

n  Problem: find function of the form f(x) = a0 + a1 x that fits 
the samples as well as possible in the following sense: 

Ordinary Least Squares 



n  Recall our objective: 

n  Let’s write this in vector notation: 

n        ,      giving: 

n  Set gradient equal to zero to find extremum: 

Ordinary Least Squares 

(See the Matrix Cookbook for matrix identities, including derivatives.) 



n  For our example problem we obtain a = [4.75; 2.00] 

Ordinary Least Squares 

a0 + a1 x 



n  More generally:   

n  In vector notation: 

n          ,             gives: 

n  Set gradient equal to zero to find extremum (exact same 
derivation as two slides back): 

Ordinary Least Squares 
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n  So far have considered approximating a scalar valued function from 
samples {(x(1), y(1)), (x(2), y(2)), …, (x(m), y(m))} with 

n  A vector valued function is just many scalar valued functions and 
we can approximate it the same way by solving an OLS problem 
multiple times.  Concretely, let   then we have: 

n  In our vector notation:  

n  This can be solved by solving a separate ordinary least squares 
problem to find each row of  

Vector Valued Ordinary Least Squares 
Problems 



n  Solving the OLS problem for each row gives us: 

n  Each OLS problem has the same structure.  We have 

Vector Valued Ordinary Least Squares 
Problems 



n  Approximate xt+1 = ft(xt, ut)  

   with affine function a0 + Ft xt  

   by running least squares on samples from the function:  

 {( xt(1), y(1)=ft(xt(1),ut), ( xt(2), y(2)=ft(xt(2),ut), …, ( xt(m), y(m)=ft(xt(m),ut)} 

n  Similarly for  zt+1 = ht(xt)  

 

Vector Valued Ordinary Least Squares and 
EKF Linearization 



n  OLS vs. traditional (tangent) linearization: 

OLS and EKF Linearization: Sample Point 
Selection 

traditional (tangent) 

OLS 



n  Perhaps most natural choice:  

n     

n   reasonable way of trying to cover the region with 
reasonably high probability mass 

OLS Linearization: choosing samples points 



n  Numerical (based on least squares or finite differences) could 
give a more accurate “regional” approximation.  Size of 
region determined by evaluation points. 

n  Computational efficiency: 

n  Analytical derivatives can be cheaper or more expensive 
than function evaluations 

n  Development hint: 

n  Numerical derivatives tend to be easier to implement 

n  If deciding to use analytical derivatives, implementing finite 
difference derivative and comparing with analytical results 
can help debugging the analytical derivatives 

Analytical vs. Numerical Linearization 



n  At time 0:  

n  For t = 1, 2, … 

n  Dynamics update: 

n  Measurement update: 

EKF Algorithm 
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EKF Summary 

n  Highly efficient: Polynomial in measurement dimensionality k 
and state dimensionality n:  
             O(k2.376 + n2)  

n  Not optimal! 
n  Can diverge if nonlinearities are large! 
n  Works surprisingly well even when all assumptions are 

violated! 
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Linearization via Unscented Transform 

EKF UKF 
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UKF Sigma-Point Estimate (2) 

EKF UKF 
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UKF Sigma-Point Estimate (3) 

EKF UKF 



UKF Sigma-Point Estimate (4) 



n  Assume we know the distribution over X and it has a mean \bar{x} 

n  Y = f(X) 

n  EKF approximates f by first order and ignores higher-order terms 

n  UKF uses f exactly, but approximates p(x).  

UKF intuition why it can perform better 
[Julier and Uhlmann, 1997] 



n  Picks a minimal set of sample points that match 1st, 2nd and 3rd moments 
of a Gaussian: 

n  \bar{x} = mean, Pxx = covariance, i à i’th column, x 2 <n 

n   · : extra degree of freedom to fine-tune the higher order moments of 
the approximation; when x is Gaussian, n+· = 3 is a suggested heuristic 

n  L = \sqrt{P_{xx}} can be chosen to be any matrix satisfying: 

n  L LT = Pxx 

Original unscented transform 

[Julier and Uhlmann, 1997] 



n  Dynamics update: 

n  Can simply use unscented transform and estimate the 
mean and variance at the next time from the sample 
points 

n  Observation update: 

n  Use sigma-points from unscented transform to compute 
the covariance matrix between xt and zt.  Then can do the 
standard update. 

Unscented Kalman filter 



[Table 3.4 in Probabilistic Robotics] 



UKF Summary 

n  Highly efficient: Same complexity as EKF, with a constant factor 
slower in typical practical applications  

n  Better linearization than EKF: Accurate in first two terms of 
Taylor expansion (EKF only first term) + capturing more 
aspects of the higher order terms 

n  Derivative-free: No Jacobians needed 

n  Still not optimal! 


