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Abstract— Despite the plethora of reinforcement learning

algorithms in machine learning and control, the majority of

the work in this area relies on discrete time formulations of

stochastic dynamics. In this work we present a new policy

gradient algorithm for reinforcement learning in continuous

state action spaces and continuous time for free energy-like

cost functions. The derivation is based on successive application

of Girsanov’s theorem and the use of the Radon Nikod´ym

derivative as formulated for Markov diffusion processes. The

resulting policy gradient is reward weighted. The use of Radon

Nikod´ym extends analysis and results to more general models of

stochasticity in which jump diffusions processes are considered.

We apply the resulting algorithm in two simple examples

for learning attractor landscapes in rhythmic and discrete

movements.

I. INTRODUCTION

Over the past fifteen years, there has been a significant
amount of work in the area of reinforcement learning with
applications to learning and control of nonlinear dynamical
systems in continuous state-action spaces [1]–[3], [6]–[8],
[14], [16], [18]–[22], [25]–[27], [30]. While reinforcement
learning [24] has its origins in psychology and behavioral
sciences, many researchers in control theory and machine
learning have shown its links to traditional optimal and adap-
tive control, supervised and unsupervised learning. Among
the different formalizations of reinforcement learning, Policy
Gradient methods (PG) appear to be an efficient approach for
hard control and planning problems.

One of the advantages of reinforcement learning based
on PGs is the fact that it is a model free approach. This
characteristic makes PG methods suitable for cases where
the model of the underlying dynamics is either very difficult
to be identified or not accurate. In addition, PG methods
are easily applicable in practice. In a typical reinforcement
learning scenario, a parameterized policy is formulated and
the parameters are learned based on rollouts (state trajecto-
ries) of the stochastic dynamics. These rollouts may result
from the evaluation of the parameterized policy on the real
physical system.

In this work, we derive PGs for cost functions that have the
form of free energy. Free energy functions appear in many
areas of sciences and engineering from statistical physics and
thermodynamics to stochastic optimal control, robust control
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and estimation. In statistical mechanics and thermodynamics
free energy plays an essential role since it corresponds to
the amount of energy that can be extracted or used to
perform work. Moreover there is a dual relationship between
free energy and relative entropy that is mathematically rep-
resented by the Legendre-Fenchel transformation [29]. In
stochastic optimal control [9], [10], [15] value functions can
be represented as free energy evaluated on state trajectories
given by forward sampling of the uncontrolled dynamics.
Furthermore, free energy cost functions have been used in
robust control and stochastic differential games as in [4], [5].

In spite of the plethora of PG reinforcement learning
approaches and variations, most algorithms are derived for
stochastic dynamical systems in discrete time. Exception
is the work in [11], [28], [32] where the mathematical
derivations are in continuous time. The choice of working in
continuous time allows the use of the machinery of stochastic
calculus. In particular, in contrast to [14], [18]–[20] and in
agreement with [32] our derivation is based on successive
applications of Girsanov’s theorem and the use of Radon-
Nikodým derivative for nonlinear Markov diffusion processes
affine in noise. The use of Radon-Nikodým derivative is
essential for the derivation of PG update rule in continuous
time. Moreover, even though equivalent formulations can be
found by just passing the gradient inside the expectation
of the cost function, the analysis based on Radon-Nikodým
derivative is advantageous since its formalism allows easy
extensions to general models of stochasticity. These obser-
vations will become clear in the analysis and derivations
regarding PGs for jump diffusion processes. Finally, we
provide discrete time approximation errors for the resulting
free energy PGs and show how these errors depend on the
design of the cost function and the discretization of the
corresponding continuous dynamics.

The paper is organized as follows: In Section II, the
reinforcement problem is formulated subject to the stochastic
dynamics in continuous time. Section III includes the deriva-
tion of the free energy PGs in continuous time for general
nonlinear parameterizations. In Section IV we provide the
form of free energy PGs for polices linearly parameterized
with time invariant parameters. In addition we provide the
approximation of the resulting PG in discrete time and
derive the approximation error. In Section V, we show
that the analysis based on the Radon-Nikodým derivative is
easily extended to jump diffusion processes. In Section VI,
the proposed policy gradient is tested on learning attractor
land-scapes for discrete and rhythmic primitives. Finally,
in Section VIII, we conclude our work and provide future
directions.



II. PROBLEM FORMULATION

We consider the stochastic dynamical system of the form:

dx(t) = F(x,u, t)dt+C(x, t)dw(t) (1)

in which x 2 <n⇥1 is the state, u 2 <p⇥1 the controls
and dw 2 <m is brownian noise. The functions F(x,u, t)
and C(x, t) are defined as F : <n ⇥ <p ⇥ < ! <n and
C(x, t) : <n ⇥ < ! <n ⇥ <n⇥m. In this paper we will
assume that control is parameterized as u = u(x,✓) with
the term ✓ denoting the parameters. We also consider the
objective function ⇠(x0,✓) defined as follows:

⇠(x0,✓) = � 1

|⇢| log J(x
0,✓) (2)

The term J(x0,✓) is defined as follows:

J(x0,✓) = EP(~x,✓)

✓
S(~x, ~u(x,✓))

◆

=

Z
S(~x, ~u(x,✓))dP(~x;✓) (3)

The symbol EP(~x;✓) denotes the expectation under the
probability measure P(~x;✓) which corresponds to (1) and
it is parameterized by ✓ due to control parameterization.
Thus the expectation EP(~x;✓) is taken with respect to tra-
jectories ~

x = (x

0,x1, ...,xN

) starting from state x

0
=

x(t0) and generated with forward sampling of (1) under
the policy parameter ✓. The term S(~x, ~u(x,✓)) is a cost
function which depends on the state and control trajectories
~
x, ~u(x,✓) with the control trajectory defined as ~

u(x,✓) =

(u(x

0, t0,✓),u(x1, t1,✓)...,u(xN�1, tN�1,✓)). The case
in which S(~x, ~u(x,✓)) is defined as S(~x, ~u(x,✓)) =

exp (�|⇢|L(~x, ~u(x,✓))) is of particular interest since under
this definition the objective function (6) takes the form of
free energy performance criterion specified as:

⇠(x0,✓) = � 1

|⇢| log
Z

exp (�|⇢|L(~x, ~u(x,✓)))dP(~x;✓)

(4)

The term |⇢| in the equation above could be interpreted as
|⇢| = 1

kT

with k = 1.3806503⇥10

�23 J

K

the Boltzmann con-
stant and T the temperature, while L(~x, ~u(x,✓)) plays the
role of energy. Performance criteria of the form as in (4) are
important due to the fact that they can lead to optimization of
risk seeking functions. To see that one can show that for ⇢ !
0 the objective function above corresponds to: ⇠(x0,✓) ⇡
EP(~x;✓)

✓
L(~x, ~u(x;✓))

◆
� |⇢|

2 VARP(~x;✓)

✓
L(~x, ~u(x;✓))

◆
+

O(⇢2) where the term VARP(~x;✓) is the variance under
P(~x;✓).

Alternatively one may consider risk sensitive objective
functions of the form:

⇠(x0,✓) =
1

|⇢| log
Z

exp (|⇢|L(~x, ~u(x;✓)))dP(~x;✓) (5)

Similarly for ⇢ ! 0 we will have that ⇠(x0,✓) ⇡
EP(~x;✓)

✓
L(~x, ~u(x;✓))

◆
+

|⇢|
2 VARP(~x;✓)

✓
L(~x, ~u(x;✓))

◆
+

O(⇢2).
In this work we derive policy gradients that minimize

objective functions of the form (4). Thus the problem for-
mulation is expressed as:

✓⇤
= argmin

✓
⇠(x,✓) (6)

with ⇠(x,✓) defined in (4) subject to the stochastic dy-
namics in (1).

III. NONLINEAR FREE ENERGY POLICY GRADIENTS .

In this section we derive the gradient of the performance
criterion as in (4). Our analysis is based on the use of Gir-
sanov’s theorem and the Radon-Nikodým derivative [32] and
applied for case of free-energy like performance criterion. In
addition, the results in this section hold for nonlinear policy
parameterizations and stochastic dynamics affine with respect
to the terms of noise as in (1).

For simplicity we will treat the parameter ✓ as scalar
and then we will extend our result to the vector case. More
precisely we will have:

lim

�✓!0

�⇠(x0,✓)

�✓
= � 1

|⇢|J(x0,✓)
lim

�✓!0

�J(x0,✓)

�✓

= � 1

|⇢|J(x0,✓)
lim

�✓!0

✓
J(x0,✓ + �✓)� J(x0,✓)

�✓

◆
(7)

Next we work with the expression inside the parenthesis
in the last equation (7). Therefore we will have:

lim

�✓!0

�J

�✓
=

= lim

�✓!0

EP(~x;✓+�✓)

✓
S(~x,✓ + �✓)

◆
� EP(~x;✓)

✓
S(~x,✓)

◆

�✓

= lim

�✓!0

EP(~x;✓)

✓
S(~x,✓ + �✓)dP(~x;✓+�✓)

dP(~x;✓)

◆
� EP(~x;✓)

✓
S(~x,✓)

◆

�✓

= lim

�✓!0

EP(~x,✓)

✓
S(~x,✓ + �✓)dP(~x;✓+�✓)

dP(~x;✓)
� S(~x,✓)

◆

�✓

= lim

�✓!0
EP(~x;✓)

✓S(~x,✓ + �✓)dP(~x;✓+�✓)

dP(~x;✓)
� S(~x,✓)dP(~x;✓+�✓)

dP(~x;✓)

�✓

◆

+ lim

�✓!0
EP(~x,✓)

✓S(~x,✓)dP(~x;✓+�✓)

dP(~x;✓)
� S(~x,✓)

�✓

◆



= lim

�✓!0

EP(~x,✓)

✓
S(~x,✓ + �✓)� S(~x,✓)

◆
dP(~x;✓+�✓)

dP(~x;✓)

�

�✓

+ lim

�✓!0

EP(~x,✓)


S(~x,✓)

✓
dP(~x;✓+�✓)

dP(~x;✓)
� 1

◆�

�✓

We incorporate the last line into (7) we get the result:

lim

�✓!0

�⇠(x0,✓)

�✓
= � 1

|⇢|J(x0,✓)
M(x

0,✓) (8)

where the term M(x,✓) in the equation above, is defined
as follows:

M(x

0,✓) = lim

�✓!0

✓
EP(~x;✓)


�S(~x,✓)

�✓

dP(~x;✓ + �✓)

dP(~x;✓)

�◆

+ lim

�✓!0

✓
EP(~x;✓)


S(~x,✓)

�✓

✓
dP(~x;✓ + �✓)

dP(~x;✓) � 1

◆�◆

(9)

The next step is to find the limit of the expression in
(9) as �✓ ! 0. To do so we make use of Girsanov’s
theorem and the Radon-Nikodým derivative as applied to
nonlinear diffusion processes. More precisely the ratio of the
probability measures dP(~x;✓+�✓)

dP(~x;✓)
(see appendix) is specified

as follows:

dP
✓
x

N

, t
N

|x0, t0;✓ + �✓

◆

dP
✓
x

N

, t
N

|x0, t0;✓

◆
=

exp

 Z
tN

t0

�FT

⌃

�1
C

C(x, t)dw
✓

(t)

�

⇥ exp


� 1

2

Z
tN

t0

�FT

⌃

�1
C

�Fdt

�
(10)

The term �F above is defined as the difference
�F = F(x,u(x,✓ + �✓), t) � F(x,u(x,✓), t) and
we assume that lim

�✓!0 �F = 0. In addition the
term ⌃

C

is defines as ⌃

C

= C(x, t)C(x, t)T . Next
we find the terms lim�✓!0

✓
EP(~x,✓)


dP(~x;✓+�✓)

dP(~x,✓)

�◆
and

lim�✓!0

✓
EP(~x;✓)


1

�✓

✓
dP(~x;✓+�✓)

dP(~x;✓)
� 1

◆�◆
. Since ex � 1 =

x+

x

2! +
x

2

3! it can be shown that that:

lim

�✓!0

1

�✓

✓
dP(~x;✓ + �✓)

dP(~x,✓) � 1

◆
=

=

Z
tN

t0

�F

�✓

T

⌃

�1
C

C(x, t)dw
✓

(t) (11)

Also lim

�✓!0

✓
dP(~x;✓+�✓)

dP(~x,✓)

◆
= 1 in the mean sense and

therefore the final result will be:

lim

�!0

�⇠(x0,✓)

�✓
= � 1

|⇢|J(x0,✓)

⇥
✓
EP(~x;✓)


�S(~x,✓)

�✓

�
+ EP(~x;✓)


S(~x,✓)dw

�◆
(12)

where the term dw is defined as:

dw =

Z
tN

t0

�F

�✓

T

⌃

�1
C

C(x, t)dw
✓

(t)

When ✓ is a parameter vector ✓ = (✓1, ...,✓⌫

) then we
will have that:

dw

i

=

Z
tN

t0

�F

�✓
i

T

⌃

�1
C

C(x, t)dw
✓

(t), 8i = 1, ..., ⌫

We summarize the analysis above with the following
nonlinear policy gradient lemma:

Lemma 1: Consider the stochastic dynamics as in (1) the
nonlinear stochastic gradient of the free energy performance
criterion:

⇠(x0,✓) = � 1

|⇢| log
Z

S(~x, ~u(x,✓))dP

is expressed as follows:

r✓⇠(x
0,✓) = � 1

|⇢|J(x0,✓)

⇥
✓
EP(~x;✓)


r✓S(~x,✓)

�
+ EP(~x;✓)


S(~x,✓)dw

�◆

The term dw is defined as follows:

dw =

Z
tN

t0

J✓F
T

⌃

�1
C

C(x, t)dw
✓

(t) (13)

The term J✓F is the Jacobian of the drift term
F(x,u(x,✓), t) w.r.t parameter vector ✓ 2 <⌫⇥1. In ad-
dition the term ⌃

C

is defined as ⌃

C

= C(x, t)C(x, t)T

.
Next we consider the case where the cost S(x,u(x;✓))

has the form of an exponential S(x,u(x,✓)) =

exp (�|⇢|L(x,u(x,✓))). The gradient of the objective func-
tion can be further formulated as follows:

r✓⇠(x
0,✓) = � 1

J(x0,✓)

⇥ 1

|⇢|

✓
EP(~x;✓)


S(~x,✓)dw

�
+ EP(~x;✓)


r✓S(~x,✓)

�◆

= � 1

J(x0,✓)

⇥
✓

1

|⇢|EP(~x;✓)


S(~x,✓)dw

�
� EP(~x;✓)


r✓L(~x,✓)S(~x,✓)

�◆

= � 1

|⇢|EQ(~x;✓)


dw

�
+ EQ(~x;✓)


r✓L(~x,✓)

�

The term Q(

~
x;✓) is defined as follows:



dQ(

~
x;✓) =

S(~x,✓)dP(~x;✓)R
S(~x,✓)dP(~x;✓)

=

exp (�|⇢|L(~x, ~u(x;✓)))dP(~x;✓)R
exp (�|⇢|L(~x, ~u(x;✓)))dP(~x;✓) (14)

The analysis above is summarized by the following non-
linear policy gradient lemma:

Lemma 2: Consider the stochastic dynamics as in (1) the
nonlinear stochastic gradient of the free energy performance
criterion:

⇠(x0,✓) = � 1

|⇢| log
Z

exp (�|⇢|L(~x, ~u(x,✓)))dP

is expressed as follows:

r✓⇠(x
0,✓) = � 1

|⇢|EQ(~x;✓)


dw

�
+ EQ(~x;✓)


r✓L(~x,✓)

�

The term dw is defined as in (13) while the expectation
EQ(~x;✓) is under dQ(

~
x;✓) defined as in (14):

IV. LINEAR FREE ENERGY POLICY GRADIENTS.
A special class of systems of this form in (1) may include

dynamics affine in controls. Such dynamics are formulated
as follows:

✓
dx1(t)
dx2(t)

◆
=

✓
f1(x, t)
f2(x, t)

◆
dt+

✓
0

B(x, t)

◆
udt

+

 
0

1p
|⇢|

L(x, t)

!
dw(t) (15)

with the terms x1 2 <n�k, x2 2 <k and B(x, t) : <n ⇥
< ! <k⇥p denoting the control matrix, f1(x, t) 2 <n ⇥
< ! <n�k and f1(x, t) : <n ⇥ < ! <k⇥p denoting the
passive dynamics and L(x, t) 2 <n ⇥< ! <k⇥m being the
diffusions matrix.

In this section we consider deterministic and linear policy
parameterizations of the form:

u(x, t,✓) = �(x, t)✓ (16)

The term � 2 <p⇥⌫ corresponds to the basis function of
the parameterization and ✓ 2 <⌫⇥1 is the parameter vector.
Our analysis and derivations are based on parameterizations
of the form (16). The case of time dependent parameters
together with experiments is ongoing work which will be
presented in the near future.

Substitution of the parameterized policy into differential
equation (15) results in the stochastic differential equation:

✓
dx1(t)
dx2(t)

◆
=

✓
f1(x, t)
f2(x, t)

◆
dt+

✓
0

�(x, t)

◆
✓dt

+

 
0

1p
|⇢|

L(x, t)

!
dw(t) (17)

in which �(x, t) = B(x, t)�(x, t) : <n ⇥ < ! <k⇥⌫ .
We also introduced the terms ⌃

⇢

(x, t),⌃(x, t) : <n ⇥< !
<k⇥k defined as ⌃

⇢

(x, t) =

1
|⇢|L(x, t)L(x, t)

T

=

1
|⇢|⌃L

where ⌃

L

(x, t) = L(x, t)L(x, t)T and the term F2(x, t) :

<n⇥< ! <k defined by the equation F2(x, t) = f2(x, t)+
�(x, t)✓.

For this special case of parameterized dynamics affine in
control as in (17) and linear policy parameterization as in
(16) we will have the policy gradient:

r✓⇠(x
0,✓) = � 1

J(x0,✓)

⇥
✓
EP(~x;✓)


S(~x,✓)dv

�
+

1

|⇢|EP(~x;✓)


r✓S(~x,✓)

�◆

with the term dv is given by the expression that follows:

dv =

1p
|⇢|

Z
tN

t0

�(x, t)T⌃�1
L

L(x, t)dw
✓

(t) (18)

When the function S(~x,✓) is defined as S(~x, ~u(x,✓)) =
exp (�|⇢|L(~x, ~u(x,✓))) then we will have that:

r✓⇠(x
0,✓) = �EQ(~x;✓)


dv

�
+ EQ(~x;✓)


r✓L(~x,✓)

�

The analysis above is summarized by the following linear
policy gradient theorem:

Theorem 1: Consider the stochastic dynamics as in (17),
the stochastic gradient of the free energy performance crite-
rion:

⇠(x0,✓) = � 1

|⇢| log
Z

exp (�|⇢|L(~x, ~u(x,✓)))dP

subject to the dynamics in (17) is:

r✓⇠(x
0,✓) = �EQ(~x;✓)


dv

�
+ EQ(~x;✓)


r✓L(~x,✓)

�

The term dv is defined as in (18) while the expectation
EQ(~x;✓) is under dQ(

~
x;✓) defined as in (14).

Next we provide ways to numerically implement free
energy policy gradients.

A. Numerical Implementation

In this section we show how the free energy policy
gradients can be numerically implemented. The basic update
equation has the form:

✓
k+1 = ✓

k

� �
�⇠(x,✓)

�✓
k

(19)

where � is a positive term used for line search. We remind
at this point that the parameters ✓ are used to parameterize
controls in the form u(x, t) = �(x, t)✓ or u(x, t) =

�(x)✓(t). At every iteration k these controls are applied
to stochastic dynamics to generate trajectories and therefore
will be multiplied by �t. We re-write the update rules in
the form ✓

k+1dt = ✓
k

dt � � �⇠(x,✓)

�✓k
dt to further simplify

mathematical results by finding terms of order O(dt2) and
assuming that they converge to 0 as dt ! 0. As we will see
in the analysis that follows, finding terms of order O(dt2)



will depend on the design of the cost function and whether
the policy parameters appear explicitly in this function.

Next we will consider the discrete time approximation of
dv in (18) which can be written as follows:

dv =

1p
|⇢|

NX

i=1

�(x, t
i

)

T

⌃

L

(t
i

)

�1
L(x, t

i

)dw(t
i

) (20)

In a more compact form, the equation above can be further
expressed:

dv =

1p
|⇢|

B(

~
x)

T dW (21)

The term B(

~
x) is expressed as follows

B(

~
x) =

✓
D0

����D1

����...
���� DN

◆

Every submatrix element D
i

is defined as D
i

=

D(x(t
i

), t
i

) = �(x, t
i

)

T

⌃

L

(t
i

)

�1
L(x, t

i

). The term dW
is given by the equation:

dWT

=

✓
dw(t0)

T

����dw(t1)
T

����...
����dw(t

N

)

T

◆

Next we consider the case where the cost is quadratic in
the parameters of the control policy and therefore it has the
form: L(x,u(x,✓)) =

R
tN

t0

⇣
q(x, t) + 1

2✓
T

R✓
⌘
dt with the

parameter R being a positive definite matrix. The gradient of
the cost term L with respect to policy parameters will take
the form:

r✓L(x,u(x,✓)) = R✓Ndt

where the term N is specified as t
N

� t0 = Ndt. The policy
update rules are formulated as follows:

✓
k+1dt = ✓

k

dt+
�p
|⇢|

EQ(~x;✓)

✓
B(

~
x)

T dW

◆
�t+O2(dt

2
)

(22)
where the term O2(dt

2
) is specified as O2(dt

2
) =

�R✓Ndt2. As dt ! 0 the update rule takes the form:

✓
k+1dt ⇡ ✓

k

dt+
�p
|⇢|

EQ(~x;✓)

✓
B(

~
x)

T dW

◆
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For implementation purposes we will have
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With the term R(
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) defined as:
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(24)

V. FREE ENERGY BASED POLICY GRADIENTS FOR
MARKOV JUMP DIFFUSIONS

We consider the markov jump diffusions processes speci-
fied as:

dx(t) = F(x,u, t)�t+C(x, t)dw(t) + h(x)dP(1)
(t) (25)

The term P (t) 2 <q⇥1 is Poisson distributed and
h(x, t) 2 <n⇥q is the jump-amplitude or the Poisson process
coefficient with E

�
dP(t)(i)

�
= ⌫

i

�t and Var
�
dP(t)(i)

�
=

⌫
i

�t, for i = 1, ...,m. The term ⌫(t) > 0 is the ith jump rate
or jump density and ⌫�t is the mean count of the Poisson
process in the time interval (t, t + dt]. Poisson processes
obey the Markov property while they also have independent
increments and thus Cov [dP(t

j

)dP(t
k

)] = ⌫(t
j

)dt�
k,j

.
Again we assume that the control is parameterized as in

(16). The changes in the parameters of the policy correspond
to changes only in the drift of the dynamics and therefore
the Radon - Nikodým derivative will have the same form as
in (10). To see that we consider the simple example with the
one dimensional Markov jump diffusion of the form:

P
✓

: dx(t) = f(x)�t+ C(x, t)

✓
✓(t)�t+

1p
|⇢|

dw✓

(t)

◆

+ h(x)dP (1)
(t)

P
✓+�✓

: dx(t) = f(x)�t+ C(x, t)

✓
✓(t) + �✓

◆
�t

+ C(x, t)
1p
|⇢|

dw(✓+�✓)
(t) + h(x)dP (1)

(t)

Based on Girsanov’s theorem [12] for markov jump
diffusion processes, the Radon-Nikodým derivative is now
specified as dP✓

dP✓+�✓
= exp (�⇣(u)) with ⇣(u) defined as

follows:

⇣(u) = �
Z

tN

ti

1

2

|⇢|�✓2�t+
p
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Z

tN

ti

�✓dw(✓)
(t) + V(�(J)

)

V(�(J)
(t)) =

R
tN

ti

��
�(J)

(t)� 1

�
⌫0(t)

�
�t +

P
P

(1)(t)
j=1 log �(J)

(t) and �(J)
(t) =

⌫

(1)(t)
⌫

(0)(t)
. Since

⌫0(t) = ⌫1(t) we have that V(�(J)
(t)) = 0 and we

get the Radon-Nikodým for the case of diffusion processes.
Therefore all the results derived so far for the case of
diffusion processes hold also for the more general case
of markov jump diffusions. The analysis above is based
on the Radon-Nikodym derivative. Alternative derivations
pass explicitly the gradient inside the expectation but that
requires the path integral formulation of Markov jump
diffusions and makes the derivation much more difficult.



VI. SIMULATIONS

We apply the proposed method on two simple examples
that include the use of nonlinear point and limit cycle attrac-
tors with adjustable landscape. In particular, the first task is
for the 1D nonlinear point attractor to pass via a pre-specified
target point at a pre-specified time as illustrated in Fig.1.
The second task consists of learning a rhythmic sinusoid 1D
movement with the nonlinear limit cycle attractor, see 2.

VII. NONLINEAR POINT ATTRACTORS WITH
ADJUSTABLE ATTRACTOR LAND-SCAPE

In this subsection we provide the mathematical formu-
lation of nonlinear point attractor that consist of two sets
of differential equations, the canonical and transformation
system which are coupled through a nonlinearity [13]. The
canonical system is formulated as 1

⌧

ẋ
t

= �↵x
t

. That is a
first - order linear dynamical system for which, starting from
some arbitrarily chosen initial state x0 , e.g., x0 = 1, the state
x converges monotonically to zero. x can be conceived of as
a phase variable, where x = 1 would indicate the start of the
time evolution, and x close to zero means that the goal g (see
below) has essentially been achieved. The transformation
system consist of the following two differential equations:

⌧ ż =↵
z

�
z

✓✓
g +

f

↵
z

�
z

◆
� y

◆
� ↵

z

z (26)

⌧ ẏ =z

The nonlinear forcing term f is defined as:
f(x) =

PN
i=1 K(xt,ci)✓ixtPN

i=1 K(xt,ci)
(g � y0) = �

P

(x)T✓.
The basis functions K (x

t

, c
i

) are defined as
K (x
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, c
i

) = exp

�
�0.5h
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(x
t

� c
j

)

2
�

with bandwith
h
j

and center c
j

of the Gaussian kernels – for more details
see [13]. The terms y

t0 to the goal g are the initial and goal
state, where ✓ determines the shape of the attractor. y

t

, ẏ
t

denote the position and velocity of the trajectory, while
z
t

, x
t

are internal states. ↵
z

,�
z

, ⌧ are time constants. The
full dynamics or the rhythmic movement primitives have
the form of dx = F (x)dt + G(x)✓dt where the state x is
specified as x = (x, y, z) while the controls are specified
as ✓ = (✓1, ..., ✓p)

T .The representation above guarantees
attractor properties towards the goal while remaining linear
in the parameters ✓ of the function approximator. Variations
in the parameter ✓ will result in changing the shape of the
trajectory while the goal g and initial state y

t0 remain fixed.
In Fig 1(a) the optimal trajectory is illustrated. The task is

for the point attractor to pass via a target point p⇤ at time t⇤.
Figure 1(b) illustrates the cost at every update of the policy
parameters. The Lagrangian of the cost under minimization
for the aforementioned task is L(x;✓) =

R
tN

ti
(x�p⇤)2�(⌧�

t⇤) + 0.5✓T✓�⌧ with p⇤ = 0.2 and t⇤ = 30.

A. Nonlinear Limit Cycle Attractors with adjustable attrac-
tor Land-scape

The canonical system for the case of limit cycle attractors
consist the differential equation ⌧ ˙� = 1 where the term � 2
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Fig. 1. Passing via a point with nonlinear point attractors. In subfigure (a)
the optimal trajectory after learning. In (b) the cost per iteration is illustrated.

[0, 2⇡] correspond to the phase angle of the oscillator in polar
coordinates. The amplitude of the oscillation is assumed to be
r. This oscillator produces a stable limit cycle when projected
into Cartesian coordinated with v1 = r cos(�) and v2 =

r sin(�). In fact, it corresponds to form of the (Hopf-like)
oscillator equations

⌧ v̇1 = �µ

p
v21 + v22 � rp
v21 + v22

v1 � v2 (27)

⌧ v̇2 = �µ

p
v21 + v22 � rp
v21 + v22

v2 + v1 (28)

where µ is a positive time constant. The system above
evolve to the limit cycle v1 = r cos(t/⌧ + c) and v2 =

r sin(t/⌧ + c) with c a constant, given any initial condi-
tions except [v1, v2] = [0, 0] which is an unstable fixed
point. Therefore the canonical system provides the am-
plitude signal (r) and a phase signal (�) to the forc-
ing term f(�, r) =

PN
i=1 K(�,ci)✓iPN
i=1 K(�,ci)

r = �

R

(�)T✓, where
the basis function K (�, c

i

) are defined as K (�, c
i

) =

exp (h
i

(cos(�� c
i

)� 1)). The full dynamics of the rhyth-
mic movement primitives have the form of dx =

F (x)dt + G(x)✓dt where the state x is specified as x =

(�, v1, v2, z, y). The term g for the case of limit cycle attrac-
tors is interpreted as an-anchor point (or set point) for the
oscillatory trajectory, which can be changed to accommodate
any desired baseline of the oscillation.

Figure 2 illustrates the result from the application of
Girsanov’s direct policy gradient method to learn rhythmic
tasks. The task here is to learn a sinusoid movement and
therefore the Lagrangian of the cost is L(x;✓) =

R
tN

ti
(x �

cos(!⌧))2�⌧ .

VIII. DISCUSSION

We derive free energy policy gradients for nonlinear
stochastic dynamics. In contrast to previous work on policy
gradient methods, our derivation is in continuous time.
Moreover it exploits the use of Radon-Nikodým derivative.
This choice allows for direct extensions to general model of
stochasticity that include but they are not limited to jump
diffusion processes. In addition the resulting formulation of
free energy PGs applies to policies that include nonlinear
and linear parameterizations. In this work, we specialize our
analysis to linear policies and derive update rules which are
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Fig. 2. Learning 1D sinusoid movement with nonlinear limit cycle attractor.
In (a) the target and the learned trajectory are illustrated. In (b) the cost at
every time horizon is given until convergence.

easy to implement. Furthermore, we provide approximation
errors for the update rule of the free energy PGs and show
how this errors depend on the cost function design and
discretization of the underlying stochastic dynamics.

There are multiple future directions on the free energy
PGs. Clearly, more numerical experiments are required to
evaluate the performance of free energy PGs. Therefore
future work should include testing and evaluation of the free
energy PGs in simulation as well as on real robotic systems
for learning motor control tasks. Our particular interest is
on learning control for humanoid robotic systems such as
manipulators, bipeds, tendon-actuated hands etc. The cases
of policy parameterizations with time varying parameters
as well as extensions to free energy policy gradients for
non-smooth cost functions is ongoing work. An interesting
question here is on how approximation errors depend on the
choice of policy parameterization. Incorporating subsampling
into the derivation of free energy PGs is straightforward and
it results in new updates rules. Finally comparisons with cur-
rent state of the art PGs methods such as Policy Improvement
with Path Integrals (PI2) on a variety of learning control
problems is also ongoing work.
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X. APPENDIX

We will consider Girsanov’s theorem for the case of
stochastic diffusions:

dx(t) = F(x,u(x,✓), t)�t+C(x, t)dw
✓

(t) (29)
dx(t) = F(x,u(x,✓ + �✓), t)�t+C(x, t)dw

✓+�✓

(t) (30)

we also define �F = F(x,u(x,✓ + �✓), t)�t �
F(x,u(x,✓), t)�t. We are going to write the probability
measures for each one of the diffusions above. More pre-
cisely we will have that:
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�F(x,u(x,✓+ �✓), t). Multiplication with �t will result
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For the case where C(x, t) is invertible we will have that

dP
✓
x

N

, t
N

|x0, t0;✓

◆

dP
✓
x

N

, t
N

|x0, t0;✓ + �✓

◆

= exp

 Z
tN

t0

✓
� �FT

C(x, t)�1dw
✓

(t) +
1

2

�FT

⌃

�1
C

�F�t

◆�

This is the same expression for Girsanov theorem as in
[32].
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