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Abstract

A general feature of the cerebral cortex is its massive interconnec-
tivity - it has been estimated anatomically [15] that cortical neurons
receive on the order of 10,000 synapses, the majority of which orig-
inate from other nearby cortical neurons. Numerous experiments
in primary visual cortex (V1) have revealed strongly nonlinear in-
teractions between stimulus elements, implying a signi�cant phys-
iological role of recurrent computation. However, most theories
of visual processing have either assumed a feedforward processing
scheme [6], or have used recurrent interactions to account for iso-
lated e�ects only [1, 12, 14]. Since nonlinear systems cannot in
general be taken apart and analyzed in pieces, it is not clear what
one learns by building a recurrent model that only accounts for one,
or very few phenomena. Here we develop a relatively simple model
of recurrent interactions in V1, that reects major anatomical and
physiological features of intracortical connectivity, and simultane-

ously accounts for a wide range of phenomena observed physio-
logically. All phenomena we address are strongly nonlinear, and
cannot be explained by linear feedforward models.

1 The Model

We analyze the mean �ring rates observed in oriented V1 cells in response to stimuli
consisting of an inner and outer circular grating. Individual cells are modeled as
a single response function, whose arguments are the mean �ring rates of the cell's
inputs, and whose value is the cell's mean �ring rate.



1.1 Neuronal model

Each neuron is modeled as a single voltage compartment in which the membrane
potential V is given by:

Cm

dV (t)

dt
= gex(t)(Eex � V (t)) + ginh(t)(Einh � V (t)) +

gleak(Eleak � V (t)) + gahp(t)(Eahp � V (t))

where Cm is the membrane capacitance, Ex is the reversal potential for current x,
and gx is the conductance for that current. If the voltage exceeds a threshold V�,
a spike is generated, and afterhyperpolarizing currents are activated. The conduc-
tances for excitatory and inhibitory currents are modeled as sums of �-functions,
and the ahp conductance is modeled as a decaying exponential. The model consists
of two distinct cell types, excitatory and inhibitory, with realistic cellular param-
eters [10], similar to the ones used in [13]. To compute the response functions for
the two cell types, we simulated one cell of each type, receiving excitatory and in-
hibitory Poisson inputs. The synaptic strengths were held constant, while the rates
of the excitatory and inhibitory inputs were varied independently.

Although the driving forces for excitation and inhibition vary, we found that single
cell responses can be accurately modeled if incoming exitation and inhibition are
combined linearly, and the net input is passed through a reponse function that
is approximately threshold-linear, with some smoothing around threshold. It is
important to note that feedforward responses did not saturate.

1.2 Cortical connectivity

The connectivity of the cerebral cortex if fairly stereotypic. Excitatory cells make
dense local projections, as well as long-range horizontal projections that usually
contact cells with similar response properties. Inhibitory cells make only local pro-
jections, which are spread further in space than the local excitatory connections [8].
We will assume that cells with similar response properties have a higher probability
of connection, and that probability falls down with distance in \feature" space. For
simplicity, we consider only two feature dimensions: orientation and RF center in
visual space. Since we are dealing with stimuli with radial symmetry, one spatial
dimension is su�cient. The extension to more dimensions, i.e. another spatial
dimension, direction selectivity, color, etc., is straightforward.

We assume that the feature space is �lled uniformly with excitatory and inhibitory
cells. Rather than modeling individual cells, we model a grid of locations, and
for each location we compute the mean �ring rate of cells present there. The
connectivity is de�ned by two projection kernels Kex;Kin (one for each presynaptic
cell type) and weights Wee;Wei;Wie;Wii, corresponding to how many synapses are
made to excitatory/inhibitory cells. The excitatory projection has sharper tuning
in orientation space, and bigger spread in visual space (Figure 1).

1.3 Visual stimuli and thalamocortical input

The visual stimulus is de�ned by �ve parameters: diameter d of the inner grating
(the outer is assumed in�nite), log contrast c1; c2, and orientation �1; �2 of each
grating. The two gratings are always centered in the spatial center of the model.
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Figure 1: Excitatory (solid) and Inhibitory (dashed) connectivity kernels.
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Figure 2: LGN input for a stimulus with high contrast, orthogonal orientations of
center and surround gratings.

Each cortical cell receives LGN input which is the product of log contrast, orien-
tation tuning, and convolution of the stimulus with a spatial receptive �eld. The
LGN input computed in this way is multiplied by LGNex; LGNin and sent to the
cortical cells. Figure 2 shows an example of what the LGN input looks like.

2 Results

For given input LGN input, we computed the steady-state activity in cortex itera-
tively (about 30 iteration were required). Since we studied the model for gradually
changing stimulus parameters, it was possible to use the solution for one set of
parameters as an initial guess for the next solution, which resulted in signi�cant
speedup. The results presented here are for the excitatory population, since i) it
provides the output of the cortex; ii) contains four times more cells than the in-
hibitory population, and therefore is more likely to be recorded from. All results
were obtained for the same set of parameters.

2.1 Classical RF e�ects

First we simulate responses to a central grating (1deg diameter) for increasing log-
contrast levels. It has been repeatedly observed that although LGN �ring increases
linearly with stimulus log-contrast, the contrast response functions observed in V1
saturate, and may even supersaturate [9, 2]. The most complete and recent model of
that phenomenon [5, 3] assumes shunting inhibition, which contradicts recent intra-
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Figure 3: Classical RF e�ects. A) Contrast response function for excitatory (solid)
and inhibitory (dashed) cells. B) Orientation tuning for di�erent contrast levels
(solid); scaled LGN input (dashed).

cellular observations [4]. Furthermore, that model cannot explain supersaturation.
Our model achieves saturation (Figure 3A) for high contrast levels, and can easily
achieve supersaturation for di�erent parameter setting. Instead of using shunting
(divisive) inhibition, we suggest that the inhibitory response to increasing contrast
has a higher threshold, i.e. the direct LGN input to inhibitory cells is weaker. Note
that we only need a subpopulation of inhibitory neurons with that propertry; the
rest can have the same response threshold as the excitatory population.

Another well-known property of V1 neurons is that their orientation tuning is
roughly contrast-invariant. The LGN input tuning is invariant, therefore this prop-
erty is easily obtained in models where V1 responses are almost linear, rather than
saturating [1, 12]. Contrast-invariant tuning combined with contrast saturation
at the population level (while singe cell feedforward response functions are non-
saturating) is rather non-trivial to achieve. The problem is that invariant tuning
requires that the responses at all orientations saturate simultaneously. This is the
case in our model (Figure 3B) - we found that the tuning (half width at half am-
plitude) varied within a 5deg range as contrast increased.

2.2 Extraclassical RF e�ects

Next we consider stimuli which include both a center and a surround grating. In the
�rst set of simulations we held the diameter constant (at 1deg) and varied stimulus
contrast and orientation. It has been observed [7, 11] that a high contrast isoori-
entation surround stimulus facilitates responses to a low contrast, but suppresses
responses to a high contrast center stimulus. This behavior is captured very well
by our model (Figure 4A). The strong response to the surround stimulus alone is
partially due to direct thalamic input (i.e. the thalamocortical projective �eld is
larger than the classical receptive �eld of a V1 cell). The response to an orthogonal
surround is between the center and isoorientation surround responses, as observed
in [7].

Many neurons in V1 respond optimally to a center grating with a certain diameter,
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Figure 4: Extraclassical RF e�ects. A) Contrast response functions for center
(solid), center + isoorientation surround (dashed), center + orthogonal surround
(dash-dot). B) Length tuning for 4 center log contrast levels (1, .75, .5, .4), response
to surround of high contrast (dashed).

but their response decreases as the diameter increases (end-stopping). End-stopping
in the model is shown in Figure 4B - responses to increasing grating diameter reach
a peak and then decrease. What is interesting is that the peak shifts to the right as
contrast levels decrease (for other parameter settings it can shift more downward
than rightward). Note also that a center grating with maximal contrast reaches its
peak response for a diameter value which is 3 times smaller than the diameter for
which responses to a surround grating disappear. This is interesting because both
the peak response to a central grating, and the �rst response to a surround grating
can be used to de�ne the extent of the classical RF - in this case clearly leading
to very di�erent de�nitions. The e�ects shown in Figure 4B have been recently
observed in V1 [11].

3 Population Modeling and Variability

So far we have analyzed the population �ring rates in the model, and compared them
to physiological observations. Unfortunately, in many cases the limited sample size,
or the variability in a given physiological experiment does not allow an accurate
estimate of what the population response might be. In such cases researchers only
describe individual cells, which are not necessarily representative. How can �nd-
ings reported in this way be captured in a population model? The parameters of
the model could be modi�ed in order capture the behavior of individual cells on
the population level; or, further subdivisions into neuronal subpopulations may be
introduced explicitly. The approach we prefer is to assume that the individual cells
receive synaptic input from the already existing subpopulations, that varies around
the input to the \average" cell. We consider variations in the amount of excitatory
and inhibitory synapses that a particular cell receives from other cortical neurons.
Note that the presynaptic origin of these inputs is still the \average" cortical cell ,
and is not chosen from a subpopulation with special response properties.

The two examples we show have recently been reported in [11]. If we increase



the cortical input (excitation by 100%, inhibition by 30%), we obtain a completely
patch-suppressed cell, i.e. it does not respond to a center + isoorientation surround
stimulus - Figure 5A. Figure 5B shows that this cell is an \orientation discontinuity
detector", i.e. it responds well to 0deg center + 90deg surround, and to 90deg center
+ 0deg surround. Interestingly, the cells with that property reported in [11] were
all patch-suppressed. Note also that our cell has a supersaturating center response
- we found that it always accompanies patch suppression in the model.
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Figure 5: Orientation discontinuity detection for a strongly patch- suppressed cell.
A) Contrast response functions for center (solid) and center + isoorientation sur-
round (dashed). B) Cell's response for 0deg center, 0� 90deg surround (solid) and
90deg center, 90� 0deg surround.
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Figure 6: Nonlinear summation for a non patch-suppressed cell. A) Contrast re-
sponse functions for center (solid) and center + isoorientation surround (dashed).
B) Cell's response for isoorientation surround, orthogonal center, surround + center,
center only.

The second example is a cell receiving 15% of the average cortical input. Not
surprisingly, its contrast response function does not saturate - Figure 6A. However,
this cell exhibits an interesting nonlinear property - it respond well to a combination



of an isoorientation surround + orthogonal center, but does not respond to either
stimulus alone (Figure 6B). It is not clear from [11] whether the cells with this
property had saturating contrast response functions.

4 Conclusion

We presented a model of recurrent computation in primary visual cortex that relies
on a limited set of physiologically plausible mechanisms. In particular, we used
the di�erent cellular properties of excitatory and inhibitory neurons and the non-
isotropic shape of lateral connections (Figure 1). Due to space limitations, we only
presented simulation results, rather than analyzing the e�ects of speci�c parameters.
A preliminary version of such analysis is given in [13] for local e�ects, and will be
developed elsewhere for lateral interaction e�ects.

Our goal here was to propose a framework for studying recurrent computation in
V1, that is relatively simple, yet rich enough to simultaneously account for a wide
range of physiological observations. Such a framework is needed if we are to analyse
systematically the fundamental role of recurrent interactions in neocortex.
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