Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).
SIGGRAPH '19 Courses, July 28 - August 01, 2019, Los Angeles, CA, USA
ACM 978-1-4503-6307-5/19/07.
10.1145/3305366.3328065
Your lecturers for this course

- **Instructors**
 - Wojciech Matusik, MIT
 - Adriana Schulz, UW
Course Website

www.yellkey.com/agent
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 am - 9:10 am</td>
<td>Introduction</td>
</tr>
<tr>
<td>9:10 am - 9:25 am</td>
<td>Hardware Review</td>
</tr>
<tr>
<td>9:25 am - 9:50 am</td>
<td>From Design to Machine Code</td>
</tr>
<tr>
<td>9:50 am - 10:20 am</td>
<td>Design Space Representations</td>
</tr>
<tr>
<td>10:20 am - 10:25 am</td>
<td>Performance Driven Design</td>
</tr>
<tr>
<td>10:25 am - 10:40 am</td>
<td>Break</td>
</tr>
<tr>
<td>10:40 am - 10:55 am</td>
<td>Performance Space Representation</td>
</tr>
<tr>
<td>10:55 am - 11:15 am</td>
<td>Inverse Methods</td>
</tr>
<tr>
<td>11:15 am - 11:35 am</td>
<td>Multi-objective Inverse Methods</td>
</tr>
<tr>
<td>11:35 am - 12:00 pm</td>
<td>Advanced Performance Driven Design</td>
</tr>
<tr>
<td>12:00 pm - 12:15 pm</td>
<td>Course Review</td>
</tr>
<tr>
<td>Time</td>
<td>Topic</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>9:00 am - 9:10 am</td>
<td>Introduction</td>
</tr>
<tr>
<td>9:10 am - 9:25 am</td>
<td>Hardware Review</td>
</tr>
<tr>
<td>9:25 am - 9:50 am</td>
<td>From Design to Machine Code</td>
</tr>
<tr>
<td>9:50 am - 10:20 am</td>
<td>Design Space Representations</td>
</tr>
<tr>
<td>10:25 am - 10:25 am</td>
<td>Performance Driven Design</td>
</tr>
<tr>
<td>10:25 am - 10:40 am</td>
<td>Break</td>
</tr>
<tr>
<td>10:40 am - 10:55 am</td>
<td>Performance Space Representation</td>
</tr>
<tr>
<td>10:55 am - 11:15 am</td>
<td>Inverse Methods</td>
</tr>
<tr>
<td>11:15 am - 11:35 am</td>
<td>Multi-objective Inverse Methods</td>
</tr>
<tr>
<td>11:35 am - 12:00 pm</td>
<td>Advanced Performance Driven Design</td>
</tr>
<tr>
<td>12:00 pm - 12:15 pm</td>
<td>Course Review</td>
</tr>
</tbody>
</table>
Manufacturing in Near Future

Carbon 3D - Adidas
Manufacturing in Near Future
Manufacturing in Near Future
Why Computational Design and Manufacturing?
Why Computational Design and Manufacturing?
Hardware
Hardware Abstraction & Machine Code
Hardware Abstraction & Machine Code
Design: Shape and Materials

Hardware Machine Code Design
From Design to Machine Code
High-level Specifications/Performance
From Design to Performance

Hardware ➔ Machine Code ➔ Design ➔ Performance

- Machine Code with example G-code:
  ```
  1 3 difference()
  2 //cuerpo del dado
  3 intersection()
  4 cube(20,center=true);
  5 sphere(15,$fn=100);
  6 //cara del 1
  7 translate([10,0,0])
  8 sphere(2,$fn=20);
  9 }
  10 translate([0,10,0])
  11 sphere(2,$fn=20);
  12 translate([5,10,5])
  13 sphere(2,$fn=20);
  14 translate([-5,-10,5])
  15 sphere(2,$fn=20);
  ```

- Diagram showing energy and toughness axes with a point.
From Performance to Design
Human Computer Interaction (HCI)
Artificial Intelligence (AI) & Machine Learning
Operating Systems for Future Factory

- Multi-tasking
- Distributed systems
Who’s working on this?

Highly interdisciplinary field!
Robotics

Fabrication Hardware

Design of Cyber-physical Systems
Human-Computer Interaction

Hardware interfaces

Design Systems
Computer Graphics

Geometry Processing

Performance-Driven Design
Active Research Areas

- Computer Science
 - Artificial Intelligence
 - Security & Privacy
 - Programing Languages
 - Robotics
 - Graphics
 - HCI
 - Systems & Architecture
 - Wireless & Sensor Systems
 - Data Science

- Mechanical Engineering
- Electrical Engineering
- Architecture
- Biology/ Medicine
What Will You Learn?

- Hardware and its abstractions
- Surfaces and Solids
- Parametric Modeling
- Performance Space Representations
- Inverse Methods
- High Performance Applications
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 am - 9:10 am</td>
<td>Introduction</td>
</tr>
<tr>
<td>9:10 am - 9:25 am</td>
<td>Hardware Review</td>
</tr>
<tr>
<td>9:25 am - 9:50 am</td>
<td>From Design to Machine Code</td>
</tr>
<tr>
<td>9:50 am - 10:20 am</td>
<td>Design Space Representations</td>
</tr>
<tr>
<td>10:20 am - 10:25 am</td>
<td>Performance Driven Design</td>
</tr>
<tr>
<td>10:25 am - 10:40 am</td>
<td>Break</td>
</tr>
<tr>
<td>10:40 am - 10:55 am</td>
<td>Performance Space Representation</td>
</tr>
<tr>
<td>10:55 am - 11:15 am</td>
<td>Inverse Methods</td>
</tr>
<tr>
<td>11:15 am - 11:35 am</td>
<td>Multi-objective Inverse Methods</td>
</tr>
<tr>
<td>11:35 am - 12:00 pm</td>
<td>Advanced Performance Driven Design</td>
</tr>
<tr>
<td>12:00 pm - 12:15 pm</td>
<td>Course Review</td>
</tr>
</tbody>
</table>
Computational Design Stack

- Hardware
- Machine Code
- Design
- Performance
Subtractive Manufacturing

- Start with a block of material
- Remove material to obtain a given shape

Source: https://commons.wikimedia.org
Computer Numerical Control (CNC) Cutting

- Many different methods (e.g., laser cutting, water jetting)
- Input: 2D vector format
- Output: G-code

Source: https://en.wikipedia.org/wiki/Laser_cutting
3-Axis CNC Milling/Engraving

- Input: 2.5D (heightfield)
- Output: G-code, multiple passes

Source: https://www.youtube.com/watch?v=uE-49w6JtTk
5-Axis CNC Milling

- Input: 3D Mesh
- Output: G-code, multiple passes

Source: https://www.youtube.com/watch?v=uE-49w6JtTk
Whole-garment Knitting

Source: ACM Siggraph
3D Printing Basics
3D Printing = Additive Manufacturing

Source: https://commons.wikimedia.org/wiki/File:3D_printing_on_replicator_2.webm
3D Printing Process

- Slice 3D model into layers

Source: https://commons.wikimedia.org
3D Printing Process

- Slice 3D model into layers
- Manufacture layers one by one (e.g., bottom-up)

Source: https://commons.wikimedia.org
Additive Manufacturing Processes

- Thermoplastic Extrusion
 - Fused deposition modeling (FDM)

- UV Curable Resins/thermosets
 - Stereolithography (SLA) & DLP Printing
 - Photopolymer Inkjet Printing

- Powders
 - Selective laser sintering (SLS)
 - Binder jetting/3D Printing

- Sheets
 - Laminated object manufacturing (LOM)
Additive Manufacturing Processes

- Thermoplastic Extrusion
 - Fused deposition modeling (FDM)
- UV Curable Resins/thermosets
 - Stereolithography (SLA) & DLP Printing
 - Photopolymer Inkjet Printing
- Powders
 - Selective laser sintering (SLS)
 - Binder jetting/3D Printing
- Sheets
 - Laminated object manufacturing (LOM)
Fused Deposition Modeling (FDM)

- Fused Filament Fabrication (FFF)
- Filament is made of thermoplastic materials
 - e.g., ABS, polycarbonate, PLA
- Temporary support structure can be made from water-soluble material such as PVA
 - removed using heated sodium hydroxide solution

Source: http://reprap.org
Additive Manufacturing Processes

- Thermoplastic Extrusion
 - Fused deposition modeling (FDM)
- UV Curable Resins/thermosets
 - Stereolithography (SLA) & DLP Printing
 - Photopolymer Inkjet Printing
- Powders
 - Selective laser sintering (SLS)
 - Binder jetting/3D Printing
- Sheets
 - Laminated object manufacturing (LOM)
Stereolithography (SLA)

- SLA uses liquid ultraviolet curable photopolymer resin
- Laser beam traces one layer on the surface of the resin
- Laser light cures and solidifies the layer

Source: http://en.wikipedia.org/
Digital Light Projector (DLP) 3D Printing

- DLP 3D printer uses liquid ultraviolet curable photopolymer resin
- DLP exposes and solidifies one layer at a time on the surface of the resin
DLP 3D Printing Process
Additive Manufacturing Processes

- Thermoplastic Extrusion
 - Fused deposition modeling (FDM)
- UV Curable Resins/thermosets
 - Stereolithography (SLA) & DLP Printing
 - Photopolymer Inkjet Printing
- Powders
 - Selective laser sintering (SLS)
 - Binder jetting/3D Printing
- Sheets
 - Laminated object manufacturing (LOM)
Photopolymer Inkjet Printing

- Inkjet printhead jets liquid photopolymer and support material
- UV light cures photopolymer and support material
- Excess material is removed using a roller
- The platform descends by one layer

Printing Process

Source: https://www.youtube.com/watch?v=XLLq9SwSTpM
Sample Fabricated Objects

Source: Stratasys
Additive Manufacturing Processes

- Thermoplastic Extrusion
 - Fused deposition modeling (FDM)
- UV Curable Resins/thermosets
 - Stereolithography (SLA) & DLP Printing
 - Photopolymer Inkjet Printing
- Powders
 - Selective laser sintering (SLS)
 - Binder jetting/3D Printing
- Sheets
 - Laminated object manufacturing (LOM)
Selective Laser Sintering (SLS)
Direct Metal Laser Sintering (DMLS)

- SLS and DMLS use a bed of small particles (made of plastic, metal, ceramic, or glass)
- High-power laser traces one layer on the surface of the powder bed melting/fusing the particles

SLS & DMLS Process

Source: https://www.youtube.com/watch?v=BZLGLzyMKn4
Sample Fabricated Parts

Additive Manufacturing Processes

- Thermoplastic Extrusion
 - Fused deposition modeling (FDM)
- UV Curable Resins/thermosets
 - Stereolithography (SLA) & DLP Printing
 - Photopolymer Inkjet Printing
- Powders
 - Selective laser sintering (SLS)
 - Binder jetting/3D Printing
- Sheets
 - Laminated object manufacturing (LOM)
Binder Jet 3D Printing

- This method uses a bed of small plaster particles
- Inkjet printhead prints with liquid (possibly colored) adhesive one layer on the surface of the powder bed fusing the particles
- The platform descends by one layer and more material is added

Source: Zhou and Lu, 2011
Binder Jet 3D Printing Process

Source: https://www.youtube.com/watch?v=GnFxujCyD70
Binder Jet: Plastics (HP)
Binder Jet: Metals (HP)

Source: HP
Binder Jet: Metals (HP)
Additive Manufacturing Processes

- Thermoplastic Extrusion
 - Fused deposition modeling (FDM)
- UV Curable Resins/thermosets
 - Stereolithography (SLA) & DLP Printing
 - Photopolymer Inkjet Printing
- Powders
 - Selective laser sintering (SLS)
 - Binder jetting/3D Printing
- Sheets
 - Laminated object manufacturing (LOM)
<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 am - 9:10 am</td>
<td>Introduction</td>
</tr>
<tr>
<td>9:10 am - 9:25 am</td>
<td>Hardware Review</td>
</tr>
<tr>
<td>9:25 am - 9:50 am</td>
<td>From Design to Machine Code</td>
</tr>
<tr>
<td>9:50 am - 10:20 am</td>
<td>Design Space Representations</td>
</tr>
<tr>
<td>10:20 am - 10:25 am</td>
<td>Performance Driven Design</td>
</tr>
<tr>
<td>10:25 am - 10:40 am</td>
<td>Break</td>
</tr>
<tr>
<td>10:40 am - 10:55 am</td>
<td>Performance Space Representation</td>
</tr>
<tr>
<td>10:55 am - 11:15 am</td>
<td>Inverse Methods</td>
</tr>
<tr>
<td>11:15 am - 11:35 am</td>
<td>Multi-objective Inverse Methods</td>
</tr>
<tr>
<td>11:35 am - 12:00 pm</td>
<td>Advanced Performance Driven Design</td>
</tr>
<tr>
<td>12:00 pm - 12:15 pm</td>
<td>Course Review</td>
</tr>
</tbody>
</table>
Computational Design and Fabrication Pipeline
3D Printing Software Pipeline

Input Model

Orientation and Positioning

Support Structures

Slicing

Path Planning

Machine Instructions
Surface Representations

- Polygonal Mesh: e.g. triangle soup
- Parametric Surface:
 \[
 x = r \sin \phi \cos \theta, \\
 y = -r \cos \phi, \\
 z = -r \sin \phi \sin \theta,
 \]
- Implicit Surface:
 \[
 x^2 + y^2 + z^2 - r^2 = 0.
 \]
Volumetric Representations

- Constructive Solid Geometry
- Voxel Grid
- Tetrahedral Mesh

3D Printing Software Pipeline

- Input Model
- Orientation and Positioning
- Support Structures
- Slicing
- Path Planning
- Machine Instructions
Model Orientation: Mechanical Properties

Source: ACM Siggraph
Model Orientation: Mechanical Properties

- **Weak**
 - Printing direction:
 - Max load: 0.22kg

- **Strong**
 - Printing direction:
 - Max load: 3.51kg

Source: ACM Siggraph
Model Orientation: Build Time

- Build speed is slower for the vertical direction compared to the horizontal direction.
Model Orientation: Support Volume

more support volume

less support volume
Model Orientation: **Surface Accuracy**

- Difference between the input shape and the printed shape
 - Difference in volume
 - Difference in the normal direction
Model Orientation: Support Contact Area

- **Contact area** between support material and object
 - should be minimized
 - can be geometrically computed

![Diagram showing larger and smaller contact areas](image-url)
Model Orientation: Support Contact Area

- After support removal

Algorithms for Specifying Model Orientation

- **Manual placement**
 - User is responsible for placing parts on the build tray

- **Semi-automated placement**
 - User places parts on the build tray
 - System provides feedback on build time, support volume, support contact area, mechanical properties

- **Automated placement**
 - Orientation is computed using optimization according to one or more objectives (build time, support volume, support area, mechanical properties)
3D Printing Software Pipeline

1. Input Model
2. Orientation and Positioning
3. Support Structures
4. Slicing
5. Path Planning
6. Machine Instructions
Why Support Structures?
Simple Conservative Algorithm

- Use ray casting in the z direction to compute all intersections for a ray.
- Sort intersections in the increasing z to determine intervals inside/outside of the object.
- Any outside intervals before the last inside interval should contain support.
Many printers can print at some draft angle
Support Generation: Draft Angle

- Many printers can print at some draft angle

unoptimized support

optimized support

Source: Huang et al. 2009
Optimized Support Structures

Source: Huang et al. 2009
Unoptimized vs. Optimized Support Structure

Source: Huang et al. 2009
• Assume we have a point that needs support

• Can connect point (via support post) to:
 1) Ground
 2) Object
 3) Another post

• Problems to solve:
 1) Support Points?
 2) Connection Strategy?
Advanced Algorithms: MeshMixer

- Compute point-sampling of overhang areas

- Densely cover overhangs from bottom to top

Source: Schmidt and Umetani
Top-Down Growing Strategy

1) Add support points to priority queue
 - Sorted top-down

2) While queue is not empty
 - Pop topmost point P
 - Try to connect downwards to ground/object
 - Else try to pair with closest free point
 - Else grow downwards a fixed step.
 - Add new point to queue

Source: Schmidt and Umetani
Advanced Algorithms: MeshMixer

Source: http://www.youtube.com/watch?v=aFTyTV3wwsE
3D Printing Software Pipeline

Input Model

Orientation and Positioning

Support Structures

Slicing

Path Planning

Machine Instructions
Slicing

- For a discrete z value, compute an intersection of a plane with a model
Slicing Algorithms: Direct Plane-Triangle Intersection

- For each triangle
 - Intersect triangle with the z plane
 - If they intersect, store the line segment
- Connect line segments, store contours

Source: Choi and Kwok, 2002
Slicing Algorithms: Direct Plane-Triangle Intersection

- For each triangle
 - Intersect triangle with the z plane
 - If they intersect, store the line segment
- Connect line segments, store contours

1. Intersect each edge with the plane
2. If two intersection points, connect them to form a line segment

Source: Choi and Kwok, 2002
Slicing Algorithms: Direct Plane-Triangle Intersection

- For each triangle
 - Intersect triangle with the z plane
 - If they intersect, store the line segment
- Connect line segments, store contours

Issues
- spurious line segments
- missing line segments

Epsilons
Slicing Algorithms: Direct Plane-Triangle Intersection

- STL models are not always watertight -> epsilons

Source: Marsan et al, 1998
Slicing Results with Direct Plane-Triangle Intersection

Source: Choi and Kwok, 2002
3D Printing Software Pipeline

1. Input Model
2. Orientation and Positioning
3. Support Structures
4. Slicing
5. Path Planning
6. Machine Instructions
Path Planning for Vector-based 3D Printing: Contour

- Offset inwards by distance equal to the filament radius
 - offset vertices
 - remove self-intersections and model intersections

![no offset](image1)
![offset inwards](image2)

- no offset
- offset inwards
Path Planning for Vector-based 3D Printing: Interior

- Tracing contours is combined with filling the interior
- The interior can be completely filled

Source: Horton et al 1993
Source: Han et al 2002
Filling in the Whole Object

Underfills with zero offset

Underfills with insufficient negative offset (-25μm)

Fully dense fills with sufficient offset (-75μm)

underfill

overfill

Han et al 2002
More Fill Patterns

- In-plane
- Out-of-plane
Equidistant Path Generation

- A set of paths are extracted based on distance to the surface

Source: Yang et al. 2002
Fermat Spirals

Source: ACM Siggraph
Path Planning: Interior

- Tracing contours is combined with filling the interior
- Many different fill patterns can be used

Source: Horton et al 1993
Path Planning for Vector-based 3D Printing: Interior

- A *honeycomb-cell structure* is a good trade-off between overall weight and strength.
3D Printing Software Pipeline

- Input Model
- Orientation and Positioning
- Support Structures
- Slicing
- Path Planning
- Machine Instructions
This program draws a 1" diameter circle about the origin in the X-Y plane.

seek the Z-axis to 0.25"
travel to X=-0.5 and Y=0.0

lower back to Z=0.0.
draw a clockwise circle at a slow feed rate.

lift the Z-axis up 0.1"
send back to X=0.0, Y=0.0, and Z=0.25
<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 am - 9:10 am</td>
<td>Introduction</td>
</tr>
<tr>
<td>9:10 am - 9:25 am</td>
<td>Hardware Review</td>
</tr>
<tr>
<td>9:25 am - 9:50 am</td>
<td>From Design to Machine Code</td>
</tr>
<tr>
<td>9:50 am - 10:20 am</td>
<td>Design Space Representations</td>
</tr>
<tr>
<td>10:20 am - 10:25 am</td>
<td>Performance Driven Design</td>
</tr>
<tr>
<td>10:25 am - 10:40 am</td>
<td>Break</td>
</tr>
<tr>
<td>10:40 am - 10:55 am</td>
<td>Performance Space Representation</td>
</tr>
<tr>
<td>10:55 am - 11:15 am</td>
<td>Inverse Methods</td>
</tr>
<tr>
<td>11:15 am - 11:35 am</td>
<td>Multi-objective Inverse Methods</td>
</tr>
<tr>
<td>11:35 am - 12:00 pm</td>
<td>Advanced Performance Driven Design</td>
</tr>
<tr>
<td>12:00 pm - 12:15 pm</td>
<td>Course Review</td>
</tr>
</tbody>
</table>
Computational Design Stack

Hardware Machine Code Design Performance
Design vs. Design Space

Design

Design Space
Design vs. Design Space

Design

Design Space
Low Dimensional Design Space

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_N \\
\end{bmatrix}
\]

parameters
• Each design can be mathematically represented as a point in \mathbb{R}^D, where D = number of voxels in a build volume
Unconstrained Design Space

Number of combinations:
1 inch cube at 600 dpi
3 materials
$3^{(600^3)}$ combinations
Unconstrained Design Space

high-dimensional design space
The Art of Designing a Design Space

- high-dimensional design space for 3D printable pianos
- high-dimensional design space
Reduced Design Spaces

high-dimensional design space for 3D printable pianos

low-dimensional reduced design space

high-dimensional design space
Each design can be mathematically represented as a point in \mathbb{R}^D.
Methods for Designing Reduced Design Spaces

- Parametric modeling
- Procedural modeling
- Deformation methods
Methods for Designing Reduced Design Spaces

- Parametric modeling
- Procedural modeling
- Deformation methods
Reduced Parameters

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_N
\end{bmatrix}
\]

parameters

Parametric Design

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_N
\end{bmatrix}
\]
CAD and Expert Designed Parameters

exposed parameters
OpenSCAD

- Software for creating solid 3D CAD models
- Not an interactive modeler
 - Very basic UI
- A 3D-compiler
 - Geometry written as a script
 - Executed using CGAL/OpenCSG
 - Rendered with OpenGL
- Available for Linux/UNIX, Windows, Mac OS X
 - http://www.openscad.org
3D Primitives

- **Sphere**
 - `sphere(5); sphere(r=5);`

- **Cube**
 - `cube(5);`
 - `cube([4,8,16]);`

- **Cylinder**
 - `cylinder(20,10,5);`
 `cylinder(h = 20, r1 = 10, r2 = 5);`
 - `cylinder(h=20,r=10);`
Transformations

- **Translate**
 - e.g., `translate([10,0,0])
 sphere(5); // translate along x axis`

- **Rotate**

- **Scale**

- **Order dependent**
 - translate([0,0,10])
 rotate([45,0,0])
 cylinder([20,10,0]);
 - Color(“green”)
 rotate([45,0,0])
 translate([0,0,10])
 cylinder([20,10,0]);
- Union
- Intersection
- Difference

Example:

```c++
union()
{
    translate([0,-25,-25]) cylinder(50,10,10);
    rotate([90,0,0]) cylinder(50,8,8);
}
```
for (loop_variable_name = range or vector) {

}

for (z = [-1, 1, -2.5]) {
 translate([0, 0, z])
 cube(size = 1, center = false);
}

for (i = [0:5]) {
 rotate(i*360/6, [1, 0, 0])
 translate([0, 10, 0]) sphere(r = 1);
}

Loops
Module

- **Procedures/Functions**

  ```
  module leaves() { cylinder(20, 5, 0); }
  module box() { cube([5, 10, 15]); }

  module tree() {
    leaves();
    scale([0.5, 0.5, 0.5]) translate([-2.5, -5, -15]) box();
  }

  tree();
  ```
• **Parameters**

```plaintext
module box(w, l, h, tx, ty, tz)
{
    translate([tx, ty, tz])
    cube([w, l, h]);
}

box(5, 10, 15, 10, 0, 5);
```
module simple_tree(size, dna, n) {
 if (n > 0) {
 // trunk
 cylinder(r1=size/10, r2=size/12, h=size, $fn=24);
 // branches
 translate([0,0,size])
 for(bd = dna) {
 angx = bd[0];
 angz = bd[1];
 scal = bd[2];
 rotate([angx,0,angz])
 simple_tree(scal*size, dna, n-1);
 }
 } else // leaves
 color("green")
 scale([1,1,3])
 translate([0,0,size/6])
 rotate([90,0,0])
 cylinder(r=size/6,h=size/10);
}

// dna is a list of branching data bd of the tree:
// bd[0] - inclination of the branch
// bd[1] - Z rotation angle of the branch
// bd[2] - relative scale of the branch

dna = [[12, 80, 0.85], [55, 0, 0.6],
 [62, 125, 0.6], [57, -125, 0.6]];
simple_tree(50, dna, 6);
Beyond Geometry

What is the Design Space of Mechanisms?
Library of Mechanisms
Methods for Designing Reduced Design Spaces

- Parametric modeling
- Procedural modeling
- Deformation methods
Formal Grammars and Languages

- A finite set of nonterminal symbols: \{S, A, B\}
- A finite set of terminal symbols: \{a, b\}
- A finite set of production rules: $S \rightarrow AB$
- A start symbol: S

- Generates a set of finite-length sequences of symbols by recursively applying production rules starting with S
L-systems

- nonterminals : 0, 1
- terminals : [,], +, -
- start : 0
- rules : (1 → 11), (0 → 1[+0][-0])

Visual representation: turtle graphics
- 0: draw a line segment ending in a leaf
- 1: draw a line segment
- - turn left 45 degrees
- + turn right 45 degrees
- [: push position and angle,
-]: pop position and angle,

Iterations:

0

1[+0][-0]

11[+1[+0][-0]][-1[+0][-0]]
L-systems

- nonterminals: 0, 1
- terminals: [,], +, -
- start: 0
- rules: (1 → 11), (0 → 1[+0][-0])

Visual representation: turtle graphics
- 0: draw a line segment ending in a leaf
- 1: draw a line segment
- - turn left 45 degrees
- + turn right 45 degrees
- [: push position and angle,
 -]: pop position and angle,

\[n = 0\] \[n = 1 : 1[+0][-0]\] \[n = 2 : 11[+1[+0][-0]][-1[+0][-0]]\]
L-systems

- **a**: $n=5$, $\delta=25.7^\circ$

 - F

 - $F \rightarrow F[-F]F[-F]F$

- **b**: $n=5$, $\delta=20^\circ$

 - F

 - $F \rightarrow F[-F]F[-F]F$

- **c**: $n=4$, $\delta=22.5^\circ$

 - F

 - $F \rightarrow [F[-F]F]F$

- **d**: $n=7$, $\delta=20^\circ$

 - X

 - $X \rightarrow F[X]F[-X]+X$

 - $F \rightarrow FF$

- **e**: $n=7$, $\delta=25.7^\circ$

 - X

 - $X \rightarrow F[X]F[-X]+FX$

 - $F \rightarrow FF$

- **f**: $n=5$, $\delta=22.5^\circ$

 - X

 - $X \rightarrow F[-X]+X+FX$

 - $F \rightarrow FF$
Types of L-Systems

- **Deterministic**: If there is exactly one production for each symbol

 \[
 0 \rightarrow 1[0]0
 \]

- **Stochastic**: If there are several, and each is chosen with a certain probability during each iteration

 \[
 0 \ (0.5) \rightarrow 1[0]0
 \]

 \[
 0 \ (0.5) \rightarrow 0
 \]
Furniture Design using Formal Grammar

Source: Converting 3D Furniture Models to Fabricable Parts and Connectors, Lau et al., Siggraph 2011
Formal Grammar for 2D Cabinets

\[N = \{S, B, X, Y\} \]
\[\Sigma = \{hb, ht, v, ha, leg, wheel\} \]

- **Non-terminal Symbols**
 - Collection of Parts

- **Terminal Symbols**
 - Separate Parts

\[P : \text{Set of Production Rules} \quad \{S\} : \text{Start Symbol} \]

The language specifies a directed graph, and each graph represents parts and connectors.

Source: Converting 3D Furniture Models to Fabricable Parts and Connectors, Lau et al., Siggraph 2011
Sequence of Production Rules

Source: Converting 3D Furniture Models to Fabricable Parts and Connectors, Lau et al., Siggraph 2011
Methods for Designing Reduced Design Spaces

- Parametric modeling
- Procedural modeling
- Deformation methods
CAD Does Not Work For Organic Shapes
Deformation: Common Paradigms

- **Surface based deformation**
 - Optimization on the surface
 - Physically motivated: variants of elastic energy minimization

- **Space deformation**
 - Deforms some 2D/3D space using a cage
 - Deformation propagation to all points in the space
 - Independent of shape representation

Source: Olga Sorkine-Hornung, Daniele Panozzo
Geometric Deformation Models

- **Surface-Based Deformations**
 - Laplacian Mesh Deformation
 - As Rigid As Possible Deformation (ARAP)
- **Space-Based Deformations**
 - Cages
 - Linear Blend Skinning (LBS)
 - Bounded Biharmonic Weights
Reduced Parameters

- skeletons
- regions
- points
- cages
Bounded Biharmonic Weights
3D Characters
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 am - 9:10 am</td>
<td>Introduction</td>
</tr>
<tr>
<td>9:10 am - 9:25 am</td>
<td>Hardware Review</td>
</tr>
<tr>
<td>9:25 am - 9:50 am</td>
<td>From Design to Machine Code</td>
</tr>
<tr>
<td>9:50 am - 10:20 am</td>
<td>Design Space Representations</td>
</tr>
<tr>
<td>10:20 am - 10:25 am</td>
<td>Performance Driven Design</td>
</tr>
<tr>
<td>10:25 am - 10:40 am</td>
<td>Break</td>
</tr>
<tr>
<td>10:40 am - 10:55 am</td>
<td>Performance Space Representation</td>
</tr>
<tr>
<td>10:55 am - 11:15 am</td>
<td>Inverse Methods</td>
</tr>
<tr>
<td>11:15 am - 11:35 am</td>
<td>Multi-objective Inverse Methods</td>
</tr>
<tr>
<td>11:35 am - 12:00 pm</td>
<td>Advanced Performance Driven Design</td>
</tr>
<tr>
<td>12:00 pm - 12:15 pm</td>
<td>Course Review</td>
</tr>
</tbody>
</table>
Computational Design Stack

Hardware → Machine Code → Design → Performance

Energy → Toughness
Design Driven By Performance

Design Space

Performance Space
From Design to Performance

• Manufacturing + Testing
Many Different Simulation Types & Methods

- Mechanical
 - dynamic
 - static
- Acoustic
- Thermal
- Electromagnetic
- etc.
Simulating Mechanical Behavior: Structural Stability

Source: Prevost et al 2013
Simulating Mechanical Behavior

Worse-Case Structural Analysis

Zhou et al 2013
Simulating Kinematics
Simulating Aerodynamics
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 am - 9:10 am</td>
<td>Introduction</td>
</tr>
<tr>
<td>9:10 am - 9:25 am</td>
<td>Hardware Review</td>
</tr>
<tr>
<td>9:25 am - 9:50 am</td>
<td>From Design to Machine Code</td>
</tr>
<tr>
<td>9:50 am - 10:20 am</td>
<td>Design Space Representations</td>
</tr>
<tr>
<td>10:20 am - 10:25 am</td>
<td>Performance Driven Design</td>
</tr>
<tr>
<td>10:25 am - 10:40 am</td>
<td>Break</td>
</tr>
<tr>
<td>10:40 am - 10:55 am</td>
<td>Performance Space Representation</td>
</tr>
<tr>
<td>10:55 am - 11:15 am</td>
<td>Inverse Methods</td>
</tr>
<tr>
<td>11:15 am - 11:35 am</td>
<td>Multi-objective Inverse Methods</td>
</tr>
<tr>
<td>11:35 am - 12:00 pm</td>
<td>Advanced Performance Driven Design</td>
</tr>
<tr>
<td>12:00 pm - 12:15 pm</td>
<td>Course Review</td>
</tr>
</tbody>
</table>