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These applications consume a lot 
(most?) 
Often input data is inexact by nature 
(from sensors) 
They have multiple acceptable outputs
They do not require “perfect execution”



Floating point

Iterative algorithms
Lossy compression

Notions of “approximation” have 
been around for a long time...

...



Floating point

Iterative algorithms
Lossy compression

Notions of “approximation” have 
been around for a long time...

...



So what is “Approximate computing” then?
Floating point

Iterative algorithms
Lossy compression

Notions of “approximation” have 
been around for a long time...

...



So what is “Approximate computing” then?
Floating point

Iterative algorithms
Lossy compression

Notions of “approximation” have 
been around for a long time...

...

Pe
rf
or
m
an
ce

Resource	
  usage	
  (e.g.,	
  energy)



So what is “Approximate computing” then?
Floating point

Iterative algorithms
Lossy compression

Notions of “approximation” have 
been around for a long time...

...

Pe
rf
or
m
an
ce

Resource	
  usage	
  (e.g.,	
  energy)

Ac
cu
rac
y



So what is “Approximate computing” then?
Floating point

Iterative algorithms
Lossy compression

Notions of “approximation” have 
been around for a long time...

...

Pe
rf
or
m
an
ce

Resource	
  usage	
  (e.g.,	
  energy)

Ac
cu
rac
y

Sources	
  of	
  systematic	
  accuracy	
  loss:	
  
• Unsound	
  code	
  transformations,	
  ~2X	
  
• Unreliable,	
  probabilistic	
  hardware	
  (near/sub-­‐threshold,	
  etc.),	
  ~5X	
  
• Fundamentally	
  different,	
  inherently	
  inaccurate	
  execution	
  models,	
  
“closer	
  to	
  physics”	
  	
  (e.g.,	
  neural	
  networks,	
  analog	
  computing),	
  
~10-­‐100X
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But approximation needs to be done 
carefully... or...
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“Disciplined” approximate programming

Precise Approximate
✗
✓references

jump targets

JPEG header

pixel data

neuron weights

audio samples

video frames

•Programmer has direct control of approximate/precise and the flow  
•System is free to approximate as long as rules are obeyed
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Disciplined Approximate Programming 

(EnerJ, EnerC,...)

int p = 5;!
@Approx int a = 7;!
for (int x = 0..) {!

a += func(2);!
@Approx int z;!
z = p * 2;!
p += 4;!

}!
a /= 9;!
p += 10;!
socket.send(z);!
write(file, z);Relaxed Algorithmsλ

Aggressive Compilationɸ
Approximate Data Storage

Variable-Accuracy ISAALU

Approximate Logic/Circuits
AND

NOR

NAND

Variable-quality wireless 
communication

Goal: support a wide range of approximation 
techniques with a single unified  abstraction.
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Architecture

Circuits

Application

EnerJ

Truffle NPUISA w/ variable 
accuracy

neural 
networks 

as accelerators

Approximate

Storage

The plan for the rest of this talk

Prototype, etc

QoR

Approximate

Wireless

type system  
for where-to-
approximate

quality of 
results
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int a = ...;@Approx
int p = ...;@Precise

p + p; p + a; a + a;

✓if (       !
    p = 2;!
}
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How good is my final output?

• Quality-­‐of-­‐Result	
  (QoR)	
  
• Application	
  dependent	
  	
  
– e.g,	
  %	
  of	
  bad	
  pixels,	
  deviation	
  from	
  expected	
  value,	
  %	
  
of	
  poorly	
  classified	
  images,	
  car	
  crashes,	
  etc…
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Specifying and checking QoR

res = computeSomething(); 
assert diff(res, resʹ) < 0.1;

precise version of the result



Verifying quality expressions

approximate 
program 

+ 
input and error  

distribution
Bayesian 

network IR
optimized 
Bayes net

sampling

exact 
evaluation

Expressing and Verifying Probabilistic Assertions, PLDI’14



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

<ε?-



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

<ε?-

<ε?-



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

<ε?-

<ε?-



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

Simple!
verification 
functions

<ε?-

<ε?-



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

Simple!
verification 
functions

<ε?-

<ε?-
✓



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

Simple!
verification 
functions

<ε?-

<ε?-
✓



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

Simple!
verification 
functions

Fuzzy 
Memoization

<ε?-

<ε?-
✓



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

Simple!
verification 
functions

Fuzzy 
Memoization

<ε?-

<ε?-
✓



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

Simple!
verification 
functions

Fuzzy 
Memoization

<ε?-

<ε?-
✓



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

Simple!
verification 
functions

Fuzzy 
Memoization

<ε?-

<ε?-
✓



Online QoR monitoring
Can react – recompute or reduce approximation!
But needs to be cheap!

Sampled!
precise !
re-execution

Simple!
verification 
functions

Fuzzy 
Memoization

<ε?

<ε?-

<ε?-
✓



Compiler

EnerJ

Truffle
ISA w/ 
variable 

accuracy

language for 
where-to-

approximate
Monitoring

Application

What about actual approximate execution?

quality 
evaluation



Compiler

EnerJ

Truffle
ISA w/ 
variable 

accuracy

language for 
where-to-

approximate
Monitoring

Application

What about actual approximate execution?

quality 
evaluation



Hardware support for 
disciplined approximate execution

Truffle 
CoreCompiler

int p = 5;!
@Approx int a = 7;!
for (int x = 0..) {!

a += func(2);!
@Approx int z;!
z = p * 2;!
p += 4;!

}!
a /= 9;!
func2(p);!
a += func(2);!
@Approx int y;!
z = p * 22 + z;!
p += 10;

VDDH

VDDL

Architecture Support for Disciplined Approximate Programming, ASPLOS 2012



@Approx float[] nums;!
⋮!
@Approx float total = 0.0f;!
for (@Precise int i = 0;!
     i < nums.length;!
     ++i)!
  total += nums[i];!
return total / nums.length;
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approximate data storage



@Approx float[] nums;!
⋮!
@Approx float total = 0.0f;!
for (@Precise int i = 0;!
     i < nums.length;!
     ++i)!
  total += nums[i];!
return total / nums.length;

approximate operations



Relaxing the 
hardware-software interface

EnerJ

Compiler

Architecture

Circuits

ISA
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Approximation-aware ISA

ld    0x04 r1!
ld    0x08 r2!
add.a r1   r2   r3!
st.a  0x0c r3

operations
ALU

storage
registers
caches

main memory
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Dual-voltage pipeline

Fetch Decode Reg Read Execute Memory Write 

Branch 
Predictor

Instruction 
Cache

ITLB

Decoder Register File

Integer FU

FP FU

Data Cache

DTLB

Register File

replicated functional units

dual-voltage SRAM arrays

7–24% energy saved on average 
(fft, game engines, raytracing, QR code readers, etc) 
(scope: processor + memory)

not good... :( 
(though better implementations likely)
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Amdahl’s law... damn!

Fetch Decode Reg Read Execute Memory Write Back

Branch 
Predictor

Instruction 
Cache

ITLB

Decoder Register File

Integer FU

FP FU

Data Cache

DTLB

Register File

•Benefit limited to what can be approximated 
•Instruction control can not be approximated
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How can we get rid of exact instruction 
bookkeeping? 

If behavior is approximate, why program it 
precisely? 
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Why Neural Networks as Approximate Accelerators? 

Neural Acceleration of General-Purpose Approximate Programs, MICRO 2012 
General-Purpose Code Acceleration with Limited-Precision Analog Computation, ISCA 2014



CPU

Very efficient hardware 
implementations!

Trainable to mimic 
many computations!

Recall is imprecise.

Why Neural Networks as Approximate Accelerators? 

Fault tolerant 

[Temam, ISCA 2012]

Neural Acceleration of General-Purpose Approximate Programs, MICRO 2012 
General-Purpose Code Acceleration with Limited-Precision Analog Computation, ISCA 2014



Program

Neural acceleration



Neural acceleration

Program

Find an approximate 
program component



Program

Neural acceleration

Find an approximate 
program component



Program
Compile the program 
and train a neural network

Neural acceleration

Find an approximate 
program component



Program
Compile the program 
and train a neural network

Execute on a fast Neural 
Processing Unit (NPU)

Neural acceleration

Find an approximate 
program component



An example: Sobel filter

@approx float grad(approx float[3][3] p) {!
  …!
}!

edgeDetection()
void edgeDetection(aImage &src,!
                   aImage &dst) {!
  for (int y = …) {!
    for (int x = …) {!
      dst[x][y] =!
           grad(window(src, x, y));!
    }!
  }!
}!

@approx float dst[][];



An example: Sobel filter

@approx float grad(approx float[3][3] p) {!
  …!
}!

edgeDetection()
void edgeDetection(aImage &src,!
                   aImage &dst) {!
  for (int y = …) {!
    for (int x = …) {!
      dst[x][y] =!
           grad(window(src, x, y));!
    }!
  }!
}!

@approx float dst[][];

Approximable√
Well-defined inputs and outputs√
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Empirically selecting 
target code

Program Accelerated 
Program

√

√
✗

Each region of code leads to a different NN configuration. 



Neural Processing Unit

Core NPU

input

output

configuration
enq.c
deq.c

enq.d

deq.d
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A digital NPU
Bus 

Scheduler

Processing 
Engines

input

output

scheduling

Many other implementations
FPGAs 

Analog 

Hybrid HW/SW 

SW only? on GPUs? 

...



1,079 
static x86-64 
instructions

60 neurons 
2 hidden layers

88 static 
instructions

18 
neurons

triangle 
intersection

edge 
detection

How do the NNs look like in practice?

56% of dynamic 
instructions

97% of dynamic 
instructions



1,079 
static x86-64 
instructions

60 neurons 
2 hidden layers

88 static 
instructions

18 
neurons

triangle 
intersection

edge 
detection

How do the NNs look like in practice?

56% of dynamic 
instructions

97% of dynamic 
instructions

oj = sigmoid( wjix ji
i
∑ )



Summary of results

2.3x average speedup 
Ranges from 0.8x to 11.1x

3.0x average energy reduction for digital, ~10x for analog 
All benchmarks benefit

Quality loss below 10% in all cases 
Based on application-specific quality metrics

Just one possible design. Many others possible. Analog is where the big gains are 
likely (~10x+). 
Key here is algorithmic transformation that enables new more efficient execution 
models.  
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Approximate mass storage with Flash 
and PCM Approximate Storage in Solid State Memories [MICRO’13]

Cells wear out 
over time

Multi-level cells are 
slow or unreliable

Use worn-out memory for 
approximate data instead 
of throwing it away.

Trade off accuracy for 
performance/density in 
multi-level cell accesses.
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Typical Trade-off in Multi-Level Cells

Fast Dense



Adding a New Trade-Off Axis

Fast Dense

Accurate
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are bad!

Configurable-quality wireless protocol. Quality 
automatically set by the data type.



Neural Acceleration on a 
programmable SoC

Dual-core 
ARM NPU

I/O, 
memory controller



Showing End-to-End benefit
Mobile Vision/Augmented Reality 
Linux on Zynq SoC (ARM CPU + FPGA)

Measure 
Energy Savings

Measure 
Speedup

Evaluate 
User Experience

Evaluate 
Programmer Effort

Neural 
Accelerator

Compiler 
Support

Approx. 
FPGA+ +
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Other ongoing effort
•Understanding specialization vs. approximation benefits 
•Compiler-only approximation w/ unsound 
transformations 
•HCI aspects: how do measure user satisfaction? do 
incentives matter in choosing quality? 
•Language support for QoR (quality of results, 
probabilistic assertions) 
•Tools to help programmers w/ porting, testing and 
debugging 
•Exploring uses in energy-harvesting-based devices 
•approxbench.org 

http://approxbench.org


Conclusion

Our goal is to exploit approximate computing across the 
system. (compute, storage, communication)

Key aspect is co-designing programming model with 
approximation techniques: disciplined approximate programming. 

Early results encouraging. Approximate computing can 
potentially save our bacon in a post-Dennard era and be in the 
survival kit for dark silicon. 

We need to exploit application properties and co-design hardware-
software for better efficiency. 

Getting closer to physics might lead to very big efficiency gains.
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