EKF, UKF

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Kalman Filter

= Kalman Filter = special case of a Bayes’ filter with dynamics model and
sensory model being linear Gaussian:

Q @ ©
Xo ~ N (o, Xo) @ @ @

Xip1 = AXi+ Biug+e¢ g ~N(0,Qy)
Zy = Oy Xy+di+96; 6 ~N(0,Ry)

Kalman Filtering Algorithm

s At time O: Xo ~ N(Mom, Z0|0)
m Fort=1,2,...

= Dynamics update:

Pis1)0:e = Aepigor + Brug
2ipr1)0:t = Atzuo:tA;r + Qq
= Measurement update:
Kiv1i = Si4104C 11 (Cer1Z64110:4Cs 1 + Reg1) ™!
Ht+1]0:t+1 = Hi4+1)0:¢ T Kip1(2t41 — (Ct+1Mt+1|o:t + d))

2t+1|0:t+1 — (I_Kt+lct+1)zt+1|0:t

Nonlinear Dynamical Systems

= Most realistic robotic problems involve nonlinear functions:

X1 = fi(Xp,ue) e e~ N(0,Q4)
Zt —_ ht(Xt)—I-dt 5t NN(O,Rt)
= Versus linear setting;
Xiy1 = A Xie+ Buug+er g ~N(0,Qy)

Zt —_— CtXt + dt -+ 5,5 (St o N(O, Rt)

Linearity Assumption Revisited

6-y m— y=3ax+h

= Meanp

1 +
0 0.5 1
6t |
p(X) ped) = N(% p, o9
4 #= Mean of p(x)

Linearity Assumption Revisited

y

6| 6

piy)= N{y;ap +h,a%e?)
K Mean of piy)

y —y=ax+b

= Meanp

p(x) = N(x p, 67)
#= Mean of p(x)

Non-linear Function

6 6
y J Py y — Function g{x)
— Gaussian of p(y) = Meanp
4 || X Mean of p(y) 4t QO o
2 2
X S
0 T 0}
) 21
Lo ply) !
0 0204 06 0.8 0 0.5
n . " p(X)6 - <)
Gaussian of p(y)” has 4+ Meanp
_ 4

mean and variance of y = |
under p(y) Py
0 * X

EKF Linearization (1)

Py)
— Gaussian of py)
—— EFK Gaussian

-4

— Function g(x)
— Taylor approx.
&= Meanp

O s

pix)
f= Meanp

EKF Linearization (2)

6 6
ply) — Function gix)
— Gaussian of p(y) = Taylor approx.
4 ﬂ —— EFK Gaussian 4t d= Meanp
O s
2 -
‘ 2
0 T 0
-2 -2
-4 : : -4 = :
0 0.5 1 0 0.5 1
4 o= Ef'izz)an e

p(x) has high variance relative to regio?mn which Ilng.arlzatlon IS @ccurate. 9

6
Py)
— Gaussian of py)
4 || — EFK Gaussian

g

J

20

MYy

10

EKF Linearization (3)

— Function g(x)
— Taylor approx.
= Meanp

QO s

0 0.5 1

pix)
= Meanp

p(x) has small variance relative to regi8n in which Tiniearization is.accurate.10

EKF Linearization: First Order Taylor
Series Expansion

= Dynamics model: for X, “close to” i, we have:

9, :
fe(xe,ue) =~ fi(pe,) + ftggtm)(xt—ﬂt)

= filpe,uy) + Fe(zg — pag)

= Measurement model: for X, “close to” p, we have:

oh
he(pe) + 5;/50 (2t —)

= he(pe) + He(we — pe)

ht(fﬂt)

Q

11

EKF Linearization: Numerical

0 :
fe(we,ug) =~ filpe,we) + ftg;ttm)(flft—ﬂt)

= fe(pe,ue) + Fe(ze — pe)

= Numerically compute F, column by column:

Je(pe +ceiyuy) — fi(pe — cei,uy)
2¢€

fore=1,...,n Fi(:,i) =

= Here € is the basis vector with all entries equal to zero,
except for the i't entry, which equals |.

= If wanting to approximate F, as closely as possible then ¢
is chosen to be a small nhumber, but not too small to avoid

numerical issues

Ordinary Least Squares

= Given: samples {(x(1), y(), (x(), y®@), ..., (x(™), y(M)}

20

+
ooooo

= Problem: find function of the form f(x) = a, + a, x that fits
the samples as well as possible in the following sense:

. 1 m . ‘
min — Z(ao +ayz'D — y))?

ap,a) 2

.

1=1

Ordinary Least Squares

m

1

= Recall our objective: min - Z(ao +azt) — y)2

ap,ai 2
1=1

m Let’s write this in vector notation:

m

£ (0)

1 (i i
. 0= [!] o= m giving: ming » (z07a—yW)?
1

1=1

= Set gradient equal to zero to find extremum:

m

0= Va(.) — Zj(z) (j(i)Ta . y(7))
=1

= (f: w(i)x(”:)—r) a — i j(i)y(”:)
1=1 1=1

g 1 1

= XX'a—-Xy X = (1) 2

a4 = (XXT)_le yT = [y @

1
T (m)

y (™)

(See the Matrix Cookbook for matrix identities, including derivatives.)

Ordinary Least Squares

ms For our example problem we obtain a = [4.75; 2.00]

20

15 F

Ordinary Least Squares

= More generally: (Y ¢ R"

m

min -~ = (ao+ a1zl + asxl?) + ..+ anald —)

= |n vector notation:
1 I
x(i)} “= [al

= Set gradient equal to zero to find extremum (exact same
derivation as two slides back):

. 1 ™m _(a ?'
gives: maln 5 Z(x(')Ta — y('))Q

1=1

_ 1 1 1 |
< = X—L;(l) 2@ gm)]

yT:[y(l) TLCUN y(m):

Vector Valued Ordinary Least Squares
Problems

= So far have considered approximating a scalar valued function from
samples {(x(), y), (x®@, y®@), ..., (x™, ym)} with () ¢ R" 4@ ¢ R

= A vector valued function is just many scalar valued functions and

we can approximate it the same way by solving an OLS problem
multiple times. Concretely, let y'” € R? then we have:

Find ag € RP, A € R"*P such that Vi = 1,...,m ag+ Az") ~ y(®,

= |In our vector notation:

$OT = [1 20T], A=[ao A],
Find A such that Vi =1,...,m Az ~ y{¥).

= This can be solved by solving a separate ordinary least squares
problem to find each row of A

Vector Valued Ordinary Least Squares
Problems

= Solving the OLS problem for each row gives us:

T o —1 v _ (0,....;m
(A;)7 = (XX 7)1 xylOm)

-
0,....m 0 1 m
(.) JE— [y.g) y.;) . . y‘§')]

s Each OLS problem has the same structure. We have

AT = (XXT)"'XY

0,..., m 0,..., m 0,..., m
O e =
(0 0 0)]
Oy
N N SO

yim) yém) o yz()m)

Vector Valued Ordinary Least Squares and
EKF Linearization

s Approximate X.,, = f (X, U)
with affine function @, + F_ X,

by running least squares on samples from the function:

{(x.0, yO=f (x.(O,u,), (X, yd=f (x.@,u), ..., (XM, yM=f (X (m),u,)}

(@ F] =AT =(XXT)"'XY

s Similarly for z.,, = h(X)

OLS and EKF Linearization: Sample Point
Selection

m OLS vs. traditional (tangent) linearization:

20

15+

10+

10

OLS Linearization: choosing samples points

A
m Perhaps most natural choice:

= g, Mt T Zi/Zalut — Z%/z

= reasonable way of trying to cover the region with
reasonably high probability mass

Analytical vs. Numerical Linearization

= Numerical (based on least squares or finite differences) could
give a more accurate “regional” approximation. Size of
region determined by evaluation points.
= Computational efficiency:
= Analytical derivatives can be cheaper or more expensive
than function evaluations

= Development hint:

= Numerical derivatives tend to be easier to implement

= If deciding to use analytical derivatives, implementing finite
difference derivative and comparing with analytical results
can help debugging the analytical derivatives

EKF Algorithm

= Attime O: Xo ~ N (p0)0: Xoj0)
m Fort=1,2,...
= Dynamics update: filze,we) = aor + Fy(Te — pejo:e)
(ao,t, Fy) = linearize(ft, fe)0:¢, 2¢(0:5 Ut)
Ht41)0:¢ — Qo
2ipp1)0:6 = Ft2t|0:tFtT + Q1
= Measurement update: h.i(vi11) & cotr1 + Hep1(Tee1 — fevijor)
(co,t+1,Hiy1) = linearize(hiq1, fhet110:t> 2t+1]0:¢)
Kiyr = SepjoeH s (Hip1 Seprj0:0Hylyy + Regr) ™
4100641 = Hi+1]0:¢ T Kiy1(ze41 — Co,t+1)
Y1041 = = K1 Hip1) 241004

EKF Summary

= Highly efficient: Polynomial in measurement dimensionality k

and state dimensionality n:
O(k237¢ + n?)

= Not optimal!
= Can diverge if nonlinearities are large!

= Works surprisingly well even when all assumptions are
violated!

35

Linearization via Unscented Transform

6 6 6
piy) piy) — Function g(x)
— Gaussian of p{y) — Gaussian of p(y) &= Sigma-points
4)| — EFK Gaussian 4 || — UKF Gaussian 4 © uyisigma points)
2 2
<
0 0 0
2 2 -2
g 4l 4 -
0 0204 06 0.8 0 0204 06 08 0 0.5 1
6|

p(x)

EKF UKF 4 * fons

36

UKF Sigma-Point Estimate (2)

6 6
Py piy) — Function gix)
— Gaussian of p(y) — Gaussian of p(y) += Sigma-points
—— EFK Gaussian 4 | — UKF Gaussian 4 © uisigma points)

2 $ 2
Y L —— X
0 ~ 0
-2 -2
: : -4 : : -4 :
0.5 1 0 0.5 1 0 0.5 1

p(x)

EKF UKF d # fions

37

UKF Sigma-Point Estimate (3)

6 6 6
p(y) ply) — Function g{x)
— Gaussian of p{y) — Gaussian of p(y) &= Sigma-points
4 || — EFK Gaussian 4 | — UKF Gaussian 4t © ulsigma points)

o ~N
o ~N
¥=99
o N

2 2 2
“0 05 1 15 “0 05 1 15 “o 0.5 :
EKF UKF 20| + Eﬁanp
£ 10/
0 FAN

UKF Sigma-Point Estimate (4)

I

[Julier and Uhlmann, 1997]
UKF intuition why it can perform better

= Assume we know the distribution over X and it has a mean \bar{x}

= Y =f(X)

f[x] = f[x + 0x]

| 1. ., 1 1
= f[x] + Vfox + §V2f6x2 + §V3f5x3 - ZV”‘fdx‘1 + -

1. 1 ;
y = f [)_(] + §V2f P..+ §V1fE [inl} + -

Pyy = VP, (V)T + 5 i Vf (E [6x'] —E [6x°P,,| — E [P,,0x?] + ng) (V26T +
LV [6x1] (VE) 4 -

3!

m EKF approximates f by first order and ignores higher-order terms

m UKF uses f exactly, but approximates p(x).

Original unscented transform

= Picks a minimal set of sample points that match 15, 2"4 and 34 moments
of a Gaussian:

Xo =
X.,' e

>

1 '“ — K / (n + K)
e T Y

!

Xiyn =X-— (\/(n+ k) P,,.‘,.) - Wipn =1 /2(n + k)

!

>

= \bar{x} = mean, P, = covariance, i = i'th column, x € "

m K :extra degree of freedom to fine-tune the higher order moments of
the approximation; when x is Gaussian, n+x = 3 is a suggested heuristic

s L =\sqrt{P_{xx}} can be chosen to be any matrix satisfying:

n LLT=PXX

[Julier and Uhlmann, 1997]

Unscented Kalman filter

= Dynamics update:

= Can simply use unscented transform and estimate the
mean and variance at the next time from the sample
points

= Observation update:

= Use sigma-points from unscented transform to compute
the covariance matrix between X, and zZ.. Then can do the
standard update.

Algorithm Unscented Kalman filter(p;—1, 31, us, 2¢):
1.
2.

3.

10.
11.
12.
13.

X1 = (Mt—l fie—1 + YV Bt—1 -1 — Y/ Se—1)
‘;?t* = g(pe, Xi—1)

ot = Z?go win X, 2

B =Y wd (B - p) (X -)T + Ry
C X = (ﬂt fit + 7V —7\/S_t>

. Zi = h(X)

= Tl

CSi= vl (20— (20 - 2) 4o
L P = Zzzﬂo [z] (X[Z] _t> <égz] — ét)T

K, = 57 g1 Here L = /¥ can be chosen
o to be any n X n matrix satisfying:
pe = fig + Ki(ze — 2¢) LLT =%
Y =3 — KiS K, Technically this is an abuse of
notation for the symbol :
return p;, 2 Y \/_

[Table 3.4 in Probabilistic Robotics]

UKF Summary

= Highly efficient: Same complexity as EKF, with a constant factor
slower in typical practical applications

m Better linearization than EKF: Accurate in first two terms of
Taylor expansion (EKF only first term) + capturing more
aspects of the higher order terms

m Derivative-free: No Jacobians needed

m Still not optimal!

