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Abstract

Recent methods for learning a linear subspace from data corrupted by outliers are
based on convex `1 and nuclear norm optimization and require the dimension of
the subspace and the number of outliers to be sufficiently small [27]. In sharp
contrast, the recently proposed Dual Principal Component Pursuit (DPCP) method
[22] can provably handle subspaces of high dimension by solving a non-convex `1
optimization problem on the sphere. However, its geometric analysis is based on
quantities that are difficult to interpret and are not amenable to statistical analysis.
In this paper we provide a refined geometric analysis and a new statistical analysis
that show that DPCP can tolerate as many outliers as the square of the number of
inliers, thus improving upon other provably correct robust PCA methods. We also
propose a scalable Projected Sub-Gradient Method (DPCP-PSGM) for solving
the DPCP problem and show that it achieves linear convergence even though the
underlying optimization problem is non-convex and non-smooth. Experiments on
road plane detection from 3D point cloud data demonstrate that DPCP-PSGM can
be more efficient than the traditional RANSAC algorithm, which is one of the most
popular methods for such computer vision applications.

1 Introduction

Fitting a linear subspace to a dataset corrupted by outliers is a fundamental problem in machine
learning and statistics, primarily known as (Robust) Principal Component Analysis (PCA) [10, 2].
The classical formulation of PCA, dating back to Carl F. Gauss, is based on minimizing the sum of
squares of the distances of all points in the dataset to the estimated linear subspace. Although this
problem is non-convex, it admits a closed form solution given by the span of the top eigenvectors of
the data covariance matrix. Nevertheless, it is well-known that the presence of outliers can severely
affect the quality of the computed solution because the Euclidean norm is not robust to outliers.

The sensitivity of classical `2-based PCA to outliers has been addressed by using robust maximum
likelihood covariance estimators, such as the one in [25]. However, the associated optimization
problems are non-convex and thus difficult to provide global optimality guarantees. Another classical
approach is the exhaustive-search method of Random Sampling And Consensus (RANSAC) [5], which
given a time budget, computes at each iteration a d-dimensional subspace as the span of d randomly
chosen points, and outputs the subspace that agrees with the largest number of points. Even though
RANSAC is currently one of the most popular methods in many computer vision applications such as
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Table 1: Probabilistic upper bounds for the number M of tolerated outliers as a function of the
number N of inliers, the subspace dimension d, and the ambient dimension D, by different methods
under a random Gaussian or random spherical model.

Method Random Gaussian Model

GGD [16] M .
√
D(D−d)
d

N

REAPER [13] M . D
d
N, d ≤ D−1

2

GMS [30] M .
√

(D−d)D
d

N

`2,1-RPCA [27] M . 1

dmax(1,
log(M+N

d
)
N

TME [29] M < D−d
d
N

TORP [3] M . 1

dmax(1,
log(M+N)

d
)2
N

Method Random Spherical Model

FMS [11]
N/M ' 0, N →∞, i.e.,

any ratio of outliers when1N →∞

CoP [19] M . D−d2
d

N, d <
√
D

DPCP
(this paper) M . 1

dD log2D
N2

multiple view geometry [9], its performance is sensitive to the choice of a thresholding parameter.
Moreover, the number of required samplings may become prohibitive in cases when the number of
outliers is very large and/or the subspace dimension d is large and close to the dimension D of the
ambient space (i.e., the high relative dimension case).

As an alternative to traditional robust subspace learning methods, during the last decade ideas from
compressed sensing have given rise to a new class of methods that are based on convex optimization,
and admit elegant theoretical analyses and efficient algorithmic implementations. Prominent examples
are based on decomposing the data matrix into low-rank and column-sparse parts [27], expressing
each data point as a sparse linear combination of other data points [20, 28], and measuring the
coherence of each point with every other point in the dataset [19]. The main limitation of these
methods is that they are theoretically justifiable only for subspaces of low relative dimension d/D.
However, for applications such as 3D point cloud analysis, two/three-view geometry in computer
vision, and system identification, a subspace of dimension D − 1 (high relative dimension) is sought
[21, 26]. A promising direction towards handling subspaces of high relative dimension is minimizing
the sum of the distances of the points to the subspace, which is a non-convex problem that REAPER
[13] relaxes to a Semi-Definite Program (SDP). Even though in practice REAPER outperforms
low-rank methods [27, 20, 28, 19] for subspaces of high relative dimension, its theoretical guarantees
still require d < (D − 1)/2. This is improved upon by the recent work of [16], which studies a
gradient descent algorithm on the Grassmannian, and establishes convergence with high-probability
to the inlier subspace for any d/D, as long as the number of outliers M scales as (D/d)O(N).

The focus of the present paper is the recently proposed Dual Principal Component Pursuit (DPCP)
method [22, 24, 23], which seeks to learn recursively a basis for the orthogonal complement of the
subspace by solving an `1 minimization problem on the sphere. In fact, this optimization problem is
precisely the underlying non-convex problem associated to REAPER and [16] for the special case
d = D − 1. As shown in [22, 24], as long as the points are well distributed in a certain deterministic
sense, any global minimizer of this non-convex problem is guaranteed to be a vector orthogonal to the
subspace, regardless of the outlier/inlier ratio and the subspace dimension; a result that agrees with
the earlier findings of [14]. Indeed, for synthetic data drawn from a hyperplane (d = D − 1), DPCP
has been shown to be the only method able to correctly recover the subspace with up to 70% outliers
(D = 30). Nevertheless, the analysis of [22, 24] involves geometric quantities that are difficult to
analyze in a probabilistic setting, and consequently it has been unclear how the number M of outliers
that can be tolerated scales as a function of the number N of inliers. Moreover, even though [22, 24]
show that relaxing the non-convex problem to a sequence of linear programs (LPs) guarantees finite
convergence to a vector orthogonal to the subspace, this approach is computationally expensive.
Alternatively, while the Iteratively Reweighted Least Squares (IRLS) scheme proposed in [24, 23] is
more efficient than the linear programming approach, it comes with no theoretical guarantees and
scales poorly for high-dimensional data, since it involves an SVD at each iteration.

In this paper we make the following specific contributions:

1This asymptotic result assumes that d and D are fixed, thus these two parameters are omitted.
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• Theory: An improved analysis of global optimality for DPCP that replaces the cumbersome
geometric quantities of [22, 24] with new quantities that are both tighter and easier to bound in
probability. Specifically, employing a spherical random model suggests that DPCP can handle
M = O( 1

dD log2D
N2) outliers. This is in sharp contrast to existing provably correct state-of-the-art

robust PCA methods, which as per Table 1 can tolerate at best M = O(N) outliers.2

• Algorithms: A scalable Projected Sub-Gradient Method algorithm with piecewise geometrically
diminishing step sizes (DPCP-PSGM), which is proven to solve the non-convex DPCP problem
with linear convergence and using only matrix-vector multiplications. This is in contrast to classic
results in the literature on the PSGM, which usually requires the problem to be convex in order to
establish sub-linear convergence [1]. DPCP-PSGM is orders of magnitude faster than the LP-based
and IRLS schemes proposed in [24], which allows us to extend the size of the datasets that we can
handle from 103 to 106 data points.

• Experiments: Experiments on road plane detection from 3D point cloud data using the KITTI
dataset [6], which is an important computer vision task in autonomous car driving systems, show
that for the same computational budget DPCP-PSGM outperforms RANSAC, which is one of the
most popular methods for such computer vision applications.

2 Global Optimality Analysis for Dual Principal Component Pursuit

Review of DPCP Given a unit `2-norm dataset X̃ = [X O]Γ ∈ RD×L, where X ∈ RD×N are
inlier points spanning a d-dimensional subspace S of RD, O are outlier points having no linear
structure, and Γ is an unknown permutation, the goal of robust PCA is to recover the inlier space S
or equivalently to cluster the points into inliers and outliers. Towards that end, the main idea of Dual
Principal Component Pursuit (DPCP) [22, 24] is to first compute a hyperplaneH1 that contains all the
inliers X . Such a hyperplane can be used to discard a potentially very large number of outliers, after
which a method such as RANSAC may successfully be applied to the reduced dataset 3. Alternatively,
if d is known, then one may proceed to recover S as the intersection of D− d orthogonal hyperplanes
that contain X . In any case, DPCP computes a normal vector b1 to the first hyperplaneH1 as follows:

min
b∈RD

‖X̃>b‖0 s. t. b 6= 0. (1)

Notice that the function ‖X̃>b‖0 being minimized simply counts how many points in the dataset are
not contained in the hyperplane with normal vector b. Assuming that there are at least d+ 1 inliers
and at least D − d outliers (this is to avoid degenerate situations), and that all points are in general
position4, then every solution b∗ to (1) must correspond to a hyperplane that contains X , and hence
b∗ is orthogonal to S. Since (1) is computationally intractable, it is reasonable to replace it by5

min
b∈RD

f(b) := ‖X̃>b‖1 s. t. ‖b‖2 = 1. (2)

Although problem (2) is non-convex (because of the constraint) and non-smooth (because of the `1
norm), the work of [22, 24] established conditions suggesting that if the outliers are well distributed
on the unit sphere and the inliers are well distributed on the intersection of the unit sphere with the
subspace S, then global minimizers of (2) are orthogonal to S. Nevertheless, these conditions are
deterministic in nature and difficult to interpret. In this section, we give improved global optimality
conditions that are i) tighter, ii) easier to interpret and iii) amenable to a probabilistic analysis.

Geometry of the critical points The heart of our analysis lies in a tight geometric characterization
of the critical points of (2) (see Lemma 1 below). Before stating the result, we need to introduce
some further notation and definitions. Letting PS be the orthogonal projection onto S, we define
the principal angle of b from S as φ ∈ [0, π2 ] such that cos(φ) = ‖PS(b)‖2/‖b‖2. Since we will

2 Table 1 is an adaptation of Table I from [12]. We note that not all bounds are directly comparable because
different methods might be analyzed under different models, e.g., for DPCP we use the random spherical model,
while for REAPER the random Gaussian model is used. Nevertheless, the two models are closely related, since
a random vector distributed according to the standard normal distribution tends to concentrate around the sphere.

3Note that if the outliers are in general position, thenH1 will contain at most D − d− 1 outliers.
4Every d-tuple of inliers is linearly independent, and every D-tuple of outliers is linearly independent.
5This optimization problem also appears in different contexts (e.g., [18] and [21]).
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consider the first-order optimality conditions of (2), we naturally need to compute the sub-differential
of the objective function in (2). Towards that end, we denote the sign function by sign(a) = a/|a|
when a 6= 0, and sign(a) = 0 when a = 0. We also require the sub-differential Sgn of the absolute
value function |a| defined as Sgn(a) = sign(a) when a 6= 0, and Sgn(a) = [−1, 1] when a = 0. We
use sign(a) to indicate that we apply the sign function element-wise to the vector a and similarly for
Sgn. Next, global minimizers of (2) are critical points in the following sense:
Definition 1. A vector b ∈ SD−1 is called a critical point of (2) if there exists d′ ∈ ∂f(b) such that
the Riemannian gradient d := (I−bb>)d′ = 0, where ∂f(b) = X̃ Sgn(X̃>b) is the sub-differential
of f at b.

We now illustrate the key idea behind characterizing the geometry of the critical points. Let b be a
critical point that is not orthogonal to S . Then, under general position assumptions on the data, b can
be orthogonal to K ≤ D− 1 columns of X̃ , of which at most d− 1 can be inliers (otherwise b ⊥ S).
It follows that any Riemannian sub-gradient evaluated at b has the form

d = (I− bb>)O sign(O>b) + (I− bb>)X sign(X>b) + ξ, (3)

where ξ =
∑K
i=1 αji x̃ji with x̃j1 , . . . , x̃jK the columns of X̃ orthogonal to b and αj1 , . . . , αjK ∈

[−1, 1]. Note that ‖ξ‖2 < D. Since b is a critical point, Definition 1 implies a choice of αji so
that d = 0. Define b = cos(φ)s + sin(φ)n, where φ is the principal angle of b from S, and
s = PS(b)/‖PS(b)‖2 and n = PS⊥(b)/‖PS⊥(b)‖2 are the orthonormal projections of b onto S
and S⊥, respectively. Defining g = − sin(φ)s+ cos(φ)n and noting that g ⊥ b, it follows that

0 = g>O sign(O>b)− sin(φ)
∥∥X>s∥∥

1
+ g>ξ, (4)

which in particular implies that

sin(φ) ≤
(∣∣g>O sign(O>b)

∣∣+D
)
/
∥∥X>s∥∥

1
. (5)

Thus, we obtain Lemma 1 after defining

ηO :=
1

M
max

g,b∈SD−1,g⊥b

∣∣g>O sign(O>b)
∣∣ and cX ,min :=

1

N
min

b∈S∩SD−1
‖X>b‖1. (6)

Lemma 1. Any critical point b of (2) must either be a normal vector of S , or have a principal angle
φ from S smaller than or equal to arcsin (MηO/NcX ,min), where ηO := ηO +D/M.

Towards interpreting Lemma 1, we first give some insight into the quantities ηO and cX ,min. First,
we claim that ηO reflects how well distributed the outliers are, with smaller values corresponding
to more uniform distributions. This can be seen by noting that as M → ∞ and assuming that O
remains well distributed, the quantity 1

MO sign
(
O>b

)
tends to the quantity cDb, where cD is the

average height of the unit hemi-sphere of RD [22, 24]. Since g ⊥ b, in the limit ηO → 0. Second, the
quantity cX ,min is the same as the permeance statistic defined in [13], and for well-distributed inliers
is bounded away from small values, since there is no single direction in S sufficiently orthogonal to
X . We thus see that according to Lemma 1, any critical point of (2) is either orthogonal to the inlier
subspace S, or very close to S, with its principal angle φ from S being smaller for well distributed
points and smaller outlier to inlier ratios M/N . Interestingly, Lemma 1 suggests that any algorithm
can be utilized to find a normal vector to S as long as the algorithm is guaranteed to find a critical
point of (2) and this critical point is sufficiently far from the subspace S, i.e., it has principal angle
larger than arcsin (MηO/NcX ,min). We will utilize this crucial observation in the next section to
derive guarantees for convergence to the global optimum for a new scalable algorithm.

Global optimality In order to characterize the global solutions of (2), we define quantities similar
to cX ,min but associated with the outliers, namely

cO,min :=
1

M
min

b∈SD−1
‖O>b‖1 and cO,max :=

1

M
max

b∈SD−1
‖O>b‖1. (7)

The next theorem, whose proof relies on Lemma 1, provides new deterministic conditions under
which any global solution to (2) must be a normal vector to S.
Theorem 1. Any global solution b? to (2) must be orthogonal to the inlier subspace S as long as

M

N
·

√
η2O + (cO,max − cO,min)

2

cX ,min
< 1. (8)
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Towards interpreting Theorem 1, recall that for well distributed inliers and outliers ηO is small, while
the permeance statistics cO,max, cO,min are bounded away from small values. Now, the quantity
cO,max, thought of as a dual permeance statistic, is bounded away from large values for the reason
that there is not a single direction in RD that can sufficiently capture the distribution of O. In fact, as
M increases the two quantities cO,max, cO,min tend to each other and their difference goes to zero
as M →∞. With these insights, Theorem 1 implies that regardless of the outlier/inlier ratio M/N ,
as we have more and more inliers and outliers while keeping D and M/N fixed, and assuming the
points are well-distributed, condition (8) will eventually be satisfied and any global minimizer must
be orthogonal to the inlier subspace S.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.17

0.33

0.5 

0.67

0.83
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(a) Check [22, (24)]
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(b) Check [22, (24)]
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(c) Check (8)
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(d) Check (8)

Figure 1: Check whether the condition
(8) and a similar condition in [22, Theo-
rem 2] are satisfied (white) or not (black)
for a fixed numberN of inliers while vary-
ing the outlier ratio M/(M +N) and the
subspace relative dimension d/D: (a)-(c),
N = 500; (b)-(d), N = 1000.

A similar condition to (8) is given in [22, Theorem 2]. Al-
though the proofs of the two theorems share some common
elements, [22, Theorem 2] is derived by establishing discrep-
ancy bounds between (2) and a continuous analogue of (2),
and involves quantities difficult to handle such as spherical
cap discrepancies and circumradii of zonotopes. In addition,
as shown in Figure 1, a numerical comparison of the condi-
tions of the two theorems reveals that condition (8) is much
tighter. We attribute this to the quantities in our new analysis
better representing the function ‖X̃>b‖1 being minimized,
namely cX ,min, cO,min, cO,max, and ηO , when compared to
the quantities used in the analysis of [22, 24]. Moreover, our
quantities are easier to bound under a probabilistic model,
thus leading to the following characterization of the number
of outliers that may be tolerated.
Theorem 2. Consider a random spherical model where the
columns of O are drawn uniformly from the sphere SD−1
and the columns of X are drawn uniformly from SD−1 ∩ S,
where S is a subspace of dimension d < D. Fix any t <
2(cd
√
N − 2). Then with probability at least 1− 6e−t

2/2, any global solution of (2) is orthogonal to
S as long as

(4 + t)2M + C0

(√
D logD + t

)2
M ≤

(√ 2

πd
N − (2 + t/2)

√
N
)2
, (9)

where C0 is a universal constant that is independent of N,M,D, d and t.

Interestingly, Theorem 2 suggests that DPCP can roughly tolerate M = O( 1
dD log2D

N2) outliers.
We believe this makes DPCP the first method that is able to tolerate O(N2) outliers when d and D
are fixed, since as per Table 1 current provably correct state-of-the-art methods can handle at best
M = O(N). For example, REAPER [13] requires M ≤ O(Dd N). On the other hand, our bound is a
decreasing function of D, which is an artifact of the proof technique used; we conjecture that this can
be mended by a more sophisticated analysis of the term ηO.

Finally, our choice to use a spherical random model as opposed to a Gaussian model is a technical
one: the analysis is more difficult when the functions are both non-Lipschitz and unbounded. That
being said, we believe that this choice does not impose any practical limitations, since one can always
normalize the data without changing the angles of the inliers/outliers to the linear subspace.

3 A Scalable Algorithm for Dual Principal Component Pursuit

Note that the DPCP problem (2) involves a convex objective function and a non-convex feasible
region, which nevertheless is easy to project onto. This structure was exploited in [18, 22], where
in the second case the authors proposed an Alternating Linearization and Projection (ALP) method
that solves a sequence of linear programs (LP) with a linearization of the non-convex constraint
and then projection onto the sphere.6 Although efficient LP solvers (such as Gurobi [8]) may
be used to solve each LP, these methods do not scale well with the problem size (i.e., D,N and

6Details of the procedure can be found in the supplementary material, where we are also able to provide an
improved analysis for their ALP method.
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M ). Inspired by Lemma 1, which states that any critical point that has principal angle larger than
arcsin (MηO/NcX ,min) must be a normal vector of S , we now consider solving (2) with a first-order
method, specifically Projected Sub-Gradient Method (DPCP-PSGM), which is stated in Algorithm 1.

Algorithm 1 (DPCP-PSGM) Projected Sub-gradient Method for Solving (2)

Input: data X̃ ∈ RD×L and initial step size µ0;
Initialization: set b̂0 = arg minb ‖X̃>b‖2, s. t. b ∈ SD−1;

1: for k = 1, 2, . . . do
2: update the step size µk according to a certain rule;
3: bk = b̂k−1 − µkX̃ sign(X̃>b̂k−1); b̂k = PSD−1 (bk) = bk/‖bk‖;
4: end for

Unlike projected gradient descent for smooth problems, the choice of step size for PSGM is more
complicated since a constant step size in general can not guarantee the convergence of PSGM even
to a critical point, though such a choice is often used in practice. For the purpose of illustration,
consider a simple example h(x) = |x| without any constraint, and suppose that µk = 0.08 for all
k and that an initialization of x0 = 0.1 is used. Then, the iterates {xk} will jump between two
points 0.02 and −0.06 and never converge to the global minimum 0. Thus, a widely adopted strategy
is to use diminishing step sizes, including those that are not summable (such as µk = O(1/k) or
µk = O(1/

√
k)) [1], or geometrically diminishing (such as µk = O(ρk), ρ < 1) [7, 4, 15]. However,

for such choices, most of the literature establishes convergence guarantees for PSGM in the context
of convex feasible regions [1, 7, 4], and thus can not be directly applied to Algorithm 1.

For the rest of this section, it is more convenient to use the principal angle θ ∈ [0, π2 ] between b and
the orthogonal subspace S⊥; thus b is a normal vector of S if and only if θ = 0. We also need a
quantity similar to ηO that quantifies how well the inliers are distributed within the subspace S:

ηX :=
1

N
max

g,b∈S∩SD−1,g⊥b

∣∣g>X sign(X>b)
∣∣ .

Our next result provides performance guarantees for Algorithm 1 for various choices of step sizes
ranging from constant to geometrically diminishing step sizes, the latter one giving an R-linear
convergence of the sequence of principal angles to zero.

Theorem 3 (Convergence guarantee for PSGM). Let {b̂k} be the sequence generated by Algorithm 1
with initialization b̂0, whose principal angle θ0 to S⊥ is assumed to satisfy

θ0 < arctan
((
NcX ,min

)
/
(√
dNηX +

√
DMηO

))
. (10)

Let µ′ := 1
4·max{NcX ,min,McO,max} . Assuming that NcX ,min ≥

√
dNηX +

√
DMηO, the angle θk

between b̂k and S⊥ satisfies the following properties in accordance with various choices of step sizes.

(i) (constant step size) With µk = µ ≤ µ′, ∀k ≥ 0, we have

θk ≤
{
max{θ0, θ�(µ)}, k < K�(µ),

θ�(µ), k ≥ K�(µ), (11)

where K�(µ) := tan(θ0)

µ(NcX ,min−max{1,tan(θ0)}(
√
dNηX+

√
DMηO))

and θ�(µ) := arctan
(

µ√
2µ′

)
.

(ii) (diminishing step size) With µk ≤ µ′, µk → 0,
∑∞
k=1 µk =∞, we have θk → 0.

(iii) (diminishing step size of O(1/k)) With µ0 ≤ µ′, µk = µ0

k ,∀k ≥ 1, we have tan(θk) = O( 1k ).
(iv) (piecewise geometrically diminishing step size) With µ0 ≤ µ′ and

µk =

{
µ0, k < K0,

µ0β
b(k−K0)/Kc+1, k ≥ K0,

(12)

where β ∈ (0, 1), b·c is the floor function, and K0,K ∈ N are chosen such that

K0 ≥ K�(µ0) and K ≥
(√

2βµ′
(
NcX ,min − (

√
dNηX +

√
DMηO)

))−1
(13)
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with K�(µ) defined right after (11), we have

tan(θk) ≤

{
max{tan(θ0), µ0√

2µ′
}, k < K0,

µ0√
2µ′
βb(k−K0)/Kc, k ≥ K0.

(14)

First note that with the choice of constant step size µ, although PSGM is not guaranteed to find a
normal vector, (11) ensures that afterK�(µ) iterations, b̂k is close to S⊥ in the sense that θk ≤ θ�(µ),
which can be much smaller than θ0 for a sufficiently small µ. The expressions for K�(µ) and θ�(µ)
indicate that there is a tradeoff in selecting the step size µ. By choosing a larger step size µ, we
have a smaller K�(µ) but a larger upper bound θ�(µ). We can balance this tradeoff according to
the requirements of specific applications. For example, in applications where the accuracy of θ (to
zero) is not as important as the convergence speed, it is appropriate to choose a larger step size. An
alternative and more efficient way to balance this tradeoff is to change the step size as the iterations
proceed. For the classical diminishing step sizes that are not summable, Theorem 3(ii) guarantees
convergence of θk to zero (i.e., all limit points of the sequence of iterates {b̂k} are normal vectors),
though the convergence rate depends on the specific choice of step size. For example, Theorem 3(iii)
guarantees a sub-linear convergence of tan(θk) for step size diminishing at the rate of 1/k.

10
-4

10
-2

10
0

Figure 2: Illustration of Theorem 3(iv): θk is the
principal angle between bk and S⊥ generated by
the PSGM Algorithm 1 with piecewise geometri-
cally diminishing step size. The red dotted line rep-
resents the upper bound on tan(θk) given by (14),
while the green dashed line indicates the choice of
the step size (12).

The approach of piecewise geometrically dimin-
ishing step size (see Theorem 3(iv)) takes ad-
vantage of the tradeoff in Theorem 3(i) by first
using a relatively large initial step size µ0 so that
K�(µ0) is small (although θ�(µ0) is large), and
then decreasing the step size in a piecewise fash-
ion. As illustrated in Figure 2, with such a piece-
wise geometrically diminishing step size, (14)
establishes a piecewise geometrically decaying
bound for the principal angles. Note that the
curve tan(θk) is not monotone because, as noted
earlier, PSGM is not a descent method. Per-
haps the most surprising aspect in Theorem 3(iv)
is that with the diminishing step size (12), we
obtain a K-step R-linear convergence rate for
tan(θk). This linear convergence rate relies on
both the choice of the step size and certain ben-
eficial geometric structure in the problem. As
characterized by Lemma 1, one such structure is
that all critical points in a neighborhood of S⊥ are global solutions. Aside from this, other properties
(e.g., the negative direction of the Riemannian subgradient points toward S⊥) are used to show
the decaying rate of the principal angle. This is different from the recent work [4] in which linear
convergence for PSGM is obtained for sharp and weakly convex objective functions and convex
constraint sets. Thus, we believe the choice of piecewise geometrically diminishing step size is of
independent interest and can be useful for other nonsmooth problems.7

4 Experiments on Synthetic Data and Real 3D Point Cloud Road Data

Synthetic Data We first use synthetic data to verify the proposed PSGM algorithm. We fix
D = 30, randomly sample a subspace S of dimension d = 29, and uniformly at random sample
N = 500 inliers and M = 1167 outliers (so that the outlier ratio M/(M + N) = 0.7) with unit
`2-norm. Inspired by the Piecewise Geometrically Diminishing (PGD) step size, we also use a
modified backtracking line search (MBLS) that always uses the previous step size as an initialization
for finding the current one within a backtracking line search [17, Section 3.1] strategy, which
dramatically reduces the computational time compared with a standard backtracking line search. The

7While smoothing allows one to use gradient-based algorithms with guaranteed convergence, the obtained
solution is a perturbed version of the targeted one and thus a rounding step (such as solving a linear program [18])
is required. However, as illustrated in Figure 3, solving one linear program is more expensive than the PSGM for
(2) when the data set is relatively large, thus indicating that using a smooth surrogate is not always beneficial.
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Figure 3: (L) Convergence of PSGM for different step sizes. Comparison of PSGM with ALP and IRLS in [24]
in terms of (M) iterations and (R) computing time. Here D = 30 and d = 29, N = 500, M

M+N
= 0.7.

corresponding algorithm is denoted by PSGM-MBLS. (This variant does not have any convergence
guarantee for nonsmooth problems but performed well in practice.) We set K0 = 30, K = 4 and
β = 1/2 for the PGD step size with initial step size obtained by one iteration of a backtracking
line search and denote the corresponding algorithm by PSGM-PGD. We define b̂0 to be the bottom
eigenvector of X̃ X̃>, which has been demonstrated to be effective in practice [24].
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Figure 4: The principal angle θ
between the solution to the DPCP
problem (2) and S⊥: black cor-
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2
and white corre-

sponds to 0. Here D = 30 and
d = 29. For each M , we find the
smallest N (red dots) such that
θ ≤ 0.001. The blue quadratic
curve indicates the least-squares
fit to these points.

Figure 3(L) displays the convergence of the PSGM (Algorithm 1)
with different choices of step sizes. We observe linear convergence
for both PSGM-PGD and PSGM-MBLS, which converge much
faster than PSGM with constant step size or classical diminishing
step size. In Figure 3(M)/(R) we compare PSGM algorithms with the
ALP and IRLS algorithm (referred to as DPCP-LP and DPCP-IRLS,
respectively, in [24]). First observe that, as expected, although ALP
finds a normal vector in few iterations, it has the highest time com-
plexity because it solves an LP during each iteration. Figure 3(R)
indicates that one iteration of ALP consumes more time than the
whole procedure for PSGM. We also note that aside from the the-
oretical guarantee for PSGM-PGD, it also converges faster than
IRLS (in terms of computing time), the latter lacking a convergence
guarantee. Finally, Figure 4 illustrates Theorem 2, using the same
setup, by showing the principal angle from S⊥ of the solution to the
DPCP problem computed by the PSGM-MBLS algorithm: the phase
transition is indeed quadratic, indicating that DPCP can tolerate as
many as O(N2) outliers as predicted by Theorem 2.

Experiments on real 3D point cloud road data We compare
DPCP-PSGM (with a modified backtracking line search) with RANSAC [5], `2,1-RPCA [27] and
REAPER [13] on the road detection challenge8 of the KITTI dataset [6], recorded from a moving
platform while driving in and around Karlsruhe, Germany. This dataset consists of image data
together with corresponding 3D points collected by a rotating 3D laser scanner. In this experiment
we use only the 360◦ 3D point clouds with the objective of determining the 3D points that lie on the
road plane (inliers) and those off that plane (outliers). Typically, each 3D point cloud is on the order
of 100,000 points including about 50% outliers. Using homogeneous coordinates this can be cast
as a robust hyperplane learning problem in R4. Since the dataset is not annotated for that purpose,
we manually annotated a few frames (e.g., see the left column of Fig. 5). Since DPCP-PSGM is
the fastest method (on average converging in about 100 milliseconds for each frame on a 6 core 6
thread Intel (R) i5-8400 machine), we set the time budget for all methods equal to the running time
of DPCP-PSGM. For RANSAC we also compare with 10 and 100 times that time budget. Since
`2,1-RPCA does not directly return a subspace model, we extract the normal vector via SVD on the
low-rank matrix returned by that method. Table 2 reports the area under the Receiver Operator Curve
(ROC), the latter obtained by thresholding the distances of the points to the hyperplane estimated by
each method, using a suitable range of different thresholds9. As seen, even though a low-rank method,
`2,1-RPCA performs reasonably well but not on par with DPCP-PSGM and REAPER, which overall

8Coherence Pursuit [19] is not applicable to this experiment because forming the required correlation matrix
of the thousands of 3D points is prohibitively expensive.

9For RANSAC, we also use each such threshold as its internal thresholding parameter.
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Figure 5: Frame 21 of dataset KITTI-CITY-48: raw image, projection of annotated 3D point cloud
onto the image, and detected inliers/outliers using a ground-truth threshold on the distance to the
hyperplane for each method. The corresponding F1 measures are DPCP-PSGM (0.933), REAPER
(0.890), `21-RPCA (0.248), RANSAC (0.023), 10xRANSAC (0.622), and 100xRANSAC (0.824).

tend to be the most robust methods. On the contrary, for the same time budget, RANSAC, which is
a popular choice in the computer vision community for such outlier detection tasks, is essentially
failing due to an insufficient number of iterations. Even allowing for a 100 times higher time budget
still does not make RANSAC the best method, as it is outperformed by DPCP-PSGM on five out of
the seven point clouds (1, 45, and 137 in KITTY-CITY-5, and 0 and 21 in KITTY-CITY-48).

Table 2: Area under ROC for annotated 3D point clouds with index 1, 45, 120, 137, 153 in KITTY-
CITY-5 and 0, 21 in KITTY-CITY-48. The number in parenthesis is the percentage of outliers.

KITTY-CITY-5 KITTY-CITY-48
Methods 1(37%) 45(38%) 120(53%) 137(48%) 153(67%) 0(56%) 21(57%)
DPCP-PSGM 0.998 0.999 0.868 1.000 0.749 0.994 0.991
REAPER 0.998 0.998 0.839 0.999 0.749 0.994 0.982
`2,1-RPCA 0.841 0.953 0.610 0.925 0.575 0.836 0.837
RANSAC 0.596 0.592 0.569 0.551 0.521 0.534 0.531
10xRANSAC 0.911 0.773 0.717 0.654 0.624 0.757 0.598
100xRANSAC 0.991 0.983 0.965 0.955 0.849 0.974 0.902

5 Conclusions
We provided an improved analysis for the global optimality of the DPCP method that suggests that
DPCP can handleO((#inliers)2) outliers. We also presented a scalable first-order method for solving
the DPCP problem that only uses matrix-vector multiplications, for which we established global
convergence guarantees for various step size selection schemes, regardless of the non-convexity and
non-smoothness of the DPCP problem. Finally, experiments on 3D point cloud road data demonstrate
that the proposed method is able to outperform RANSAC even when RANSAC is allowed to use 100
times the computational budget of the proposed method. Extensions to allow for corrupted data and
multiple subspaces, and further applications in computer vision are the subject of ongoing work.
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