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Convex Structured Controller
Design in Finite Horizon

Krishnamurthy Dvijotham, Emanuel Todorov, and Maryam Fazel

Abstract—We consider the problem of synthesizing optimal
linear feedback policies subject to arbitrary convex constraints
on the feedback matrix. This is known to be a hard problem in
the usual formulations (H2,H∞, LQR) and previous works have
focused on characterizing classes of structural constraints that
allow an efficient solution through convex optimization or dynamic
programming techniques. In this paper, we propose a new control
objective for finite horizon discrete-time problems and show that
this formulation makes the problem of computing optimal linear
feedback matrices convex under arbitrary convex constraints on
the feedback matrix. This allows us to solve problems in de-
centralized control (sparsity in the feedback matrices), control
with delays, and variable impedance control. Although the control
objective is nonstandard, we present theoretical and empirical
evidence showing that it agrees well with standard notions of
control. We show that the theoretical approach carries over to
nonlinear systems, although the computational tractability of the
extension is not investigated in this paper. We present numerical
experiments validating our approach.

Index Terms—Convex functions, decentralized control, optimal
control, optimization methods.

I. INTRODUCTION

L INEAR feedback control synthesis is a classical topic
in control theory and has been extensively studied in

the literature. From the perspective of stochastic optimal con-
trol theory, the classical result is the existence of an optimal
linear feedback controller for systems with linear dynamics,
quadratic costs, and Gaussian noise (LQG systems) that can
be computed via dynamic programming [1]. However, if one
imposes additional constraints on the feedback matrix (such as
a sparse structure arising from the need to implement control in
a decentralized fashion), the dynamic programming approach
is no longer applicable. In fact, it has been shown that the
optimal control policy may not even be linear [2] and that the
general problem of designing linear feedback gains subject to
constraints is NP-hard [3].
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Previous approaches to synthesizing structured controllers
either try to find exact solutions for special cases [4]–[10] or use
heuristic methods (based on nonconvex optimization) [11]–[13]
which lack convergence or optimality guarantees. In this paper,
we take a different approach: We reformulate the structured
control problem using a family of new control objectives for
finite horizon discrete-time problems (Section IV). We develop
these new objectives as follows: Finite horizon discrete-time
versions of the H2 and H∞ norms can be expressed as functions
of singular values of the linear mapping from disturbance tra-
jectories to state trajectories. This mapping is a highly nonlinear
function of the feedback gains. However, the inverse of this
mapping has a simple linear dependence on the feedback gains.
Further, the determinant of the mapping has a fixed value
independent of the closed-loop dynamics—this is, in fact, a
finite horizon version of Bode’s sensitivity integral and has
been studied in [14]. By exploiting both of these facts, we
develop upper bounds on the H2,H∞ norms in terms of the
singular values of the inverse mapping. We show that these
upper bounds have several properties that make them desirable
control objectives. For the new family of objectives, we show
that the resulting problem of designing an optimal linear state
feedback matrix, under arbitrary convex constraints, is convex
(Section V). Further, we prove suboptimality bounds on how
the solutions of the convex problems compare to the optima
of the original problem. Our approach is directly formulated
in state-space terminology and does not make any reference to
frequency-domain concepts. Thus, it applies directly to time-
varying systems. Since the formulation presented in this paper
is in finite horizon, we do not make any stability guarantees.
Indeed, controllers synthesized by this formulation may not be
stabilizing. However, we show numerically that they achieve
good performance on the finite horizon objectives and out-
perform standard nonlinear optimization approaches applied
directly to the original nonconvex objectives (Section VII). We
also present a generalization of our approach to nonlinear sys-
tems (Section VIII). The resulting formulation, albeit convex,
is not computationally tractable for general nonlinear systems.
We leave computational aspects of the nonlinear formulation
for future work.

II. DISCUSSION AND RELATED WORK

There have been three major classes of prior work in
synthesizing structured controllers: frequency-domain ap-
proaches, dynamic programming, and nonconvex optimization
approaches. We compare the relative merits of the different
approaches in this section.
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In frequency-domain approaches, problems are typically for-
mulated as

Minimize
K

‖Closed loop system with feedback K‖

Subject to K Stabilizing,K ∈ C

where ‖ · ‖ is typically the H2 or H∞ norm. In general, these
are solved by reparameterizing the problem in terms of a Youla
parameter (via a nonlinear transformation), and imposing spe-
cial conditions on C (like quadratic invariance) that guarantee
that the constraints C can be translated into convex constraints
on the Youla parameter [5], [6]. There are multiple limitations
of these approaches:

1) Only specific kinds of constraints can be imposed on
the controller. Many of the examples have the restriction
that the structure of the controller mirrors that of the
plant.

2) They result in infinite dimensional convex programs in
general. One can solve them using a sequence of convex
programming problems, but these approaches are suscep-
tible to numerical issues and the degree of the resulting
controllers may be ill-behaved, leading to practical prob-
lems in terms of implementing them.

3) The approaches rely on frequency-domain notions and
cannot handle time-varying systems. In the special case of
poset-causal systems (where the structure of the plant and
controller can be described in terms of a partial order [7]),
the problem can be decomposed when the performance
metric is the H2 norm and explicit state-space solutions
are available by solving Ricatti equations for subsystems
and combining the results. For the H∞ norm, a state-
space solution using an LMI approach was developed
in [15].

Another thread of work on decentralized control looks at
special cases where dynamic programming techniques can be
used despite the decentralization constraints. The advantage of
these approaches is that they directly handle finite horizon and
time-varying systems. For the LEQG cost-criterion, a dynamic
programming approach was developed in [8] for the case of 1-
step delay in a 2-agent decentralized control problem. In [9],
the authors show that the case of 2 agents can be solved via
dynamic programming. In [10], the authors develop a dynamic
programming solution that generalizes this and applies it to
general “partially-nested” systems allowing for both sparsity
and delays.

All of the aforementioned methods work for special struc-
tures on the plant and controller (quadratic invariance/partial
nestedness) under which decentralized controllers can be syn-
thesized using either convex optimization or dynamic program-
ming methods.

In [16], the authors pose decentralized control (in the
discrete-time, finite horizon, linear quadratic setting) as a rank-
constrained semidefinite programming problem. By dropping
the rank constraint, one can obtain a convex relaxation of
the problem. The relaxed problem provides a solution to the
original problem only when the relaxed problem has a rank-1
solution. However, it is unknown when this can be guaranteed,

and how a useful controller can be recovered from a higher-
rank solution. Further, the SDP posed in this paper grows very
quickly with the problem dimension, leading to computational
difficulties.

Our work differs from these previous works in one fun-
damental way: Rather than looking for special decentraliza-
tion structures that can be solved tractably under standard
control objectives, we formulate a new control objective that
helps us solve problems with arbitrary decentralization con-
straints. In fact, we can handle arbitrary convex constraints-
decentralization constraints that impose a sparsity pattern on K
and are a special case of this. We can also handle time-varying
linear systems. Although the objective is nonstandard, we pro-
vide theoretical (Section IV-A) and numerical (Section VII)
evidence that it is a sensible control objective. The only other
approaches that handle all of these problems are nonconvex
approaches [11], [12], [17], which lack convergence rate and
optimality guarantees. We show (Section VII) that our approach
outperforms a standard nonconvex approach, both in terms of
performance of the resulting controller and in computational
time.

We also believe that this was the first approach to exploit a
fundamental limitation (Bode’s sensitivity integral) to develop
efficient control design algorithms. The fact that the spectrum
of the input output map satisfies a conservation law (the sum of
the logs of singular values is fixed) is a limitation which says
that reducing some of the singular values is bound to increase
the others. However, this limitation allows us to approximate
the difficult problem of minimizing the finite horizon H2 or H∞
norm with the easier problem of minimizing a convex surrogate,
leading to an efficient solution.

The work presented here is an extension of a recent confer-
ence publication [18]. However, this paper contains a significant
reformulation of the results presented there and also has new
results. The conference paper [18] was formulated in terms
of the eigenvalues of the covariance matrix of trajectories.
In this paper, we look at the linear map from noise to state
trajectories (denoted by F in this paper), which is a Cholesky
factor of the covariance matrix. This leads to simpler proofs of
convexity and a more general class of objectives. For example,
the nuclear norm (and more generally Ky-Fan norms) of F is
a valid objective in our formulation while it was not in [18],
since it is equal to the sum of square roots of eigenvalues of the
covariance matrix which is a nonconvex function. Further, we
provide an analysis quantifying how well the solutions to our
convex objectives perform in terms of the original nonconvex
H2,H∞ objectives. We present numerical results comparing
results of our formulation to other nonconvex approaches for
structured controller synthesis.

III. NOTATION

Let λmax(M) denote the maximum eigenvalue of an l × l
symmetric matrix M , λmin(M) the minimum eigenvalue and
λi(M) the ith eigenvalue in descending order

λl(M)=λmin(M) ≤ λl−1(M) ≤ . . . ≤ λmax(M)=λ1(M).
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Similarly, singular values of a general rank l matrix M are

σl(M)=σmin(M) ≤ σl−1(M) ≤ . . . ≤ σmax(M)=σ1(M).

We use I to denote the identity matrix. For z ∈ Rn

Var(z) =
1

n

n∑
i=1

(
zi −

∑n
i=1 zi
n

)2

z[i] = i-th largest component of z

|z| = (|z1| |z2| . . . |zn|)T

N (μ,Σ) denotes a Gaussian distribution with mean μ and
covariance matrix Σ.

IV. PROBLEM FORMULATION

Consider a finite-horizon discrete-time linear system in state-
space form

x1 =D0w0

xt+1 =Atxt +Btut +Dtwt, t = 1, 2, . . . , N − 1.

Here, t = 0, 1, 2, . . . , N is the discrete time index, xt ∈ Rn

is the plant state, wt ∈ Rn is an exogenous disturbance, and
ut ∈ Rnu is the control input. We employ static state feedback
ut = Ktxt. Let K = {Kt : t = 1, 2, . . . , N − 1} and denote
the closed-loop system dynamics by At(Kt) = At +BtKt.
For any linear system of this form, there is a linear mapping
between disturbance trajectories w = (w0w1 . . . wN−1) and
state trajectories (x1x2 . . . xN ). This will play a key role in our
paper, and we denote it by

x = F (K)w,

where F (K) =⎡
⎢⎢⎢⎢⎣

D0 0 . . . 0
Ã1D0 D1 . . . 0

Ã2Ã1D0 Ã2D1 . . . 0
...

...
...

...∏N−1
τ=1 ÃN−τD0

∏N−1
τ=2 ÃN−τD1 . . . DN−1

⎤
⎥⎥⎥⎥⎦ .

Note that this holds for any discrete-time linear system of
the form described before and does not assume any special
structure in the system dynamics.

Our formulation differs from standard control formulations
in the following ways:

1) We assume that the controller performance is measured in
terms of the norm of the system trajectory xTx (see the
Appendix for an extension that includes control costs).

2) As mentioned earlier, we restrict ourselves to have static
state feedback ut = Ktxt (The Appendix discusses dy-
namic output feedback.)

3) We assume that Dt is square and invertible. The as-
sumption of invertibility is required because our convex
approximations will be based on F (K)−1, which does not
exist unless Dt is invertible. Effectively, this means that it
is possible to uniquely recover the disturbance trajectory
from the state trajectory.

Finite-horizon versions of the H2 and H∞ norms of the system
are given by

q2(K) = E
wt∼N (0,I)

[
N∑
t=1

xT
t xt

]
= E

[
tr(xxT )

]
=tr

(
F (K)TF (K)

)
=

nN∑
i=1

σi (F (K))2 (1)

q∞(K) =

√
max
w �=0

∑N
t=1 x

T
t xt∑N−1

t=0 wT
t wt

= max
w �=0

‖F (K)w‖
‖w‖ = σmax (F (K)) . (2)

Note that we can easily include an invertible weighting
matrix Pt into the objective as well.

If there are no constraints on K, these problems can be solved
using standard dynamic programming techniques. However, we
are interested in synthesizing structured controllers. We formu-
late this very generally: We allow arbitrary convex constraints
on the set of feedback matrices: K ∈ C for some convex set C.
Then, the control synthesis problem becomes

Minimize
K∈C

q2(K) (3)

Minimize
K∈C

q∞(K). (4)

The general problem of synthesizing stabilizing linear feedback
control, subject even to simple bound constraints on the entries
of K, is known to be hard [3]. Several hardness results on
linear controller design can be found in [19]. Although these
results do not cover the problems (3), (4), they suggest that (3),
(4) are hard optimization problems. In this paper, we propose
an alternate objective function based on the singular values
of the inverse mapping F (K)−1 and prove that this objective
can be optimized using convex programming techniques under
arbitrary convex constraints on the feedback matrices K =
{Kt}. Given the aforementioned hardness results, it is clear that
the optimal solution to the convex problem will not match the
optimal solution to the original problem. However, we present
theoretical and numerical evidence to suggest that the solutions
of the convex problem we propose approximate the solution to
the original problems well for several problems.

A. Control Objective

The problems (3), (4) are nonconvex optimization problems,
because of the nonlinear dependence of F (K) on K. In this
section, we will derive convex upper bounds on the singular
values of F (K) that can be optimized under arbitrary convex
constraints C. We have the following results (Appendix, theo-
rems A. 1, A.2):

q∞(K) ≤
(

N−1∏
t=0

det(Dt)

)(∑nN−1
i=1 σi

(
F (K)−1

)
nN − 1

)nN−1

q2(K) ≤nN

(
N−1∏
t=0

det(Dt)

)2 (
σmax

(
F (K)−1

))2(nN−1)
.

To illustrate the behavior of these upper bounds, we generated
a generated linear system with a 10-D state vector

xt+1 = (A+B(αK))xt + wt
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Fig. 1. Convex surrogate versus original objective (rescaled to lie in [0,1]):
q2 versus UB2.

where the entries of A,B are chosen to be iid Gaussian vari-
ables. We choose a horizon N = 100. α is a scaling factor on
the feedback matrix K and we study the behavior of q2 and UB2

(the convex upper bound on q2) as α varies. In Fig. 1(a), we
generate K with a random sparsity pattern (with 20% nonzero
entries) and plot q2 and UB2 as a function of α. The figure
shows that q2 is indeed a nonconvex objective (it has a local
minimum). We then generate 100 random K (each with a
random sparsity pattern with 20% nonzeros) and iid Gaussian
entries. We compute (using brute force search) the global
minimum of q2 with respect to α (q∗2) and the α that minimizes
our convexified objective (denoted CON). We then compute the
suboptimality of the solution found by our approach relative to
q∗2 : q2 − q∗2/q

∗
2. We plot a histogram of this suboptimality over

the 100 trials in Fig. 1(b). This shows that for a large number of
(>85%), our convexification is able to find a solution with an
objective value within 20% of the optimal solution. Although
based only on the search along a single direction, these plots
suggest that the original objective is nonconvex and could get
stuck in local minima while our convexification can find a
solution that is near-optimal. We formalize this result by giving
suboptimality bounds in Section IV-A and provide numerical
comparisons to nonconvex approaches in Section VII.

B. General Class of Control Objectives

Inspired by the upper bounds of the previous section, we
formulate the controller design problem as follows:

Minimize
K∈C

qc2(K)=σmax

(
F (K)−1

)
(surrogate to q2) (5)

Minimize
K∈C

qc∞(K)=
nN−1∑
i=1

σi

(
F (K)−1

)
(surrogate to q∞). (6)

The objectives (5), (6) are just two of the control objectives
that are allowed in our framework. We can actually allow a
general class of objectives that can be minimized for control
design. From [20], we know that for any convex function f(x)
on Rn that is invariant to sign changes and permutations of
the coordinates of x, the function g(X) = f(σX) on Rn×n

is convex. This motivates us to consider a generalized control
objective

Minimize
K

f
(
σ
(
F (K)−1

))︸ ︷︷ ︸
Controller Performance

+ R(K)︸ ︷︷ ︸
Minimize Control Effort

Subject to K ∈ C (7)

where C is a convex set encoding the structural constraints
on K, and R(K) is a convex penalty on the feedback gains
K. We show (in theorem V.1) that this problem is a convex
optimization problem. Common special cases for f are:

1) f(x) = ‖x‖∞ which gives rise to the spectral norm
‖(FK))−1‖ = σmax((F (K))−1), the same as (5).

2) f(x) = ‖x‖1 which gives rise to the nuclear norm
‖((F (K))−1)∗ =

∑
i σi((F (K))−1)i.

3) f(x) =
∑k

i=1 |x|[i] which gives rise to the Ky Fan

k-norm
∑k

i=1 σi((F (K))−1)i. In particular, f(x) =∑nN−1
i=1 |x|[i] corresponds to (6).

A common choice for R(K) is ‖K‖2. For decentralized con-
trol, C would be of the form C = {K : Kt ∈ S}, where S is
the set of matrices with a certain sparsity pattern corresponding
to the decentralization structure required. We now present
our main theorem proving the convexity of the generalized
problem (7).

V. MAIN TECHNICAL RESULTS

A. Proof of Convexity

Theorem V.1: Suppose f : RnN → R is a convex function
and is invariant to sign changes and pertumations of its input,
that is

f (x1, . . . , xnN ) = f
(∣∣xπ(1)

∣∣ , . . . , ∣∣xπ(nN)

∣∣)
for every permutation π. Let R(K) be a convex function and C
be a convex set, then the problem (7) is a convex optimization
problem.

Proof: The proof relies on the structure of F (K)−1.
Rewriting the discrete-time dynamics equations, we have

w0 = D−1
0 x1, wt = D−1

t xt+1 −D−1
t Ãtxt for t ≥ 1.

It can be shown that F (K)−1 is given by⎡
⎢⎢⎢⎢⎣

D−1
0 0 . . . . . . 0

−D−1
1 Ã1 D−1

1 . . . . . . 0
0 −D−1

2 Ã2 D−1
2 . . . 0

...
...

... · · ·
...

0 0 0 . . . D−1
N−1

⎤
⎥⎥⎥⎥⎦ .

This can be verified by simple matrix multiplication. Now, the
convexity is obvious since At = At +BtKt is a linear function
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of K, and so is F (K)−1. Since f is invariant to sign changes
and permutations and is convex, the function X �→ f(σ(X))
is convex [20]. Thus, f(σ((F (K))−1) is the composition of
an affine function in K with a convex function and is hence
convex. The function R(K) is known to be convex and so are
the constraints K ∈ C. Hence, the overall problem is a convex
optimization problem. �

B. Suboptimality Bounds

We are using convex surrogates for the q2, q∞ norms. Thus,
it makes sense to ask the question: How far are the optimal
solutions to the convex surrogates from those of the original
problem? We answer this question by proving multiplicative
suboptimality bounds: We prove that the ratio of the q2 norm
of the convex surrogate solution and the q2-optimal solution
is bounded above by a quantity that decreases as the variance
of the singular vector of (F (K))−1 at the optimum. Although
these bounds may be quite loose, they provide qualitative
guidance about when the algorithm would perform well.

Theorem V.2: Let the solution to the convex optimization and
original problem be

K∗
c = argmin

K∈C
σmax

(
(F (K))−1

)
(Convex Opt)

K∗ = argmin
K∈C

∑
i

(σi (F (K)))2 (Original Opt)

respectively. Let F ∗ = (F (K∗))−1, F ∗
c = (F (K∗

c))
−1. Let

σ∗
c =

[(
σ2 (F

∗
c )

σnN (F ∗
c )

)2

, . . . ,

(
σ2 (F

∗
c )

σ2 (F ∗
c )

)2
]

σ∗ =

[(
σnN (F ∗)

σnN (F ∗)

)2

, . . . ,

(
σnN (F ∗)

σ2(F ∗)

)2
]
.

Then

q2 (K
∗
c)

q2(K∗)
≤
(

nN

nN − 1

)
exp

(
Var (σ∗

c)−Var(σ∗)

2

)
.

Proof: The proof relies on Holder’s defect formula which
quantifies the gap in the AM-GM inequality [21]. For any
numbers 0 < am ≤ . . . ≤ a1, we have

(∑m
i=1 ai
m

)
exp
(
−μ

2
Var(a)

)
=

(
m∏
i=1

ai

) 1
m

where μ ∈ [(1/a1)
2, (1/am)2]. Plugging in the lower and upper

bounds for μ, we obtain

(∑m
i=1 ai
m

)
exp

⎛
⎝−

Var
(

a
a1

)
2

⎞
⎠ ≥

(
m∏
i=1

ai

) 1
m

(∑m
i=1 ai
m

)
exp

⎛
⎝−

Var
(

a
am

)
2

⎞
⎠ ≤

(
m∏
i=1

ai

) 1
m

.

Using this inequality with ai = (σnN−i+1(F
∗))−2, i = 1, 2, 3,

. . . , nN − 1, we obtain

q2(K
∗)

nN − 1
≥ 1

nN − 1

nN∑
i=2

1

(σi(F ∗))2

≥ exp

(
Var(σ∗)

2

)(nN∏
i=2

1

(σi(F ∗))2

) 1
nN−1

= c exp

(
Var(σ∗)

2

)
(σmax(F

∗))
2

nN−1

where c = (
∏N−1

t=0 det(Dt))
2/nN−1

and the last equality fol-
lows since det(F ∗) =

∏N−1
t=0 det(Dt). Since K∗

c minimizes
σmax(F (K)−1), we have

q2(K
∗)

nN − 1
≥ c exp

(
Var(σ∗)

2

)
(σmax(F

∗
c ))

2
nN−1

≥ exp

(
Var(σ∗)

2

)(nN∏
i=2

(
1

σi (F ∗
c )

)2
) 1

nN−1

≥ exp

(
Var(σ∗)

2
−Var(σ∗

c)

2

)⎛⎝∑nN
i=2

1
(σi(F∗

c ))2

nN−1

⎞
⎠

≥
(
nN−1

nN

)
exp

(
Var(σ∗)

2
−Var(σ∗

c)

2

)
q2(K

∗
c)

nN − 1
.

The result follows from simple algebra now. �
Theorem V.3: Let the solution to the convex optimization and

original problem be

K∗
c = argmin

K∈C

nN−1∑
i=1

σi

(
(F (K))−1

)
(Convex Opt)

K∗ = argmin
K∈C

σmax (F (K)) (Original Opt)

respectively. Let F ∗ = (F (K∗))−1, F ∗
c = (F (K∗

c))
−1. Let

σ∗
c =

[
σnN−1 (F

∗
c )

σ1 (F ∗
c )

, . . . ,
σ1 (F

∗
c )

σ1(F ∗
c )

]
σ∗ =

[
σnN−1(F

∗)

σnN−1(F ∗)
, . . . ,

σ1(F
∗)

σnN−1(F ∗)

]
.

Then

q∞ (K∗
c)

q∞ (K∗)
≤ exp

(
(nN − 1)

(
Var(σ∗)−Var (σ∗

c)

2

))
.

Proof: The proof follows a similar structure as the pre-
vious theorem and relies on Holder’s defect formula. Let
c =

∏N−1
t=0 det(Dt). Using the same inequalities with ai =

σi(F
∗), i = 1, 2, . . . , nN − 1, we obtain

(q∞(K∗))
1

nN−1 = c

(
nN−1∏
i=1

σi(F
∗)

) 1
nN−1

≥
c exp

(
−Var(σ∗)

2

)
nN − 1

(
nN−1∑
i=1

σi(F
∗)

)
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where c = (
∏N−1

t=0 det(Dt))
2/nN−1

. Since K∗
c minimizes∑nN−1

i=1 σi(F (K)−1), we have

(q∞(K∗))
1

nN−1 ≥
c exp

(
−Var(σ∗)

2

)
nN − 1

(
nN−1∑
i=1

σi (F
∗
c )

)

≥ c exp

(
Var (σ∗

c)

2
− Var(σ∗)

2

)

×
(

nN−1∏
i=1

σi (F
∗
c )

) 1
nN−1

= exp

(
Var(σ∗

c)

2
−Var(σ∗)

2

)
(q∞(K∗

c))
1

nN−1.

The result follows from simple algebra now. �

C. Interpretation of Bounds

The bounds have the following interpretation: Since the prod-
uct of singular values is constrained to be fixed, stable systems
(with small H2,H∞ norm) would have all of their singular
values close to each other. Thus, if the singular values at the
solution discovered by our algorithm are close to each other,
we can expect that our solution is close to the true optimum.
Further, the bounds say that the only thing that matters is the
spread of the singular values relative to the spread of singular
values at the optimal solution. A side effect of the analysis is
that it suggests that the spectral norm of (F (K))−1 be used as
a surrogate for the q2 norm and the nuclear norm be a surrogate
for the q∞ norm, since optimizing these surrogates produces
solutions with suboptimality bounds on the original objectives.

Suppose that we know a lower bound L on the quantity
Var(σ(q2(K)) (such a bound can be found, for example, using
a convex relaxation approach) that holds for all K ∈ C (we can
always choose L = 0 if no better lower bounds are known).
We can then obtain a useful bound for the q2 case by simply
dropping the effect of the negative term so that

q2 (K
∗
c)

q2(K∗)
≤
(

nN

nN − 1

)
exp

(
Var(σ∗

c)− L

2

)
which can be computed after solving the convex problem to
obtain K∗

c. From a practical point of view, this would give a
bound on how far the solution found by our convexification
approach is compared to the true optimum, without having
to solve an NP-hard nonconvex optimization problem. This
can be used effectively as a diagnostic tool to see when the
solutions found by our approach can be trusted to be close to the
optimal structured controller (note that this may still not yield
satisfactory performance since it is possible that no controller in
C achieves good performance). A similar approach is possible
for the q∞ case. Since Var(σ∗) appears with a positive sign in
the bound, one would need upper bounds on Var(σ∗) to obtain
a useful suboptimality bound. Once again, this can be computed
using a convex relaxation.

Because of the exponential dependence of the bounds on the
difference in variance, the suboptimality bounds can be quite

loose. Indeed, we do observe that in some cases our approach
does find bad solutions (Section VII). However, the bounds
give the intuition that if our approach finds a solution at which
the variance in singular values is small, we can rest assured
that we have found a near-optimal structured controller. We
intend to conduct a finer analysis and get rid of the exponential
dependence in the bound in future work, at least for special
classes of systems.

VI. ALGORITHMS AND COMPUTATION

In this paper, our primary focus is to discuss the properties of
the new convex formulation of structured controller synthesis
we developed here. Algorithms for solving the resulting convex
optimization problem (7) are a topic that we will investigate
in depth in future work. In most cases, problem (7) can be re-
formulated as a semidefinite programming problem and solved
using off-the-shelf interior point methods. However, although
theoretically polynomial time, off-the-shelf solvers tend to be
inefficient in practice and do not scale. In this section, we lay
out some algorithmic options, including the one we used in our
numerical experiments (Section VII).

When the objective used is the nuclear norm∑nN
i=1 σi((F (K))−1), we show that it is possible to optimize

the objective using standard Quasi-Newton approaches. The
nuclear norm is a nonsmooth function in general, but given
the special structure of the matrices appearing in our problem,
we show that it is differentiable. Thus, one can use standard
gradient descent and Quasi Newton methods to minimize it.
These methods are orders of magnitude more efficient than
other approaches (reformulating as an SDP and using off-the-
shelf interior point methods). They still require computing
the SVD of an nN × nN matrix at every iteration, which
will get prohibitively expensive when nN is on the order of
several thousands. However, the structure of F (K)TF (K) is
block-tridiagonal and efficient algorithms have been proposed
for computing the eigenvalues of such matrices (see [22] and
the references therein). Since the singular values of F (K)
are simply square roots of eigenvalues of F (K)F (K), this
approach could give us efficient algorithms for computing the
SVD of F (K).

When the objective is the spectral norm σmax((F (K))−1),
we can reformulate the problem as a semidefinite programming
problem (SDP): Minimizet,K∈Ct+R(K)

Subject to tI ≥
(

0 (F (K))−1T

(F (K))−1 0

)
.

The log-barrier for the semidefinite constraint can be rewritten
as log(det(t2 − F (K)−1F (K)−1)) using Schur complements.
The matrix (F (K))−1T (F (K)−1)) is a symmetric positive
definite block-tridiagonal matrix, which is a special case of a
chordal sparsity pattern [23]. This means that computing the
gradient and Newton step for the log-barrier is efficient, with
complexity growing as O(N). Thus, at least for the case where
the objective is the spectral norm, we can develop efficient
interior point methods.
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VII. NUMERICAL EXPERIMENTS

A. Comparing Algorithms: Decentralized Control

In this section, we compare different approaches to controller
synthesis. We work with discrete-time LTI systems over a
fixed horizon N with At = A,Bt = B = I,Dt = D = I . Let
S ⊂ {1, . . . n} × {1, . . . n} denote the set of allowed nonzero
indices for the feedback matrix K. Further, we will use C =
{K : Kij = 0∀(i, j) �∈ S}. The control design methodologies
we compare are NCON: This refers to nonconvex approaches
for the q2 and q∞ norms. The q2 norm is a differentiable func-
tion and we use a standard LBFGS method [24] to minimize
it. The q∞ norm is nondifferentiable, but only at points where
the maximum singular value of F (K) is not unique. We use a
nonsmooth Quasi Newton method [25] to minimize it (using the
freely available software implementation HANSO [26]).CON:
The convex control synthesis described here. In the experiments
described here, we use the following objective:

Minimize
K

1

nN

(
m∑
i=1

σi

(
F (K)−1

))
where

F (K)−1 =

⎡
⎢⎢⎢⎢⎣

I 0 . . . 0
−(A+BK) I . . . 0

0 −(A+BK) . . . 0
...

... · · ·
...

0 0 . . . I

⎤
⎥⎥⎥⎥⎦

Subject to
Kij = 0 ∀(i, j) �∈ S (8)

with m = nN − 1 as a surrogate for the q∞ norm and m =
1 for the q2 norm. Although these objectives are non dif-
ferentiable, we find that an off-the-shelf LBFGS optimizer
[24] works well and use it in our experiments here.OPT: The
optimal solution to the problem in the absence of the constraint
C. This is simply the solution to a standard LQR problem for
the q2 case. For the q∞ norm, this is computed by solving a se-
ries of LQ games with objective

∑N
t=1 x

T
t xt −

∑N−1
t=0 γ2wT

t wt

where the controller chooses wt to minimize the cost while an
adversary chooses wt in order to maximize the cost. There is a
critical value of γ below which the upper value of this game is
unbounded. This critical value of γ is precisely the q∞ norm and
the resulting policies for the controller at this value of γ are the
q∞-optimal control policy. For any value of γ, the solution of
the game can be computed by solving a set of Ricatti equations
backward in time [27]. We work with a dynamical system
formed by coupling a set of systems with unstable dynam-
ics Ai ∈ R2×2 : xi

t+1 = Aixi
t +
∑

j ηijx
j
t + ui

t + wi
t, where

xi denotes the state of the ith system and ηij is a coupling
coefficient between systems i and j. The objective is to design
controls u = {ui}in order to stabilize the overall system. In our
examples, we use N = 5 systems giving us a 10-D state space.
The Ai, ηij are generated randomly, with each entry having a
Gaussian distribution with mean 0 and variance 10. The sparsity
pattern S is also generated randomly by picking 20% of the
off-diagonal entries of K and setting them to 0. For the CON
and NCON problems, we initialize the optimizer at the same
point K = 0. For the q∞ norm, we present results comparing

Fig. 2. Comparison of algorithms for q∞-norm controller synthesis. The blue
bars represent histograms and the red curves represent kernel density estimates
of the distribution of values.

the approaches over 100 trials. The q∞ norm of the solution is
obtained by the CON approach to that found by NCON, OPT in
Fig. 2. We plot histograms of how the q∞ is compared between
the CON, NCON, and OPT approaches. The red curves show
kernel-density estimates of the distribution of values being
plotted. The results show that CON consistently outperforms
NCON and often achieves performance close to the centralized
OPT solution. The x-axis denotes the ratio between objectives
on a log scale. The y-axis shows the frequency with which a
particular ratio is attained (out of 100 trials). We also plot a
histogram of computation times with the log of ratio of CPU
times for the CON and NCON algorithms on the x-axis. Again,
in terms of CPU times, the CON approach is consistently
superior except for a small number of outliers. For the q2 norm,
we plot the results in Fig. 3. Here, the NCON approach does
better and beats the CON approach for most trials. However,
in more than 70% of the trials, the q2 norm of the solution
found by CON is within 2% of that found by NCON. In terms
of computation time, the CON approach retains superiority.

The numerical results indicate that the convex surrogates
work well in many cases. However, they do fail in particular
cases. In general, the surrogates seem to perform better on the
q∞ norm than the q2 norm. The initial results are promising
but we believe that further analytical and numerical work is
required to exactly understand when the convex objectives
proposed in this paper are good surrogates for the original
nonconvex q2 and q∞ objectives.



8 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 2, NO. 1, MARCH 2015

Fig. 3. Comparison of algorithms for q2-norm controller synthesis. The blue
bars represent histograms and the red curves represent kernel density estimates
of the distribution of values.

VIII. GENERALIZATION TO NONLINEAR SYSTEMS

We now present a generalization of our approach to nonlinear
systems. The essential idea is to study a nonlinear system in
terms of sensitivities of system trajectories with respect to distur-
bances. Consider a control-affine nonlinear discrete-time system

x1 =D0w0

xt+1 = at(xt) +Bt(xt)ut +Dtwt (1 ≤ t ≤ N − 1)

where at : R
n �→ Rn and B : Rn �→ Rn×nu , Dt ∈

Rn×n, xt ∈ Rn, wt ∈ Rn, ut ∈ Rnu . Suppose that 0 is an
equilibrium point (if not, we simply translate the coordinates
to make this the case). Now we seek to design a controller
ut = Ktφ(xt), where φ is any set of fixed “features” of the
state on which we want the control to depend that minimizes
deviations from the constant trajectory [0,0,. . .,0]. We can look
at the closed-loop system

xt+1 = at(xt) +Bt(xt)Ktφt(xt) +Dtwt

where φt(xt) ∈ Rm,Kt ∈ Rnu×m. As before, let K = {Kt :
1 ≤ t ≤ N − 1}. Let F (K)(w) denote the (nonlinear) map-
ping from a sequence of disturbances w = [w0, . . . , wN−1] to
the state-space trajectory x = [x1, . . . , xN ]. The finite-horizon
q∞ norm for a nonlinear system can be defined analogously as
for a linear system

max
w �=0

‖F (K)(w)‖
‖w‖ . (9)

Given a state trajectory x = [x1, . . . , xN ], we can recover the
noise sequence as

w0 =D−1
0 x1

wt =D−1
t (xt+1 − at(xt)−Bt(xt)Ktφt(xt)) , t > 0. (10)

Thus, the map F (K) is invertible. Let F (K)−1 denote the
inverse. It can be shown (theorem A.4) that the objective (9)
(assuming it is finite) can be bounded above by

sup
x

⎛
⎝∑nN−1

i=1 σi

((
∂(F (K))−1(x)

∂x

))
nN − 1

⎞
⎠

nN−1

.

In the linear case, the maximization over x is unnecessary
since the term being maximized is independent of x. However,
for a nonlinear system, the Jacobian of (F (K))−1(x) is a
function of x and explicit maximization needs to be performed
to compute the objective. Thus, we can formulate the control
design problem as

min
K∈C

sup
x

⎛
⎝∑nN−1

i=1 σi

((
∂(F (K))−1(x)

∂x

))
nN − 1

⎞
⎠

nN−1

. (11)

The convexity of the aforementioned objective follows using
a very similar proof as the linear case (see theorem A.3).
Computing the objective (maximizing over x) in general would
be a hard problem, so this result is only of theoretical interest in
its current form. However, in future work, we hope to explore
the computational aspects of this formulation more carefully.

IX. CONCLUSION

We have argued that the framework developed seems promis-
ing and overcomes limitations of previous works on computa-
tionally tractable approaches to structured controller synthesis.
Although the control objective used is nonstandard, we have
argued why it is a sensible objective, and we also presented
numerical examples showing that it produces controllers out-
performing other nonconvex approaches. Further, we proved
suboptimality bounds that give guidance on when our solution
is good even with respect to the original (H2/H∞) metrics.
There are four major directions for future work: 1) investigating
the effect of various objectives in our family of control ob-
jectives; 2) developing efficient solvers for the resulting con-
vex optimization problems; 3) finding conditions under which
our approach is guaranteed to produce stabilizing controllers;
and 4) deriving computationally efficient algorithms for non-
linear systems.

APPENDIX A

A. Penalizing Control Effort

To model control costs, define an augmented problem with
x̄t ∈ Rn+nu , wt ∈ Rn+nu

At =

(
At 0
0 0

)
, Bt =

(
Bt

Rt

)
, Dt =

(
Dt 0
0 γI

)
xt+1 =Atxt +Btut +Dtwt.
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Partitioning the new state xt =
(
xt

x̃t

)
, wt=

(
wt

w̃t

)
, we have xt+1=

Atxt+Btut+Dtwt, x̃t+1=Rtut+γw̃t. Given this
∑N

t=1 x
T
t xt=∑N

t=1 x
T
t xt+

∑N−1
t=1 (Rtut+γw̃t(Rtut+γw̃t)+γ2w0w0. In the

limit γ→0, we recover the standard LQR cost. However, set-
ting γ=0 violates the condition of invertibility. Thus, solving
the problem with an augmented state x ∈ Rnu+ν , w ∈ Rnu+ν

At =

(
At 0
0 0

)
, Bt =

(
Bt

Rt

)
, Dt =

(
Dt 0
0 γI

)
solves the problem with a quadratic control cost in the limit
γ → 0. The caveat is that the problems (5), (6) become increas-
ingly ill-conditioned as γ → 0. However, we should be able to
solve the problem for a small value of γ, which models the
quadratic controls cost closely but still leads to a sufficiently
well-conditioned problem that we can solve numerically.

B. Dynamic Output Feedback

To allow for dynamic output feedback based on the last
kmeasurements yt = Ctxt, create an augmented state xt =
(xt . . . xt−k)

T . Then, define K̃t ∈ Rnu×km and

K̃t = Kt

⎛
⎜⎜⎝

Ct 0 . . . 0
0 Ct−1 . . . 0
...

...
...

...
0 0 . . . Ct−k

⎞
⎟⎟⎠

and augmented dynamics

At =

⎛
⎜⎜⎝

At 0 . . . 0 0
I 0 . . . 0 0
...

...
...

...
...

0 0 . . . I 0

⎞
⎟⎟⎠Dt =

⎛
⎜⎜⎝

Dt 0 . . . 0
0 γI . . . 0
...

...
...

...
0 0 . . . γI

⎞
⎟⎟⎠

and Bt = (Bt0 . . . 0)
T . Again, we need to set γ = 0 to exactly

match the standard output feedback problem but that violates
the assumption of invertibility. We can consider taking γ → 0
and recovering the solution as a limiting case, as in the previous
section.

C. Proofs

Theorem A.1:

q∞(K) =σmax (F (K))

≤
N−1∏
t=0

det(Dt)

(∑nN−1
i=1 σi

(
F (K)−1

)
nN − 1

)nN−1
.

Proof: Since F (K) is a block lower triangular matrix (a
reflection of the fact that we have a causal linear system), its
determinant is simply the product of determinants of diago-
nal blocks: det(F (K) =

∏
t det(Dt) = c independent of the

values of At. In fact, this result is a generalization of Bode’s
classical sensitivity integral result and has been studied in [14].
Since the product of singular values is equal to the determinant,
we have

σmax (F (K)) =
c

nN∏
i=2

σi (F (K))

= c

nN−1∏
i=1

σi

(
F (K)−1

)

where the last equality follows because the singular values of
F (K)−1 are simply reciprocals of the singular values of F (K).
The result now follows using the AM-GM inequality. �

Theorem A.2:

q2(K) ≤ nN

(
N−1∏
t=0

det(Dt)

)2 (
σmax

(
F (K)−1

))2(nN−1)
.

Proof: Let
∏N−1

t=0 det(Dt) = c. From the above argu-
ment, we can express σi(F (K)) as

c
∏

j �=nN−i+1

σi

(
(F (K))−1

)
≤ c
(
σmax

(
F (K)−1

))(nN−1)
.

The expression for q2(K) is
nN∑
i=1

(σi (F (K)))2 ≤ nNc2
(
σmax

(
F (K)−1

))2(nN−1)
.

�
Theorem A.3: For the nonlinear system described in (10), the

function supx(
∑nN−1

i=1 σi((∂(F (K))−1(x)))/nN − 1)nN−1 is
convex in K.

Proof: First fix w to an arbitrary value. From (10), we
know that (∂(F (K))−1(x)/∂x) is of the form⎡

⎢⎢⎢⎢⎢⎣

D−1
0 0 . . . . . . 0

−D−1
1

∂w1

∂x1
D−1

1 . . . . . . 0

0 −D−1
2

∂w2

∂x2
D−1

2 . . . 0

...
...

... · · ·
...

0 0 0 . . . D−1
N−1

⎤
⎥⎥⎥⎥⎥⎦ .

Since wt = Dt(xt+1 − at(xt)−Bt(xt)Ktφt(xt)), wt is an
affine function of K. Hence, so is ∂wt/∂xt, for any t.
Thus, the overall matrix (∂(F (K))−1(x)/∂x) = M(K) is
an affine function of K. Thus, by composition properties,
(
∑nN−1

i=1 σi(M(K))/nN − 1)nN−1 is a convex function of
K for any fixed x. Taking a supremum over all x preserves
convexity, since the pointwise supremum of a set of convex
functions is convex. �

Theorem A.4: Consider the nonlinear system described in
(10). Suppose that supw �=0(‖F (K)(w)‖/‖w‖) is finite and the
supremum is achieved at w∗ �= 0 for all values of K. Then,
supw �=0(‖F (K)(w)‖/‖w‖ is bounded above by

sup
x

⎛
⎝∑nN−1

i=1 σi

((
∂(F (K))−1(x)

∂x

))
nN − 1

⎞
⎠

nN−1

.

Proof: By theorem A.5, supw �=0(‖F (K)(w)‖/‖w‖ is
bounded above by supw �=0 σmax(∂F (K)(w)/∂w). Now,
M(K)=∂F (K)(w)/∂w is a lower-triangular matrix (since we
have a causal system) and the diagonal blocks are given by Dt.
Thus, det(M(K))=

∏N−1
t=0 det(Dt)=c, and we can rewrite

σmax(M(K)) as c
∏nN−1

i=1 σi((M(K))−1. By the rules of calcu-
lus, we know that (M(K))=(∂(F (K))−1(x)/∂x)x=F (K)(w).

Thus, the above objective reduces to supw �=0

∏nN−1
i=1 σi((∂(F

(K))−1(x)/∂x)x=F (K)(w)). Given any x, we can find w such
thatx=F (K)(w) (simply choosew=(F (K))−1(x)). Thus, the
above quantity is equal to supx

∏nN−1
i=1 σi((∂(F (K))−1(x)/∂x)).

The result now follows using the AM-GM inequality.
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Theorem A.5: Let g(y) :Rl �→Rp be any differentiable func-
tion. If the function ‖g(y)‖2/‖y‖2 attains its maximum at y∗

sup
y

‖g(y)‖2
‖y‖2

≤ sup
y �=0

σmax

(
∂g(y)

∂y

)
∀y �= 0.

Proof: The result follows by writing down the
optimality conditions for the optimization problem
max log(‖g(y)‖2/‖y‖2). �
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