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Abstract

We present a framework for automatically reconfiguring
images of street scenes by populating, depopulating, or re-
populating them with objects such as pedestrians or vehicles.
Applications of this method include anonymizing images to
enhance privacy, generating data augmentations for percep-
tion tasks like autonomous driving, and composing scenes to
achieve a certain ambiance, such as empty streets in the early
morning. At a technical level, our work has three primary
contributions: (1) a method for clearing images of objects,
(2) a method for estimating sun direction from a single image,
and (3) a way to compose objects in scenes that respects
scene geometry and illumination. Each component is learned
from data with minimal ground truth annotations, by making
creative use of large-numbers of short image bursts of street
scenes. We demonstrate convincing results on a range of
street scenes and illustrate potential applications.

1. Introduction

Websites such as Google Street View enable users to
explore places around the world through street-level im-
agery. These sites can provide a rich sense of what different
locales—neighborhoods, parks, tourist sites, etc—are really
like. However, the imagery provided by such sites also has
key limitations. A given image might be full of cars and
pedestrians, making it difficult to observe the environment.
Alternatively, a user might want to see how a scene appears at
a certain time of day, e.g., lunchtime, but only have access to
a morning image. And, importantly, the fact that the imagery
records real people and vehicles may require anonymization
efforts to protect privacy, e.g., by blurring faces and license
plates [10, 1] or by removing pedestrians from images by
leveraging multiple views [9].

We propose learning-based tools that mitigate these limi-
tations by removing objects from a scene and then repopu-
lating that scene with, for instance, anonymized images and
vehicles. Our method could thus be used to enhance privacy
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of imagery, while also increase flexibility to compose new
scenarios (e.g., an empty street or lunchtime scene). These
capabilities could also be useful in other applications, such as
automatic generation of novel scene configurations as a way
to augment data for training autonomous driving—especially
emergency scenarios that might be rare in real data. In order
for such reconfigured images to look realistic, they must re-
spect the illumination and geometry of the underlying scene.
Our learning-based method takes such factors into account.

As shown in Fig. 1, our framework takes as input a single
street image, and can realistically remove all objects and
generate repopulated images. To remove objects, we use
nearby patches to inpaint not only the objects themselves,
but also the shadows they cast onto the scene. To repopulate
with new objects, our framework can automatically select
objects that match the lighting of the scene, and compose
them into the scene with proper scale, occlusion, and cast
shadows consistent with the scene’s geometry and lighting.

Our method consists of four main components:

1. a removal network that removes all existing objects
(cars, pedestrians, and bicycles) – along with their shad-
ows – from a street image and realistically fills the re-
sulting holes, rendering an empty version of the scene;

2. a sun estimation network that takes a street image, and
estimates a dominant lighting (sun) direction;

3. a method to compose the inserted object into the scene
with proper scale, occlusion based on its placement in
the scene; and

4. an insertion network that takes a segmented object, e.g.,
drawn from an anonymized collection, and inserts it
into a scene, generating a realistic shadow.

Our method yields realistic results that improve upon prior
work. In particular, unlike standard methods such as image
inpainting [27, 38, 39, 37], our approach can realistically
remove and render object shadows. Instead of learning to
cast shadows into one specific scene captured with a long
video sequence [35], our approach learns from short image
bursts, then generalizes to any single image of a street scene.

Our three networks are learned in a novel way that in-
volves observing large numbers of street scenes, with no
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Figure 1. Our reconfiguration pipeline has four major components: (1) a removal network that learns to remove existing objects and their
shadows, (2) a sun estimation network that learns to predict sun position from an image, (3) a method to scale and insert newly inserted
objects with correct occlusion ordering, and (4) an insertion network that learns to cast shadows. Given a street image, our method first
removes selected objects, then selects new object that matches the lighting of the scene, composes them with correct scale and occlusion
order into the background image, and synthesizes shadows for inserted objects.

manual annotations required. In particular, we leverage large
numbers of short timelapse image sequences gathered from
Google Street View. In these timelapses, objects such as
pedestrians, bicyclists, and cars are generally in motion, en-
abling us to estimate a ground truth “clean plate” image
devoid of moving objects (and their shadows) by comput-
ing a median image. Pairs of input and clean plate frames
thus give us ground truth images with and without objects,
which we use as the basis for training. We show that this
data, along with metadata such as camera pose and time of
day, are sufficient supervision for our task.

Our work is motivated by goals such as improving visu-
alizations of scenes and enhance image privacy. We demon-
strated two potential applications using our framework: (1)
emptying the city by removing all objects within an image
and (2) repopulating the scenes with anonymized people.
These applications are designed to enhance the privacy of
a street image while preserving the realism. However, any
deployment of our methods in a real-world setting would
need careful attention to responsible design decisions. Such
considerations could include clearly watermarking any user-
facing image that has been recomposed, and matching the
distribution of anonymized people composed into a scene to
the underlying demographics of that location.

2. Related Work
Our work is related to prior work on object removal,

object insertion, and lighting estimation.

Object removal. Prior work on object removal falls mainly
into two groups: (1) image inpainting methods and (2) meth-
ods for detecting and removing object shadows.

Recently, deep learning and GAN-based approaches have
emerged as a leading paradigm for image inpainting. Liu et
al. [27] inpaint irregular holes with partial convolutions that
are masked and re-normalized to be conditioned on valid
pixels. Gated convolutions [39] generalize such partial con-

volutions by providing a learnable dynamic feature selection
mechanism for each channel and at each spatial location.
Contextual attention [38, 37] allows for long-range spatial
dependencies, allowing pixels to be borrowed from distant
locations to fill missing regions. Shadows have different
forms, e.g., hard shadows, soft shadows, partially occluded
shadows, etc. Hole-filling based methods have trouble deter-
mining what pixels to inpaint in different shadow scenarios.

Deep learning methods have also been applied to shadow
removal. Qu et al. [30] extract features from multiple views
and aggregate them to recover shadow-free images. Wang
et al. [34] and Hu et al. [16] use GANs for shadow removal,
while recently Le et al. [22] proposed a two-network model
to learn shadow model parameters and shadow mattes. How-
ever, these methods only inpaint shadow regions. Realistic
object removal involves removing both the object and its
shadow, as handled by our method.

Other work has sought to remove pedestrians from street
scenes by leveraging multiple views [9]. In our case, we oper-
ate on just a single view, and can also recompose new people
into scenes. Finally, face replacement [4] has been consid-
ered for realism-preserving privacy enhancement tool [3].
Our work considers whole people, and not just faces.

Object insertion. Early methods for object insertion include
Poisson blending [29], which can produce seamless object
boundaries, but can also result in illumination and color mis-
matches between the object and the target scene. Lalonde
et al. proposed Photo Clip Art, which inserts new objects
into existing photographs by first querying a large dataset of
cutouts for compatible objects [21]. Other methods match
the color, brightness, and styles of inserted objects to har-
moniously embed them into background images [24, 2, 40].
However, a realistic insertion should also consider an ob-
ject’s effect on the background (including shadows).

Some methods insert a 3D object by rendering it into in
an image. Karsch et al. demonstrate convincing object inser-
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tions via inverse rendering models derived from geometric
inference [18] or via single-image depth reconstruction [19].
Other work renders inserted objects with estimated HDR
environment lighting maps [15, 14]. Chuang et al. synthe-
size shadows for inserted objects via a shadow displacement
map [7]. However, these approaches essentially require a full
3D model of either the inserted object or the scene. Liu et
al. [26] focus on single light source scenes containing hard
shadows, whereas our method can handle scenes with soft
shadows and spatially varying lighting. Recently, Wang et al.
[35] proposed a data-driven method that takes a long video
of a scene and learns to synthesize shadows for inserted
2D cutout objects. Our method learns from short bursts of
images, and can synthesize shadows for 2D cutouts given a
single image of a new scene at test time.

Lighting estimation. To capture illumination Debevec [8]
captures HDR environment maps via bracketed exposures of
a chrome ball. Subsequent methods [5, 11, 15, 20, 23, 33]
use machine learning to predict HDR environment maps
from single indoor or outdoor images. However, a single
environment map is insufficient for compositing cut-out ob-
jects into a large captured scene, because different lighting
effects will apply depending on, for instance, whether the
object is placed in a sunlit area or a shadowed one. In our
work, we do not explicitly estimate lighting for each scene,
but instead use a rendering network that implicitly learns to
generate shadows appropriate for the object location.

Outdoor illumination is primarily determined by the
sun position and the weather conditions. Recent works
[28, 15, 14, 25] use data-driven methods to estimate the
sun azimuth angle from a single outdoor image. Our work
follows this trend and estimates a full 2D sun angle. We find
that estimating the sun position aids in synthesizing plausible
shadows in different weather and lighting scenarios.

3. Approach

Given an image of a street scene, our goal is to recompose
the objects (e.g., cars and pedestrians) in the scene by first re-
moving the existing objects, and then optionally composing
one or more new objects into the scene. These stages must
respect the illumination in the scene—in particular, shadows
(both their removal and insertion) are critical elements that
are difficult to handle realistically in prior work.

Our automatic pipeline for addressing this problem has
four major components, as shown in Fig. 1: (1) a removal
network that learns to remove existing objects and their shad-
ows, (2) a lighting estimation network that learns to predict
sun position from an image, which helps identify compatible
objects for insertion and is used to create better insertion
composites, (3) a method to scale the inserted object properly
with correct occlusion order based on its placement in the
scene, and (4) an insertion network that learns to cast shad-

A short timelapse sequence of images Median image

Figure 2. Our dataset consists of short image bursts, i.e., short
timelapse sequences of images captured over several seconds. We
compute the median of each timelapse image stack to produce a
“clean plate” background image free of objects and shadows.

ows for newly inserted objects. Given a street image, we first
use Mask R-CNN [36] to segment existing people and cars,
then use that as a mask for the object removal stage. The
object removal network completely removes those objects
(and their shadows), yielding a background image. The sun
estimation network is used to select new objects that match
the scene’s lighting. Selected objects are then composed into
the background image with correct scale and occlusion order
to get a shadow-free composite. Finally, our insertion net-
work takes the shadow-free composite, synthesizes shadows,
and outputs the final composite.

3.1. Data

We train our networks in a novel way by using a dataset of
image bursts, i.e., short timelapse image sequences captured
over several seconds. As shown in Fig. 2, we compute the
median of each timelapse image stack to produce a “clean
plate” background image free of (moving) objects such as
people and their shadows. We also know location and time
of day for each timelapse, from which we derive the sun po-
sition. (We do not use weather data; the sun position is noted
regardless of cloud cover.) Images with and without moving
objects, and corresponding sun positions serve as ground
truth supervision for our object removal, sun prediction, and
object insertion networks. At test time, our pipeline takes
in a single street image and can remove and repopulate the
objects within. We now describe the four components of our
pipeline.

3.2. Removal Network

Object removal is a challenging task that involves gener-
ating new content in holes left by removed objects, such that
the new image is realistic and semantically correct. Given a
mask indicating the objects to be removed, standard inpaint-
ing methods [27, 38, 39, 37] only fill masked regions, leaving
behind shadows. Our goal is to remove both objects and their
shadows. We propose a deep network that, given an image
and an object mask, constructs a new mask that includes the
object and its shadow, then inpaints the region inside this
mask. Inspired by PatchMatch-based inpainting [12] and
appearance flow [32], our method predicts a flow map that
uses nearby patches’ features to inpaint the masked region.
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Figure 3. The generator of the removal network takes an input
image I and a class mask as input, and outputs an inpainting mask
Minp and an inpainting map Iinp. We synthesize the removal image
Iremove = Iinp �Minp + I � (1−Minp).

Algorithm. Standard inpainting methods operate on an im-
age and a binary mask designating where to inpaint. In our
case, the network also automatically detects shadow regions
belonging to masked objects. Different objects have different
shadow shapes—for example, people can have long, thin,
complex shadows, while cars tend to have larger, simpler
shadows. Hence, rather than taking a binary mask, our net-
work receives an image and a class mask produced by Mask
R-CNN [36]. This class mask encodes the object category
of each pixel with distinct values normalized to [0, 1].

Fig. 3 shows the removal network architecture. We feed
the input image I and its class mask through four downsam-
pling layers followed by three different branches of residual
blocks. The first branch predicts a full inpainting maskMinp,
including the object and its shadow; the second predicts a
warping flow map Fwarp; and the third encodes the image as
a high-dimensional inpainting feature map Finp. The feature
map is then warped by the predicted flow map Fwarp and fed
into four upsampling layers to produce an inpainting image
Iinp. The final removal image is then computed as

Iremove = Iinp �Minp + I � (1−Minp). (1)

The feature warping layer uses the high-dimensional fea-
tures of nearby patches to inpaint the missing area. We found
that street scenes often have highly repetitive structures—
building facades, fences, road markings, etc.—and the fea-
ture warping layer works well in these situations.

3.3. Sun Estimation Network

Lighting is key to realistic image composition. An object
lit from the left composed into a scene lit from the right will
likely look unrealistic. Many traditional lighting estimation
methods reconstruct an environment map [5, 11, 15, 20,
23, 33]. However, a single environment map is insufficient
for compositing objects into the scene, because different
lighting effects will apply depending on object placement,
e.g., whether the object is the shade or lit by the sun. In our
work, we do not explicitly estimate scene illumination, but

instead predict the sun position with a deep network and use
the result to help synthesize plausible shadows. Further, we
apply the same network to choose objects with similar sun
position to be inserted.

Algorithm. Rather than regressing an image to sun azimuth
and elevation, we treat this as a classification problem and
predict a distribution over discretized sun angles. We divide
the range of azimuth angles [0, 2π) into 32 bins and elevation
angles [0, π/2] into 16 bins. We use a network similar to
ResNet50 [13], replacing the last fully connected layer with
two, one for azimuth and one for elevation. We train this
network using ground truth sun positions as supervision via
a cross-entropy loss. In Fig. 1 and 4, we visualize estimated
sun position as a 2D distribution formed by the outer product
of azimuth and elevation distribution vectors.

3.4. Scene Geometry for Occlusion and Scale

When composed into a scene, a new object should be
scaled properly according to its 3D scene position, and
should have correct occlusion relationships with other scene
structures. To that end, we desire accurate depth estimates
for both the target scene and source object, and propose a
method to robustly estimate depth for the scene and object
jointly. Our method, unlike [43], also reasons about occlu-
sion ordering for inserted objects. Here we take people as
an example of inserted objects, but our method also works
on other objects, including cars, bikes, and buses. We make
three assumptions: (1) the sidewalk and road regions in the
image can be well-approximated by a single plane; (2) there
is at least one person present; and (3) people are roughly the
same height in 3D. If the second assumption is not met, the
user can manually adjust the height scale. The third assump-
tion, while not universally true, facilitates depth estimation
by treating individual height difference as Gaussian noise.

Algorithm. As described in [35] (Eq. 7), any object’s bottom
middle point (x, y) and height h follow a linear relationship:

a′x+ b′y + c′ = h (2)

Also under perspective projection, the object’s height h is up
to a scale factor k with its disparity 1/Z:

h = k · 1
Z

(3)

Combining Eq. 2 and 3, we have a linear relation between
pixel coordinates and the disparity 1/Z:

a′x+ b′y + c′ =
1

Z
(4)

Given the input image, we first use DeepLab [6] to seg-
ment pixels belonging to sidewalk and road. We then use
MiDaS [31] to predict a depth map for the scene. MiDaS
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Figure 4. The generator of the insertion network takes as input a
shadow-free composite image Icomp, a class mask, an x-y grid
map, a depth map, and the predicted sun position distribution, and
outputs a scalar gain image G and color bias image B. Given the
shadow-free composite image Icomp, we synthesize the final image
Ifinal = G� Icomp +B.

predicts the disparity map D̂ up to a global scale and shift.
Therefore, the linear relationship in Eq. 4 still holds. After
collecting all 2D road/sidewalk pixels (xi, yi) and their dis-
parities d̂i, we use least squares to solve for (a′, b′, c′) in
Eq. 4. Finally, we solve for the scale factor k in Eq. 3 using
existing objects and their observed 2D heights. If there is no
object in the scene, a user can manually set the scale factor.

When inserting a new object into the scene at 2D position
(x, y), we apply Eq. 4 and Eq. 3 to estimate its disparity
d and height h, and resize the inserted object accordingly.
We then resolve occlusion order by comparing the object’s
disparity d and the scene’s disparity D̂ from MiDaS. Pixels
with larger disparity than d are foreground and will occlude
the object, and pixels with smaller disparity than d will be
occluded by the object.

3.5. Insertion Network

Shadows are one of the most interesting and complex
ways in which objects interact with a scene. As with the
removal network, predicting shadows for inserted objects
is challenging, as their shapes and locations depend on sun
position, weather, and the shape of both the object casting
the shadow and the scene receiving it. Furthermore, unlike
other lighting effects, shadows are not always additive, as
a surface already in shadow does not darken further when
a second shadow is cast on it with respect to the same light
source. We propose to use observations of objects in the
scene along with the scene’s predicted geometry and lighting
to recover these shadowing effects, using a deep network to
learn how objects cast shadows depending on their shape
and scene placement. Unlike the work of Wang et al., which
is trained on a long video of a scene and can only insert
objects within that same scene [35], our method learns from
a database of short image bursts, and can then be applied to
a single, unseen image at test time.

Algorithm. Our insertion network takes as input a shadow-

free composite image Icomp (where the desired object is
simply copy-pasted into the scene). As with the removal
network, we consider that shadow effects vary significantly
across object categories, and we also provide the class mask
introduced in Sec. 3.2 as input. In addition, because shadows
depend on scene geometry and illumination, we use Mi-
DaS [31] to predict a depth map for the shadow-free image,
and feed this to the insertion network, along with the sun po-
sition distribution from the sun estimation network. Finally,
following [35], we feed a x-y grid map to the network to
help stabilize training. As shown in Fig. 4, Icomp, the class
mask, x-y grid map, and depth map are concatenated and
passed through four downsampling layers then five residual
blocks. The sun azimuth and elevation vectors are concate-
nated, passed through four MLP layers and fused into five
residual blocks via AdaIN [17]. Finally, following [35], two
different upsampling layers generate a scalar gain image G
and color bias image B. The final image is computed as

Ifinal = G� Icomp +B. (5)

4. Evaluation
In this section, we introduce our collected datasets, then

evaluate our entire pipeline and its individual components.

4.1. Data

We collected short image bursts of street scenes from
Google Street View. These bursts are captured in major US
cities, and encompass a range of outdoor urban scenes includ-
ing streets, parks, and parking lots, under lighting conditions
ranging from clear to cloudy. In total, we collected 142, 778
image/background pairs for training and 16, 034 as a test
set. The test images are drawn from cities near the training
ones to ensure no overlap between training and test sets. We
center-crop all images to 512 × 512 with a field of view
of 75◦. To better evaluate performance, we also randomly
picked a small subset (∼150) of sunny images where objects
cast hard shadows, and a subset (∼180) of cloudy images
where objects cast subtle soft shadows from the test set.

4.2. Sun Estimation Network

We train our sun estimation network (Sec. 3.3) on the
training set with ground truth supervision. Ground truth sun
azimuth and elevation angles are calculated from each im-
age’s location, orientation, and timestamp using solar equa-
tions. Our network takes a street image and outputs two
vectors describing distributions of azimuth and elevation an-
gles. To compute a single pair of angles, we find the highest
probability bin from each vector, and use the bin center as
the estimated angle. We compare our sun estimation network
with [28, 14], adding a fully connected layer to their method
to predict the elevation angle. On average over the test set,
our azimuth prediction has an angular error of 35.71◦ vs.
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Figure 5. Object removal results on the test set. The traditional
inpainting method [37] only inpaints the area within the mask and
has leftover shadows. Our method removes objects completely
along with shadows. In addition, the inpainting method fails to
inpaint for large object (car in the second example).

50.17◦ [14] vs. 52.59◦ [28], and our elevation prediction has
an angular error of 9.79◦ vs. 13.02◦ [14] vs. 13.82◦ [28].
We further convert the sun angles to directions on the unit
sphere and compute the angle between predicted and ground
truth vectors, yielding an average error of 27.00◦. These
error rates are reasonably low, and of suitable accuracy for
applications like lighting matching and shadow prediction.

4.3. Removal Network

We trained our removal network (Sec. 3.2) on the training
set with median images as supervision for the object removed
images. And the supervision for inpainting masks is com-
puted by thresholding the color difference between median
images and original images. Fig. 5 shows example object
removal results on our test set using (1) the state-of-the-
art inpainting method CRA [37] (trained on Places2 [42]),
which only inpaints the mask area and (2) our method, which
also predicts an enlarged inpainting mask. Both networks
realistically inpaint the object region; however, CRA fails
to remove object shadows since they are not included in
the mask. Our network yields a complete object removal,
which overall is more realistic. We show quantitative results
using the LPIPS [41] error metric in Tab. 1. Both methods
achieve a lower error compared to the input image. Ours has
much lower LPIPS error than CRA on sunny days (where our
method benefits from removing hard shadows), and slightly

Method All Sunny Cloudy

Input 0.113 0.099 0.096
CRA [37] 0.107 0.090 0.083
Ours 0.104 0.079 0.080

Table 1. Object removal results on all test images, the sunny subset,
and the cloudy subset, measured in LPIPS [41]. Lower is better.

Method All Sunny Cloudy

Shadow-free composite 0.073 0.060 0.058
Shadow network 0.069 0.054 0.056
Ours (w/o x-y grid) 0.079 0.065 0.069
Ours (w/o sun position) 0.068 0.054 0.056
Ours (w/o depth map) 0.078 0.060 0.062
Ours 0.068 0.053 0.056

Table 2. Object insertion results on all test images, the sunny subset,
and the cloudy subset, measured in LPIPS [41]. Lower is better.

lower on cloudy days (where the shadows are more subtle).
As shown in Fig. 5, our method removes objects completely
and performs better in the task of object removal. We further
tried running CRA [37] using our thresholded inpainting
mask. This method gave an LPIPS score of 0.162 on the test
set (vs. ours at 0.104). CRA is not trained with our inpaint-
ing mask, thus cannot adapt errors in our mask estimation,
leading to artifacts in the final output.

4.4. Insertion Network

Our insertion network (Sec. 3.5) is trained to take shadow-
free composite images and render object shadows, using
original images as ground truth supervision. Fig. 6 shows ex-
ample results using (1) a baseline pix2pix-style method [35]
that takes a shadow-free image and an x-y grid; (2) an ab-
lative method that takes a shadow-free image, x-y grid and
depth map; (3) an ablative method that takes a shadow-free
image, x-y grid, and predicted sun position; and (4) our
method. All methods are trained on our training set. The pre-
dicted sun position helps the network produce shadows in the
right direction. The depth map and x-y grid stabilize train-
ing, preventing the network from overfitting and producing
broken or detached shadows. Quantitative results shown in
Tab. 2 suggest that our method has an advantage over other
models. On sunny days, our full model benefits from the
depth map, sun position and x-y grid, and outputs realistic,
detailed shadows. On cloudy days, our model synthesizes
subtle soft shadows, still performing the best overall.

5. Applications
In this section, we discuss potential applications of our

method to recomposing or repopulating single street images.
These applications are enabled by one or more of the compo-
nents of our pipeline. We also discuss ethical considerations
involved in such applications in Sec. 6.
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Figure 6. Object insertion results on the test set. Our method generates the most realistic shadows with details. The sun position input helps
the network to determine the shape of the shadow. The depth map prevents the network from synthesizing broken or detached shadows.

Object lighting matching. When repopulating scenes, se-
lecting objects with similar lighting as the scene is crucial
for realistic composition. Hence, we wish to compute the
sun position for both the source object and target scene.
Hence, we train two sun estimation networks (Sec. 3.3), one
for scenes and one for objects. The scene sun estimation
network takes the image I and predicts sun azimuth and
elevation vectors ascene, escene, while the object sun estima-
tion network pre-computes sun angle vectors aobj,i, eobj,i for
each object oi in the collection. The object oi that maximizes
ascene · aobj,i + escene · eobj,i is then selected as the object
that best matches the scene’s lighting.
Emptying the city. Mask R-CNN [36] can segment out
certain set of objects (people, cars, bikes, etc). Our removal
network then takes this mask, and synthesizes an image
without those objects along with their shadows. This enables
applications such as removing all people and cars in NYC or
LA. As demonstrated in Fig. 7, we use our removal network
to remove all the objects—people and cars—in the image,
giving users a different visualization of a city. Hence, it
can also enhance the privacy of the imagery. Our method
successfully removes all objects along with their shadows

from the given street image.
Privacy enhancement. While removing all the people in
the image enhances privacy, it decreases the liveliness of the
street scene as well. To that end, we built a collection of peo-
ple viewed from the back (or nearly the back) from licensed
imagery on Shutterstock. Our pipeline can populate scenes
with such people, thus enhancing privacy while retaining a
sense of liveliness within the scene.

As above, our method can remove whole categories of
objects to yield a background frame Iback. Then, we can
use our object lighting matching method to find a set of
best matching objects, then randomly place each object oi
on sidewalk and road regions in Iback via the segmentation
map in Sec. 3.4. Objects will be automatically resized and
occluded using the methods described in Sec. 3.4 to get the
shadow-free composition Icomp. Finally Icomp is passed to
the insertion network to synthesize the final composition
Ifinal. Fig. 8 shows results for repopulating street scenes. We
substitute the people in the scene with anonymized people,
thus enhancing privacy while preserving the realism of street
scenes. Note that our work focuses on lighting, and does not
attempt to match the camera viewpoint for inserted objects
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Figure 7. Qualitative results for removing all people and cars in a
street image. From left to right: the input image, the class mask for
objects to be removed, and the removal results generated by the
removal network. Our method removes objects completely.

as in [21] or compensate for differences in camera exposure,
white balance, etc. These are left as future work.
Other applications. We have also developed an interactive
scene reconfigurator that leverages the elements of our frame-
work. With this tool, a user can take a street image and
remove selected existing objects, or conversely, place new
objects in the scene. This tool can synthesize street images
that are rare in real life, e.g., people walking in the mid-
dle of a busy road, or cars driving on the sidewalk. These
synthesized scenes could be used for data augmentation for
autonomous driving to simulate dangerous situations.

6. Discussion and Ethical Considerations

In this paper, we introduced a fully automatic pipeline for
populating, depopulating, or repopulating street scenes. Our
pipeline consists of four major components: (1) a removal
network that can remove selected objects along with their
shadows; (2) a sun estimation network that predicts the sun
position from an image; (3) a method to scale and occlude
inserted objects properly; and (4) an insertion network that
synthesizes shadows for inserted objects. These components
are trained on short image bursts of street scenes, and can
run on a single street image at test time. Further, we show
multiple applications of our pipeline for depopulating and
repopulating street scenes.

While our work is motivated by goals like improving
visualizations of scenes and enhance image privacy, it is

Input image Repopulation resultsRemoval results

Figure 8. Qualitative results for repopulating street scenes. From
left to right: the input image, the background image after removing
all people, and repopulation results. Our pipeline selects people
matching the scene’s lighting, places them randomly on sidewalks
and roads, and synthesizes realistic shadows.

important to consider the broader impacts and ethical as-
pects of computer vision research, particular work related to
synthetic imagery. Potential harmful outcomes relating to re-
composing street scenes include (1) misuse in creating a false
narrative, such as a crowd or protest in a certain location, and
(2) misrepresenting a neighborhood by changing the demo-
graphics of people therein. In our case, some issues related to
synthetic media are mitigated by inherent limitations of our
method—for instance, our method can compose separated
people into scenes, and synthesize their shadows cast on the
ground, but would have trouble generating a dense crowd of
people where people would be shadowing each other. That
said, any deployment of our methods in a real-world setting
would need careful attention to responsible design decisions.
Such considerations could include clearly watermarking any
user-facing image that has been recomposed, and matching
the distribution of anonymized people composed into a scene
to the underlying demographics of that location. At the same
time, our work may lead to knowledge useful to counter-
abuse teams working on manipulated imagery and synthetic
media data methods.
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