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Abstract— In this paper, we show that for arbitrary stochastic
linear dynamical systems, the problem of optimizing parameters
of a feedback control policy can be cast as a convex optimization
problem when a risk-averse objective (similar to LEQG) is used.
The only restriction is a condition relating the control cost,
risk factor and noise in the system. The resulting approach
allows us to synthesize risk-averse controllers efficiently for
finite horizon problems. For the standard quadratic costs in
infinite horizon, the resulting problems become degenerate if the
uncontrolled system is unstable. As an alternative, we propose
using a discount-based approach that ensures that costs do
not blow up. We show that the discount factor can effectively
be used as a homotopy parameter to gradually synthesize
stabilizing controllers for unstable systems. We also propose
extensions where non-quadratic costs can be used for controller
synthesis, and in this case, as long as the costs are bounded,
the optimization problems are well-posed and have non-trivial
solutions.

I. INTRODUCTION

Linear feedback control synthesis is a classical topic
in control theory and has been extensively studied in the
literature. From the perspective of stochastic optimal control
theory, the classical result is the existence of an optimal
linear feedback controller for systems with linear dynamics,
quadratic costs and gaussian noise (LQG systems) that can
be computed via dynamic programming [K+60]. However,
if one imposes additional constraints on the feedback ma-
trix (such as a sparse structure arising from the need to
implement control in a decentralized fashion), the dynamic
programming approach is no longer applicable. In fact, it
has been shown that the optimal control policy may not
even be linear [Wit68] and that the general problem of
designing linear feedback gains subject to constraints is NP-
hard [BT97].
Previous approaches to synthesizing structured controllers
can be broadly categorized into three types: Frequency Do-
main [RL02][QSVK04][RL06][Sha13], Dynamic Program-
ming [FSJ94][SL10][LL13] and Nonconvex optimization
[WZ13][LFJ13][ANR08][BHLO06]. The first two classes
of approaches find exact solutions to structured control
problems for special cases. The third class of approaches
tries to directly solve the optimal control problem subject to
constraints on the controller, using nonconvex optimization
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techniques. These are generally applicable, but are suscepti-
ble to local minima and slow convergence.

Recently, there has been work on trying to solve the
structured controller design problem directly as a convex op-
timization problem. In [FML][Lav13], the authors formulate
the decentralized controller problem as a rank-constrained
optimization problem and develop SDP relaxations of the
optimal decentralized control problem. If the SDP relaxation
has a rank-1 solution, the relaxation is exact. This is not true
in general but the authors prove that a solution of rank at
most 3 can be found. They then propose various heuristics
for obtaining an approximately optimal rank-1 solution based
on the rank-3 solution, but no guarantees can be made about
the quality of the solution in the worst case.

Along similar lines, we have developed alternate con-
vex objectives for structured controller design [DTTF13]
[DTF13] that replace the standard LQR/LEQG objectives
with different objectives that lead to convex optimization
formulations of structured controller design. We also pro-
vided theoretical and empirical evidence of the effectiveness
of the convex surrogates and their relationship to the standard
control objectives.
In this paper, we revisit the LEQG objective and show that
without any modifications to the objective, the controller
design problem is convex under arbitrary convex constraints
on the feedback matrices, provided that a condition relating
the control cost, risk factor and noise covariance is satisfied.

Apart from [DTTF13], we are not aware of any other
work that attempts to solve the structured controller de-
sign problem in a risk-averse setting. Even in [DTTF13],
risk-aversion was combined with a particular adversarial
perturbation model in order to obtain a convex controller
synthesis approach. In this work, we prove convexity of the
controller design problem for the standard LEQG objectives
provided a condition relating the risk factor, control cost
and noise is satisfied. We extend the approach to the infinite
horizon setting. Given the hardness of designing stabilizing
controllers, our approach understandably breaks down in
infinite horizon setting leading to provably infeasible prob-
lems if the uncontrolled system is unstable. However, as an
alternative, we propose using a discounting approach that
ensures that costs remain bounded even in infinite horizon.
We show that the discount factor can effectively be used as
a continuation parameter to synthesize stabilizing controllers
by starting with a small discount factor (heavy discounting)
and gradually increasing it until a stabilizing controller is
obtained. We verify our results numerically on simplified
power systems models.



II. FINITE HORIZON PROBLEMS

Consider a stochastic finite-horizon discrete-time linear
system in state-space form:

x1 = ε0, xt+1 = Atxt +Btut + εt, t = 1, 2, . . . , N − 1.

Here t = 0, 1, 2, . . . , N is the discrete time index, xt ∈ Rn

is the plant state, εt ∈ Rn is an exogenous disturbance and
ut ∈ Rnu is the control input. For simplicity, we will work
with static state feedback ut = Ktxt although our approach
extends to dynamic feedback as well. Let K = {Kt : t =
1, 2, . . . , N−1} and denote the closed-loop system dynamics
by

Ãt(Kt) = At +BtKt.

I denotes the identity matrix. Boldface upper case letters
denote trajectories:

x =

x1

...
xN

 , εεε =

 ε0
...

εN−1


N (µ,Σ) denotes a Gaussian distribution with mean µ and
covariance matrix Σ. The notation ‖y‖M denotes the norm
under the metric induced by the positive definite matrix M �
0, that is, ‖y‖M =

√
yTMy.

We start by stating the problem in finite horizon:

Minimize
K={Kt}

1

α
log
(

E
εεε

[exp (αL)]
)

(1)

Subject to x1 = ε0, xt+1 = Atxt +BtKtxt + εt

εt ∼ N (0,Σt)

L =

N∑
t=1

`t (xt) +

N−1∑
t=1

ut
TRtut

2

K ∈ C

where C represents the structural constrains on our feedback
matrices and `t : X → R is an arbitrary state cost function.
This is a generalized version of the LEQG objective [SDJ74]
where state costs are allowed to be non-quadratic.

Theorem 2.1 (Convexity of Risk-Averse Control):
Suppose that

Σt �
1

α
BtRt

−1Bt
T , t = 1, . . . , N − 1

and C is a convex set. Then, the optimization problem (1) is
convex.

Proof: Since Σt � 1
αBtRt

−1Bt
T , let Σ′t = Σt −

1
αBtRt

−1Bt
T � 0. Consider the following system:

xt+1 = Atxt +Bt (Ktxt + ωt) + ε′t

ε′t ∼ N (0,Σ′t) , ωt ∼ N
(

0,
1

α
Rt
−1

)
(2)

with εt, ωt statistically independent. Define εt = ε′t + Btωt
so that εt ∼ N

(
0,Σ′t + 1

αBtRt
−1Bt

T
)

= N (0,Σt) (since

the covariance matrices of independent random variables add
up). Thus, the above dynamics is equivalent to

xt+1 = Atxt +BtKtxt + εt

εt ∼ N (0,Σt)

which is the dynamics stated in (1). Thus, we can work with
the modified system (2). Now, define yt = Ktxt + ωt so
that yt ∼ N

(
Ktxt,

1
αRt

−1
)
. Then we can write down the

dynamics as

xt+1 = Atxt +Btyt + ε′t

ε′t ∼ N (0,Σ′t) , yt ∼ N (Ktxt,Σt)

Note that with this model,given εεε′, xt is a deterministic
function of y and does not depend on Kt. Writing out the
expectation in (1) explicitly, we get

E
εt∼N (0,Σt)

[exp (αL (K))] =

E
ωt∼N(0, 1αRt

−1),ε′t∼N (0,Σ′t)
[exp (αL (K))] =

E
yt∼N(Ktxt, 1αRt−1),ε′t∼N (0,Σ′t)

[exp (αL (K))]

If we fix εεε′, the expectation over y, upto a constant factor,
is equal to∫

exp

(
N−1∑
t=1

‖Ktxt‖2αRt − ‖yt −Ktxt‖2αRt
2

+ α` (xt)

)
dy

where the first term comes from the Gaussian density of yt
and the remaining terms from L (K). The term inside the
exponent depends on Kt as

Kt
T (αRt − αRt)Kt

2
+ yt

TKtxt

which is a linear (and hence convex) of Kt. Thus, the
objective is a convex function of K by composition rules
(since 1

α log (EX [exp (αzf(X))]) is a convex and increasing
function of z) for any fixed εεε′. Taking expectations with
respect to εεε′, we get that the original objective is convex
in K. Hence the theorm.

III. INFINITE HORIZON PROBLEMS

In infinite horizon, we cannot obtain finitely parameterized
optimal controllers unless the system is time-invariant. Thus,
we restrict ourselves to time-invariant systems of the form

x1 = ε0, xt+1 = Axt +BKxt + εt, t ≥ 1

and study the infinite horizon average cost problem

Minimize
K

lim
N→∞

1

N

1

α
log
(

E
εεε

[exp (αLN )]
)

(3)

Subject to x1 = ε0, xt+1 = Axt +BKxt + εt

εt ∼ N (0,Σ)

LN =

N∑
t=1

` (xt) +

N−1∑
t=1

ut
TRut
2

K ∈ C



It is easy to see that the objective satisfies the following
policy-specific Bellman equation:

vK (x) + c = ` (x) +
‖Kx‖2R

2
+

1

α
log
(

E
x′

[exp (αvK (x′))]
)

(4)

where x′ ∼ N ((A+BK)x,Σ) and c is a constant rep-
resenting the average cost. We introduce a new discounted
version of the Bellman equation:

vK (x) = ` (x) +
‖Kx‖2R

2
+

1

α
log
(

E
x′

[exp (αγvK (x′))]
)
(5)

where γ < 1 is a discount factor, that decreases the weight on
future costs geometrically. In the limit α → 0, this reduces
to the Bellman equation for the standard discounted cost
setting

∑
t γ

t` (xt, ut). However, when α > 0, it leads to
a different discounting where the overall objective is given
by a cascaded form:

E

[
` (x1, u1) +

1

α
log
(

E [αγ exp (` (x2, u2) + γα log (. . .))]
)]

where ut = Kxt and ` (xt, ut) = ` (xt) +
‖u‖2R

2 . In the
limit γ → 1, the solution of this problem converges to
the solution of (4). This falls into the class of iterated risk
measures [Oso12] which have several appealing properties
such as time-consistency.

Theorem 3.1 (Convexity in infinite horizon): Let VK be
the solution to (5). The resulting optimization problem
minK∈C VK (x) is a convex optimization problem for all x
if

Σ � 1

α
BR−1BT

Proof: By the same argument as the previous theorem,
given the condition of the theorem, we can rewrite the
original dynamical system as

xt+1 = Ax+B (Kx+ ω) + ε′

ω ∼ N
(

0,
1

α
R−1

)
, ε′ ∼ N

(
0,Σt −

1

α
BR−1BT

)
.

Plugging this into the Bellman equation (5), we get

vK (x) = ` (x) +
‖Kx‖2R

2

+
1

α
log

(
E
ε′,ω

[exp (αγvK (Ax+B (Kx+ ω) + ε′))]

)
The RHS can be rewritten as (excluding ` (x))

1

α
log

(
E
ε′,y

[
exp

(
αγvK (Ax+By + ε′) +

α

2
‖Kx‖2R

)])
where y ∼ N

(
Kx, 1

αR
−1
)
. Keeping ε′ fixed, the term inside

the exponent depends on K as

−
‖y −Kx‖2S

2
+ vK (Ax+By + ε′) +

α

2
‖Kx‖2R

where S = (Σu)
−1. Since αR � (Σu)

−1, the sum of the
first and third term is convex in K. Consider the operator
defined by the RHS of (5):

Γ[f ] (x) = ` (x) +
1

α
log
(

E [exp (αγf (x′))]
)
.

In lemma 1(appendix), we show that this is a contraction
mapping, so that starting with any f0, limr∞ Γr[f0] is the
unique solution to vK of (5). We can take f0 to be a constant
function which is obviously convex in K for every x. Define
fr = Γr[f ]. Suppose that fr is convex in K for all x for
some r. Then, so is

−
‖y −Kx‖2S

2
+ fr (Ax+By + ε′) +

α

2
‖Kx‖2R

by the above argument. Taking expectation wrt εεε and by
composition with log (E [exp (·)]), the overall mapping is
convex and hence so is fr+1 (x). The argument is valid
for any x, so fr+1 (x) is convex in K for all x. Thus, by
induction, the solution vK to the Bellman equation is convex
in K for all x. Hence the theorem.

IV. LEQG PROBLEMS

In this section, we apply the above results to LEQG
problems where the state cost has a quadratic form ` (x) =
xTQx

2 .
Theorem 4.1 (Bellman Equation for LEQG Problem): If

` (x) = xTQx
2 , the discounted Bellman equation 5 reduces

to vK (x) = xTV x
2 + c where V satisfies

V = Q+KTRK + ÃT
(

(γV )
−1 − αΣ

)−1

Ã (6)

where Ã = A+BK. c = − log(det(I−αγΣ1/2V Σ1/2))
2α(1−γ) .

Proof: In appendix.
We can now rewrite the control design problem as a

determinant maximization problem:
Theorem 4.2: If ` (x) = xTQx

2 and Σ = 1
αBR

−1BT ,
the problem of minimizing vK (0) reduces to solving the
following convex optimization problem:

max
M,K

log
(

det
(
I − αγΣ1/2V Σ1/2

))
(7)

V � Q+

(
A
−RK

)T(
(γV )

−1 −B
−BT R

)−1(
A
−RK

)
K ∈ C

Further, the above problem can be rewritten more explicitly
as an LMI:

max
V,K

log
(

det
(
I − αγΣ1/2V Σ1/2

))
(8)(

V −Q− γATV A RK − γBTV A
T(

RK − γBTV A
)T

R−BT (γV )−1B

)
� 0

K ∈ C
Proof: Let us suppose that the matrix inequality in (7)

is satisfied with equality.

V = Q+

(
A
−RK

)T(
(γV )

−1 − αΣ′ −B
−BT R

)−1(
A
−RK

)



Using the block matrix inversion formula, the inverse of the
block matrix above(

M ′ −BM ′R−1

−R−1BTM ′ R−1BTM ′BR−1 +R−1

)
where αΣ = BR−1BT ,M ′ =

(
(γV )

−1 − αΣ
)−1

. It can
now be verified using simple algebra that the matrix equality
stated above is equivalent to (6). Further, the objective is
a constant factor time c = vK (0), so that (7) solves the
problem minK∈C vx (K) if the LMI is satisfied with equality.
However, if the LMI is satisfied with inequality, then one can
pick Q̃ � Q so that the LMI is satisfied with equality, and
then the problem has solved minK∈C vx (K) with a larger
state cost - meaning that c must be larger than necessary
(hence contradicting optimality). Thus, at optimality, the LMI
is satisfied with equality and (7) minimizes minK∈C vx (K).

We now show why (7) is a convex optimization problem
and can be written as (8). We can also write the block inverse
in another form, giving

(
(γV )

−1 −B
−BT R

)−1

=
(
I −γV B
0 I

) (
(γV )−1 0

0 R − BT (γV )−1B

)−1(
I −γV B
0 I

)T
.

Writing the whole LMI, we get

V �
Q+

(
A

−γBT VA − RK

)T (γV 0

0 R − BT (γV )−1B

)−1 ( A

−γBT VA − RK

)
.

The RHS evaluates to

γATV A+(
RK − γBTV A

)T(
R−BT (γV )

−1
B
)−1 (

RK − γBTV A
)

Using Schur-complements, it can be shown that the RHS is
a �-convex function of V,K. Thus, the given optimization
problem is convex.

Remark 1: We needed to assume that Σ = BR−1BT

α for
the above theorem, while in previous theorems we allowed
a semidefinite inequality there. We believe the proof can be
extended to the inequality case as well, although we do not
have a rigorous result for the inequality case at the time of
writing this paper.

Remark 2: Note that theorem 3.1 guarantees that the
problem can be solved using convex optimization. However,
this result strengthens it saying that one need not solve
the Bellman equation (which generally calls for an iterative
procedure like value iteration). Instead, one can simply pose
the control design problem as a determinant maximization
problem subject to convex constraints.

Corollary 1: The controller synthesis formulation (8) is
infeasible unless the autonomous system xt+1 =

√
γAxt is

stable
Proof: If (8) is feasible, then from the LMI constraint,

we know that the top left block V −Q− γATV A must be
positive semidefinite. Thus,

V −Q− γATV A = P̃

for some P̃ � 0. Rearranging and setting Q̃ = Q + P̃ � 0,
this gives us

(
√
γA)

T
V (
√
γA)− V + Q̃ = 0

which means that V is a Lyapunov matrix for the system
xt+1 =

√
γAxt implying that it is stable. Thus, the feasibil-

ity of (8) implies the stability of the system, so if
√
γA is

unstable, (8) is infeasible.

A. Stabilizing Controllers Via Continuation

The corollary indicates that synthesizing stabilizing con-
trollers in this framework is impossible, since one would
need to take the limit γ → 1 (to allow for the standard
infinite horizon LEQG stabilization problem), which makes
the synthesis formulation (8) infeasible.

In this section, we propose a heuristic algorithm that uses
the discount factor γ as a continuation parameter (algorithm
1). It starts with a small value of γ (say .8) and solves (8).
It then increases the value of γ by a factor β (we choose it
to be 1.02 in our experiments), folds the resulting controller
into the dynamics (Ai = A + BKi−1) and solves a new
problem with the increased value of γ.

We do not have a formal justification or guarantees that
this approach will find a stabilizing controller although
empirical results (section V) are encouraging.

Algorithm 1 Stabilizing Controller Synthesis via Continua-
tion

Input matrices A,B,K0, γ0.
for i = 1, . . . , T do

K̄i ← solution of (8) with
Ai = A+BKi−1, Bi = B, γ = γi

Ki ← K̄i +Ki−1, γi+1 = βγi.
end forK ← KT

V. NUMERICAL RESULTS

In this section, we present preliminary numerical results
illustrating the efficacy of our approach on various control
synthesis problems. We will work exclusively with sparsity
constraints of the form

C = {K : Kij = 0 ∀(i, j) 6∈ S}.

We also restrict ourselves to the infinite horizon formula-
tion (8). We first take a simple pendulum, linearize it about
its unstable equlibrium and construct an Euler discretization
of the dynamics to get an unstable discrete-time dynamical
system. In this example, there are no constraints, we only use
this to test whether our algorithm is capable of synthesizing
stabilizing controllers in the absence of constraints. The
maximum eigenvalue of the closed loop dynamics (in terms
of absolute value) is a measure of distance to instability -
when this value gets smaller than one, we have stable closed
loop dynamics. We plot this as a function of γ (see figure
1).
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We then consider controllers for frequency regulation in
power systems. The power system dynamics is described by
the swing equations [BH81]. We use the IEEE 9 bus system
available from the MATPOWER package [mat] and linearize
the system dynamics about an equilibrium point (OPF solu-
tion). We scale up the ressistances on the transmission lines
to make the system unstable. We do not impose any structural
constraints here either. Again, we plot the maximum absolute
eigenvalue as a function of γ through iterations of algorithm
1 (see figure 2). In both problems, our approach is able to
successfully find stabilizing controllers (reduce the maximum
absolute eigenvalue to a number smaller than 1).

Finally, we investigate the effect of structural constraints
in the problem. We have the same dynamics as the pre-
vious example, but use a larger test system, the IEEE-14
bus network (from [mat]). In the first case, we make the
control fully distributed so no two nodes can communicate
with each other. We then add 50% of the edges (randomly
chosen) in the transmission network (since communication
between nodes that are directly connected by transmission
lines is likely to be most useful for control). Finally we add
all the edges in the network. The effect of these various
sparsity patterns is plotted in figure 3. Again, we successfully
synthesize stabilizing controllers in all cases, although the
decay in the maximum eigenvalue increases as the constraints
on the system are reduced.

VI. CONCLUSIONS AND FUTURE WORK

We showed that controller design can be made convex
under arbitrary convex structural constraints on the set of
feedback matrices, provided a condition relating the control
cost, noise covariance and risk factor is satisfied. We have
both finite and infinite horizon versions of the results. In
infinite horizon, if we do not use a discount factor, our
formulation leads to provably infeasible problems. This is
not surprising, consider the known hardness of synthesiz-
ing stabilizing feedback controllers under arbitrary convex
constraints on the feedback gains. However, we proposed
a heuristic algorithm that uses the discount factor as a
continuation parameter to synthesize stabilizing controllers
and showed its applicability on some test systems numer-
ically. In future work, we plan to rigorously analyze the
heuristic and give conditions under which it is guaranteed
to produce a stabilizing controller. We also plan to explore
non-LEQG formulations. Theorem 3.1 applies to arbitrary
cost functions (not just quadratic). It is possible that the
degenrate behavior we see (corollary IV-A) is an artifact of
the unbounded quadratic costs. Indeed, if we use globally
bounded costs, degeneracy cannot arise in our problems.
These results also suggest a broader question: Is the hardness
of structured controller synthesis an artefact of the LQR
formulation where systems can grow unbounded along with
the corresponding state/control costs? Does this hardness go
away if we formulate structured controller synthesis in terms
of bounded costs? This is an interesting question that will
be a topic of our future investigations.
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APPENDIX

Lemma 1 (Contraction Mapping Property): The operator
Γ acting on functions f : Rn → R is defined by

Γ[f ] (x) = q (x) +
1

α
log

(
E

y∼P (x)
[exp (αγf (y))]

)
where q : Rn → R, 0 < γ < 1, P (x) is a probability
measure for every x. This is a contraction mapping with
respect to the metric ‖f − g‖∞ = supx |f (x)− g (x) |.

Proof:

Γ[f ] (x)− Γ[g] (x) =
1

α
log

(
E [exp (αγf (x+ ω))]

E [exp (αγg (x+ ω))]

)
For any y, we can write f(y) ≤ g(y)+‖f − g‖∞. The RHS
of the equation above is bounded above by

1

α
log

(
E [exp (αγg (x+ ω))]

E [exp (αγg (x+ ω))]

)
+ γ ‖f − g‖∞

= γ ‖f − g‖∞ .

Similarly, we can show that Γ[g] (x) − Γ[f ] (x) ≤
γ ‖f − g‖∞. Thus,

‖Γ[f ]− Γ[g]‖∞ = sup
x
|Γ[f ] (x)− Γ[g] (x) | ≤ γ ‖f − g‖

Γ is a contraction mapping. Note that we assumed f, g were
bounded in order to make this argument. We can do the
same argument with f̃(x) = min (max (f(x),m) ,M) (for
−∞ < m < M < ∞) and take limits under appropriate
technical assumptions.

Proof of theorem 4.1

Proof: Follows by applying Gaussian integrals and the
matrix inversion lemma. Plugging in vK (x) = xTV x

2 +c into
(5), the term inside the logarithm in the RHS evaluates to

E
ω∼N (0,Σ)

exp

αγ
(
Ãx+ ω

)T
V
(
Ãx+ ω

)
+ c

2




Taking logarithms and dividing by α, this evaluates to

(Ãx)
T

(γV ) Ãx

2

+
(Ãx)

T
(

(γV ) Σ1/2
(
I
α − Σ1/2 (γV ) Σ1/2

)−1
(γV )

)
Ãx

2

+ γc−
log
(
det
(
I − αγΣ1/2V Σ1/2

))
2α

Using the matrix inversion lemma, the matrix inside brackets
evaluates to(

(γV )
−1 − αΣ1/2Σ1/2

)−1

=
(

(γV )
−1 − αΣ

)−1

.

Matching the terms in (5), we get

V = Q+KTRK + ÃT
(

(γV )
−1 − αΣ

)−1

Ã

with c = 1
α(1−γ) .


