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Todorov, Emanuel and Michael I. Jordan. Smoothness maximi- etc. This impressive ability to take into account a diverse set
zation along a predefined path accurately predicts the speed profiles of task constraints and rapidly ‘‘fill in’’ the missing details of
of complex arm movements. J. Neurophysiol. 80: 696–714, 1998. the movement suggests that the motor system has very gen-
The speed profiles of arm movements display a number of regulari- eral and efficient mechanisms for solving ill-posed problems.
ties, including bell-shaped speed profiles in straight reaching move- Consequently, a fruitful line of research in the field of motorments and an inverse relationship between speed and curvature in

control has been to identify, mostly through observationalextemporaneous drawing movements (described as a 2/3 power
studies, regularities in biological movement that are not inlaw). Here we propose a new model that simultaneously accounts
any way implied by the task. Once identified, such regulari-for both regularities by replacing the 2/3 power law with a smooth-
ties can be used to infer the structure of the underlyingness constraint. For a given path of the hand in space, our model

assumes that the speed profile will be the one that minimizes the motor system that produces them. Examples of this approach
third derivative of position (or ‘‘jerk’’) . Analysis of the mathemati- include: Listings law, Fitts law, the isochrony principle (Viv-
cal relationship between this smoothness constraint and the 2/3 iani and Schneider 1991), linearly related joint velocities
power law revealed that in both two and three dimensions, the (Soechting and Terzuolo, 1986), piece-wise planar three-
power law is equivalent to setting the jerk along the normal to the dimensional (3D) hand paths (Soechting and Terzuolo
path to zero; it generates speed predictions that are similar, but 1987), straight paths and bell-shaped speed profiles of reach-clearly distinguishable from the predictions of our model. We have

ing movements (Morasso 1981), and the inverse relation-assessed the accuracy of the model on a number of motor tasks in
ship between instantaneous tangential speed and curvaturetwo and three dimensions, involving discrete movements along
of the hand path (Jack 1895; Lacquaniti et al. 1983).arbitrary paths, traced with different limb segments. The new model

In this work, we focus on the relationships observed be-provides a very close fit to the observed speed profiles in all cases.
Its performance is uniformly better compared with all existing tween the hand paths and speed profiles of arm movements
versions of the 2/3 power law, suggesting that the correlation that are spatially constrained. We begin with a brief summary
between speed and curvature may be a consequence of an underly- of existing versions of the minimum-jerk model (Flash and
ing motor strategy to produce smooth movements. Our results Hogan 1985) and the 2/3 power law (Lacquaniti et al. 1983)
indicate that the relationship between the path and the speed profile and compare their implications for the biological mecha-
of a complex arm movement is stronger than previously thought, nisms underlying trajectory formation. We then develop aespecially within a single trial. The accuracy of the model was

new model that essentially combines the appealing featuresquite uniform over movements of different shape, size, and average
of these prior models; it simultaneously accounts for bothspeed. We did not find evidence for segmentation, yet prediction
the bell-shaped speed profiles of straight reaching move-error increased with movement duration, suggesting a continuous
ments and the inverse relationship between curvature andfluctuation of the ‘‘tempo’’ of discrete movements. The implica-
speed of curved hand movements. In a series of experiments,tions of these findings for motor planning and on-line control are

discussed. we demonstrate that the new model provides an accurate
description of a number of discrete arm movements with
arbitrary hand paths in both two and three dimensions. Fi-

I N T R O D U C T I O N nally, we discuss the implications of our observations for
the generation of complex hand trajectories.

The majority of human arm movements produced in ev-
eryday life are underconstrained: the desired effect on the

M O D E L S O F T R A J E C T O R Y F O R M A T I O Nexternal environment can be achieved in a large number of
ways, thus the exact movement executed at a particular time In this section, we distinguish three groups of models
is not completely determined by the motor task. We effort- (Fig. 1) based on the levels of biological processing they
lessly plan and execute underconstrained arm movements parallel. Our classification emphasizes the implications of
that achieve the desired effect and are at the same time different models for motor control rather than mathematical
smooth and graceful. Furthermore, we can produce appro- similarities among them.
priate movements in tasks that involve almost arbitrary com-
binations of constraints: spatial locations that the hand Complete models of trajectory formation
should pass through, objects that have to be avoided, forces
that have to be exerted with very accurate timing, require- The most ambitious group of models predicts the outcome
ments on the speed at certain points along the path, desired of the processing in the entire CNS in a restricted set of tasks.

Such models provide a complete ‘‘recipe’’ for trajectorydurations of the entire movement or smaller segments of it,
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FIG. 1. Schematic representation of our
model classification scheme. Grey boxes
correspond to groups of models, – – – ,
predictions these models make. , the
actual flow of information in the CNS (the
internals of the ‘‘CNS’’ box are of course
hypothetical) . Observed trajectory can be
further separated into a priori independent
features, in this case speed and path.

generation, starting with the externally specified task de- cause this model is purely kinematic, it predicts invariance
with respect to translation, rotation, and spatial or temporalscription and leading to an observable trajectory. It would

be ideal if one could construct a model of this kind that scaling. It has been shown that planar rotation of the desired
movement can significantly affect the hand path in via-pointagrees closely with a wide range of experimental data; unfor-

tunately, this has proven to be difficult. (Uno et al. 1989), as well as obstacle avoidance (Sabes
and Jordan 1997) tasks. We show more examples of thisA general method for constructing such models is pro-

vided by optimization theory: one defines a ‘‘cost’’ func- phenomenon later.
tional and attempts to show that the movements typically
produced in a given task are the ones that minimize cost, Models of intrinsic regularities
subject to the constraints imposed by the task. A number of
models based on optimization theory have been considered On the other extreme, we have models that do not explic-

itly assume anything about the motor task or the flow of(Flash and Hogan 1985; Nelson 1983; Uno et al. 1989; Wann
et al. 1988), the cost being energy, force, impulse, peak information processing in the CNS. They simply quantify

intrinsic relationships between features of the observed tra-speed, peak acceleration, duration, or torque change. The
model that seems to account for the largest body of data, jectories that are not related a priori ( in this case, between

the path and speed profile) . Note that a causal relationshipwhile at the same time being attractively simple, is the ‘‘min-
imum-jerk’’ model (Flash and Hogan 1985). The cost is between the two features is not necessarily implied: such

models are consistent with any proposed mechanism of tra-defined as the squared jerk (3rd derivative of hand position
over time), integrated over the entire movement; it is mini- jectory formation that produces the observed relationship

either through an explicit computation or as an emergentmized over all trajectories that have the same initial point,
final point, and possibly pass through a small set of interme- property of some other, possibly unrelated process.

It has been proposed (Lacquaniti et al. 1983) that for adiate (via) points specified in the task itself. In reaching
tasks, the minimum-jerk model predicts straight paths and large class of movements with curved hand paths, the speed

n( t) is related to the curvature k( t) through a power law:bell-shaped speed profiles that match experimental observa-
tions rather well (Flash and Hogan 1985). There are cases, n( t) Å gk( t)01/3 , where g is a constant gain factor. The

validity of this law is typically demonstrated through a corre-however, where subjects systematically produce nonstraight
reaching movements (Atkeson and Holerbach 1985). Be- lation between n and k01/3 or between log(n) and log(k) .
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Although the resulting correlation coefficients are rather high profiles) that can be scaled and positioned as to form a
desired trajectory. The parameters of the model ( timing,(Viviani and Cenzato 1985), it is not immediately obvious

from such analyses how much of the details of the speed scale, and position of each segment) initially were extracted
from the experimental data and then adjusted iteratively untilprofiles are captured, apart from the general trend that speed

decreases with increasing curvature. It has been argued, for a good fit to the observed trajectories was obtained.
Viviani and Flash (1995) proposed a modification of theexample, that the actual speed profiles can be skewed relative

to the power law prediction, and the correlation between minimum-jerk model, which assumes that the movement is
represented internally as a set of salient points and the veloc-log(n) and log(k) still remains high (Wann et al. 1988).

The analysis that could resolve this issue, which thus far ity (speed direction and magnitude) at these points. The
authors extracted the velocities from the observed hand tra-has been absent from the literature, is a direct comparison

superimposing the actual and predicted speed profiles. In its jectories and used standard optimization methods to solve
for the resulting minimum-jerk path and speed profile (theoriginal form the power law has two limitations: first, it does

not apply to paths that have inflection points or straight solution is a concatenation of 5th order polynomial splines) .
This model also has been studied by Yalov (1991), whosegments (i.e. for k Å 0 the predicted speed is infinite) , and

it is inaccurate at low curvature; and second, the fact that found that overall it is more accurate than versions of the
minimum-jerk model using only the position (and tangentn( t) decreases toward 0 at the end points of discrete move-

ments cannot be captured. To fix the first problem, Viviani to the path) of a via-point.
Another possible model in this category is ‘‘post hoc seg-and Schneider (1991) suggested a modified power law:

n( t) Å g[k( t) / e]b where e depends on the average speed mentation’’: start with any model that predicts a local speed
profile given a portion of the path, define a segmentationand b is a free parameter estimated from the actual data.

Despite these limitations, the power law seems to provide rule that somehow selects segment boundaries given the
complete path, and apply the model to each segment. Be-a surprisingly good description of the speed profiles of com-

plex movements, which has motivated recent attempts to cause the local speed profiles generated by this procedure
will have to be scaled appropriately, one has to measure thefind an explanation of this regularity. Within the framework

of equilibrium-point control (Bizzi et al. 1992), Gribble and actual time it takes the subject to traverse each segment of
the path and use those times in fitting the model.Ostry (1996) have shown that if the equilibrium point is

moved along an ellipse with a constant speed, the hand traces Because the hypothetical internal representation is not di-
rectly observable and cannot be derived from the task de-a similar ellipse obeying the power law. A potential problem

with this explanation is that the validity of the equilibrium- scription (otherwise the model would belong to the 1st cate-
gory), it has to be inferred from the observed trajectorypoint hypothesis itself recently has been questioned in stud-

ies arguing that the required stiffness is much larger than itself. Thus the above models are validated by extracting
their parameters from the experimental data and demonstra-experimental measurements under dynamic conditions (Ben-

nett et al. 1992; Gomi and Kawato 1996). Another proposed ting that these parameters are sufficient to reconstruct the
same data. Strictly speaking, this procedure shows that theexplanation (Pollick and Sapiro 1996) is the mathematically

interesting fact that a point moving according to the power family of trajectories produced by the model contains the
family of human arm trajectories; in itself it is not a prooflaw maintains constant ‘‘affine velocity’’; it remains to be

clarified how affine velocity is related to arm movements that the proposed internal representation actually is being
used by the motor system. To support the latter claim andand why it might be advantageous to keep it constant. An

alternative suggestion, which we will consider in the present make detailed comparisons to models in the other two cate-
gories, we need a way of quantifying how much of thepaper, is that maximally smooth (i.e. minimum jerk) move-

ments have speed profiles described by the power law (Wann information present in the data is being extracted in fitting
the parameters of the model. This may appear to be a prob-et al. 1988). Viviani and Flash (1995) tested this empirically

by applying both the 2/3 power law and their modified lem with the power law as well because it predicts a speed
profile given a path extracted from the observed trajectory.minimum-jerk model (see further) to the same experimental

data. These authors concluded that the speed-curvature rela- The crucial difference is that the path of a trajectory is not
a priori related to the speed profile, whereas in the precedingtionship described by the power law is not implicit in the

minimum-jerk hypothesis. examples, the parameters extracted from the observed trajec-
tory contain information about all aspects of the trajectory
(i.e., both spatial and temporal information).Partial models of trajectory formation

Finally, a number of intermediate models have been pro- C O N S T R A I N E D M I N I M U M - J E R K M O D E L
posed, attempting to bridge the gap between providing a
complete recipe for trajectory formation and simply quanti- The main advantage of the power law is that in principle

it can be applied to almost any movement: given an arbitraryfying intrinsic regularities of observed trajectories. Such
models assume that the motor task is transformed (via some path it always predicts a speed profile. The problems with

it are related to the particular formula used to predict speedunspecified planning process) into a compact spatio-tempo-
ral representation, involving a small number of parameters from path. In contrast, all known problems with the original

minimum-jerk model are in the path prediction: it can failthat are sufficient to generate the observed trajectory.
Morasso and Mussa-Ivaldi (1982) suggested that complex to predict the hand path given the configuration of via-points,

but there are no known cases where the path was predictedhand trajectories are composed of partially overlapping lin-
ear ‘‘strokes’’ (modeled as B splines with bell-shaped speed accurately while the speed profile was not.
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r * Å t *, r 9 Å kn , r- Å k*n / k(tb 0 kt)Our model combines the appealing features of the two
models: it preserves and extends the generality of the power We can now substitute in Eq. 2
law while replacing the particular relationship between cur-

L Å \n(k*sh 3 / 3ksh sF ) / t(sf 0 k 2sh 3) / b(sh 3kt) \ 2 (3)vature and speed with a smoothness constraint. We propose
that for an observed path of the hand in space, the speed and because the tangent, normal, and binormal are orthogo-
profile along that path will be the one that minimizes jerk nal
( in general ‘‘smoothness’’ is synonymous to ‘‘having small

L Å (k*s
h

3 / 3ks
h
sF )2 / (s

f
0 k 2s

h

3) 2 / (s
h

3kt)2 (4)high-order derivatives’’; the measure of smoothness we use
is one of many possibilities) . This constrained principle, like

Relation to the power lawthe power law, quantifies an intrinsic relationship between
the path and speed of the observed trajectory rather than

Now that we have an explicit relation between curvaturesuggesting a concrete mechanism for trajectory formation
and jerk, we analyze the constrained minimum-jerk principle(i.e., we do not suggest that speed is being computed explic-
to find how it relates to the power law. We define a functionitly as a function of hand path) . Note that we use the path
[dependent on s( t)] that is equal to the term multiplyingobserved on a particular trial to predict the speed profile on
the torsion t in Eq. 4that same trial, which is a natural way to model the signifi-

As Å sh 3k(s)cant variability in speed profiles in a block of identical trials
(see further) . In contrast, the original minimum-jerk model

Taking derivatives with respect to time on both sides, wepredicts a single optimal movement for a given configuration
obtainof via-points and thus can only be applied to average data.

k*(s)s
h

4 / 3s
h

2sF k(s) Å A *s s
h

Formal definition k*(s)s
h

3 / 3s
h
sF k(s) Å A *s

Let r(s) Å [x(s) , y(s) , z(s)] be a 3D curve describing Note that the term on the left is exactly the term multiplying
the path of the hand during a particular trial, where s is the the normal vector in Eq. 3. We now substitute in Eq. 3
curvilinear coordinate (distance along the path) , and the

L Å \n(A *s ) / t(sf 0 Ask) / b(Ast) \ 2

tangential speed is s
g

( t) (s
g

is a time derivative, r * is the
derivative with respect to s, and boldface signifies vector L Å A* 2

s / (s
f
0 Ask)2 / A 2

s t
2 (5)

quantities) . Our model assumes that the temporal profile of
From the definition of As, we havethe movement is the scalar function s( t) that minimizes

s
h
( t) Å A 1/3

s k01/3

J Å *
T

0
ZZd3

dt 3
r[s( t)]ZZ2

dt (1)

The power law states that A 1/3
s Å const or A *s Å 0. Thus the

This differs from the original formulation of the minimum- power law is equivalent to setting the normal component of
jerk hypothesis in that here the path r is given, and we are the instantaneous jerk to 0, and the binormal component
only minimizing over the space of speed profiles. Flash and proportional to t, everywhere along the movement.
Hogan (1985) computed both the path and the speed given For two-dimensional (2D) curves r( t) Å [x( t) , y( t)] ,
a set of via points. Let us denote the term inside the integral this can be shown more directly. The power law n( t) Å
by L const.k( t)01/3 in 2D can be written as

L Å ZZd3

dt 3
r(s)ZZ2

Å ZZd2

dt 2
r *(s)s

h ZZ2

Å ZZd
dt

(r 9(s)s
h

2 / r *(s)sF ZZ2

(x * 2 / y * 2) 1/2 Å const S
√
(x *y 9 0 y *x 9)2

(x * 2 / y * 2) 3/2 D01/3

L Å \r-(s)sh 3 / 3r 9(s)sh sF / r *(s)sf \ 2 (2) x *y 9 0 y *x 9 Å const

This minimization problem is invariant to rotations and Taking derivatives, and canceling terms, we get
translations of the path r. Our goal is to transform the above

x* /y * Å x- /y- , r * \r-expression into a form that makes that invariance explicit.
We know from differential geometry (e.g., Prakash 1981) The jerk vector points along the tangent, which is orthogonal
that a 3D curve can be defined uniquely, up to translations to the normal; therefore the jerk along the normal is zero.
and rotations, by its curvature k(s) and its torsion t(s) . It Before analyzing experimental data, we can ask whether
is not possible to simply express r in terms of k and t and the power law and the constrained minimum-jerk model pre-
substitute in Eq. 2. However, the derivatives of r can be dict similar speed profiles for discrete movements along arbi-
expressed as functions of the curvature and torsion. The path trary synthetic paths. In Fig. 2, we have plotted three syn-
r satisfies Frenet’s formulas thetic paths, for which we have computed the speed profiles

predicted by our model ( ) and the power law (– – –).t * Å kn , n * Å tb 0 kt , b * Å 0tn
Also shown is the magnitude and direction of the instanta-
neous jerk vector at several positions along the path. Notewhere t(s) is the unit tangent, n(s) is the unit normal, and

b(s) is the unit binormal vector to the curve r(s) at point that in most cases the normal jerk is close to zero, and the
two speed profiles are rather similar ( the deviation near thes. Using the fact that the derivative of the path with respect

to the curvilinear coordinate s is the unit tangent vector, we end points is due to the fact that the power law cannot predict
movements that start and stop). There are differences, how-obtain
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FIG. 2. A–C : examples of the con-
strained minimum-jerk ( ) and power
law ( – – – ) speed profile predictions for the
synthetic paths on the left. Jerk vector is plot-
ted at several points along the path (for the
minimum-jerk speed profile) . D : tangential
and normal jerk components for the middle
portion of example C. Two small perturba-
tions are applied to the minimum-jerk speed
profile ( ) and the corresponding effects
on the jerk components are shown.

ever: in example B where the curvature is almost constant, optimal speed profile increase both terms, implying that in
this case the optimal speed profile simultaneously minimizesthe power law predicts a speed profile that is flatter than the
both terms and not just their sum (this happens around pointsminimum-jerk prediction. For most of the paths we have
of high curvature) . In summary, the constrained minimum-studied, the two predictions are similar in the sense that they
jerk model and the power law predict similar speed profilesgo up and down together, but clearly distinguishable (i.e.,
for a given path. There seem to exist a family of paths forexample A is not typical) .
which the two are exactly equivalent, and identifying thatWhy is it that the power law, which predicts instantaneous
family may provide further insights, but this is outside thespeed only using the local curvature, comes close to solving
scope of the present paper.the global minimization problem (Eq. 1)? One intuitive an-

swer is the following: because the total jerk is a sum of two
(in 3D of 3) nonnegative terms and the power law minimizes E X P E R I M E N T 1

one of them (normal jerk is set to 0), it is an efficient
Methodsapproximation to the solution of Eq. 1 (suggesting that in

3D the difference between the 2 speed predictions will be To test our model and compare it with the power law, we
larger) . It seems, however, that this is not always the com- studied four tasks in which a path was specified and subjects
plete answer. In Fig. 2D we have plotted the tangential and were asked to execute an arm movement along that path.
normal components of the jerk over the middle portion of We used discrete movements of short duration and paths of

varying degree of complexity. To avoid drawing conclusionsexample C. We can see that small perturbations around the
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from an isolated movement, we used several paths in each viewed in a semitransparent mirror. The system was cali-
brated so that the projected images appeared to be on thetask. The same eight right-handed subjects participated in

all four tasks. Short breaks were given between tasks. The table (see Wolpert et al. 1995 for details) . Subjects held a
small cursor ( tracked by the infrared cameras) , which hadentire experiment lasted Ç45 min. End-point position was

recorded at 100 Hz with an Optotrak 3020 infrared system. a light-emitting diode attached to it that provided end point
visual feedback during the movement. The room was darkTASK 1—HAND/FINGER MOVEMENTS. Subjects stood in front
so subjects could not see their arm. The same eight templatesof a horizontal table to which we had taped a white sheet
from task 1, scaled up by a factor of 8, were projected oneof paper (letter format) with the templates shown in Fig. 3
at a time. The task was again to position the cursor at theprinted on it. Subjects held a pointer in their right hand; the
starting point of the template, wait for a beep confirming atask was to position the pointer near the circle on the current
correct initial position, and then trace the path. Each pathtemplate, wait to hear a beep signaling that the tip of the
was traced 10 times. After each trial, we displayed a posi-pen was in the starting area, and then trace the specified
tional error score, which was the maximum deviation (inpath. After 10 trials, a beep of different pitch signaled the
millimeters) between the desired and actual paths. Again,subject to move to the next template. No instructions were
subjects were allowed to make movements of any speed.given regarding the duration or speed of the movement. We
This task involved predominantly shoulder and elbow move-observed that subjects used predominantly hand and finger
ments.movements in this task.
TASK 3—VIA POINTS. We used the same setup as in task 2.TASK 2—2D ARM MOVEMENTS. Subjects sat on an adjustable
The display contained a start point, an end point, and fourchair and made arm movements on a table positioned slightly
intermediate points, numbered 1–4. The subject was asked,below shoulder height so that the movements (made by slid-
after moving to the start point and hearing a confirmationing the arm on the table) occurred in a horizontal plane at
beep, to make a movement that passed through the interme-shoulder height. We used a VGA projector to display com-
diate points in the specified order (without stopping), andputer generated images on a tilted screen, which the subject
finished at the end point. The configurations we used are
shown in Fig. 4. There were a total of 6 configurations, every
other configuration being a 907 rotation of the preceding
one. Subjects executed 10 trials in each block. As before,
movement speed was not specified. Note that the configura-
tions used do not correspond to the continuous paths from
the previous two tasks.

TASK 4—3D ARM MOVEMENTS. Subjects stood in front of the
table, holding the cursor in their right hand and a 3D wire-
frame model in their left hand. The models were Ç10 1 10 1
10 cm and represented smooth 3D curves. The task was to
first study the model and then try to make a movement with
the right hand that had the same shape (not necessarily the
same size) . The starting point on the model was marked.
There was no specified starting position for the arm because
the movement could not be superimposed on the wireframe
model. At the beginning of each trial, subjects had to stop
moving the cursor and wait for a beep. The experimenter
waited for the subject to reposition and then manually acti-
vated a procedure that checked for zero speed before move-
ment onset. Each wireframe model was used in 10 trials,
there were a total of three models. Movement speed and
duration were not specified.

Data analysis

The data from each trial for each subject and task were
analyzed separately, i.e., no averaging over trials was per-
formed. The first step was to smooth the raw data. We used
cubic spline smoothing (De Boor 1978) applied to x( t) ,
y( t) , and z( t) . The parameter l (which determines the
amount of smoothing) was set adaptively for each trial, so
that the maximum deviation between any smoothed sample
point and the corresponding raw data point was within a pre
specified radius. That radius was set to 0.002 of the extent
of the path—the high accuracy of the Optotrak system obvi-FIG. 3. Templates used in tasks 1 and 2, drawn to scale. s, starting

point on each template. Order of presentation is row-1st. ated the need for substantial smoothing. Once we obtained
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Maximum deviation MAX(n1, n2) Å max [Én1(s) 0 n2(s)É]

Mean absolute deviation MAD(n1, n2) Å »Én1(s) 0 n2(s)É…

Standard deviation STD(n1, n2) Å
√
»[n1(s) 0 n2(s)]2

…

Unexplained variance VAR(n1, n2) Å 1 0 r[n1(s) , n2(s)]2

The first three quantities indicate deviations between in-
stantaneous speed predictions in units relative to the average
speed. Thus they are sensitive to the amount of fluctuations
in the observed speed profiles (i.e., relatively flat speed pro-
files will be easier to fit according to these measures) . If
the speed profiles are not scaled to have unit average speed,
then these measures will be sensitive to the average speed.
The last measure corresponds to the percent variance (fluc-
tuations around the mean) in the observed speed profile not
explained by the predicted speed profile and is affected by
difference in shapes rather than scaling factors.

For each model, we computed the predictions over the
entire movement and over the middle 60% of the move-
ment ( i.e., starting at 20% and ending at 80% along the
path) . The latter was done to assess the accuracy of the
power law away from the end points, where it is likely to
be inaccurate because it doesn’t have a mechanism for
enforcing 0 speed at the initial and final points of discrete
movements. We examined a number of speed profiles to
ensure that the 20% of the movement eliminated at each
end was enough to cover the parts of the speed profile
that seemed affected by initial acceleration and final decel-
eration.

The prediction for the original power law was obtained
directly from the equation n(s ) Å gk(s )01 /3 . For paths
with inflection points, we added a small positive constant
to the curvature, which was held constant for all trials.
Thus the original power law has no free parameters: it
takes the path, and the duration of the movement, and
predicts a speed profile. The modified power law n(s ) Å
g[k(s ) / e] b has two free parameters ( e, b ) . We opti-FIG. 4. Via point configurations used in task 3, drawn to scale. s,

starting point; *, end point. Every other configuration (right) is a 907 mized them (with a nonlinear simplex method) separately
rotation of the preceding one. for each trial and each measure of deviation defined above.

Although in the original formulation e depended on aver-
age speed, we estimated it from the data to obtain thethe cubic spline representation of the data for each trial, all
most accurate fit the modified power law could provide.subsequent steps (i.e., extracting speed and curvature) were
The possibility of movement segmentation (Viviani andapplied directly, without any further filtering.
Cenzato 1985) is addressed later.We then computed a speed profile prediction from the origi-

The prediction of the constrained minimum-jerk modelnal power law, the modified power law, and the constrained
was computed using nonlinear optimization methods forminimum-jerk method (see further). To compute the differ-
variational problems (see APPENDIX ). In its present form,ence between each prediction and the actual speed profile, we
the minimization requires the speed and acceleration atexpressed all speed profiles as a function of are length s and
the end points ( in principle this could be avoided, byscaled them so that the average speed was one and the path
minimizing over those parameters as well ) . For a discretelengths were equal. Scaling of path lengths was necessary
movement, both the speed and acceleration at the endbecause subjects did not follow the specified templates ex-
points are zero; because this is known a priori, and notactly, thus the paths on different trials had slightly different
extracted from the experimental data, the model has nolength. Alignment along s does not affect the power law pre-
free parameters when applied to the entire movement. Todictions, which are local; it is necessary for our model because
apply the model to the middle 60% of the movement, weit is a global method and prediction errors early in the move-
used the actual end-point speed and acceleration measuredment accumulate and cause misalignment towards the end if
experimentally. Note, however, that we are predictingspeed is expressed as a function of time.
rather complex speed profiles, thus the two end points ofWe defined four measures of deviation between two speed
a submovement contain relatively very little information.profiles n1(s) and n2(s) that are already scaled to have unit
In contrast, the modified power law uses the entire speedaverage speed; õrú signifies averaging over s , r( . , .) is

a correlation coefficient. profile to extract the values of its free parameters.
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Results and discussion and the rotated configuration of via-points. The minimum-
jerk path ( ) remained invariant to rotation. Note that

In the first two tasks, for which the complete path was the deviations are not just isolated trials but stable strategies
specified and the movement was superimposed on it, subjects used by the subjects; also, the actual paths depended on the
could follow the specified paths accurately. In the 3D task, orientation of the template, contrary to the model prediction.
the majority of subjects could not replicate the specified Although some of these deviations may be the result of arm
shapes well and did not converge to a very stable movement dynamics affecting the path, the large differences (e.g., Fig.
strategy in 10 trials. After the experiment, subjects reported 5A) between the paths adopted by different subjects for the
that they were aware of their poor performance but did not same via-point configuration suggest that multiple via-point
know how to perform the task better. Although this is an tasks may have a significant cognitive component, i.e., sub-
important issue to consider, both the power law and the jects have to study the configuration and decide what general
constrained minimum-jerk model predict a speed profile path they want to take. In fact, we observed that on the initial
given the actual, not the desired path of the hand, so we still trials in a new configuration, subjects sometimes stopped and
can apply them and assess the accuracy of their predictions. corrected their movement, which is unlikely to happen if
It also was observed that the torsion t varied rather smoothly they already had planned a smooth path that passes through
instead of being nonzero only at a discrete set of points as the via-points in the specified order. Whatever the reason
suggested by Morasso (1983) and Soechting and Terzuolo for these discrepancies, we conclude that the original mini-
(1987). Deviations from piecewise-planar drawing in 3D mum-jerk model cannot account for the significant between
also have been observed by Gusis (1995); we did not ana- subject variability on multiple via-point tasks.
lyze this discrepancy further because it is not the focus of We now turn to a quantitative comparison of our model
the present study. and the power law. Figure 6 shows summary error statistics,

In the via-point task, we specified four intermediate points, for all tasks and all error measures, over the complete ( left)
and subjects were free to choose any path that passed through and middle 60% of the movement (right) . For each subject,
them in the correct order. Our constrained minimum-jerk we computed the median prediction error in each block of
method cannot make a prediction about the actual path sub- 10 trials and then averaged over all templates in a given task.
jects choose in this task, but the original model (Flash and The constrained minimum-jerk model performed uniformly
Hogan 1985) predicts that the path will be the one that better than the modified power law, which in turn was uni-
minimizes jerk. While this is often the case, we found numer- formly better than the original power law (the latter obvi-
ous systematic deviations. Figure 5 shows data from six ously has to be the case) . Analysis of variance showed that
different subjects; each pair of plots represents the last 5 of in the majority of the comparisons (the 3D task/complete

movements on the MAD and STD measures being the excep-the 10 trials (rrr) that the subject made, on the original

FIG. 5. Examples of paths traced in task
3. Each pair of plots is data from 1 subject
(6 different subjects shown). , mini-
mum-jerk path (which was not shown to the
subjects) ; rrr, actual paths on the last 5
trials of the 10 trial block. ●, end point.
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FIG. 6. Summary error statistics with
standard error bars for the 3 models, com-
puted over the entire movement ( left) and
the middle 60% (right) for all tasks and error
measures. For each subject, the median error
score in each block of 10 trials was com-
puted, and the results were averaged over all
templates in the task.

tion) , the differences are significant at the P õ 0.05 level. difficult tasks the performance of the model changes with
experience, but there was simply very little learning in ourFurthermore, this ordering holds for every subject we tested.

The difference is equally large over the complete movement experiments. Indeed the spatial error did not change signifi-
cantly over trials.and the middle 60%, therefore it is not explained by the

discrepant predictions of the power law at the end points of There are some differences between the four error measures
we defined. The maximum deviation penalizes the originaldiscrete movements.

To analyze the dependence of the model performance on power law on templates with inflection points because the
predicted speed at 0 curvature is very large (it would be infinitethe template being traced, we averaged the data over subjects

and compared the three prediction methods for each tem- if we didn’t add a small constant to the curvature). The mean
absolute deviation and the standard deviation are very similarplate. Figure 7 (arm task—complete movements) shows

that the ordering holds for all templates we tested and not up to a scaling factor. The unexplained variance seems to be
the most sensitive measure—it is the only one that detectsjust the ones that include inflection points. This was true for

all tasks. It is interesting that the constrained minimum-jerk significant differences in the behavior of our model on different
tasks and templates. Thus it will be the measure used in themodel shows a rather uniform level of performance, both

over different templates and over different tasks. We ex- remaining part of the paper, where we study how the model
depends on the details of the task. All subsequent analysespected that there might be an effect of trial number, resulting

from learning the pattern in the course of the 10 trials, but also have been performed with the mean absolute deviation
measure, yielding very similar results.there was no evidence of that. It is still possible that in more
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FIG. 7. Prediction errors for all error
measures and all templates in task 2—com-
plete movements, averaged over subjects.

tion for the average trial (which would be less meaningfulAnalysis of speed profiles
because both prediction methods are nonlinear).

Thus far we have considered statistics based on the aver- It is evident that the modified power law prediction has
age prediction errors. In this section, we perform a more significant systematic error, which is not restricted to the end
detailed comparison of the actual speed profiles. Figure 8 points of the movements. The flat speed profiles it predicts in
shows speed profiles of all eight subjects tracing templates template 2 correspond to a region of constant curvature (as
1, 2, 3, and 5 from Fig. 3. These data are from the next was noted in Fig. 2) . We conclude that the power law cap-
experiment, where a short movement time (1.5 s) was en- tures very well the maxima and minima of the actual speed
forced—these are the conditions under which both our profiles but otherwise it is not a satisfactory model of the
model and the modified power law are most accurate (see details present in the experimental data. Although some of
further) . We have scaled the last five speed profiles (com- the errors are due to skewing (as Wann et al. 1988 argued),
plete movements) in each block for each subject and aver- the predominant error is in the predicted values at the speed
aged them; the solid line shows the actual speed profiles; the extrema.
dashed line shows the constrained minimum-jerk predictions; The prediction of the constrained minimum-jerk method
and the dotted line shows the modified power law predictions. is much more accurate, and most of the remaining error
Because scaling does not align the speed profiles perfectly, seems to be due to between-subject variability. Still, there
averaging is not necessarily a meaningful operation, but it is some systematic error left. The first speed maximum on
helps identify systematic prediction errors. Note that we show template 1, and the second maximum on template 3 were

both slightly underestimated for all subjects. Overall, theaverages over the predictions for individual trials not a predic-
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FIG. 8. Average speed profiles for all sub-
jects, small 1.5-s movement in experiment 2
(4 of the 5 templates shown, numbers corre-
spond to template positions in Fig. 3) . Solid
line, actual speed profile; dashed line, con-
strained minimum-jerk prediction; dotted line,
power law. All speed profiles were scaled be-
fore averaging.

predictions of the model are rather close to the experimen- in Fig. 8) —although the modified power law adds a positive
constant to the curvature (optimized for the particular trial) ,tally observed speed profiles, and in some cases (last 2 sub-

jects in template 2, for example) it is hard to imagine that this mechanism is apparently not sufficient to deal with in-
flection points. We might expect that if the paths includedany model would be more accurate.

Next we examine data from individual trials because the straight segments, the performance of the modified power
law would be even worse. The inflection points are not theaveraging procedure is likely to obscure some details. For

templates 1, 2, 3, 5, and 8, we pooled all trials together and only problem, however, note the deviations in the Fig. 9,
top right , which correspond to a path with strictly positivefound the one for which both error scores were as close as
curvature.possible to the corresponding medians. The actual ( ) ,

modified power law (rrr) , and constrained minimum-jerk
( – – – ) speed profiles for the selected trials (middle 60%) Tempo fluctuations and segmentation
are shown in Fig. 9. We can see that there are large errors
in the power law prediction that are not related to end point Both the constrained minimum-jerk model and the modi-

fied power law assume that the tempo, or gain, or ‘‘psycho-acceleration (deceleration). Note the unnatural sharp peaks,
corresponding to inflection points ( they were smoothed out logical speed’’ of the movement is held constant, and the
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FIG. 9. Typical examples of single trial speed
profiles ( ) , constrained minimum-jerk pre-
diction ( – – – ), and power law (rrr) on single
trials— experiment 2, middle 60% of the move-
ment.

variation in speed is only related to the path. Clearly that ject tracing template 1. We then applied the segmented version
of the modified power law to the data from all subjects ondoesn’t have to be the case; e.g., we can ask the subjects to

speed up toward the end of the movement. It is conceivable the arm task—subset of templates used in experiment 2 (see
further). Each movement was segmented at the speed maximathat even in the absence of explicit instructions to control

speed, the tempo of the movement is variable. For each (corresponding to curvature minima). The portions between
the end points and the closest segment boundary were elimi-model, we define the gain (or tempo) as the ratio between

the actual and predicted speed profiles at each point in time nated. We applied the modified power law with segmentation
with either fixed a Å 0.25 (which was found to be the optimal( the definition is model-dependent by necessity) . Viviani

and Cenzato (1985) suggested that the gain is a piecewise- fixed value) or a being optimized for each individual trial of
each subject (making the comparison to our model somewhatconstant function of time: in each segment it is proportional

to a power function of the corresponding path length: g Å unfair). Figure 10 (bottom) shows the speed prediction error,
KPa (a here corresponds to the parameter g defined by relative to the prediction error of the nonsegmented modified
Viviani and Cenzato) . power law, for the two different segmentation methods. The

improvement in all cases is much smaller compared with theWe computed the gain factor for a number of discrete
movements for both models and did not find any case in improvement of the (nonsegmented) constrained minimum-

jerk method over the modified power law. This segmentationwhich it was convincingly piece-wise constant. Figure 10
( top) shows a typical plot five consecutive trials for one sub- method also was applied at speed minima (corresponding to
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FIG. 10. Top : gain fluctuations for the
modified power law and our model (consec-
utive movements of 1 subject tracing tem-
plate 1) . Vertical lines correspond to points
of maximum and minimum speed. Bottom :
for each segmentation method (fixed a Å
0.25 or a optimized separately for each trial)
and our model, we show the prediction error
relative to the prediction error of the unseg-
mented modified power law applied over the
same portion of the path as the 1 selected
by the segmentation scheme.

curvature maxima—as in the model of Morasso and Mussa- speed profiles (a weaker correlation was observed for the
modified power law) . Figure 11 shows a scatter plot ofIvaldi 1983) yielding very similar results. Note that the opti-

mal fixed value of a Å 0.25 is significantly smaller than the mean movement duration (over all templates) and mean
prediction error for our model in all tasks. There are severalvalue of a Å 0.6 observed by Viviani and Cenzato (1985).

Because a Å 0 corresponds to a lack of segmentation, this is possible interpretations of this result. It may be that the
tempo fluctuations accumulate with movement time, thusanother indication that segmentation is simply not present in

our data, and the tempo fluctuations are continuous and at movements that take longer have less predictable speed
profiles. It is also possible that at high average speed, move-present unpredictable. The fluctuations in Fig. 10 are system-

atic because the trials are from the same subject, but they ments are for some reason more regular. Because we did
not vary the size of the templates systematically, durationbecome unpredictable across subjects (as can be inferred from

Fig. 8). was correlated with speed [Wann et al. (1988) also ob-
served that the power law holds better for faster movementsAlthough the details of the gain fluctuations cannot be

explained, their magnitude (directly related to prediction and attributed the effect to speed instead of duration] . An-
other possibility is that the effect is a spurious between-error) could vary systematically with some other variable.

We already saw that it is not very sensitive to the task or subject correlation, i.e., some subjects naturally produce
more predictable speed profiles, and the same subjects tendthe template being traced. A comparison of prediction error

over subjects, however, revealed a strong correlation be- to make faster movements when duration is not specified.
The next experiment was designed to distinguish betweentween how rapidly subjects moved on the average and how

well the constrained minimum-jerk model predicted their these possibilities.
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FIG. 11. Scatterplot of movement dura-
tion vs. prediction error for the constrained
minimum-jerk model, all tasks. Each data
point represents 1 subject, the results were
averaged over all trials the subject made in
the corresponding task.

E X P E R I M E N T 2 (1, 2, 3, 5, and 8 in Fig. 3) , each presented in three blocks
of 10 identical trials. In block 1, the template was large (same

To eliminate the possibility that between-subject variabil- size as in experiment 1) , and desired movement duration was
ity can account for this correlation, the experiment had a 3 s. In block 2, the template was also large, and durationwithin-subject design. We now specified the duration of the

was 1.5 s. In block 3, the template was scaled down by amovement and also varied the spatial scale, which allowed
factor of 2, and desired duration was 1.5 s. Thus blocks 1us to distinguish between the effects of movement duration
and 2 were matched for size, blocks 2 and 3 for movementand average speed (and size) . A new group of eight subjects
duration, and blocks 1 and 3 for average speed (assumingwas recruited for this experiment.
of course that subjects produced movements of the specified
durations, which they did) —see Fig. 12, top. At the begin-

Methods ning of each trial, the subject positioned the end-point in the
starting area and waited for the start circle to disappear,The setup was the same as in task 2—subjects were asked
confirming a correct initial position. The computer soundedto make arm movements on a horizontal table by tracing a
a beep when the subject started moving and a second beepcontinuous curve projected on the table. To reduce experi-

mental time, we used an arbitrary subset of five templates when the subject stopped moving. After each trial, the actual

J796-7/ 9k2b$$au17 07-14-98 08:06:29 neupa LP-Neurophys



E. TODOROV AND M. I. JORDAN710

FIG. 12. Top : schematic representation
of the 3 conditions in the experiment. Bot-
tom : summary error statistics for experi-
ment 2, complete movements ( left) and
middle 60% (right) . Results are computed
in the same way as in Fig. 6. Last prediction
method is the average speed profile over a
block of 10 consecutive trials used to pre-
dict each individual trial.

duration was shown (in units of 0.01 s) . The desired duration Analysis of variance revealed significant differences for the
constrained minimum-jerk predictions, and the modifiedwas printed on the screen throughout the experiment. Sub-

jects were told what the numbers meant and were instructed power law applied to the middle 60% of the movements;
the prediction error for the large 3-s movement was largerto trace the paths for the specified durations.
than the error for both the large 1.5-s and the small 1.5-s
movements (P õ 0.01). This result indicates that the accu-Results and discussion
racy of the prediction depends on the duration not the aver-

The data were analyzed in exactly the same way as in age speed or spatial scale of the movement. We also can
experiment 1. All subjects traced the paths accurately and conclude that the correlation in experiment 1 was not entirely
could adjust the duration of their movements in the first due to systematic between-subject variability because the
two to three trials in each block. Prediction error statistics, second experiment yielded the result within subjects. The
averaged over templates, are shown in Fig. 12. Again, we higher accuracy of our model when applied to the middle
found that the constrained minimum-jerk method predicts 60% instead of the complete movement may be due to the
speed profiles closer to the ones observed experimentally, fact that the model is being applied to a movement of shorter
compared to both versions of the power law. In this case, duration. However, this also may be caused by using the
the constrained minimum-jerk prediction was about three experimentally observed values of speed and acceleration at
times better than the modified power law and four times the end points of the middle segment.
better than the original power law. The difference is still It is possible that the effect of movement duration on
present when speed profiles are computed for the middle model accuracy is due to the fact that observed speed profiles
60% of the movements. in short-duration movements are somehow different/sim-

It can be seen in Fig. 12 that the prediction errors for the pler, and any model would yield better results. To assess this
large fast movements are always similar to the small ones alternative, we have included in Fig. 12 another prediction

method related to the amount of trial-to-trial variability pres-and different from the errors for the large slow movements.
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ent in a block of identical trials. We computed the mean the speed profiles of reaching movements of different length
and duration can be aligned almost perfectly after straightfor-speed profile over each block of 10 trials (separately for

each subject) , and used it to predict the speed profile for ward rescaling, and complete models of trajectory formation
such as the original minimum-jerk model or the minimumeach of the individual trials. The pattern of prediction errors

we see in Fig. 12 is very different: it appears that trial-to- torque-change model (Uno et al. 1988) have been applied
to the average trajectory.trial variability decreases with speed rather than duration

and is essentially the same over the entire movement and Under these assumptions, we can attempt to identify the
level of processing where the relationship between path andthe middle 60%. Thus the higher model accuracy for shorter

durations results from a stronger coupling between path and speed emerges. In particular, the smoothness observed in
experimental data may be present already in the plan, inspeed rather than a difference in the speed profiles them-

selves. which case, our model should apply better to the average
trajectory than to single-trial trajectories (note that averaging
by itself does not necessarily produce smoother trajectories,Trial-to-trial variability
i.e., if we average several optimal trajectories, we will obtain

It often is assumed that the motor system constructs a a suboptimal one—because the model is nonlinear) . Fur-
plan of the desired trajectory for the current task, and in- thermore, the speed profile predicted from the average path
stantiates that plan on each particular trial. Although there should be more accurate in explaining the single trial speed
is no widespread agreement on what exactly such a plan profiles than the predictions obtained from the single trial
might contain, it seems reasonable to assume that the actual paths. In the notation of Fig. 13 [where MJ (r) is the speed
trajectories produced on consecutive trials on the same task predicted by the model for a given path, õrú signifies
are variations around the same plan, where the variability is averaging over a block of trials, and : is the error between
due to unspecified sources of noise. Thus the average trajec- actual and predicted speed profiles) . MJ(path) : speed ú
tory over a block of identical trials corresponds to the move- MJ(»path …) : speed ú MJ( »path …) : õspeedú. Alterna-
ment that would result from the plan in the absence of vari- tively, if smoothness is inherent in the (unknown) sources

of variability, we should expect the single trial predictionsability. In support of this notion, it has been observed that

FIG. 13. Comparison of prediction errors of
our model (on all 1.5-s movements in experiment
2) and possible reconstructions of a ‘‘central
plan.’’ MJ(path) : speed—our model, applied on
a trial-by-trial basis (j) . õspeedú : speed—the
average speed profile over a block of 10 trials,
used to predict each individual speed profile.
MJ( »path …) : speed—the speed profile generated
by our model for the average path and used to
predict each individual speed profile. MJ( »path …) :
õspeedú—the speed profile generated by our
model for the average path and used to predict the
average speed profile. MJ( template) :
õspeedú—the speed profile generated by our
model for the specified template and used to pre-
dict the average speed profile. MJ( template) :
speed—the speed profile generated by our model
for the specified template, and used to predict each
individual speed profile.
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to be more accurate than both average methods: MJ(path) : minimum-jerk model yields predictions that are generally
speed õ MJ( »path …) : speed õ MJ( ; »path …) : õspeedú. similar to the power law, its performance is significantly

Because this analysis is most likely to yield clear results better than both the original and modified versions of the
when the model works best, we focused on the data from power law for all tasks and movement templates we studied.
all 1.5-s movements in experiment 2. As Fig. 13 shows, none Furthermore the model naturally extends the path-speed rela-
of the above orderings hold. It is true that the constrained tionship previously observed in extemporaneous movements
minimum-jerk model describes the average trajectory to include the acceleration and deceleration phases of dis-
better than individual trajectories: MJ(path) : speed ú crete movements, which are much more common. Thus it
MJ( »path …) : õspeedú, therefore smoothness is present in can be argued that the local speed-curvature relationship
the plan and adding variability decreases the planned expressed by the power law, to the extent that it fits experi-
smoothness. However, the speed profile predicted from the mental data, can be derived from a more global smoothness
average path explains the individual speed profiles a lot constraint that relates the path to the speed profile.
worse than the single trial predictions: MJ(path) : speed õ In comparing any two models, we have to look not only
MJ( »path …) : speed. In fact, even the average speed profile at their competence in accounting for experimental data, but
(which is the best possible constant predictor) performs also at the model complexity (Occam’s razor) . We empha-
worse than the single trial prediction method: MJ(path) : size that model complexity has nothing to do with the com-
speed õ õspeedú : speed. Therefore, the trial-to-trial vari- plexity of the mathematics involved: instead it is related to
ability observed in speed profiles is partially predictable how many and what free parameters are used in fitting the
given the trial-to-trial variability in the path. Note that speed data. In that sense, the constrained minimum-jerk model and
predictions based on the template rather than the average the original power law are equivalent—they both postulate
path are a lot less accurate, suggesting that the spatial devia- that the speed profile of a movement is a well defined func-
tions from the specified template may be present in the plan. tion of hand path, and do not require any extra parameters.

In summary, the picture that emerges from this analysis The modified power law has higher model complexity be-
is the following: the relationship between speed and path is cause it involves a free parameter (b) extracted from the
present in the plan and is stronger than that observed on observed trajectories. Furthermore, all versions of the power
individual trials. However, the trial-to-trial variability is not law require extra mechanisms for dealing with regions of
at all ‘‘random’’; the path and the speed profile represented zero curvature and with zero speed at the end points of a
in the central plan are modified together in a way that pre- discrete movement. Thus we argue that the statistical com-
serves the planned smoothness. It is of course possible that plexity of the model presented here, when applied to discrete
a strict separation between planning and execution does not movements with inflection points or straight segments, is no
exist, and thus the above analysis yields mixed results. greater than any version of the 2/3 power law. We also have

to compare the difficulties involved in the possible biological
G E N E R A L D I S C U S S I O N implementation of each model. From that point of view,

the power law may appear more appealing because it isThis paper has presented a constrained minimum-jerk
analytically tractable (i.e., speed can be obtained directlymodel of the relationship between hand path and speed pro-
from curvature, without any numerical approximation). Iffile of complex arm movements. We applied the model to
we believe that the biological system actually uses the con-a wide range of spatially constrained motor tasks involving
crete mathematical formula, this is certainly a big advantage.discrete movements of short durations and arbitrary paths.
However, we are dealing with models that only quantifyThe new model proposed here unifies two sets of experimen-
intrinsic relationships between path and speed instead oftal observations: the characteristic bell-shaped speed profile
specifying a recipe for trajectory formation. For example, itof straight reaching movements, and the path-speed relation-
has been suggested that a 2/3 power law may emerge outship in extemporaneous movements with complex paths. The
of the complex nonlinear interactions of a large number ofspeed predictions of our model are equivalent to those of
direction-tuned neurons in primary motor cortex (Lukashinthe original minimum-jerk model when the path is straight
and Georgopoulos 1993) —such an implementation does notand more accurate when the Flash and Hogan (1985) model
use the analytical tractability of the power law, eliminatingfails in the path prediction. Although our model uses the
any advantage it may have over the model presented here.entire path (i.e., a continuous curve) to predict speed, it is

Contrary to previous investigations (Viviani and Cenzatopossible instead to represent the path as a large number of
1985) we did not find evidence for segmentation; insteadintermediate points and possibly tangents at those points—
the ‘‘tempo’’ seemed to fluctuate rather smoothly and unpre-if such a representation contains sufficient information to
dictably. We think this is due to the different nature of thereconstruct the continuous path through some interpolation
movements studied here. Previous work on segmentation hasmethod, this becomes equivalent to our model. In practice,
focused on repetitive movements of long duration, whichfor the family of templates studied here, we have found that
implied (at least visually) a rather obvious segmentationthe entire path can be reconstructed from Ç10 points sam-
pattern. Instead we used movement durations of 1–2 s withpled at equal distances. This does not imply any internal
templates that are not obviously composed of a small numberrepresentation consisting of 10 discrete points—it is simply
of simple curves concatenated together. It is possible thata consequence of the mathematical fact that curves as smooth
discrete movements of such short duration are not internallyas the ones used here can be reconstructed easily through
segmented even when they have complex paths. Alterna-interpolation.

We showed that although mathematically the constrained tively, the decomposition into segments may be variable
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problem, which can be approached using a number of techniques.from trial to trial, preventing us from finding any evidence
It turns out that the standard techniques for solving variationalfor it.
problems do not work very well in this case.The high accuracy of the constrained minimum-jerk

From the Euler-Lagrange principle, the solution s( t) satisfiesmodel allowed us to make two important observations that
the 6th-order nonlinear ordinary differential equation ÌL /Ìs 0have not received previous attention: the relationship be- d /dt ÌL /Ìs * / d 2 /dt 2 ÌL /Ìs 9 0 d 3 /dt 3 ÌL /Ìs * 9 Å 0, subject to

tween path and speed is stronger for movements of shorter the constraints on s( t) and its derivatives at the two end points of
duration and is not affected by spatial scale or average speed the movement. This problem is very difficult numerically because
(it is also rather uniform across tasks and movement paths) the solution depends on high order derivatives of the path, which
and the path of the hand on a particular trial contains signifi- is recorded experimentally and thus has some noise in it. We found
cant information about the speed profile on that same trial; that both shooting and relaxation methods for solving boundary

value problems (Press et al. 1992) fail.this information is lost if we only study the average path
Another possibility is to minimize Eq. 1 directly by representingover a block of identical trials.

s( t) as a linear combination of N fixed basis functions fi ( t) : s( t)Presently the model is applied to the complete path, yield-
Å (N

iÅ1 ci fi ( t) and using gradient descent with respect to the coef-ing a complete speed profile. It is unlikely that the motor
ficients ci . We used sixth-order B splines as basis functions and asystem maintains the path-speed relationship globally, espe-
preconditioned conjugate gradient method to find the optimal coef-cially over movements of very long duration. Our finding ficients (Gill et al. 1981). This minimization always converged

that prediction error increases with movement duration (and but frequently found local minima, and it was necessary to restart
not average speed or spatial scale) suggests that the ‘‘sliding it a number of times before a good solution could be found. An
window’’ over which the model applies best may be rather additional problem is that it is not clear what a good solution is.
small, i.e., Ç1 s. A more local relationship between path The method we used here is less direct but has the advantage
and speed is also consistent with observations that the 2/3 that it is faster and seems to converge to the same minimum regard-

less of the initial conditions. Rather than using the complete pathpower law applies in tracking tasks where little advance
r(s) , we chose a set of 10 intermediate points, equally spaced alongplanning of maximally smooth movements is possible. Thus
the path (i.e., their positions contain no temporal information). Weit is desirable to modify the procedure for fitting the model
then found the minimum-jerk movement (in the sense of Flashso that it can be applied to segments of the path, without
and Hogan 1985) through those points, given the velocity andrequiring end-point speed and acceleration (only duration
acceleration at the two end points. If the resulting minimum-jerkfor that segment) . This can be done by minimizing jerk over movement has a path very close to r(s) , we are guaranteed that

these parameters as well. its speed profile is the solution to our original problem (i.e., we
Our examination of trial-to-trial variability suggests that are computing a minimum over a given set by minimizing over a

smoothness is centrally planned, and the variability of the superset and ensuring that the solution is in the original set) . We
hand path and the speed profile are coupled in a way that describe the minimization procedure in the following text.
maintains the planned path-speed relationship. Because the It has been shown (Flash and Hogan 1985) that for given passage

times T, positions x, velocities n, and accelerations a at the endmovements we studied are not executed at maximum speed,
points of one segment, the minimum-jerk trajectory is a 5th-orderone likely source of variability is the effect of on-line correc-
polynomial in t, the coefficients of which can be determined easilytions. Such on-line corrections, however, have to be incorpo-
using the end-point constraints. It is then possible to integrate therated smoothly in the movement in a manner that is consis-
squared jerk analytically, and sum it over all segments. The jerktent with the overall path-speed relationship described by the
of the optimal trajectory isconstrained minimum-jerk model. Evidence for such error

correction mechanisms is provided by the double-step para- JT,x,n,a(T1. . .N , x1. . .N , n1. . .N , a1. . .N) Å ∑
N01

iÅ1digm, where a reaching movement is smoothly corrected to
end at a perturbed target location if subjects are unaware of

3
3a 2

i 0 2aiai/1 / 3a 2
i

(Ti/1 0 Ti )4
/ 24

3ai/1ni 0 2ai/1ni / 2aini/1 0 3ai/1ni/1

(Ti/1 0 Ti )3the perturbation (Pellison et al. 1986). It is also possible
that low-level correction/stability mechanisms (e.g., some
version of equilibrium point control) combined with a source / 48

4n 2
i / 7nini/1 / 4n 2

i/1

(Ti/1 0 Ti )2
/ 120

(ai 0 ai/1)(xi 0 xi/1)
(Ti/1 0 Ti )2

of noise may give rise to variations around the desired trajec-
tory that preserve its intrinsic properties. The desired trajec- / 720

(ni / ni/1)(xi 0 xi/1)
Ti/1 0 Ti

/ 720 (xi 0 xi/1) 2

tory itself does not have to be generated by a servo control
mechanism, but only the low-level on-line corrections to it. Note that the above expression is quadratic in all n and a and thus

Finally, we cannot rule out the possibility that the trial- can be minimized with respect to those parameters by setting the
to-trial variability we studied actually was planned. It is gradient to 0 and solving (numerically) the resulting system of linear
quite difficult to identify the levels of processing on which equations. Using this minimization, for given passage times T (and
different regularities emerge based on observational studies intermediate point positions x) , we can compute the jerk for the
alone. The problem is that once a movement is executed, it optimal trajectory: JT1. . .N,x1. . .N

Å (xÅX,Y,Z minn1. . .N,a1. . .N
JT,x,n,a(T1. . .N ,

is impossible to determine whether the subject had planned x1. . .N , n1. . .N , a1. . .N) . Finally, the function JT1. . .N,x1. . .N
is minimized

to produce exactly that movement or the outcome was sig- over all possible T2. . .N01 using a nonlinear simplex method. We
nificantly affected by on-line processes. Perturbative experi- found that the resulting path is equivalent to r(s) , and the speed
mental manipulations will be required to address these issues profiles obtained in this way were indistinguishable from the speed

profiles obtained with the direct method above, when it was rundirectly.
enough times to find a global minimum.

A P P E N D I X . C O N S T R A I N E D M I N I M I Z A T I O N

Minimizing the integral of L Å (k*s
g

3 / 3ks
g

s̈)2 / ( s̈ 0 k 2s
g

3) 2
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g

3kt)2 with respect to the temporal profile s( t) is a variational
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